327 lines
9.3 KiB
C++
327 lines
9.3 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// REQUIRES: long_tests
|
|
|
|
// <random>
|
|
|
|
// template<class IntType = int>
|
|
// class geometric_distribution
|
|
|
|
// template<class _URNG> result_type operator()(_URNG& g);
|
|
|
|
#include <random>
|
|
#include <numeric>
|
|
#include <vector>
|
|
#include <cassert>
|
|
|
|
#include "test_macros.h"
|
|
|
|
template <class T>
|
|
T sqr(T x) {
|
|
return x * x;
|
|
}
|
|
|
|
void test_small_inputs() {
|
|
std::mt19937 engine;
|
|
std::geometric_distribution<std::int16_t> distribution(5.45361e-311);
|
|
typedef std::geometric_distribution<std::int16_t>::result_type result_type;
|
|
for (int i = 0; i < 1000; ++i) {
|
|
volatile result_type res = distribution(engine);
|
|
((void)res);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void test1() {
|
|
typedef std::geometric_distribution<T> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(.03125);
|
|
const int N = 1000000;
|
|
std::vector<typename D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
typename D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = (1 - d.p()) / d.p();
|
|
double x_var = x_mean / d.p();
|
|
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
|
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
|
}
|
|
|
|
template <class T>
|
|
void test2() {
|
|
typedef std::geometric_distribution<T> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(0.05);
|
|
const int N = 1000000;
|
|
std::vector<typename D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
typename D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = (1 - d.p()) / d.p();
|
|
double x_var = x_mean / d.p();
|
|
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
|
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
|
}
|
|
|
|
template <class T>
|
|
void test3() {
|
|
typedef std::geometric_distribution<T> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
D d(.25);
|
|
const int N = 1000000;
|
|
std::vector<typename D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
typename D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = (1 - d.p()) / d.p();
|
|
double x_var = x_mean / d.p();
|
|
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
|
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
|
}
|
|
|
|
template <class T>
|
|
void test4() {
|
|
typedef std::geometric_distribution<T> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(0.5);
|
|
const int N = 1000000;
|
|
std::vector<typename D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
typename D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = (1 - d.p()) / d.p();
|
|
double x_var = x_mean / d.p();
|
|
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
|
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
|
}
|
|
|
|
template <class T>
|
|
void test5() {
|
|
typedef std::geometric_distribution<T> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(0.75);
|
|
const int N = 1000000;
|
|
std::vector<typename D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
typename D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = (1 - d.p()) / d.p();
|
|
double x_var = x_mean / d.p();
|
|
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
|
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
|
}
|
|
|
|
template <class T>
|
|
void test6() {
|
|
typedef std::geometric_distribution<T> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(0.96875);
|
|
const int N = 1000000;
|
|
std::vector<typename D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
typename D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = (1 - d.p()) / d.p();
|
|
double x_var = x_mean / d.p();
|
|
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
|
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
|
}
|
|
|
|
template <class T>
|
|
void tests() {
|
|
test1<T>();
|
|
test2<T>();
|
|
test3<T>();
|
|
test4<T>();
|
|
test5<T>();
|
|
test6<T>();
|
|
}
|
|
|
|
int main(int, char**) {
|
|
test_small_inputs();
|
|
|
|
tests<short>();
|
|
tests<int>();
|
|
tests<long>();
|
|
tests<long long>();
|
|
|
|
tests<unsigned short>();
|
|
tests<unsigned int>();
|
|
tests<unsigned long>();
|
|
tests<unsigned long long>();
|
|
|
|
#if defined(_LIBCPP_VERSION) // extension
|
|
// TODO: std::geometric_distribution currently doesn't work reliably with small types.
|
|
// tests<int8_t>();
|
|
// tests<uint8_t>();
|
|
#if !defined(TEST_HAS_NO_INT128)
|
|
tests<__int128_t>();
|
|
tests<__uint128_t>();
|
|
#endif
|
|
#endif
|
|
|
|
return 0;
|
|
}
|