2003 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2003 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is a utility pass used for testing the InstructionSimplify analysis.
 | |
| // The analysis is applied to every instruction, and if it simplifies then the
 | |
| // instruction is replaced by the simplification.  If you are looking for a pass
 | |
| // that performs serious instruction folding, use the instcombine pass instead.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/Transforms/Utils/BuildLibCalls.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| /// This class is the abstract base class for the set of optimizations that
 | |
| /// corresponds to one library call.
 | |
| namespace {
 | |
| class LibCallOptimization {
 | |
| protected:
 | |
|   Function *Caller;
 | |
|   const DataLayout *TD;
 | |
|   const TargetLibraryInfo *TLI;
 | |
|   const LibCallSimplifier *LCS;
 | |
|   LLVMContext* Context;
 | |
| public:
 | |
|   LibCallOptimization() { }
 | |
|   virtual ~LibCallOptimization() {}
 | |
| 
 | |
|   /// callOptimizer - This pure virtual method is implemented by base classes to
 | |
|   /// do various optimizations.  If this returns null then no transformation was
 | |
|   /// performed.  If it returns CI, then it transformed the call and CI is to be
 | |
|   /// deleted.  If it returns something else, replace CI with the new value and
 | |
|   /// delete CI.
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
 | |
|     =0;
 | |
| 
 | |
|   /// ignoreCallingConv - Returns false if this transformation could possibly
 | |
|   /// change the calling convention.
 | |
|   virtual bool ignoreCallingConv() { return false; }
 | |
| 
 | |
|   Value *optimizeCall(CallInst *CI, const DataLayout *TD,
 | |
|                       const TargetLibraryInfo *TLI,
 | |
|                       const LibCallSimplifier *LCS, IRBuilder<> &B) {
 | |
|     Caller = CI->getParent()->getParent();
 | |
|     this->TD = TD;
 | |
|     this->TLI = TLI;
 | |
|     this->LCS = LCS;
 | |
|     if (CI->getCalledFunction())
 | |
|       Context = &CI->getCalledFunction()->getContext();
 | |
| 
 | |
|     // We never change the calling convention.
 | |
|     if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C)
 | |
|       return NULL;
 | |
| 
 | |
|     return callOptimizer(CI->getCalledFunction(), CI, B);
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
 | |
| /// value is equal or not-equal to zero.
 | |
| static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
 | |
|       if (IC->isEquality())
 | |
|         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
 | |
|           if (C->isNullValue())
 | |
|             continue;
 | |
|     // Unknown instruction.
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality
 | |
| /// comparisons with With.
 | |
| static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
 | |
|       if (IC->isEquality() && IC->getOperand(1) == With)
 | |
|         continue;
 | |
|     // Unknown instruction.
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool callHasFloatingPointArgument(const CallInst *CI) {
 | |
|   for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
 | |
|        it != e; ++it) {
 | |
|     if ((*it)->getType()->isFloatingPointTy())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Fortified Library Call Optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| struct FortifiedLibCallOptimization : public LibCallOptimization {
 | |
| protected:
 | |
|   virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
 | |
| 			  bool isString) const = 0;
 | |
| };
 | |
| 
 | |
| struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
 | |
|   CallInst *CI;
 | |
| 
 | |
|   bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
 | |
|     if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
 | |
|       return true;
 | |
|     if (ConstantInt *SizeCI =
 | |
|                            dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
 | |
|       if (SizeCI->isAllOnesValue())
 | |
|         return true;
 | |
|       if (isString) {
 | |
|         uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
 | |
|         // If the length is 0 we don't know how long it is and so we can't
 | |
|         // remove the check.
 | |
|         if (Len == 0) return false;
 | |
|         return SizeCI->getZExtValue() >= Len;
 | |
|       }
 | |
|       if (ConstantInt *Arg = dyn_cast<ConstantInt>(
 | |
|                                                   CI->getArgOperand(SizeArgOp)))
 | |
|         return SizeCI->getZExtValue() >= Arg->getZExtValue();
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     this->CI = CI;
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     LLVMContext &Context = CI->getParent()->getContext();
 | |
| 
 | |
|     // Check if this has the right signature.
 | |
|     if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isPointerTy() ||
 | |
|         FT->getParamType(2) != TD->getIntPtrType(Context) ||
 | |
|         FT->getParamType(3) != TD->getIntPtrType(Context))
 | |
|       return 0;
 | |
| 
 | |
|     if (isFoldable(3, 2, false)) {
 | |
|       B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                      CI->getArgOperand(2), 1);
 | |
|       return CI->getArgOperand(0);
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     this->CI = CI;
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     LLVMContext &Context = CI->getParent()->getContext();
 | |
| 
 | |
|     // Check if this has the right signature.
 | |
|     if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isPointerTy() ||
 | |
|         FT->getParamType(2) != TD->getIntPtrType(Context) ||
 | |
|         FT->getParamType(3) != TD->getIntPtrType(Context))
 | |
|       return 0;
 | |
| 
 | |
|     if (isFoldable(3, 2, false)) {
 | |
|       B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                       CI->getArgOperand(2), 1);
 | |
|       return CI->getArgOperand(0);
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     this->CI = CI;
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     LLVMContext &Context = CI->getParent()->getContext();
 | |
| 
 | |
|     // Check if this has the right signature.
 | |
|     if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isIntegerTy() ||
 | |
|         FT->getParamType(2) != TD->getIntPtrType(Context) ||
 | |
|         FT->getParamType(3) != TD->getIntPtrType(Context))
 | |
|       return 0;
 | |
| 
 | |
|     if (isFoldable(3, 2, false)) {
 | |
|       Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
 | |
|                                    false);
 | |
|       B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
 | |
|       return CI->getArgOperand(0);
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     this->CI = CI;
 | |
|     StringRef Name = Callee->getName();
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     LLVMContext &Context = CI->getParent()->getContext();
 | |
| 
 | |
|     // Check if this has the right signature.
 | |
|     if (FT->getNumParams() != 3 ||
 | |
|         FT->getReturnType() != FT->getParamType(0) ||
 | |
|         FT->getParamType(0) != FT->getParamType(1) ||
 | |
|         FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
 | |
|         FT->getParamType(2) != TD->getIntPtrType(Context))
 | |
|       return 0;
 | |
| 
 | |
|     Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
 | |
|     if (Dst == Src)      // __strcpy_chk(x,x)  -> x
 | |
|       return Src;
 | |
| 
 | |
|     // If a) we don't have any length information, or b) we know this will
 | |
|     // fit then just lower to a plain strcpy. Otherwise we'll keep our
 | |
|     // strcpy_chk call which may fail at runtime if the size is too long.
 | |
|     // TODO: It might be nice to get a maximum length out of the possible
 | |
|     // string lengths for varying.
 | |
|     if (isFoldable(2, 1, true)) {
 | |
|       Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
 | |
|       return Ret;
 | |
|     } else {
 | |
|       // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
 | |
|       uint64_t Len = GetStringLength(Src);
 | |
|       if (Len == 0) return 0;
 | |
| 
 | |
|       // This optimization require DataLayout.
 | |
|       if (!TD) return 0;
 | |
| 
 | |
|       Value *Ret =
 | |
| 	EmitMemCpyChk(Dst, Src,
 | |
|                       ConstantInt::get(TD->getIntPtrType(Context), Len),
 | |
|                       CI->getArgOperand(2), B, TD, TLI);
 | |
|       return Ret;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     this->CI = CI;
 | |
|     StringRef Name = Callee->getName();
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     LLVMContext &Context = CI->getParent()->getContext();
 | |
| 
 | |
|     // Check if this has the right signature.
 | |
|     if (FT->getNumParams() != 3 ||
 | |
|         FT->getReturnType() != FT->getParamType(0) ||
 | |
|         FT->getParamType(0) != FT->getParamType(1) ||
 | |
|         FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
 | |
|         FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)))
 | |
|       return 0;
 | |
| 
 | |
|     Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
 | |
|     if (Dst == Src) {  // stpcpy(x,x)  -> x+strlen(x)
 | |
|       Value *StrLen = EmitStrLen(Src, B, TD, TLI);
 | |
|       return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
 | |
|     }
 | |
| 
 | |
|     // If a) we don't have any length information, or b) we know this will
 | |
|     // fit then just lower to a plain stpcpy. Otherwise we'll keep our
 | |
|     // stpcpy_chk call which may fail at runtime if the size is too long.
 | |
|     // TODO: It might be nice to get a maximum length out of the possible
 | |
|     // string lengths for varying.
 | |
|     if (isFoldable(2, 1, true)) {
 | |
|       Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
 | |
|       return Ret;
 | |
|     } else {
 | |
|       // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
 | |
|       uint64_t Len = GetStringLength(Src);
 | |
|       if (Len == 0) return 0;
 | |
| 
 | |
|       // This optimization require DataLayout.
 | |
|       if (!TD) return 0;
 | |
| 
 | |
|       Type *PT = FT->getParamType(0);
 | |
|       Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len);
 | |
|       Value *DstEnd = B.CreateGEP(Dst,
 | |
|                                   ConstantInt::get(TD->getIntPtrType(PT),
 | |
|                                                    Len - 1));
 | |
|       if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, TD, TLI))
 | |
|         return 0;
 | |
|       return DstEnd;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     this->CI = CI;
 | |
|     StringRef Name = Callee->getName();
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     LLVMContext &Context = CI->getParent()->getContext();
 | |
| 
 | |
|     // Check if this has the right signature.
 | |
|     if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         FT->getParamType(0) != FT->getParamType(1) ||
 | |
|         FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
 | |
|         !FT->getParamType(2)->isIntegerTy() ||
 | |
|         FT->getParamType(3) != TD->getIntPtrType(Context))
 | |
|       return 0;
 | |
| 
 | |
|     if (isFoldable(3, 2, false)) {
 | |
|       Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                                CI->getArgOperand(2), B, TD, TLI,
 | |
|                                Name.substr(2, 7));
 | |
|       return Ret;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // String and Memory Library Call Optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| struct StrCatOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Verify the "strcat" function prototype.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 ||
 | |
|         FT->getReturnType() != B.getInt8PtrTy() ||
 | |
|         FT->getParamType(0) != FT->getReturnType() ||
 | |
|         FT->getParamType(1) != FT->getReturnType())
 | |
|       return 0;
 | |
| 
 | |
|     // Extract some information from the instruction
 | |
|     Value *Dst = CI->getArgOperand(0);
 | |
|     Value *Src = CI->getArgOperand(1);
 | |
| 
 | |
|     // See if we can get the length of the input string.
 | |
|     uint64_t Len = GetStringLength(Src);
 | |
|     if (Len == 0) return 0;
 | |
|     --Len;  // Unbias length.
 | |
| 
 | |
|     // Handle the simple, do-nothing case: strcat(x, "") -> x
 | |
|     if (Len == 0)
 | |
|       return Dst;
 | |
| 
 | |
|     // These optimizations require DataLayout.
 | |
|     if (!TD) return 0;
 | |
| 
 | |
|     return emitStrLenMemCpy(Src, Dst, Len, B);
 | |
|   }
 | |
| 
 | |
|   Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
 | |
|                           IRBuilder<> &B) {
 | |
|     // We need to find the end of the destination string.  That's where the
 | |
|     // memory is to be moved to. We just generate a call to strlen.
 | |
|     Value *DstLen = EmitStrLen(Dst, B, TD, TLI);
 | |
|     if (!DstLen)
 | |
|       return 0;
 | |
| 
 | |
|     // Now that we have the destination's length, we must index into the
 | |
|     // destination's pointer to get the actual memcpy destination (end of
 | |
|     // the string .. we're concatenating).
 | |
|     Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
 | |
| 
 | |
|     // We have enough information to now generate the memcpy call to do the
 | |
|     // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
 | |
|     B.CreateMemCpy(CpyDst, Src,
 | |
|                    ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
 | |
|     return Dst;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrNCatOpt : public StrCatOpt {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Verify the "strncat" function prototype.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 3 ||
 | |
|         FT->getReturnType() != B.getInt8PtrTy() ||
 | |
|         FT->getParamType(0) != FT->getReturnType() ||
 | |
|         FT->getParamType(1) != FT->getReturnType() ||
 | |
|         !FT->getParamType(2)->isIntegerTy())
 | |
|       return 0;
 | |
| 
 | |
|     // Extract some information from the instruction
 | |
|     Value *Dst = CI->getArgOperand(0);
 | |
|     Value *Src = CI->getArgOperand(1);
 | |
|     uint64_t Len;
 | |
| 
 | |
|     // We don't do anything if length is not constant
 | |
|     if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
 | |
|       Len = LengthArg->getZExtValue();
 | |
|     else
 | |
|       return 0;
 | |
| 
 | |
|     // See if we can get the length of the input string.
 | |
|     uint64_t SrcLen = GetStringLength(Src);
 | |
|     if (SrcLen == 0) return 0;
 | |
|     --SrcLen;  // Unbias length.
 | |
| 
 | |
|     // Handle the simple, do-nothing cases:
 | |
|     // strncat(x, "", c) -> x
 | |
|     // strncat(x,  c, 0) -> x
 | |
|     if (SrcLen == 0 || Len == 0) return Dst;
 | |
| 
 | |
|     // These optimizations require DataLayout.
 | |
|     if (!TD) return 0;
 | |
| 
 | |
|     // We don't optimize this case
 | |
|     if (Len < SrcLen) return 0;
 | |
| 
 | |
|     // strncat(x, s, c) -> strcat(x, s)
 | |
|     // s is constant so the strcat can be optimized further
 | |
|     return emitStrLenMemCpy(Src, Dst, SrcLen, B);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrChrOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Verify the "strchr" function prototype.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 ||
 | |
|         FT->getReturnType() != B.getInt8PtrTy() ||
 | |
|         FT->getParamType(0) != FT->getReturnType() ||
 | |
|         !FT->getParamType(1)->isIntegerTy(32))
 | |
|       return 0;
 | |
| 
 | |
|     Value *SrcStr = CI->getArgOperand(0);
 | |
| 
 | |
|     // If the second operand is non-constant, see if we can compute the length
 | |
|     // of the input string and turn this into memchr.
 | |
|     ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | |
|     if (CharC == 0) {
 | |
|       // These optimizations require DataLayout.
 | |
|       if (!TD) return 0;
 | |
| 
 | |
|       uint64_t Len = GetStringLength(SrcStr);
 | |
|       if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
 | |
|         return 0;
 | |
| 
 | |
|       return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
 | |
|                         ConstantInt::get(TD->getIntPtrType(*Context), Len),
 | |
|                         B, TD, TLI);
 | |
|     }
 | |
| 
 | |
|     // Otherwise, the character is a constant, see if the first argument is
 | |
|     // a string literal.  If so, we can constant fold.
 | |
|     StringRef Str;
 | |
|     if (!getConstantStringInfo(SrcStr, Str))
 | |
|       return 0;
 | |
| 
 | |
|     // Compute the offset, make sure to handle the case when we're searching for
 | |
|     // zero (a weird way to spell strlen).
 | |
|     size_t I = CharC->getSExtValue() == 0 ?
 | |
|         Str.size() : Str.find(CharC->getSExtValue());
 | |
|     if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
 | |
|       return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|     // strchr(s+n,c)  -> gep(s+n+i,c)
 | |
|     return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrRChrOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Verify the "strrchr" function prototype.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 ||
 | |
|         FT->getReturnType() != B.getInt8PtrTy() ||
 | |
|         FT->getParamType(0) != FT->getReturnType() ||
 | |
|         !FT->getParamType(1)->isIntegerTy(32))
 | |
|       return 0;
 | |
| 
 | |
|     Value *SrcStr = CI->getArgOperand(0);
 | |
|     ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | |
| 
 | |
|     // Cannot fold anything if we're not looking for a constant.
 | |
|     if (!CharC)
 | |
|       return 0;
 | |
| 
 | |
|     StringRef Str;
 | |
|     if (!getConstantStringInfo(SrcStr, Str)) {
 | |
|       // strrchr(s, 0) -> strchr(s, 0)
 | |
|       if (TD && CharC->isZero())
 | |
|         return EmitStrChr(SrcStr, '\0', B, TD, TLI);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // Compute the offset.
 | |
|     size_t I = CharC->getSExtValue() == 0 ?
 | |
|         Str.size() : Str.rfind(CharC->getSExtValue());
 | |
|     if (I == StringRef::npos) // Didn't find the char. Return null.
 | |
|       return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|     // strrchr(s+n,c) -> gep(s+n+i,c)
 | |
|     return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrCmpOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Verify the "strcmp" function prototype.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 ||
 | |
|         !FT->getReturnType()->isIntegerTy(32) ||
 | |
|         FT->getParamType(0) != FT->getParamType(1) ||
 | |
|         FT->getParamType(0) != B.getInt8PtrTy())
 | |
|       return 0;
 | |
| 
 | |
|     Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
 | |
|     if (Str1P == Str2P)      // strcmp(x,x)  -> 0
 | |
|       return ConstantInt::get(CI->getType(), 0);
 | |
| 
 | |
|     StringRef Str1, Str2;
 | |
|     bool HasStr1 = getConstantStringInfo(Str1P, Str1);
 | |
|     bool HasStr2 = getConstantStringInfo(Str2P, Str2);
 | |
| 
 | |
|     // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
 | |
|     if (HasStr1 && HasStr2)
 | |
|       return ConstantInt::get(CI->getType(), Str1.compare(Str2));
 | |
| 
 | |
|     if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
 | |
|       return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
 | |
|                                       CI->getType()));
 | |
| 
 | |
|     if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
 | |
|       return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
 | |
| 
 | |
|     // strcmp(P, "x") -> memcmp(P, "x", 2)
 | |
|     uint64_t Len1 = GetStringLength(Str1P);
 | |
|     uint64_t Len2 = GetStringLength(Str2P);
 | |
|     if (Len1 && Len2) {
 | |
|       // These optimizations require DataLayout.
 | |
|       if (!TD) return 0;
 | |
| 
 | |
|       return EmitMemCmp(Str1P, Str2P,
 | |
|                         ConstantInt::get(TD->getIntPtrType(*Context),
 | |
|                         std::min(Len1, Len2)), B, TD, TLI);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrNCmpOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Verify the "strncmp" function prototype.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 3 ||
 | |
|         !FT->getReturnType()->isIntegerTy(32) ||
 | |
|         FT->getParamType(0) != FT->getParamType(1) ||
 | |
|         FT->getParamType(0) != B.getInt8PtrTy() ||
 | |
|         !FT->getParamType(2)->isIntegerTy())
 | |
|       return 0;
 | |
| 
 | |
|     Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
 | |
|     if (Str1P == Str2P)      // strncmp(x,x,n)  -> 0
 | |
|       return ConstantInt::get(CI->getType(), 0);
 | |
| 
 | |
|     // Get the length argument if it is constant.
 | |
|     uint64_t Length;
 | |
|     if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
 | |
|       Length = LengthArg->getZExtValue();
 | |
|     else
 | |
|       return 0;
 | |
| 
 | |
|     if (Length == 0) // strncmp(x,y,0)   -> 0
 | |
|       return ConstantInt::get(CI->getType(), 0);
 | |
| 
 | |
|     if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
 | |
|       return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI);
 | |
| 
 | |
|     StringRef Str1, Str2;
 | |
|     bool HasStr1 = getConstantStringInfo(Str1P, Str1);
 | |
|     bool HasStr2 = getConstantStringInfo(Str2P, Str2);
 | |
| 
 | |
|     // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
 | |
|     if (HasStr1 && HasStr2) {
 | |
|       StringRef SubStr1 = Str1.substr(0, Length);
 | |
|       StringRef SubStr2 = Str2.substr(0, Length);
 | |
|       return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
 | |
|     }
 | |
| 
 | |
|     if (HasStr1 && Str1.empty())  // strncmp("", x, n) -> -*x
 | |
|       return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
 | |
|                                       CI->getType()));
 | |
| 
 | |
|     if (HasStr2 && Str2.empty())  // strncmp(x, "", n) -> *x
 | |
|       return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrCpyOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Verify the "strcpy" function prototype.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 ||
 | |
|         FT->getReturnType() != FT->getParamType(0) ||
 | |
|         FT->getParamType(0) != FT->getParamType(1) ||
 | |
|         FT->getParamType(0) != B.getInt8PtrTy())
 | |
|       return 0;
 | |
| 
 | |
|     Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
 | |
|     if (Dst == Src)      // strcpy(x,x)  -> x
 | |
|       return Src;
 | |
| 
 | |
|     // These optimizations require DataLayout.
 | |
|     if (!TD) return 0;
 | |
| 
 | |
|     // See if we can get the length of the input string.
 | |
|     uint64_t Len = GetStringLength(Src);
 | |
|     if (Len == 0) return 0;
 | |
| 
 | |
|     // We have enough information to now generate the memcpy call to do the
 | |
|     // copy for us.  Make a memcpy to copy the nul byte with align = 1.
 | |
|     B.CreateMemCpy(Dst, Src,
 | |
| 		   ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
 | |
|     return Dst;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StpCpyOpt: public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Verify the "stpcpy" function prototype.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 ||
 | |
|         FT->getReturnType() != FT->getParamType(0) ||
 | |
|         FT->getParamType(0) != FT->getParamType(1) ||
 | |
|         FT->getParamType(0) != B.getInt8PtrTy())
 | |
|       return 0;
 | |
| 
 | |
|     // These optimizations require DataLayout.
 | |
|     if (!TD) return 0;
 | |
| 
 | |
|     Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
 | |
|     if (Dst == Src) {  // stpcpy(x,x)  -> x+strlen(x)
 | |
|       Value *StrLen = EmitStrLen(Src, B, TD, TLI);
 | |
|       return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
 | |
|     }
 | |
| 
 | |
|     // See if we can get the length of the input string.
 | |
|     uint64_t Len = GetStringLength(Src);
 | |
|     if (Len == 0) return 0;
 | |
| 
 | |
|     Type *PT = FT->getParamType(0);
 | |
|     Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len);
 | |
|     Value *DstEnd = B.CreateGEP(Dst,
 | |
|                                 ConstantInt::get(TD->getIntPtrType(PT),
 | |
|                                                  Len - 1));
 | |
| 
 | |
|     // We have enough information to now generate the memcpy call to do the
 | |
|     // copy for us.  Make a memcpy to copy the nul byte with align = 1.
 | |
|     B.CreateMemCpy(Dst, Src, LenV, 1);
 | |
|     return DstEnd;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrNCpyOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         FT->getParamType(0) != FT->getParamType(1) ||
 | |
|         FT->getParamType(0) != B.getInt8PtrTy() ||
 | |
|         !FT->getParamType(2)->isIntegerTy())
 | |
|       return 0;
 | |
| 
 | |
|     Value *Dst = CI->getArgOperand(0);
 | |
|     Value *Src = CI->getArgOperand(1);
 | |
|     Value *LenOp = CI->getArgOperand(2);
 | |
| 
 | |
|     // See if we can get the length of the input string.
 | |
|     uint64_t SrcLen = GetStringLength(Src);
 | |
|     if (SrcLen == 0) return 0;
 | |
|     --SrcLen;
 | |
| 
 | |
|     if (SrcLen == 0) {
 | |
|       // strncpy(x, "", y) -> memset(x, '\0', y, 1)
 | |
|       B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
 | |
|       return Dst;
 | |
|     }
 | |
| 
 | |
|     uint64_t Len;
 | |
|     if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
 | |
|       Len = LengthArg->getZExtValue();
 | |
|     else
 | |
|       return 0;
 | |
| 
 | |
|     if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
 | |
| 
 | |
|     // These optimizations require DataLayout.
 | |
|     if (!TD) return 0;
 | |
| 
 | |
|     // Let strncpy handle the zero padding
 | |
|     if (Len > SrcLen+1) return 0;
 | |
| 
 | |
|     Type *PT = FT->getParamType(0);
 | |
|     // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
 | |
|     B.CreateMemCpy(Dst, Src,
 | |
|                    ConstantInt::get(TD->getIntPtrType(PT), Len), 1);
 | |
| 
 | |
|     return Dst;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrLenOpt : public LibCallOptimization {
 | |
|   virtual bool ignoreCallingConv() { return true; }
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 1 ||
 | |
|         FT->getParamType(0) != B.getInt8PtrTy() ||
 | |
|         !FT->getReturnType()->isIntegerTy())
 | |
|       return 0;
 | |
| 
 | |
|     Value *Src = CI->getArgOperand(0);
 | |
| 
 | |
|     // Constant folding: strlen("xyz") -> 3
 | |
|     if (uint64_t Len = GetStringLength(Src))
 | |
|       return ConstantInt::get(CI->getType(), Len-1);
 | |
| 
 | |
|     // strlen(x) != 0 --> *x != 0
 | |
|     // strlen(x) == 0 --> *x == 0
 | |
|     if (isOnlyUsedInZeroEqualityComparison(CI))
 | |
|       return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrPBrkOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 ||
 | |
|         FT->getParamType(0) != B.getInt8PtrTy() ||
 | |
|         FT->getParamType(1) != FT->getParamType(0) ||
 | |
|         FT->getReturnType() != FT->getParamType(0))
 | |
|       return 0;
 | |
| 
 | |
|     StringRef S1, S2;
 | |
|     bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | |
|     bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | |
| 
 | |
|     // strpbrk(s, "") -> NULL
 | |
|     // strpbrk("", s) -> NULL
 | |
|     if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
 | |
|       return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|     // Constant folding.
 | |
|     if (HasS1 && HasS2) {
 | |
|       size_t I = S1.find_first_of(S2);
 | |
|       if (I == std::string::npos) // No match.
 | |
|         return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|       return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
 | |
|     }
 | |
| 
 | |
|     // strpbrk(s, "a") -> strchr(s, 'a')
 | |
|     if (TD && HasS2 && S2.size() == 1)
 | |
|       return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD, TLI);
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrToOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
 | |
|         !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isPointerTy())
 | |
|       return 0;
 | |
| 
 | |
|     Value *EndPtr = CI->getArgOperand(1);
 | |
|     if (isa<ConstantPointerNull>(EndPtr)) {
 | |
|       // With a null EndPtr, this function won't capture the main argument.
 | |
|       // It would be readonly too, except that it still may write to errno.
 | |
|       CI->addAttribute(1, Attribute::NoCapture);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrSpnOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 ||
 | |
|         FT->getParamType(0) != B.getInt8PtrTy() ||
 | |
|         FT->getParamType(1) != FT->getParamType(0) ||
 | |
|         !FT->getReturnType()->isIntegerTy())
 | |
|       return 0;
 | |
| 
 | |
|     StringRef S1, S2;
 | |
|     bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | |
|     bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | |
| 
 | |
|     // strspn(s, "") -> 0
 | |
|     // strspn("", s) -> 0
 | |
|     if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
 | |
|       return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|     // Constant folding.
 | |
|     if (HasS1 && HasS2) {
 | |
|       size_t Pos = S1.find_first_not_of(S2);
 | |
|       if (Pos == StringRef::npos) Pos = S1.size();
 | |
|       return ConstantInt::get(CI->getType(), Pos);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrCSpnOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 ||
 | |
|         FT->getParamType(0) != B.getInt8PtrTy() ||
 | |
|         FT->getParamType(1) != FT->getParamType(0) ||
 | |
|         !FT->getReturnType()->isIntegerTy())
 | |
|       return 0;
 | |
| 
 | |
|     StringRef S1, S2;
 | |
|     bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | |
|     bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | |
| 
 | |
|     // strcspn("", s) -> 0
 | |
|     if (HasS1 && S1.empty())
 | |
|       return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|     // Constant folding.
 | |
|     if (HasS1 && HasS2) {
 | |
|       size_t Pos = S1.find_first_of(S2);
 | |
|       if (Pos == StringRef::npos) Pos = S1.size();
 | |
|       return ConstantInt::get(CI->getType(), Pos);
 | |
|     }
 | |
| 
 | |
|     // strcspn(s, "") -> strlen(s)
 | |
|     if (TD && HasS2 && S2.empty())
 | |
|       return EmitStrLen(CI->getArgOperand(0), B, TD, TLI);
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StrStrOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 ||
 | |
|         !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isPointerTy() ||
 | |
|         !FT->getReturnType()->isPointerTy())
 | |
|       return 0;
 | |
| 
 | |
|     // fold strstr(x, x) -> x.
 | |
|     if (CI->getArgOperand(0) == CI->getArgOperand(1))
 | |
|       return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
 | |
| 
 | |
|     // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
 | |
|     if (TD && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
 | |
|       Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD, TLI);
 | |
|       if (!StrLen)
 | |
|         return 0;
 | |
|       Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                                    StrLen, B, TD, TLI);
 | |
|       if (!StrNCmp)
 | |
|         return 0;
 | |
|       for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end();
 | |
|            UI != UE; ) {
 | |
|         ICmpInst *Old = cast<ICmpInst>(*UI++);
 | |
|         Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
 | |
|                                   ConstantInt::getNullValue(StrNCmp->getType()),
 | |
|                                   "cmp");
 | |
|         LCS->replaceAllUsesWith(Old, Cmp);
 | |
|       }
 | |
|       return CI;
 | |
|     }
 | |
| 
 | |
|     // See if either input string is a constant string.
 | |
|     StringRef SearchStr, ToFindStr;
 | |
|     bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
 | |
|     bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
 | |
| 
 | |
|     // fold strstr(x, "") -> x.
 | |
|     if (HasStr2 && ToFindStr.empty())
 | |
|       return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
 | |
| 
 | |
|     // If both strings are known, constant fold it.
 | |
|     if (HasStr1 && HasStr2) {
 | |
|       std::string::size_type Offset = SearchStr.find(ToFindStr);
 | |
| 
 | |
|       if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
 | |
|         return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|       // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
 | |
|       Value *Result = CastToCStr(CI->getArgOperand(0), B);
 | |
|       Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
 | |
|       return B.CreateBitCast(Result, CI->getType());
 | |
|     }
 | |
| 
 | |
|     // fold strstr(x, "y") -> strchr(x, 'y').
 | |
|     if (HasStr2 && ToFindStr.size() == 1) {
 | |
|       Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TD, TLI);
 | |
|       return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : 0;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct MemCmpOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isPointerTy() ||
 | |
|         !FT->getReturnType()->isIntegerTy(32))
 | |
|       return 0;
 | |
| 
 | |
|     Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
 | |
| 
 | |
|     if (LHS == RHS)  // memcmp(s,s,x) -> 0
 | |
|       return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|     // Make sure we have a constant length.
 | |
|     ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | |
|     if (!LenC) return 0;
 | |
|     uint64_t Len = LenC->getZExtValue();
 | |
| 
 | |
|     if (Len == 0) // memcmp(s1,s2,0) -> 0
 | |
|       return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|     // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
 | |
|     if (Len == 1) {
 | |
|       Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
 | |
|                                  CI->getType(), "lhsv");
 | |
|       Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
 | |
|                                  CI->getType(), "rhsv");
 | |
|       return B.CreateSub(LHSV, RHSV, "chardiff");
 | |
|     }
 | |
| 
 | |
|     // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
 | |
|     StringRef LHSStr, RHSStr;
 | |
|     if (getConstantStringInfo(LHS, LHSStr) &&
 | |
|         getConstantStringInfo(RHS, RHSStr)) {
 | |
|       // Make sure we're not reading out-of-bounds memory.
 | |
|       if (Len > LHSStr.size() || Len > RHSStr.size())
 | |
|         return 0;
 | |
|       // Fold the memcmp and normalize the result.  This way we get consistent
 | |
|       // results across multiple platforms.
 | |
|       uint64_t Ret = 0;
 | |
|       int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
 | |
|       if (Cmp < 0)
 | |
|         Ret = -1;
 | |
|       else if (Cmp > 0)
 | |
|         Ret = 1;
 | |
|       return ConstantInt::get(CI->getType(), Ret);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct MemCpyOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // These optimizations require DataLayout.
 | |
|     if (!TD) return 0;
 | |
| 
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isPointerTy() ||
 | |
|         FT->getParamType(2) != TD->getIntPtrType(*Context))
 | |
|       return 0;
 | |
| 
 | |
|     // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
 | |
|     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                    CI->getArgOperand(2), 1);
 | |
|     return CI->getArgOperand(0);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct MemMoveOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // These optimizations require DataLayout.
 | |
|     if (!TD) return 0;
 | |
| 
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isPointerTy() ||
 | |
|         FT->getParamType(2) != TD->getIntPtrType(*Context))
 | |
|       return 0;
 | |
| 
 | |
|     // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
 | |
|     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                     CI->getArgOperand(2), 1);
 | |
|     return CI->getArgOperand(0);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct MemSetOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // These optimizations require DataLayout.
 | |
|     if (!TD) return 0;
 | |
| 
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isIntegerTy() ||
 | |
|         FT->getParamType(2) != TD->getIntPtrType(*Context))
 | |
|       return 0;
 | |
| 
 | |
|     // memset(p, v, n) -> llvm.memset(p, v, n, 1)
 | |
|     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
 | |
|     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
 | |
|     return CI->getArgOperand(0);
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Math Library Optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
 | |
| 
 | |
| struct UnaryDoubleFPOpt : public LibCallOptimization {
 | |
|   bool CheckRetType;
 | |
|   UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
 | |
|         !FT->getParamType(0)->isDoubleTy())
 | |
|       return 0;
 | |
| 
 | |
|     if (CheckRetType) {
 | |
|       // Check if all the uses for function like 'sin' are converted to float.
 | |
|       for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
 | |
|           ++UseI) {
 | |
|         FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
 | |
|         if (Cast == 0 || !Cast->getType()->isFloatTy())
 | |
|           return 0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If this is something like 'floor((double)floatval)', convert to floorf.
 | |
|     FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
 | |
|     if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
 | |
|       return 0;
 | |
| 
 | |
|     // floor((double)floatval) -> (double)floorf(floatval)
 | |
|     Value *V = Cast->getOperand(0);
 | |
|     V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
 | |
|     return B.CreateFPExt(V, B.getDoubleTy());
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct UnsafeFPLibCallOptimization : public LibCallOptimization {
 | |
|   bool UnsafeFPShrink;
 | |
|   UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
 | |
|     this->UnsafeFPShrink = UnsafeFPShrink;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct CosOpt : public UnsafeFPLibCallOptimization {
 | |
|   CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     Value *Ret = NULL;
 | |
|     if (UnsafeFPShrink && Callee->getName() == "cos" &&
 | |
|         TLI->has(LibFunc::cosf)) {
 | |
|       UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
 | |
|       Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
 | |
|     }
 | |
| 
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     // Just make sure this has 1 argument of FP type, which matches the
 | |
|     // result type.
 | |
|     if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         !FT->getParamType(0)->isFloatingPointTy())
 | |
|       return Ret;
 | |
| 
 | |
|     // cos(-x) -> cos(x)
 | |
|     Value *Op1 = CI->getArgOperand(0);
 | |
|     if (BinaryOperator::isFNeg(Op1)) {
 | |
|       BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
 | |
|       return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
 | |
|     }
 | |
|     return Ret;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct PowOpt : public UnsafeFPLibCallOptimization {
 | |
|   PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     Value *Ret = NULL;
 | |
|     if (UnsafeFPShrink && Callee->getName() == "pow" &&
 | |
|         TLI->has(LibFunc::powf)) {
 | |
|       UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
 | |
|       Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
 | |
|     }
 | |
| 
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     // Just make sure this has 2 arguments of the same FP type, which match the
 | |
|     // result type.
 | |
|     if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         FT->getParamType(0) != FT->getParamType(1) ||
 | |
|         !FT->getParamType(0)->isFloatingPointTy())
 | |
|       return Ret;
 | |
| 
 | |
|     Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
 | |
|     if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
 | |
|       if (Op1C->isExactlyValue(1.0))  // pow(1.0, x) -> 1.0
 | |
|         return Op1C;
 | |
|       if (Op1C->isExactlyValue(2.0))  // pow(2.0, x) -> exp2(x)
 | |
|         return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
 | |
|     }
 | |
| 
 | |
|     ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
 | |
|     if (Op2C == 0) return Ret;
 | |
| 
 | |
|     if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
 | |
|       return ConstantFP::get(CI->getType(), 1.0);
 | |
| 
 | |
|     if (Op2C->isExactlyValue(0.5)) {
 | |
|       // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
 | |
|       // This is faster than calling pow, and still handles negative zero
 | |
|       // and negative infinity correctly.
 | |
|       // TODO: In fast-math mode, this could be just sqrt(x).
 | |
|       // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
 | |
|       Value *Inf = ConstantFP::getInfinity(CI->getType());
 | |
|       Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
 | |
|       Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
 | |
|                                          Callee->getAttributes());
 | |
|       Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
 | |
|                                          Callee->getAttributes());
 | |
|       Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
 | |
|       Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
 | |
|       return Sel;
 | |
|     }
 | |
| 
 | |
|     if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
 | |
|       return Op1;
 | |
|     if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
 | |
|       return B.CreateFMul(Op1, Op1, "pow2");
 | |
|     if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
 | |
|       return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
 | |
|                           Op1, "powrecip");
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct Exp2Opt : public UnsafeFPLibCallOptimization {
 | |
|   Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     Value *Ret = NULL;
 | |
|     if (UnsafeFPShrink && Callee->getName() == "exp2" &&
 | |
|         TLI->has(LibFunc::exp2)) {
 | |
|       UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
 | |
|       Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
 | |
|     }
 | |
| 
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     // Just make sure this has 1 argument of FP type, which matches the
 | |
|     // result type.
 | |
|     if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         !FT->getParamType(0)->isFloatingPointTy())
 | |
|       return Ret;
 | |
| 
 | |
|     Value *Op = CI->getArgOperand(0);
 | |
|     // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
 | |
|     // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
 | |
|     Value *LdExpArg = 0;
 | |
|     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
 | |
|       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
 | |
|         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
 | |
|     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
 | |
|       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
 | |
|         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
 | |
|     }
 | |
| 
 | |
|     if (LdExpArg) {
 | |
|       const char *Name;
 | |
|       if (Op->getType()->isFloatTy())
 | |
|         Name = "ldexpf";
 | |
|       else if (Op->getType()->isDoubleTy())
 | |
|         Name = "ldexp";
 | |
|       else
 | |
|         Name = "ldexpl";
 | |
| 
 | |
|       Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
 | |
|       if (!Op->getType()->isFloatTy())
 | |
|         One = ConstantExpr::getFPExtend(One, Op->getType());
 | |
| 
 | |
|       Module *M = Caller->getParent();
 | |
|       Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
 | |
|                                              Op->getType(),
 | |
|                                              B.getInt32Ty(), NULL);
 | |
|       CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
 | |
|       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
 | |
|         CI->setCallingConv(F->getCallingConv());
 | |
| 
 | |
|       return CI;
 | |
|     }
 | |
|     return Ret;
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Integer Library Call Optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| struct FFSOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     // Just make sure this has 2 arguments of the same FP type, which match the
 | |
|     // result type.
 | |
|     if (FT->getNumParams() != 1 ||
 | |
|         !FT->getReturnType()->isIntegerTy(32) ||
 | |
|         !FT->getParamType(0)->isIntegerTy())
 | |
|       return 0;
 | |
| 
 | |
|     Value *Op = CI->getArgOperand(0);
 | |
| 
 | |
|     // Constant fold.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
 | |
|       if (CI->isZero()) // ffs(0) -> 0.
 | |
|         return B.getInt32(0);
 | |
|       // ffs(c) -> cttz(c)+1
 | |
|       return B.getInt32(CI->getValue().countTrailingZeros() + 1);
 | |
|     }
 | |
| 
 | |
|     // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
 | |
|     Type *ArgType = Op->getType();
 | |
|     Value *F = Intrinsic::getDeclaration(Callee->getParent(),
 | |
|                                          Intrinsic::cttz, ArgType);
 | |
|     Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
 | |
|     V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
 | |
|     V = B.CreateIntCast(V, B.getInt32Ty(), false);
 | |
| 
 | |
|     Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
 | |
|     return B.CreateSelect(Cond, V, B.getInt32(0));
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct AbsOpt : public LibCallOptimization {
 | |
|   virtual bool ignoreCallingConv() { return true; }
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     // We require integer(integer) where the types agree.
 | |
|     if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
 | |
|         FT->getParamType(0) != FT->getReturnType())
 | |
|       return 0;
 | |
| 
 | |
|     // abs(x) -> x >s -1 ? x : -x
 | |
|     Value *Op = CI->getArgOperand(0);
 | |
|     Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
 | |
|                                  "ispos");
 | |
|     Value *Neg = B.CreateNeg(Op, "neg");
 | |
|     return B.CreateSelect(Pos, Op, Neg);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct IsDigitOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     // We require integer(i32)
 | |
|     if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
 | |
|         !FT->getParamType(0)->isIntegerTy(32))
 | |
|       return 0;
 | |
| 
 | |
|     // isdigit(c) -> (c-'0') <u 10
 | |
|     Value *Op = CI->getArgOperand(0);
 | |
|     Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
 | |
|     Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
 | |
|     return B.CreateZExt(Op, CI->getType());
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct IsAsciiOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     // We require integer(i32)
 | |
|     if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
 | |
|         !FT->getParamType(0)->isIntegerTy(32))
 | |
|       return 0;
 | |
| 
 | |
|     // isascii(c) -> c <u 128
 | |
|     Value *Op = CI->getArgOperand(0);
 | |
|     Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
 | |
|     return B.CreateZExt(Op, CI->getType());
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct ToAsciiOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     // We require i32(i32)
 | |
|     if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
 | |
|         !FT->getParamType(0)->isIntegerTy(32))
 | |
|       return 0;
 | |
| 
 | |
|     // toascii(c) -> c & 0x7f
 | |
|     return B.CreateAnd(CI->getArgOperand(0),
 | |
|                        ConstantInt::get(CI->getType(),0x7F));
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Formatting and IO Library Call Optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| struct PrintFOpt : public LibCallOptimization {
 | |
|   Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
 | |
|                                    IRBuilder<> &B) {
 | |
|     // Check for a fixed format string.
 | |
|     StringRef FormatStr;
 | |
|     if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
 | |
|       return 0;
 | |
| 
 | |
|     // Empty format string -> noop.
 | |
|     if (FormatStr.empty())  // Tolerate printf's declared void.
 | |
|       return CI->use_empty() ? (Value*)CI :
 | |
|                                ConstantInt::get(CI->getType(), 0);
 | |
| 
 | |
|     // Do not do any of the following transformations if the printf return value
 | |
|     // is used, in general the printf return value is not compatible with either
 | |
|     // putchar() or puts().
 | |
|     if (!CI->use_empty())
 | |
|       return 0;
 | |
| 
 | |
|     // printf("x") -> putchar('x'), even for '%'.
 | |
|     if (FormatStr.size() == 1) {
 | |
|       Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD, TLI);
 | |
|       if (CI->use_empty() || !Res) return Res;
 | |
|       return B.CreateIntCast(Res, CI->getType(), true);
 | |
|     }
 | |
| 
 | |
|     // printf("foo\n") --> puts("foo")
 | |
|     if (FormatStr[FormatStr.size()-1] == '\n' &&
 | |
|         FormatStr.find('%') == std::string::npos) {  // no format characters.
 | |
|       // Create a string literal with no \n on it.  We expect the constant merge
 | |
|       // pass to be run after this pass, to merge duplicate strings.
 | |
|       FormatStr = FormatStr.drop_back();
 | |
|       Value *GV = B.CreateGlobalString(FormatStr, "str");
 | |
|       Value *NewCI = EmitPutS(GV, B, TD, TLI);
 | |
|       return (CI->use_empty() || !NewCI) ?
 | |
|               NewCI :
 | |
|               ConstantInt::get(CI->getType(), FormatStr.size()+1);
 | |
|     }
 | |
| 
 | |
|     // Optimize specific format strings.
 | |
|     // printf("%c", chr) --> putchar(chr)
 | |
|     if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
 | |
|         CI->getArgOperand(1)->getType()->isIntegerTy()) {
 | |
|       Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD, TLI);
 | |
| 
 | |
|       if (CI->use_empty() || !Res) return Res;
 | |
|       return B.CreateIntCast(Res, CI->getType(), true);
 | |
|     }
 | |
| 
 | |
|     // printf("%s\n", str) --> puts(str)
 | |
|     if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
 | |
|         CI->getArgOperand(1)->getType()->isPointerTy()) {
 | |
|       return EmitPutS(CI->getArgOperand(1), B, TD, TLI);
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Require one fixed pointer argument and an integer/void result.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
 | |
|         !(FT->getReturnType()->isIntegerTy() ||
 | |
|           FT->getReturnType()->isVoidTy()))
 | |
|       return 0;
 | |
| 
 | |
|     if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     // printf(format, ...) -> iprintf(format, ...) if no floating point
 | |
|     // arguments.
 | |
|     if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
 | |
|       Module *M = B.GetInsertBlock()->getParent()->getParent();
 | |
|       Constant *IPrintFFn =
 | |
|         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
 | |
|       CallInst *New = cast<CallInst>(CI->clone());
 | |
|       New->setCalledFunction(IPrintFFn);
 | |
|       B.Insert(New);
 | |
|       return New;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct SPrintFOpt : public LibCallOptimization {
 | |
|   Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
 | |
|                                    IRBuilder<> &B) {
 | |
|     // Check for a fixed format string.
 | |
|     StringRef FormatStr;
 | |
|     if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
 | |
|       return 0;
 | |
| 
 | |
|     // If we just have a format string (nothing else crazy) transform it.
 | |
|     if (CI->getNumArgOperands() == 2) {
 | |
|       // Make sure there's no % in the constant array.  We could try to handle
 | |
|       // %% -> % in the future if we cared.
 | |
|       for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
 | |
|         if (FormatStr[i] == '%')
 | |
|           return 0; // we found a format specifier, bail out.
 | |
| 
 | |
|       // These optimizations require DataLayout.
 | |
|       if (!TD) return 0;
 | |
| 
 | |
|       // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
 | |
|       B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                      ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
 | |
|                                       FormatStr.size() + 1), 1);   // nul byte.
 | |
|       return ConstantInt::get(CI->getType(), FormatStr.size());
 | |
|     }
 | |
| 
 | |
|     // The remaining optimizations require the format string to be "%s" or "%c"
 | |
|     // and have an extra operand.
 | |
|     if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
 | |
|         CI->getNumArgOperands() < 3)
 | |
|       return 0;
 | |
| 
 | |
|     // Decode the second character of the format string.
 | |
|     if (FormatStr[1] == 'c') {
 | |
|       // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
 | |
|       if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
 | |
|       Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
 | |
|       Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
 | |
|       B.CreateStore(V, Ptr);
 | |
|       Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
 | |
|       B.CreateStore(B.getInt8(0), Ptr);
 | |
| 
 | |
|       return ConstantInt::get(CI->getType(), 1);
 | |
|     }
 | |
| 
 | |
|     if (FormatStr[1] == 's') {
 | |
|       // These optimizations require DataLayout.
 | |
|       if (!TD) return 0;
 | |
| 
 | |
|       // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
 | |
|       if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
 | |
| 
 | |
|       Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD, TLI);
 | |
|       if (!Len)
 | |
|         return 0;
 | |
|       Value *IncLen = B.CreateAdd(Len,
 | |
|                                   ConstantInt::get(Len->getType(), 1),
 | |
|                                   "leninc");
 | |
|       B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
 | |
| 
 | |
|       // The sprintf result is the unincremented number of bytes in the string.
 | |
|       return B.CreateIntCast(Len, CI->getType(), false);
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Require two fixed pointer arguments and an integer result.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isPointerTy() ||
 | |
|         !FT->getReturnType()->isIntegerTy())
 | |
|       return 0;
 | |
| 
 | |
|     if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
 | |
|     // point arguments.
 | |
|     if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
 | |
|       Module *M = B.GetInsertBlock()->getParent()->getParent();
 | |
|       Constant *SIPrintFFn =
 | |
|         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
 | |
|       CallInst *New = cast<CallInst>(CI->clone());
 | |
|       New->setCalledFunction(SIPrintFFn);
 | |
|       B.Insert(New);
 | |
|       return New;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct FPrintFOpt : public LibCallOptimization {
 | |
|   Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
 | |
|                                    IRBuilder<> &B) {
 | |
|     // All the optimizations depend on the format string.
 | |
|     StringRef FormatStr;
 | |
|     if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
 | |
|       return 0;
 | |
| 
 | |
|     // Do not do any of the following transformations if the fprintf return
 | |
|     // value is used, in general the fprintf return value is not compatible
 | |
|     // with fwrite(), fputc() or fputs().
 | |
|     if (!CI->use_empty())
 | |
|       return 0;
 | |
| 
 | |
|     // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
 | |
|     if (CI->getNumArgOperands() == 2) {
 | |
|       for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
 | |
|         if (FormatStr[i] == '%')  // Could handle %% -> % if we cared.
 | |
|           return 0; // We found a format specifier.
 | |
| 
 | |
|       // These optimizations require DataLayout.
 | |
|       if (!TD) return 0;
 | |
| 
 | |
|       return EmitFWrite(CI->getArgOperand(1),
 | |
|                         ConstantInt::get(TD->getIntPtrType(*Context),
 | |
|                                          FormatStr.size()),
 | |
|                         CI->getArgOperand(0), B, TD, TLI);
 | |
|     }
 | |
| 
 | |
|     // The remaining optimizations require the format string to be "%s" or "%c"
 | |
|     // and have an extra operand.
 | |
|     if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
 | |
|         CI->getNumArgOperands() < 3)
 | |
|       return 0;
 | |
| 
 | |
|     // Decode the second character of the format string.
 | |
|     if (FormatStr[1] == 'c') {
 | |
|       // fprintf(F, "%c", chr) --> fputc(chr, F)
 | |
|       if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
 | |
|       return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI);
 | |
|     }
 | |
| 
 | |
|     if (FormatStr[1] == 's') {
 | |
|       // fprintf(F, "%s", str) --> fputs(str, F)
 | |
|       if (!CI->getArgOperand(2)->getType()->isPointerTy())
 | |
|         return 0;
 | |
|       return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI);
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Require two fixed paramters as pointers and integer result.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isPointerTy() ||
 | |
|         !FT->getReturnType()->isIntegerTy())
 | |
|       return 0;
 | |
| 
 | |
|     if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
 | |
|     // floating point arguments.
 | |
|     if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
 | |
|       Module *M = B.GetInsertBlock()->getParent()->getParent();
 | |
|       Constant *FIPrintFFn =
 | |
|         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
 | |
|       CallInst *New = cast<CallInst>(CI->clone());
 | |
|       New->setCalledFunction(FIPrintFFn);
 | |
|       B.Insert(New);
 | |
|       return New;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct FWriteOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Require a pointer, an integer, an integer, a pointer, returning integer.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isIntegerTy() ||
 | |
|         !FT->getParamType(2)->isIntegerTy() ||
 | |
|         !FT->getParamType(3)->isPointerTy() ||
 | |
|         !FT->getReturnType()->isIntegerTy())
 | |
|       return 0;
 | |
| 
 | |
|     // Get the element size and count.
 | |
|     ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | |
|     ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | |
|     if (!SizeC || !CountC) return 0;
 | |
|     uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
 | |
| 
 | |
|     // If this is writing zero records, remove the call (it's a noop).
 | |
|     if (Bytes == 0)
 | |
|       return ConstantInt::get(CI->getType(), 0);
 | |
| 
 | |
|     // If this is writing one byte, turn it into fputc.
 | |
|     // This optimisation is only valid, if the return value is unused.
 | |
|     if (Bytes == 1 && CI->use_empty()) {  // fwrite(S,1,1,F) -> fputc(S[0],F)
 | |
|       Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
 | |
|       Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TD, TLI);
 | |
|       return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct FPutsOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // These optimizations require DataLayout.
 | |
|     if (!TD) return 0;
 | |
| 
 | |
|     // Require two pointers.  Also, we can't optimize if return value is used.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
 | |
|         !FT->getParamType(1)->isPointerTy() ||
 | |
|         !CI->use_empty())
 | |
|       return 0;
 | |
| 
 | |
|     // fputs(s,F) --> fwrite(s,1,strlen(s),F)
 | |
|     uint64_t Len = GetStringLength(CI->getArgOperand(0));
 | |
|     if (!Len) return 0;
 | |
|     // Known to have no uses (see above).
 | |
|     return EmitFWrite(CI->getArgOperand(0),
 | |
|                       ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
 | |
|                       CI->getArgOperand(1), B, TD, TLI);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct PutsOpt : public LibCallOptimization {
 | |
|   virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
 | |
|     // Require one fixed pointer argument and an integer/void result.
 | |
|     FunctionType *FT = Callee->getFunctionType();
 | |
|     if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
 | |
|         !(FT->getReturnType()->isIntegerTy() ||
 | |
|           FT->getReturnType()->isVoidTy()))
 | |
|       return 0;
 | |
| 
 | |
|     // Check for a constant string.
 | |
|     StringRef Str;
 | |
|     if (!getConstantStringInfo(CI->getArgOperand(0), Str))
 | |
|       return 0;
 | |
| 
 | |
|     if (Str.empty() && CI->use_empty()) {
 | |
|       // puts("") -> putchar('\n')
 | |
|       Value *Res = EmitPutChar(B.getInt32('\n'), B, TD, TLI);
 | |
|       if (CI->use_empty() || !Res) return Res;
 | |
|       return B.CreateIntCast(Res, CI->getType(), true);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class LibCallSimplifierImpl {
 | |
|   const DataLayout *TD;
 | |
|   const TargetLibraryInfo *TLI;
 | |
|   const LibCallSimplifier *LCS;
 | |
|   bool UnsafeFPShrink;
 | |
| 
 | |
|   // Math library call optimizations.
 | |
|   CosOpt Cos;
 | |
|   PowOpt Pow;
 | |
|   Exp2Opt Exp2;
 | |
| public:
 | |
|   LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI,
 | |
|                         const LibCallSimplifier *LCS,
 | |
|                         bool UnsafeFPShrink = false)
 | |
|     : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
 | |
|     this->TD = TD;
 | |
|     this->TLI = TLI;
 | |
|     this->LCS = LCS;
 | |
|     this->UnsafeFPShrink = UnsafeFPShrink;
 | |
|   }
 | |
| 
 | |
|   Value *optimizeCall(CallInst *CI);
 | |
|   LibCallOptimization *lookupOptimization(CallInst *CI);
 | |
|   bool hasFloatVersion(StringRef FuncName);
 | |
| };
 | |
| 
 | |
| bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
 | |
|   LibFunc::Func Func;
 | |
|   SmallString<20> FloatFuncName = FuncName;
 | |
|   FloatFuncName += 'f';
 | |
|   if (TLI->getLibFunc(FloatFuncName, Func))
 | |
|     return TLI->has(Func);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Fortified library call optimizations.
 | |
| static MemCpyChkOpt MemCpyChk;
 | |
| static MemMoveChkOpt MemMoveChk;
 | |
| static MemSetChkOpt MemSetChk;
 | |
| static StrCpyChkOpt StrCpyChk;
 | |
| static StpCpyChkOpt StpCpyChk;
 | |
| static StrNCpyChkOpt StrNCpyChk;
 | |
| 
 | |
| // String library call optimizations.
 | |
| static StrCatOpt StrCat;
 | |
| static StrNCatOpt StrNCat;
 | |
| static StrChrOpt StrChr;
 | |
| static StrRChrOpt StrRChr;
 | |
| static StrCmpOpt StrCmp;
 | |
| static StrNCmpOpt StrNCmp;
 | |
| static StrCpyOpt StrCpy;
 | |
| static StpCpyOpt StpCpy;
 | |
| static StrNCpyOpt StrNCpy;
 | |
| static StrLenOpt StrLen;
 | |
| static StrPBrkOpt StrPBrk;
 | |
| static StrToOpt StrTo;
 | |
| static StrSpnOpt StrSpn;
 | |
| static StrCSpnOpt StrCSpn;
 | |
| static StrStrOpt StrStr;
 | |
| 
 | |
| // Memory library call optimizations.
 | |
| static MemCmpOpt MemCmp;
 | |
| static MemCpyOpt MemCpy;
 | |
| static MemMoveOpt MemMove;
 | |
| static MemSetOpt MemSet;
 | |
| 
 | |
| // Math library call optimizations.
 | |
| static UnaryDoubleFPOpt UnaryDoubleFP(false);
 | |
| static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
 | |
| 
 | |
|   // Integer library call optimizations.
 | |
| static FFSOpt FFS;
 | |
| static AbsOpt Abs;
 | |
| static IsDigitOpt IsDigit;
 | |
| static IsAsciiOpt IsAscii;
 | |
| static ToAsciiOpt ToAscii;
 | |
| 
 | |
| // Formatting and IO library call optimizations.
 | |
| static PrintFOpt PrintF;
 | |
| static SPrintFOpt SPrintF;
 | |
| static FPrintFOpt FPrintF;
 | |
| static FWriteOpt FWrite;
 | |
| static FPutsOpt FPuts;
 | |
| static PutsOpt Puts;
 | |
| 
 | |
| LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) {
 | |
|   LibFunc::Func Func;
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   StringRef FuncName = Callee->getName();
 | |
| 
 | |
|   // Next check for intrinsics.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     case Intrinsic::pow:
 | |
|        return &Pow;
 | |
|     case Intrinsic::exp2:
 | |
|        return &Exp2;
 | |
|     default:
 | |
|        return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Then check for known library functions.
 | |
|   if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
 | |
|     switch (Func) {
 | |
|       case LibFunc::strcat:
 | |
|         return &StrCat;
 | |
|       case LibFunc::strncat:
 | |
|         return &StrNCat;
 | |
|       case LibFunc::strchr:
 | |
|         return &StrChr;
 | |
|       case LibFunc::strrchr:
 | |
|         return &StrRChr;
 | |
|       case LibFunc::strcmp:
 | |
|         return &StrCmp;
 | |
|       case LibFunc::strncmp:
 | |
|         return &StrNCmp;
 | |
|       case LibFunc::strcpy:
 | |
|         return &StrCpy;
 | |
|       case LibFunc::stpcpy:
 | |
|         return &StpCpy;
 | |
|       case LibFunc::strncpy:
 | |
|         return &StrNCpy;
 | |
|       case LibFunc::strlen:
 | |
|         return &StrLen;
 | |
|       case LibFunc::strpbrk:
 | |
|         return &StrPBrk;
 | |
|       case LibFunc::strtol:
 | |
|       case LibFunc::strtod:
 | |
|       case LibFunc::strtof:
 | |
|       case LibFunc::strtoul:
 | |
|       case LibFunc::strtoll:
 | |
|       case LibFunc::strtold:
 | |
|       case LibFunc::strtoull:
 | |
|         return &StrTo;
 | |
|       case LibFunc::strspn:
 | |
|         return &StrSpn;
 | |
|       case LibFunc::strcspn:
 | |
|         return &StrCSpn;
 | |
|       case LibFunc::strstr:
 | |
|         return &StrStr;
 | |
|       case LibFunc::memcmp:
 | |
|         return &MemCmp;
 | |
|       case LibFunc::memcpy:
 | |
|         return &MemCpy;
 | |
|       case LibFunc::memmove:
 | |
|         return &MemMove;
 | |
|       case LibFunc::memset:
 | |
|         return &MemSet;
 | |
|       case LibFunc::cosf:
 | |
|       case LibFunc::cos:
 | |
|       case LibFunc::cosl:
 | |
|         return &Cos;
 | |
|       case LibFunc::powf:
 | |
|       case LibFunc::pow:
 | |
|       case LibFunc::powl:
 | |
|         return &Pow;
 | |
|       case LibFunc::exp2l:
 | |
|       case LibFunc::exp2:
 | |
|       case LibFunc::exp2f:
 | |
|         return &Exp2;
 | |
|       case LibFunc::ffs:
 | |
|       case LibFunc::ffsl:
 | |
|       case LibFunc::ffsll:
 | |
|         return &FFS;
 | |
|       case LibFunc::abs:
 | |
|       case LibFunc::labs:
 | |
|       case LibFunc::llabs:
 | |
|         return &Abs;
 | |
|       case LibFunc::isdigit:
 | |
|         return &IsDigit;
 | |
|       case LibFunc::isascii:
 | |
|         return &IsAscii;
 | |
|       case LibFunc::toascii:
 | |
|         return &ToAscii;
 | |
|       case LibFunc::printf:
 | |
|         return &PrintF;
 | |
|       case LibFunc::sprintf:
 | |
|         return &SPrintF;
 | |
|       case LibFunc::fprintf:
 | |
|         return &FPrintF;
 | |
|       case LibFunc::fwrite:
 | |
|         return &FWrite;
 | |
|       case LibFunc::fputs:
 | |
|         return &FPuts;
 | |
|       case LibFunc::puts:
 | |
|         return &Puts;
 | |
|       case LibFunc::ceil:
 | |
|       case LibFunc::fabs:
 | |
|       case LibFunc::floor:
 | |
|       case LibFunc::rint:
 | |
|       case LibFunc::round:
 | |
|       case LibFunc::nearbyint:
 | |
|       case LibFunc::trunc:
 | |
|         if (hasFloatVersion(FuncName))
 | |
|           return &UnaryDoubleFP;
 | |
|         return 0;
 | |
|       case LibFunc::acos:
 | |
|       case LibFunc::acosh:
 | |
|       case LibFunc::asin:
 | |
|       case LibFunc::asinh:
 | |
|       case LibFunc::atan:
 | |
|       case LibFunc::atanh:
 | |
|       case LibFunc::cbrt:
 | |
|       case LibFunc::cosh:
 | |
|       case LibFunc::exp:
 | |
|       case LibFunc::exp10:
 | |
|       case LibFunc::expm1:
 | |
|       case LibFunc::log:
 | |
|       case LibFunc::log10:
 | |
|       case LibFunc::log1p:
 | |
|       case LibFunc::log2:
 | |
|       case LibFunc::logb:
 | |
|       case LibFunc::sin:
 | |
|       case LibFunc::sinh:
 | |
|       case LibFunc::sqrt:
 | |
|       case LibFunc::tan:
 | |
|       case LibFunc::tanh:
 | |
|         if (UnsafeFPShrink && hasFloatVersion(FuncName))
 | |
|          return &UnsafeUnaryDoubleFP;
 | |
|         return 0;
 | |
|       case LibFunc::memcpy_chk:
 | |
|         return &MemCpyChk;
 | |
|       default:
 | |
|         return 0;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Finally check for fortified library calls.
 | |
|   if (FuncName.endswith("_chk")) {
 | |
|     if (FuncName == "__memmove_chk")
 | |
|       return &MemMoveChk;
 | |
|     else if (FuncName == "__memset_chk")
 | |
|       return &MemSetChk;
 | |
|     else if (FuncName == "__strcpy_chk")
 | |
|       return &StrCpyChk;
 | |
|     else if (FuncName == "__stpcpy_chk")
 | |
|       return &StpCpyChk;
 | |
|     else if (FuncName == "__strncpy_chk")
 | |
|       return &StrNCpyChk;
 | |
|     else if (FuncName == "__stpncpy_chk")
 | |
|       return &StrNCpyChk;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
 | |
|   LibCallOptimization *LCO = lookupOptimization(CI);
 | |
|   if (LCO) {
 | |
|     IRBuilder<> Builder(CI);
 | |
|     return LCO->optimizeCall(CI, TD, TLI, LCS, Builder);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| LibCallSimplifier::LibCallSimplifier(const DataLayout *TD,
 | |
|                                      const TargetLibraryInfo *TLI,
 | |
|                                      bool UnsafeFPShrink) {
 | |
|   Impl = new LibCallSimplifierImpl(TD, TLI, this, UnsafeFPShrink);
 | |
| }
 | |
| 
 | |
| LibCallSimplifier::~LibCallSimplifier() {
 | |
|   delete Impl;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
 | |
|   if (CI->isNoBuiltin()) return 0;
 | |
|   return Impl->optimizeCall(CI);
 | |
| }
 | |
| 
 | |
| void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
 | |
|   I->replaceAllUsesWith(With);
 | |
|   I->eraseFromParent();
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| // TODO:
 | |
| //   Additional cases that we need to add to this file:
 | |
| //
 | |
| // cbrt:
 | |
| //   * cbrt(expN(X))  -> expN(x/3)
 | |
| //   * cbrt(sqrt(x))  -> pow(x,1/6)
 | |
| //   * cbrt(sqrt(x))  -> pow(x,1/9)
 | |
| //
 | |
| // exp, expf, expl:
 | |
| //   * exp(log(x))  -> x
 | |
| //
 | |
| // log, logf, logl:
 | |
| //   * log(exp(x))   -> x
 | |
| //   * log(x**y)     -> y*log(x)
 | |
| //   * log(exp(y))   -> y*log(e)
 | |
| //   * log(exp2(y))  -> y*log(2)
 | |
| //   * log(exp10(y)) -> y*log(10)
 | |
| //   * log(sqrt(x))  -> 0.5*log(x)
 | |
| //   * log(pow(x,y)) -> y*log(x)
 | |
| //
 | |
| // lround, lroundf, lroundl:
 | |
| //   * lround(cnst) -> cnst'
 | |
| //
 | |
| // pow, powf, powl:
 | |
| //   * pow(exp(x),y)  -> exp(x*y)
 | |
| //   * pow(sqrt(x),y) -> pow(x,y*0.5)
 | |
| //   * pow(pow(x,y),z)-> pow(x,y*z)
 | |
| //
 | |
| // round, roundf, roundl:
 | |
| //   * round(cnst) -> cnst'
 | |
| //
 | |
| // signbit:
 | |
| //   * signbit(cnst) -> cnst'
 | |
| //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
 | |
| //
 | |
| // sqrt, sqrtf, sqrtl:
 | |
| //   * sqrt(expN(x))  -> expN(x*0.5)
 | |
| //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
 | |
| //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
 | |
| //
 | |
| // strchr:
 | |
| //   * strchr(p, 0) -> strlen(p)
 | |
| // tan, tanf, tanl:
 | |
| //   * tan(atan(x)) -> x
 | |
| //
 | |
| // trunc, truncf, truncl:
 | |
| //   * trunc(cnst) -> cnst'
 | |
| //
 | |
| //
 |