4446 lines
		
	
	
		
			181 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4446 lines
		
	
	
		
			181 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // InstructionCombining - Combine instructions to form fewer, simple
 | |
| // instructions.  This pass does not modify the CFG This pass is where algebraic
 | |
| // simplification happens.
 | |
| //
 | |
| // This pass combines things like:
 | |
| //    %Y = add int %X, 1
 | |
| //    %Z = add int %Y, 1
 | |
| // into:
 | |
| //    %Z = add int %X, 2
 | |
| //
 | |
| // This is a simple worklist driven algorithm.
 | |
| //
 | |
| // This pass guarantees that the following canonicalizations are performed on
 | |
| // the program:
 | |
| //    1. If a binary operator has a constant operand, it is moved to the RHS
 | |
| //    2. Bitwise operators with constant operands are always grouped so that
 | |
| //       shifts are performed first, then or's, then and's, then xor's.
 | |
| //    3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
 | |
| //    4. All SetCC instructions on boolean values are replaced with logical ops
 | |
| //    5. add X, X is represented as (X*2) => (X << 1)
 | |
| //    6. Multiplies with a power-of-two constant argument are transformed into
 | |
| //       shifts.
 | |
| //   ... etc.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/InstIterator.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumCombined ("instcombine", "Number of insts combined");
 | |
|   Statistic<> NumConstProp("instcombine", "Number of constant folds");
 | |
|   Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
 | |
|   Statistic<> NumSunkInst ("instcombine", "Number of instructions sunk");
 | |
| 
 | |
|   class InstCombiner : public FunctionPass,
 | |
|                        public InstVisitor<InstCombiner, Instruction*> {
 | |
|     // Worklist of all of the instructions that need to be simplified.
 | |
|     std::vector<Instruction*> WorkList;
 | |
|     TargetData *TD;
 | |
| 
 | |
|     /// AddUsersToWorkList - When an instruction is simplified, add all users of
 | |
|     /// the instruction to the work lists because they might get more simplified
 | |
|     /// now.
 | |
|     ///
 | |
|     void AddUsersToWorkList(Instruction &I) {
 | |
|       for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|            UI != UE; ++UI)
 | |
|         WorkList.push_back(cast<Instruction>(*UI));
 | |
|     }
 | |
| 
 | |
|     /// AddUsesToWorkList - When an instruction is simplified, add operands to
 | |
|     /// the work lists because they might get more simplified now.
 | |
|     ///
 | |
|     void AddUsesToWorkList(Instruction &I) {
 | |
|       for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | |
|         if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
 | |
|           WorkList.push_back(Op);
 | |
|     }
 | |
| 
 | |
|     // removeFromWorkList - remove all instances of I from the worklist.
 | |
|     void removeFromWorkList(Instruction *I);
 | |
|   public:
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<TargetData>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|     TargetData &getTargetData() const { return *TD; }
 | |
| 
 | |
|     // Visitation implementation - Implement instruction combining for different
 | |
|     // instruction types.  The semantics are as follows:
 | |
|     // Return Value:
 | |
|     //    null        - No change was made
 | |
|     //     I          - Change was made, I is still valid, I may be dead though
 | |
|     //   otherwise    - Change was made, replace I with returned instruction
 | |
|     //   
 | |
|     Instruction *visitAdd(BinaryOperator &I);
 | |
|     Instruction *visitSub(BinaryOperator &I);
 | |
|     Instruction *visitMul(BinaryOperator &I);
 | |
|     Instruction *visitDiv(BinaryOperator &I);
 | |
|     Instruction *visitRem(BinaryOperator &I);
 | |
|     Instruction *visitAnd(BinaryOperator &I);
 | |
|     Instruction *visitOr (BinaryOperator &I);
 | |
|     Instruction *visitXor(BinaryOperator &I);
 | |
|     Instruction *visitSetCondInst(BinaryOperator &I);
 | |
|     Instruction *visitSetCondInstWithCastAndConstant(BinaryOperator&I,
 | |
|                                                      CastInst*LHSI,
 | |
|                                                      ConstantInt* CI);
 | |
|     Instruction *visitShiftInst(ShiftInst &I);
 | |
|     Instruction *visitCastInst(CastInst &CI);
 | |
|     Instruction *visitSelectInst(SelectInst &CI);
 | |
|     Instruction *visitCallInst(CallInst &CI);
 | |
|     Instruction *visitInvokeInst(InvokeInst &II);
 | |
|     Instruction *visitPHINode(PHINode &PN);
 | |
|     Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|     Instruction *visitAllocationInst(AllocationInst &AI);
 | |
|     Instruction *visitFreeInst(FreeInst &FI);
 | |
|     Instruction *visitLoadInst(LoadInst &LI);
 | |
|     Instruction *visitBranchInst(BranchInst &BI);
 | |
|     Instruction *visitSwitchInst(SwitchInst &SI);
 | |
| 
 | |
|     // visitInstruction - Specify what to return for unhandled instructions...
 | |
|     Instruction *visitInstruction(Instruction &I) { return 0; }
 | |
| 
 | |
|   private:
 | |
|     Instruction *visitCallSite(CallSite CS);
 | |
|     bool transformConstExprCastCall(CallSite CS);
 | |
| 
 | |
|   public:
 | |
|     // InsertNewInstBefore - insert an instruction New before instruction Old
 | |
|     // in the program.  Add the new instruction to the worklist.
 | |
|     //
 | |
|     Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
 | |
|       assert(New && New->getParent() == 0 &&
 | |
|              "New instruction already inserted into a basic block!");
 | |
|       BasicBlock *BB = Old.getParent();
 | |
|       BB->getInstList().insert(&Old, New);  // Insert inst
 | |
|       WorkList.push_back(New);              // Add to worklist
 | |
|       return New;
 | |
|     }
 | |
| 
 | |
|     /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
 | |
|     /// This also adds the cast to the worklist.  Finally, this returns the
 | |
|     /// cast.
 | |
|     Value *InsertCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
 | |
|       if (V->getType() == Ty) return V;
 | |
|       
 | |
|       Instruction *C = new CastInst(V, Ty, V->getName(), &Pos);
 | |
|       WorkList.push_back(C);
 | |
|       return C;
 | |
|     }
 | |
| 
 | |
|     // ReplaceInstUsesWith - This method is to be used when an instruction is
 | |
|     // found to be dead, replacable with another preexisting expression.  Here
 | |
|     // we add all uses of I to the worklist, replace all uses of I with the new
 | |
|     // value, then return I, so that the inst combiner will know that I was
 | |
|     // modified.
 | |
|     //
 | |
|     Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
 | |
|       AddUsersToWorkList(I);         // Add all modified instrs to worklist
 | |
|       if (&I != V) {
 | |
|         I.replaceAllUsesWith(V);
 | |
|         return &I;
 | |
|       } else {
 | |
|         // If we are replacing the instruction with itself, this must be in a
 | |
|         // segment of unreachable code, so just clobber the instruction.
 | |
|         I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
|         return &I;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // EraseInstFromFunction - When dealing with an instruction that has side
 | |
|     // effects or produces a void value, we can't rely on DCE to delete the
 | |
|     // instruction.  Instead, visit methods should return the value returned by
 | |
|     // this function.
 | |
|     Instruction *EraseInstFromFunction(Instruction &I) {
 | |
|       assert(I.use_empty() && "Cannot erase instruction that is used!");
 | |
|       AddUsesToWorkList(I);
 | |
|       removeFromWorkList(&I);
 | |
|       I.eraseFromParent();
 | |
|       return 0;  // Don't do anything with FI
 | |
|     }
 | |
| 
 | |
| 
 | |
|   private:
 | |
|     /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | |
|     /// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | |
|     /// casts that are known to not do anything...
 | |
|     ///
 | |
|     Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
 | |
|                                    Instruction *InsertBefore);
 | |
| 
 | |
|     // SimplifyCommutative - This performs a few simplifications for commutative
 | |
|     // operators.
 | |
|     bool SimplifyCommutative(BinaryOperator &I);
 | |
| 
 | |
| 
 | |
|     // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
 | |
|     // PHI node as operand #0, see if we can fold the instruction into the PHI
 | |
|     // (which is only possible if all operands to the PHI are constants).
 | |
|     Instruction *FoldOpIntoPhi(Instruction &I);
 | |
| 
 | |
|     // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | |
|     // operator and they all are only used by the PHI, PHI together their
 | |
|     // inputs, and do the operation once, to the result of the PHI.
 | |
|     Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
 | |
| 
 | |
|     Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
 | |
|                           ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
 | |
| 
 | |
|     Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | |
|                                  bool Inside, Instruction &IB);
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
 | |
| }
 | |
| 
 | |
| // getComplexity:  Assign a complexity or rank value to LLVM Values...
 | |
| //   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
 | |
| static unsigned getComplexity(Value *V) {
 | |
|   if (isa<Instruction>(V)) {
 | |
|     if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
 | |
|       return 3;
 | |
|     return 4;
 | |
|   }
 | |
|   if (isa<Argument>(V)) return 3;
 | |
|   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
 | |
| }
 | |
| 
 | |
| // isOnlyUse - Return true if this instruction will be deleted if we stop using
 | |
| // it.
 | |
| static bool isOnlyUse(Value *V) {
 | |
|   return V->hasOneUse() || isa<Constant>(V);
 | |
| }
 | |
| 
 | |
| // getPromotedType - Return the specified type promoted as it would be to pass
 | |
| // though a va_arg area...
 | |
| static const Type *getPromotedType(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::SByteTyID:
 | |
|   case Type::ShortTyID:  return Type::IntTy;
 | |
|   case Type::UByteTyID:
 | |
|   case Type::UShortTyID: return Type::UIntTy;
 | |
|   case Type::FloatTyID:  return Type::DoubleTy;
 | |
|   default:               return Ty;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // SimplifyCommutative - This performs a few simplifications for commutative
 | |
| // operators:
 | |
| //
 | |
| //  1. Order operands such that they are listed from right (least complex) to
 | |
| //     left (most complex).  This puts constants before unary operators before
 | |
| //     binary operators.
 | |
| //
 | |
| //  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
 | |
| //  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | |
| //
 | |
| bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
 | |
|   bool Changed = false;
 | |
|   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
 | |
|     Changed = !I.swapOperands();
 | |
|   
 | |
|   if (!I.isAssociative()) return Changed;
 | |
|   Instruction::BinaryOps Opcode = I.getOpcode();
 | |
|   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
 | |
|     if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
 | |
|       if (isa<Constant>(I.getOperand(1))) {
 | |
|         Constant *Folded = ConstantExpr::get(I.getOpcode(),
 | |
|                                              cast<Constant>(I.getOperand(1)),
 | |
|                                              cast<Constant>(Op->getOperand(1)));
 | |
|         I.setOperand(0, Op->getOperand(0));
 | |
|         I.setOperand(1, Folded);
 | |
|         return true;
 | |
|       } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
 | |
|         if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
 | |
|             isOnlyUse(Op) && isOnlyUse(Op1)) {
 | |
|           Constant *C1 = cast<Constant>(Op->getOperand(1));
 | |
|           Constant *C2 = cast<Constant>(Op1->getOperand(1));
 | |
| 
 | |
|           // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | |
|           Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
 | |
|           Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
 | |
|                                                     Op1->getOperand(0),
 | |
|                                                     Op1->getName(), &I);
 | |
|           WorkList.push_back(New);
 | |
|           I.setOperand(0, New);
 | |
|           I.setOperand(1, Folded);
 | |
|           return true;
 | |
|         }      
 | |
|     }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
 | |
| // if the LHS is a constant zero (which is the 'negate' form).
 | |
| //
 | |
| static inline Value *dyn_castNegVal(Value *V) {
 | |
|   if (BinaryOperator::isNeg(V))
 | |
|     return BinaryOperator::getNegArgument(cast<BinaryOperator>(V));
 | |
| 
 | |
|   // Constants can be considered to be negated values if they can be folded.
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | |
|     return ConstantExpr::getNeg(C);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static inline Value *dyn_castNotVal(Value *V) {
 | |
|   if (BinaryOperator::isNot(V))
 | |
|     return BinaryOperator::getNotArgument(cast<BinaryOperator>(V));
 | |
| 
 | |
|   // Constants can be considered to be not'ed values...
 | |
|   if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
 | |
|     return ConstantExpr::getNot(C);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // dyn_castFoldableMul - If this value is a multiply that can be folded into
 | |
| // other computations (because it has a constant operand), return the
 | |
| // non-constant operand of the multiply, and set CST to point to the multiplier.
 | |
| // Otherwise, return null.
 | |
| //
 | |
| static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
 | |
|   if (V->hasOneUse() && V->getType()->isInteger())
 | |
|     if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|       if (I->getOpcode() == Instruction::Mul)
 | |
|         if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
 | |
|           return I->getOperand(0);
 | |
|       if (I->getOpcode() == Instruction::Shl)
 | |
|         if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
 | |
|           // The multiplier is really 1 << CST.
 | |
|           Constant *One = ConstantInt::get(V->getType(), 1);
 | |
|           CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST));
 | |
|           return I->getOperand(0);
 | |
|         }
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Log2 - Calculate the log base 2 for the specified value if it is exactly a
 | |
| // power of 2.
 | |
| static unsigned Log2(uint64_t Val) {
 | |
|   assert(Val > 1 && "Values 0 and 1 should be handled elsewhere!");
 | |
|   unsigned Count = 0;
 | |
|   while (Val != 1) {
 | |
|     if (Val & 1) return 0;    // Multiple bits set?
 | |
|     Val >>= 1;
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| // AddOne, SubOne - Add or subtract a constant one from an integer constant...
 | |
| static ConstantInt *AddOne(ConstantInt *C) {
 | |
|   return cast<ConstantInt>(ConstantExpr::getAdd(C,
 | |
|                                          ConstantInt::get(C->getType(), 1)));
 | |
| }
 | |
| static ConstantInt *SubOne(ConstantInt *C) {
 | |
|   return cast<ConstantInt>(ConstantExpr::getSub(C,
 | |
|                                          ConstantInt::get(C->getType(), 1)));
 | |
| }
 | |
| 
 | |
| // isTrueWhenEqual - Return true if the specified setcondinst instruction is
 | |
| // true when both operands are equal...
 | |
| //
 | |
| static bool isTrueWhenEqual(Instruction &I) {
 | |
|   return I.getOpcode() == Instruction::SetEQ ||
 | |
|          I.getOpcode() == Instruction::SetGE ||
 | |
|          I.getOpcode() == Instruction::SetLE;
 | |
| }
 | |
| 
 | |
| /// AssociativeOpt - Perform an optimization on an associative operator.  This
 | |
| /// function is designed to check a chain of associative operators for a
 | |
| /// potential to apply a certain optimization.  Since the optimization may be
 | |
| /// applicable if the expression was reassociated, this checks the chain, then
 | |
| /// reassociates the expression as necessary to expose the optimization
 | |
| /// opportunity.  This makes use of a special Functor, which must define
 | |
| /// 'shouldApply' and 'apply' methods.
 | |
| ///
 | |
| template<typename Functor>
 | |
| Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
 | |
|   unsigned Opcode = Root.getOpcode();
 | |
|   Value *LHS = Root.getOperand(0);
 | |
| 
 | |
|   // Quick check, see if the immediate LHS matches...
 | |
|   if (F.shouldApply(LHS))
 | |
|     return F.apply(Root);
 | |
| 
 | |
|   // Otherwise, if the LHS is not of the same opcode as the root, return.
 | |
|   Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | |
|   while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
 | |
|     // Should we apply this transform to the RHS?
 | |
|     bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
 | |
| 
 | |
|     // If not to the RHS, check to see if we should apply to the LHS...
 | |
|     if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
 | |
|       cast<BinaryOperator>(LHSI)->swapOperands();   // Make the LHS the RHS
 | |
|       ShouldApply = true;
 | |
|     }
 | |
| 
 | |
|     // If the functor wants to apply the optimization to the RHS of LHSI,
 | |
|     // reassociate the expression from ((? op A) op B) to (? op (A op B))
 | |
|     if (ShouldApply) {
 | |
|       BasicBlock *BB = Root.getParent();
 | |
|       
 | |
|       // Now all of the instructions are in the current basic block, go ahead
 | |
|       // and perform the reassociation.
 | |
|       Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
 | |
| 
 | |
|       // First move the selected RHS to the LHS of the root...
 | |
|       Root.setOperand(0, LHSI->getOperand(1));
 | |
| 
 | |
|       // Make what used to be the LHS of the root be the user of the root...
 | |
|       Value *ExtraOperand = TmpLHSI->getOperand(1);
 | |
|       if (&Root == TmpLHSI) {
 | |
|         Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
 | |
|         return 0;
 | |
|       }
 | |
|       Root.replaceAllUsesWith(TmpLHSI);          // Users now use TmpLHSI
 | |
|       TmpLHSI->setOperand(1, &Root);             // TmpLHSI now uses the root
 | |
|       TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
 | |
|       BasicBlock::iterator ARI = &Root; ++ARI;
 | |
|       BB->getInstList().insert(ARI, TmpLHSI);    // Move TmpLHSI to after Root
 | |
|       ARI = Root;
 | |
| 
 | |
|       // Now propagate the ExtraOperand down the chain of instructions until we
 | |
|       // get to LHSI.
 | |
|       while (TmpLHSI != LHSI) {
 | |
|         Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
 | |
|         // Move the instruction to immediately before the chain we are
 | |
|         // constructing to avoid breaking dominance properties.
 | |
|         NextLHSI->getParent()->getInstList().remove(NextLHSI);
 | |
|         BB->getInstList().insert(ARI, NextLHSI);
 | |
|         ARI = NextLHSI;
 | |
| 
 | |
|         Value *NextOp = NextLHSI->getOperand(1);
 | |
|         NextLHSI->setOperand(1, ExtraOperand);
 | |
|         TmpLHSI = NextLHSI;
 | |
|         ExtraOperand = NextOp;
 | |
|       }
 | |
|       
 | |
|       // Now that the instructions are reassociated, have the functor perform
 | |
|       // the transformation...
 | |
|       return F.apply(Root);
 | |
|     }
 | |
|     
 | |
|     LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // AddRHS - Implements: X + X --> X << 1
 | |
| struct AddRHS {
 | |
|   Value *RHS;
 | |
|   AddRHS(Value *rhs) : RHS(rhs) {}
 | |
|   bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | |
|   Instruction *apply(BinaryOperator &Add) const {
 | |
|     return new ShiftInst(Instruction::Shl, Add.getOperand(0),
 | |
|                          ConstantInt::get(Type::UByteTy, 1));
 | |
|   }
 | |
| };
 | |
| 
 | |
| // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
 | |
| //                 iff C1&C2 == 0
 | |
| struct AddMaskingAnd {
 | |
|   Constant *C2;
 | |
|   AddMaskingAnd(Constant *c) : C2(c) {}
 | |
|   bool shouldApply(Value *LHS) const {
 | |
|     ConstantInt *C1;
 | |
|     return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) && 
 | |
|            ConstantExpr::getAnd(C1, C2)->isNullValue();
 | |
|   }
 | |
|   Instruction *apply(BinaryOperator &Add) const {
 | |
|     return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
 | |
|   }
 | |
| };
 | |
| 
 | |
| static Value *FoldOperationIntoSelectOperand(Instruction &BI, Value *SO,
 | |
|                                              InstCombiner *IC) {
 | |
|   // Figure out if the constant is the left or the right argument.
 | |
|   bool ConstIsRHS = isa<Constant>(BI.getOperand(1));
 | |
|   Constant *ConstOperand = cast<Constant>(BI.getOperand(ConstIsRHS));
 | |
| 
 | |
|   if (Constant *SOC = dyn_cast<Constant>(SO)) {
 | |
|     if (ConstIsRHS)
 | |
|       return ConstantExpr::get(BI.getOpcode(), SOC, ConstOperand);
 | |
|     return ConstantExpr::get(BI.getOpcode(), ConstOperand, SOC);
 | |
|   }
 | |
| 
 | |
|   Value *Op0 = SO, *Op1 = ConstOperand;
 | |
|   if (!ConstIsRHS)
 | |
|     std::swap(Op0, Op1);
 | |
|   Instruction *New;
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&BI))
 | |
|     New = BinaryOperator::create(BO->getOpcode(), Op0, Op1);
 | |
|   else if (ShiftInst *SI = dyn_cast<ShiftInst>(&BI))
 | |
|     New = new ShiftInst(SI->getOpcode(), Op0, Op1);
 | |
|   else {
 | |
|     assert(0 && "Unknown binary instruction type!");
 | |
|     abort();
 | |
|   }
 | |
|   return IC->InsertNewInstBefore(New, BI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
 | |
| /// node as operand #0, see if we can fold the instruction into the PHI (which
 | |
| /// is only possible if all operands to the PHI are constants).
 | |
| Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
 | |
|   PHINode *PN = cast<PHINode>(I.getOperand(0));
 | |
|   unsigned NumPHIValues = PN->getNumIncomingValues();
 | |
|   if (!PN->hasOneUse() || NumPHIValues == 0 ||
 | |
|       !isa<Constant>(PN->getIncomingValue(0))) return 0;
 | |
| 
 | |
|   // Check to see if all of the operands of the PHI are constants.  If not, we
 | |
|   // cannot do the transformation.
 | |
|   for (unsigned i = 1; i != NumPHIValues; ++i)
 | |
|     if (!isa<Constant>(PN->getIncomingValue(i)))
 | |
|       return 0;
 | |
| 
 | |
|   // Okay, we can do the transformation: create the new PHI node.
 | |
|   PHINode *NewPN = new PHINode(I.getType(), I.getName());
 | |
|   I.setName("");
 | |
|   NewPN->op_reserve(PN->getNumOperands());
 | |
|   InsertNewInstBefore(NewPN, *PN);
 | |
| 
 | |
|   // Next, add all of the operands to the PHI.
 | |
|   if (I.getNumOperands() == 2) {
 | |
|     Constant *C = cast<Constant>(I.getOperand(1));
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Constant *InV = cast<Constant>(PN->getIncomingValue(i));
 | |
|       NewPN->addIncoming(ConstantExpr::get(I.getOpcode(), InV, C),
 | |
|                          PN->getIncomingBlock(i));
 | |
|     }
 | |
|   } else {
 | |
|     assert(isa<CastInst>(I) && "Unary op should be a cast!");
 | |
|     const Type *RetTy = I.getType();
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Constant *InV = cast<Constant>(PN->getIncomingValue(i));
 | |
|       NewPN->addIncoming(ConstantExpr::getCast(InV, RetTy),
 | |
|                          PN->getIncomingBlock(i));
 | |
|     }
 | |
|   }
 | |
|   return ReplaceInstUsesWith(I, NewPN);
 | |
| }
 | |
| 
 | |
| // FoldBinOpIntoSelect - Given an instruction with a select as one operand and a
 | |
| // constant as the other operand, try to fold the binary operator into the
 | |
| // select arguments.
 | |
| static Instruction *FoldBinOpIntoSelect(Instruction &BI, SelectInst *SI,
 | |
|                                         InstCombiner *IC) {
 | |
|   // Don't modify shared select instructions
 | |
|   if (!SI->hasOneUse()) return 0;
 | |
|   Value *TV = SI->getOperand(1);
 | |
|   Value *FV = SI->getOperand(2);
 | |
| 
 | |
|   if (isa<Constant>(TV) || isa<Constant>(FV)) {
 | |
|     Value *SelectTrueVal = FoldOperationIntoSelectOperand(BI, TV, IC);
 | |
|     Value *SelectFalseVal = FoldOperationIntoSelectOperand(BI, FV, IC);
 | |
| 
 | |
|     return new SelectInst(SI->getCondition(), SelectTrueVal,
 | |
|                           SelectFalseVal);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|     // X + undef -> undef
 | |
|     if (isa<UndefValue>(RHS))
 | |
|       return ReplaceInstUsesWith(I, RHS);
 | |
| 
 | |
|     // X + 0 --> X
 | |
|     if (!I.getType()->isFloatingPoint() && // -0 + +0 = +0, so it's not a noop
 | |
|         RHSC->isNullValue())
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
|     
 | |
|     // X + (signbit) --> X ^ signbit
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
 | |
|       unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
 | |
|       uint64_t Val = CI->getRawValue() & (1ULL << NumBits)-1;
 | |
|       if (Val == (1ULL << (NumBits-1)))
 | |
|         return BinaryOperator::createXor(LHS, RHS);
 | |
|     }
 | |
| 
 | |
|     if (isa<PHINode>(LHS))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   // X + X --> X << 1
 | |
|   if (I.getType()->isInteger()) {
 | |
|     if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
 | |
|   }
 | |
| 
 | |
|   // -A + B  -->  B - A
 | |
|   if (Value *V = dyn_castNegVal(LHS))
 | |
|     return BinaryOperator::createSub(RHS, V);
 | |
| 
 | |
|   // A + -B  -->  A - B
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Value *V = dyn_castNegVal(RHS))
 | |
|       return BinaryOperator::createSub(LHS, V);
 | |
| 
 | |
|   ConstantInt *C2;
 | |
|   if (Value *X = dyn_castFoldableMul(LHS, C2)) {
 | |
|     if (X == RHS)   // X*C + X --> X * (C+1)
 | |
|       return BinaryOperator::createMul(RHS, AddOne(C2));
 | |
| 
 | |
|     // X*C1 + X*C2 --> X * (C1+C2)
 | |
|     ConstantInt *C1;
 | |
|     if (X == dyn_castFoldableMul(RHS, C1))
 | |
|       return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2));
 | |
|   }
 | |
| 
 | |
|   // X + X*C --> X * (C+1)
 | |
|   if (dyn_castFoldableMul(RHS, C2) == LHS)
 | |
|     return BinaryOperator::createMul(LHS, AddOne(C2));
 | |
| 
 | |
| 
 | |
|   // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|   if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
 | |
|     if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
 | |
| 
 | |
|   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
 | |
|     Value *X;
 | |
|     if (match(LHS, m_Not(m_Value(X)))) {   // ~X + C --> (C-1) - X
 | |
|       Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1));
 | |
|       return BinaryOperator::createSub(C, X);
 | |
|     }
 | |
| 
 | |
|     // (X & FF00) + xx00  -> (X+xx00) & FF00
 | |
|     if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
 | |
|       Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
 | |
|       if (Anded == CRHS) {
 | |
|         // See if all bits from the first bit set in the Add RHS up are included
 | |
|         // in the mask.  First, get the rightmost bit.
 | |
|         uint64_t AddRHSV = CRHS->getRawValue();
 | |
| 
 | |
|         // Form a mask of all bits from the lowest bit added through the top.
 | |
|         uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1);
 | |
|         AddRHSHighBits &= (1ULL << C2->getType()->getPrimitiveSize()*8)-1;
 | |
| 
 | |
|         // See if the and mask includes all of these bits.
 | |
|         uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getRawValue();
 | |
|         
 | |
|         if (AddRHSHighBits == AddRHSHighBitsAnd) {
 | |
|           // Okay, the xform is safe.  Insert the new add pronto.
 | |
|           Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
 | |
|                                                             LHS->getName()), I);
 | |
|           return BinaryOperator::createAnd(NewAdd, C2);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Try to fold constant add into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
 | |
|       if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| // isSignBit - Return true if the value represented by the constant only has the
 | |
| // highest order bit set.
 | |
| static bool isSignBit(ConstantInt *CI) {
 | |
|   unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
 | |
|   return (CI->getRawValue() & ~(-1LL << NumBits)) == (1ULL << (NumBits-1));
 | |
| }
 | |
| 
 | |
| static unsigned getTypeSizeInBits(const Type *Ty) {
 | |
|   return Ty == Type::BoolTy ? 1 : Ty->getPrimitiveSize()*8;
 | |
| }
 | |
| 
 | |
| /// RemoveNoopCast - Strip off nonconverting casts from the value.
 | |
| ///
 | |
| static Value *RemoveNoopCast(Value *V) {
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(V)) {
 | |
|     const Type *CTy = CI->getType();
 | |
|     const Type *OpTy = CI->getOperand(0)->getType();
 | |
|     if (CTy->isInteger() && OpTy->isInteger()) {
 | |
|       if (CTy->getPrimitiveSize() == OpTy->getPrimitiveSize())
 | |
|         return RemoveNoopCast(CI->getOperand(0));
 | |
|     } else if (isa<PointerType>(CTy) && isa<PointerType>(OpTy))
 | |
|       return RemoveNoopCast(CI->getOperand(0));
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSub(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Op0 == Op1)         // sub X, X  -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // If this is a 'B = x-(-A)', change to B = x+A...
 | |
|   if (Value *V = dyn_castNegVal(Op1))
 | |
|     return BinaryOperator::createAdd(Op0, V);
 | |
| 
 | |
|   if (isa<UndefValue>(Op0))
 | |
|     return ReplaceInstUsesWith(I, Op0);    // undef - X -> undef
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I, Op1);    // X - undef -> undef
 | |
| 
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
 | |
|     // Replace (-1 - A) with (~A)...
 | |
|     if (C->isAllOnesValue())
 | |
|       return BinaryOperator::createNot(Op1);
 | |
| 
 | |
|     // C - ~X == X + (1+C)
 | |
|     Value *X;
 | |
|     if (match(Op1, m_Not(m_Value(X))))
 | |
|       return BinaryOperator::createAdd(X,
 | |
|                     ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
 | |
|     // -((uint)X >> 31) -> ((int)X >> 31)
 | |
|     // -((int)X >> 31) -> ((uint)X >> 31)
 | |
|     if (C->isNullValue()) {
 | |
|       Value *NoopCastedRHS = RemoveNoopCast(Op1);
 | |
|       if (ShiftInst *SI = dyn_cast<ShiftInst>(NoopCastedRHS))
 | |
|         if (SI->getOpcode() == Instruction::Shr)
 | |
|           if (ConstantUInt *CU = dyn_cast<ConstantUInt>(SI->getOperand(1))) {
 | |
|             const Type *NewTy;
 | |
|             if (SI->getType()->isSigned())
 | |
|               NewTy = SI->getType()->getUnsignedVersion();
 | |
|             else
 | |
|               NewTy = SI->getType()->getSignedVersion();
 | |
|             // Check to see if we are shifting out everything but the sign bit.
 | |
|             if (CU->getValue() == SI->getType()->getPrimitiveSize()*8-1) {
 | |
|               // Ok, the transformation is safe.  Insert a cast of the incoming
 | |
|               // value, then the new shift, then the new cast.
 | |
|               Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy,
 | |
|                                                  SI->getOperand(0)->getName());
 | |
|               Value *InV = InsertNewInstBefore(FirstCast, I);
 | |
|               Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast,
 | |
|                                                     CU, SI->getName());
 | |
|               if (NewShift->getType() == I.getType())
 | |
|                 return NewShift;
 | |
|               else {
 | |
|                 InV = InsertNewInstBefore(NewShift, I);
 | |
|                 return new CastInst(NewShift, I.getType());
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant sub into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|       if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
 | |
|     if (Op1I->hasOneUse()) {
 | |
|       // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
 | |
|       // is not used by anyone else...
 | |
|       //
 | |
|       if (Op1I->getOpcode() == Instruction::Sub &&
 | |
|           !Op1I->getType()->isFloatingPoint()) {
 | |
|         // Swap the two operands of the subexpr...
 | |
|         Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
 | |
|         Op1I->setOperand(0, IIOp1);
 | |
|         Op1I->setOperand(1, IIOp0);
 | |
|         
 | |
|         // Create the new top level add instruction...
 | |
|         return BinaryOperator::createAdd(Op0, Op1);
 | |
|       }
 | |
| 
 | |
|       // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
 | |
|       //
 | |
|       if (Op1I->getOpcode() == Instruction::And &&
 | |
|           (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
 | |
|         Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
 | |
| 
 | |
|         Value *NewNot =
 | |
|           InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
 | |
|         return BinaryOperator::createAnd(Op0, NewNot);
 | |
|       }
 | |
| 
 | |
|       // -(X sdiv C)  -> (X sdiv -C)
 | |
|       if (Op1I->getOpcode() == Instruction::Div)
 | |
|         if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
 | |
|           if (CSI->getValue() == 0)
 | |
|             if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
 | |
|               return BinaryOperator::createDiv(Op1I->getOperand(0), 
 | |
|                                                ConstantExpr::getNeg(DivRHS));
 | |
| 
 | |
|       // X - X*C --> X * (1-C)
 | |
|       ConstantInt *C2;
 | |
|       if (dyn_castFoldableMul(Op1I, C2) == Op0) {
 | |
|         Constant *CP1 = 
 | |
|           ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2);
 | |
|         return BinaryOperator::createMul(Op0, CP1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   
 | |
|   ConstantInt *C1;
 | |
|   if (Value *X = dyn_castFoldableMul(Op0, C1)) {
 | |
|     if (X == Op1) { // X*C - X --> X * (C-1)
 | |
|       Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1));
 | |
|       return BinaryOperator::createMul(Op1, CP1);
 | |
|     }
 | |
| 
 | |
|     ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
 | |
|     if (X == dyn_castFoldableMul(Op1, C2))
 | |
|       return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2));
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isSignBitCheck - Given an exploded setcc instruction, return true if it is
 | |
| /// really just returns true if the most significant (sign) bit is set.
 | |
| static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) {
 | |
|   if (RHS->getType()->isSigned()) {
 | |
|     // True if source is LHS < 0 or LHS <= -1
 | |
|     return Opcode == Instruction::SetLT && RHS->isNullValue() ||
 | |
|            Opcode == Instruction::SetLE && RHS->isAllOnesValue();
 | |
|   } else {
 | |
|     ConstantUInt *RHSC = cast<ConstantUInt>(RHS);
 | |
|     // True if source is LHS > 127 or LHS >= 128, where the constants depend on
 | |
|     // the size of the integer type.
 | |
|     if (Opcode == Instruction::SetGE)
 | |
|       return RHSC->getValue() == 1ULL<<(RHS->getType()->getPrimitiveSize()*8-1);
 | |
|     if (Opcode == Instruction::SetGT)
 | |
|       return RHSC->getValue() ==
 | |
|         (1ULL << (RHS->getType()->getPrimitiveSize()*8-1))-1;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitMul(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0);
 | |
| 
 | |
|   if (isa<UndefValue>(I.getOperand(1)))              // undef * X -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // Simplify mul instructions with a constant RHS...
 | |
|   if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
| 
 | |
|       // ((X << C1)*C2) == (X * (C2 << C1))
 | |
|       if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
 | |
|         if (SI->getOpcode() == Instruction::Shl)
 | |
|           if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|             return BinaryOperator::createMul(SI->getOperand(0),
 | |
|                                              ConstantExpr::getShl(CI, ShOp));
 | |
|       
 | |
|       if (CI->isNullValue())
 | |
|         return ReplaceInstUsesWith(I, Op1);  // X * 0  == 0
 | |
|       if (CI->equalsInt(1))                  // X * 1  == X
 | |
|         return ReplaceInstUsesWith(I, Op0);
 | |
|       if (CI->isAllOnesValue())              // X * -1 == 0 - X
 | |
|         return BinaryOperator::createNeg(Op0, I.getName());
 | |
| 
 | |
|       int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
 | |
|       if (uint64_t C = Log2(Val))            // Replace X*(2^C) with X << C
 | |
|         return new ShiftInst(Instruction::Shl, Op0,
 | |
|                              ConstantUInt::get(Type::UByteTy, C));
 | |
|     } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
 | |
|       if (Op1F->isNullValue())
 | |
|         return ReplaceInstUsesWith(I, Op1);
 | |
| 
 | |
|       // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
 | |
|       // ANSI says we can drop signals, so we can do this anyway." (from GCC)
 | |
|       if (Op1F->getValue() == 1.0)
 | |
|         return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0'
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant mul into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
 | |
|     if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
 | |
|       return BinaryOperator::createMul(Op0v, Op1v);
 | |
| 
 | |
|   // If one of the operands of the multiply is a cast from a boolean value, then
 | |
|   // we know the bool is either zero or one, so this is a 'masking' multiply.
 | |
|   // See if we can simplify things based on how the boolean was originally
 | |
|   // formed.
 | |
|   CastInst *BoolCast = 0;
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(0)))
 | |
|     if (CI->getOperand(0)->getType() == Type::BoolTy)
 | |
|       BoolCast = CI;
 | |
|   if (!BoolCast)
 | |
|     if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(1)))
 | |
|       if (CI->getOperand(0)->getType() == Type::BoolTy)
 | |
|         BoolCast = CI;
 | |
|   if (BoolCast) {
 | |
|     if (SetCondInst *SCI = dyn_cast<SetCondInst>(BoolCast->getOperand(0))) {
 | |
|       Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
 | |
|       const Type *SCOpTy = SCIOp0->getType();
 | |
| 
 | |
|       // If the setcc is true iff the sign bit of X is set, then convert this
 | |
|       // multiply into a shift/and combination.
 | |
|       if (isa<ConstantInt>(SCIOp1) &&
 | |
|           isSignBitCheck(SCI->getOpcode(), SCIOp0, cast<ConstantInt>(SCIOp1))) {
 | |
|         // Shift the X value right to turn it into "all signbits".
 | |
|         Constant *Amt = ConstantUInt::get(Type::UByteTy,
 | |
|                                           SCOpTy->getPrimitiveSize()*8-1);
 | |
|         if (SCIOp0->getType()->isUnsigned()) {
 | |
|           const Type *NewTy = SCIOp0->getType()->getSignedVersion();
 | |
|           SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy,
 | |
|                                                     SCIOp0->getName()), I);
 | |
|         }
 | |
| 
 | |
|         Value *V =
 | |
|           InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt,
 | |
|                                             BoolCast->getOperand(0)->getName()+
 | |
|                                             ".mask"), I);
 | |
| 
 | |
|         // If the multiply type is not the same as the source type, sign extend
 | |
|         // or truncate to the multiply type.
 | |
|         if (I.getType() != V->getType())
 | |
|           V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I);
 | |
|         
 | |
|         Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
 | |
|         return BinaryOperator::createAnd(V, OtherOp);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op0))              // undef / X -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I, Op1);  // X / undef -> undef
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // div X, 1 == X
 | |
|     if (RHS->equalsInt(1))
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|     // div X, -1 == -X
 | |
|     if (RHS->isAllOnesValue())
 | |
|       return BinaryOperator::createNeg(Op0);
 | |
| 
 | |
|     if (Instruction *LHS = dyn_cast<Instruction>(Op0))
 | |
|       if (LHS->getOpcode() == Instruction::Div)
 | |
|         if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
 | |
|           // (X / C1) / C2  -> X / (C1*C2)
 | |
|           return BinaryOperator::createDiv(LHS->getOperand(0),
 | |
|                                            ConstantExpr::getMul(RHS, LHSRHS));
 | |
|         }
 | |
| 
 | |
|     // Check to see if this is an unsigned division with an exact power of 2,
 | |
|     // if so, convert to a right shift.
 | |
|     if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
 | |
|       if (uint64_t Val = C->getValue())    // Don't break X / 0
 | |
|         if (uint64_t C = Log2(Val))
 | |
|           return new ShiftInst(Instruction::Shr, Op0,
 | |
|                                ConstantUInt::get(Type::UByteTy, C));
 | |
| 
 | |
|     // -X/C -> X/-C
 | |
|     if (RHS->getType()->isSigned())
 | |
|       if (Value *LHSNeg = dyn_castNegVal(Op0))
 | |
|         return BinaryOperator::createDiv(LHSNeg, ConstantExpr::getNeg(RHS));
 | |
| 
 | |
|     if (!RHS->isNullValue()) {
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|         if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | |
|           return R;
 | |
|       if (isa<PHINode>(Op0))
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is 'udiv X, (Cond ? C1, C2)' where C1&C2 are powers of two,
 | |
|   // transform this into: '(Cond ? (udiv X, C1) : (udiv X, C2))'.
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|     if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
 | |
|       if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
 | |
|         if (STO->getValue() == 0) { // Couldn't be this argument.
 | |
|           I.setOperand(1, SFO);
 | |
|           return &I;          
 | |
|         } else if (SFO->getValue() == 0) {
 | |
|           I.setOperand(1, STO);
 | |
|           return &I;          
 | |
|         }
 | |
| 
 | |
|         if (uint64_t TSA = Log2(STO->getValue()))
 | |
|           if (uint64_t FSA = Log2(SFO->getValue())) {
 | |
|             Constant *TC = ConstantUInt::get(Type::UByteTy, TSA);
 | |
|             Instruction *TSI = new ShiftInst(Instruction::Shr, Op0,
 | |
|                                              TC, SI->getName()+".t");
 | |
|             TSI = InsertNewInstBefore(TSI, I);
 | |
| 
 | |
|             Constant *FC = ConstantUInt::get(Type::UByteTy, FSA);
 | |
|             Instruction *FSI = new ShiftInst(Instruction::Shr, Op0,
 | |
|                                              FC, SI->getName()+".f");
 | |
|             FSI = InsertNewInstBefore(FSI, I);
 | |
|             return new SelectInst(SI->getOperand(0), TSI, FSI);
 | |
|           }
 | |
|       }
 | |
|   
 | |
|   // 0 / X == 0, we don't need to preserve faults!
 | |
|   if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
 | |
|     if (LHS->equalsInt(0))
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitRem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   if (I.getType()->isSigned())
 | |
|     if (Value *RHSNeg = dyn_castNegVal(Op1))
 | |
|       if (!isa<ConstantSInt>(RHSNeg) ||
 | |
|           cast<ConstantSInt>(RHSNeg)->getValue() > 0) {
 | |
|         // X % -Y -> X % Y
 | |
|         AddUsesToWorkList(I);
 | |
|         I.setOperand(1, RHSNeg);
 | |
|         return &I;
 | |
|       }
 | |
| 
 | |
|   if (isa<UndefValue>(Op0))              // undef % X -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I, Op1);  // X % undef -> undef
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     if (RHS->equalsInt(1))  // X % 1 == 0
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|     // Check to see if this is an unsigned remainder with an exact power of 2,
 | |
|     // if so, convert to a bitwise and.
 | |
|     if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
 | |
|       if (uint64_t Val = C->getValue())    // Don't break X % 0 (divide by zero)
 | |
|         if (!(Val & (Val-1)))              // Power of 2
 | |
|           return BinaryOperator::createAnd(Op0,
 | |
|                                          ConstantUInt::get(I.getType(), Val-1));
 | |
| 
 | |
|     if (!RHS->isNullValue()) {
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|         if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | |
|           return R;
 | |
|       if (isa<PHINode>(Op0))
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is 'urem X, (Cond ? C1, C2)' where C1&C2 are powers of two,
 | |
|   // transform this into: '(Cond ? (urem X, C1) : (urem X, C2))'.
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|     if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
 | |
|       if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
 | |
|         if (STO->getValue() == 0) { // Couldn't be this argument.
 | |
|           I.setOperand(1, SFO);
 | |
|           return &I;          
 | |
|         } else if (SFO->getValue() == 0) {
 | |
|           I.setOperand(1, STO);
 | |
|           return &I;          
 | |
|         }
 | |
| 
 | |
|         if (!(STO->getValue() & (STO->getValue()-1)) &&
 | |
|             !(SFO->getValue() & (SFO->getValue()-1))) {
 | |
|           Value *TrueAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
 | |
|                                          SubOne(STO), SI->getName()+".t"), I);
 | |
|           Value *FalseAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
 | |
|                                          SubOne(SFO), SI->getName()+".f"), I);
 | |
|           return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
 | |
|         }
 | |
|       }
 | |
|   
 | |
|   // 0 % X == 0, we don't need to preserve faults!
 | |
|   if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
 | |
|     if (LHS->equalsInt(0))
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // isMaxValueMinusOne - return true if this is Max-1
 | |
| static bool isMaxValueMinusOne(const ConstantInt *C) {
 | |
|   if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) {
 | |
|     // Calculate -1 casted to the right type...
 | |
|     unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | |
|     uint64_t Val = ~0ULL;                // All ones
 | |
|     Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | |
|     return CU->getValue() == Val-1;
 | |
|   }
 | |
| 
 | |
|   const ConstantSInt *CS = cast<ConstantSInt>(C);
 | |
|   
 | |
|   // Calculate 0111111111..11111
 | |
|   unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | |
|   int64_t Val = INT64_MAX;             // All ones
 | |
|   Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | |
|   return CS->getValue() == Val-1;
 | |
| }
 | |
| 
 | |
| // isMinValuePlusOne - return true if this is Min+1
 | |
| static bool isMinValuePlusOne(const ConstantInt *C) {
 | |
|   if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
 | |
|     return CU->getValue() == 1;
 | |
| 
 | |
|   const ConstantSInt *CS = cast<ConstantSInt>(C);
 | |
|   
 | |
|   // Calculate 1111111111000000000000 
 | |
|   unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | |
|   int64_t Val = -1;                    // All ones
 | |
|   Val <<= TypeBits-1;                  // Shift over to the right spot
 | |
|   return CS->getValue() == Val+1;
 | |
| }
 | |
| 
 | |
| // isOneBitSet - Return true if there is exactly one bit set in the specified
 | |
| // constant.
 | |
| static bool isOneBitSet(const ConstantInt *CI) {
 | |
|   uint64_t V = CI->getRawValue();
 | |
|   return V && (V & (V-1)) == 0;
 | |
| }
 | |
| 
 | |
| #if 0   // Currently unused
 | |
| // isLowOnes - Return true if the constant is of the form 0+1+.
 | |
| static bool isLowOnes(const ConstantInt *CI) {
 | |
|   uint64_t V = CI->getRawValue();
 | |
| 
 | |
|   // There won't be bits set in parts that the type doesn't contain.
 | |
|   V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
 | |
| 
 | |
|   uint64_t U = V+1;  // If it is low ones, this should be a power of two.
 | |
|   return U && V && (U & V) == 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // isHighOnes - Return true if the constant is of the form 1+0+.
 | |
| // This is the same as lowones(~X).
 | |
| static bool isHighOnes(const ConstantInt *CI) {
 | |
|   uint64_t V = ~CI->getRawValue();
 | |
| 
 | |
|   // There won't be bits set in parts that the type doesn't contain.
 | |
|   V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
 | |
| 
 | |
|   uint64_t U = V+1;  // If it is low ones, this should be a power of two.
 | |
|   return U && V && (U & V) == 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getSetCondCode - Encode a setcc opcode into a three bit mask.  These bits
 | |
| /// are carefully arranged to allow folding of expressions such as:
 | |
| ///
 | |
| ///      (A < B) | (A > B) --> (A != B)
 | |
| ///
 | |
| /// Bit value '4' represents that the comparison is true if A > B, bit value '2'
 | |
| /// represents that the comparison is true if A == B, and bit value '1' is true
 | |
| /// if A < B.
 | |
| ///
 | |
| static unsigned getSetCondCode(const SetCondInst *SCI) {
 | |
|   switch (SCI->getOpcode()) {
 | |
|     // False -> 0
 | |
|   case Instruction::SetGT: return 1;
 | |
|   case Instruction::SetEQ: return 2;
 | |
|   case Instruction::SetGE: return 3;
 | |
|   case Instruction::SetLT: return 4;
 | |
|   case Instruction::SetNE: return 5;
 | |
|   case Instruction::SetLE: return 6;
 | |
|     // True -> 7
 | |
|   default:
 | |
|     assert(0 && "Invalid SetCC opcode!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getSetCCValue - This is the complement of getSetCondCode, which turns an
 | |
| /// opcode and two operands into either a constant true or false, or a brand new
 | |
| /// SetCC instruction.
 | |
| static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
 | |
|   switch (Opcode) {
 | |
|   case 0: return ConstantBool::False;
 | |
|   case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
 | |
|   case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
 | |
|   case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
 | |
|   case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
 | |
|   case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
 | |
|   case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
 | |
|   case 7: return ConstantBool::True;
 | |
|   default: assert(0 && "Illegal SetCCCode!"); return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
 | |
| struct FoldSetCCLogical {
 | |
|   InstCombiner &IC;
 | |
|   Value *LHS, *RHS;
 | |
|   FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
 | |
|     : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
 | |
|   bool shouldApply(Value *V) const {
 | |
|     if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
 | |
|       return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
 | |
|               SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
 | |
|     return false;
 | |
|   }
 | |
|   Instruction *apply(BinaryOperator &Log) const {
 | |
|     SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
 | |
|     if (SCI->getOperand(0) != LHS) {
 | |
|       assert(SCI->getOperand(1) == LHS);
 | |
|       SCI->swapOperands();  // Swap the LHS and RHS of the SetCC
 | |
|     }
 | |
| 
 | |
|     unsigned LHSCode = getSetCondCode(SCI);
 | |
|     unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
 | |
|     unsigned Code;
 | |
|     switch (Log.getOpcode()) {
 | |
|     case Instruction::And: Code = LHSCode & RHSCode; break;
 | |
|     case Instruction::Or:  Code = LHSCode | RHSCode; break;
 | |
|     case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
 | |
|     default: assert(0 && "Illegal logical opcode!"); return 0;
 | |
|     }
 | |
| 
 | |
|     Value *RV = getSetCCValue(Code, LHS, RHS);
 | |
|     if (Instruction *I = dyn_cast<Instruction>(RV))
 | |
|       return I;
 | |
|     // Otherwise, it's a constant boolean value...
 | |
|     return IC.ReplaceInstUsesWith(Log, RV);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
 | |
| // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
 | |
| // guaranteed to be either a shift instruction or a binary operator.
 | |
| Instruction *InstCombiner::OptAndOp(Instruction *Op,
 | |
|                                     ConstantIntegral *OpRHS,
 | |
|                                     ConstantIntegral *AndRHS,
 | |
|                                     BinaryOperator &TheAnd) {
 | |
|   Value *X = Op->getOperand(0);
 | |
|   Constant *Together = 0;
 | |
|   if (!isa<ShiftInst>(Op))
 | |
|     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
 | |
| 
 | |
|   switch (Op->getOpcode()) {
 | |
|   case Instruction::Xor:
 | |
|     if (Together->isNullValue()) {
 | |
|       // (X ^ C1) & C2 --> (X & C2) iff (C1&C2) == 0
 | |
|       return BinaryOperator::createAnd(X, AndRHS);
 | |
|     } else if (Op->hasOneUse()) {
 | |
|       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
 | |
|       std::string OpName = Op->getName(); Op->setName("");
 | |
|       Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName);
 | |
|       InsertNewInstBefore(And, TheAnd);
 | |
|       return BinaryOperator::createXor(And, Together);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     // (X | C1) & C2 --> X & C2 iff C1 & C1 == 0
 | |
|     if (Together->isNullValue())
 | |
|       return BinaryOperator::createAnd(X, AndRHS);
 | |
|     else {
 | |
|       if (Together == AndRHS) // (X | C) & C --> C
 | |
|         return ReplaceInstUsesWith(TheAnd, AndRHS);
 | |
|       
 | |
|       if (Op->hasOneUse() && Together != OpRHS) {
 | |
|         // (X | C1) & C2 --> (X | (C1&C2)) & C2
 | |
|         std::string Op0Name = Op->getName(); Op->setName("");
 | |
|         Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name);
 | |
|         InsertNewInstBefore(Or, TheAnd);
 | |
|         return BinaryOperator::createAnd(Or, AndRHS);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|     if (Op->hasOneUse()) {
 | |
|       // Adding a one to a single bit bit-field should be turned into an XOR
 | |
|       // of the bit.  First thing to check is to see if this AND is with a
 | |
|       // single bit constant.
 | |
|       uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();
 | |
| 
 | |
|       // Clear bits that are not part of the constant.
 | |
|       AndRHSV &= (1ULL << AndRHS->getType()->getPrimitiveSize()*8)-1;
 | |
| 
 | |
|       // If there is only one bit set...
 | |
|       if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
 | |
|         // Ok, at this point, we know that we are masking the result of the
 | |
|         // ADD down to exactly one bit.  If the constant we are adding has
 | |
|         // no bits set below this bit, then we can eliminate the ADD.
 | |
|         uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
 | |
|             
 | |
|         // Check to see if any bits below the one bit set in AndRHSV are set.
 | |
|         if ((AddRHS & (AndRHSV-1)) == 0) {
 | |
|           // If not, the only thing that can effect the output of the AND is
 | |
|           // the bit specified by AndRHSV.  If that bit is set, the effect of
 | |
|           // the XOR is to toggle the bit.  If it is clear, then the ADD has
 | |
|           // no effect.
 | |
|           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
 | |
|             TheAnd.setOperand(0, X);
 | |
|             return &TheAnd;
 | |
|           } else {
 | |
|             std::string Name = Op->getName(); Op->setName("");
 | |
|             // Pull the XOR out of the AND.
 | |
|             Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name);
 | |
|             InsertNewInstBefore(NewAnd, TheAnd);
 | |
|             return BinaryOperator::createXor(NewAnd, AndRHS);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Shl: {
 | |
|     // We know that the AND will not produce any of the bits shifted in, so if
 | |
|     // the anded constant includes them, clear them now!
 | |
|     //
 | |
|     Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
 | |
|     Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS);
 | |
|     Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask);
 | |
|                                         
 | |
|     if (CI == ShlMask) {   // Masking out bits that the shift already masks
 | |
|       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
 | |
|     } else if (CI != AndRHS) {                  // Reducing bits set in and.
 | |
|       TheAnd.setOperand(1, CI);
 | |
|       return &TheAnd;
 | |
|     }
 | |
|     break;
 | |
|   } 
 | |
|   case Instruction::Shr:
 | |
|     // We know that the AND will not produce any of the bits shifted in, so if
 | |
|     // the anded constant includes them, clear them now!  This only applies to
 | |
|     // unsigned shifts, because a signed shr may bring in set bits!
 | |
|     //
 | |
|     if (AndRHS->getType()->isUnsigned()) {
 | |
|       Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
 | |
|       Constant *ShrMask = ConstantExpr::getShr(AllOne, OpRHS);
 | |
|       Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
 | |
| 
 | |
|       if (CI == ShrMask) {   // Masking out bits that the shift already masks.
 | |
|         return ReplaceInstUsesWith(TheAnd, Op);
 | |
|       } else if (CI != AndRHS) {
 | |
|         TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
 | |
|         return &TheAnd;
 | |
|       }
 | |
|     } else {   // Signed shr.
 | |
|       // See if this is shifting in some sign extension, then masking it out
 | |
|       // with an and.
 | |
|       if (Op->hasOneUse()) {
 | |
|         Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
 | |
|         Constant *ShrMask = ConstantExpr::getUShr(AllOne, OpRHS);
 | |
|         Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
 | |
|         if (CI == AndRHS) {          // Masking out bits shifted in.
 | |
|           // Make the argument unsigned.
 | |
|           Value *ShVal = Op->getOperand(0);
 | |
|           ShVal = InsertCastBefore(ShVal,
 | |
|                                    ShVal->getType()->getUnsignedVersion(),
 | |
|                                    TheAnd);
 | |
|           ShVal = InsertNewInstBefore(new ShiftInst(Instruction::Shr, ShVal,
 | |
|                                                     OpRHS, Op->getName()),
 | |
|                                       TheAnd);
 | |
|           Value *AndRHS2 = ConstantExpr::getCast(AndRHS, ShVal->getType());
 | |
|           ShVal = InsertNewInstBefore(BinaryOperator::createAnd(ShVal, AndRHS2,
 | |
|                                                              TheAnd.getName()),
 | |
|                                       TheAnd);
 | |
|           return new CastInst(ShVal, Op->getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
 | |
| /// true, otherwise (V < Lo || V >= Hi).  In pratice, we emit the more efficient
 | |
| /// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi.  IB is the location to
 | |
| /// insert new instructions.
 | |
| Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | |
|                                            bool Inside, Instruction &IB) {
 | |
|   assert(cast<ConstantBool>(ConstantExpr::getSetLE(Lo, Hi))->getValue() &&
 | |
|          "Lo is not <= Hi in range emission code!");
 | |
|   if (Inside) {
 | |
|     if (Lo == Hi)  // Trivially false.
 | |
|       return new SetCondInst(Instruction::SetNE, V, V);
 | |
|     if (cast<ConstantIntegral>(Lo)->isMinValue())
 | |
|       return new SetCondInst(Instruction::SetLT, V, Hi);
 | |
|     
 | |
|     Constant *AddCST = ConstantExpr::getNeg(Lo);
 | |
|     Instruction *Add = BinaryOperator::createAdd(V, AddCST,V->getName()+".off");
 | |
|     InsertNewInstBefore(Add, IB);
 | |
|     // Convert to unsigned for the comparison.
 | |
|     const Type *UnsType = Add->getType()->getUnsignedVersion();
 | |
|     Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
 | |
|     AddCST = ConstantExpr::getAdd(AddCST, Hi);
 | |
|     AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | |
|     return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
 | |
|   }
 | |
| 
 | |
|   if (Lo == Hi)  // Trivially true.
 | |
|     return new SetCondInst(Instruction::SetEQ, V, V);
 | |
| 
 | |
|   Hi = SubOne(cast<ConstantInt>(Hi));
 | |
|   if (cast<ConstantIntegral>(Lo)->isMinValue()) // V < 0 || V >= Hi ->'V > Hi-1'
 | |
|     return new SetCondInst(Instruction::SetGT, V, Hi);
 | |
| 
 | |
|   // Emit X-Lo > Hi-Lo-1
 | |
|   Constant *AddCST = ConstantExpr::getNeg(Lo);
 | |
|   Instruction *Add = BinaryOperator::createAdd(V, AddCST, V->getName()+".off");
 | |
|   InsertNewInstBefore(Add, IB);
 | |
|   // Convert to unsigned for the comparison.
 | |
|   const Type *UnsType = Add->getType()->getUnsignedVersion();
 | |
|   Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
 | |
|   AddCST = ConstantExpr::getAdd(AddCST, Hi);
 | |
|   AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | |
|   return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op1))                         // X & undef -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // and X, X = X   and X, 0 == 0
 | |
|   if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
 | |
|     return ReplaceInstUsesWith(I, Op1);
 | |
| 
 | |
|   // and X, -1 == X
 | |
|   if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | |
|     if (RHS->isAllOnesValue())
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|     // Optimize a variety of ((val OP C1) & C2) combinations...
 | |
|     if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
 | |
|       Instruction *Op0I = cast<Instruction>(Op0);
 | |
|       Value *X = Op0I->getOperand(0);
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | |
|         if (Instruction *Res = OptAndOp(Op0I, Op0CI, RHS, I))
 | |
|           return Res;
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   Value *Op0NotVal = dyn_castNotVal(Op0);
 | |
|   Value *Op1NotVal = dyn_castNotVal(Op1);
 | |
| 
 | |
|   if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // (~A & ~B) == (~(A | B)) - De Morgan's Law
 | |
|   if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | |
|     Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
 | |
|                                                I.getName()+".demorgan");
 | |
|     InsertNewInstBefore(Or, I);
 | |
|     return BinaryOperator::createNot(Or);
 | |
|   }
 | |
| 
 | |
|   if (SetCondInst *RHS = dyn_cast<SetCondInst>(Op1)) {
 | |
|     // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|     Value *LHSVal, *RHSVal;
 | |
|     ConstantInt *LHSCst, *RHSCst;
 | |
|     Instruction::BinaryOps LHSCC, RHSCC;
 | |
|     if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
 | |
|       if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
 | |
|         if (LHSVal == RHSVal &&    // Found (X setcc C1) & (X setcc C2)
 | |
|             // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
 | |
|             LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE && 
 | |
|             RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
 | |
|           // Ensure that the larger constant is on the RHS.
 | |
|           Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
 | |
|           SetCondInst *LHS = cast<SetCondInst>(Op0);
 | |
|           if (cast<ConstantBool>(Cmp)->getValue()) {
 | |
|             std::swap(LHS, RHS);
 | |
|             std::swap(LHSCst, RHSCst);
 | |
|             std::swap(LHSCC, RHSCC);
 | |
|           }
 | |
| 
 | |
|           // At this point, we know we have have two setcc instructions
 | |
|           // comparing a value against two constants and and'ing the result
 | |
|           // together.  Because of the above check, we know that we only have
 | |
|           // SetEQ, SetNE, SetLT, and SetGT here.  We also know (from the
 | |
|           // FoldSetCCLogical check above), that the two constants are not
 | |
|           // equal.
 | |
|           assert(LHSCst != RHSCst && "Compares not folded above?");
 | |
| 
 | |
|           switch (LHSCC) {
 | |
|           default: assert(0 && "Unknown integer condition code!");
 | |
|           case Instruction::SetEQ:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:  // (X == 13 & X == 15) -> false
 | |
|             case Instruction::SetGT:  // (X == 13 & X > 15)  -> false
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|             case Instruction::SetNE:  // (X == 13 & X != 15) -> X == 13
 | |
|             case Instruction::SetLT:  // (X == 13 & X < 15)  -> X == 13
 | |
|               return ReplaceInstUsesWith(I, LHS);
 | |
|             }
 | |
|           case Instruction::SetNE:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetLT:
 | |
|               if (LHSCst == SubOne(RHSCst)) // (X != 13 & X < 14) -> X < 13
 | |
|                 return new SetCondInst(Instruction::SetLT, LHSVal, LHSCst);
 | |
|               break;                        // (X != 13 & X < 15) -> no change
 | |
|             case Instruction::SetEQ:        // (X != 13 & X == 15) -> X == 15
 | |
|             case Instruction::SetGT:        // (X != 13 & X > 15)  -> X > 15
 | |
|               return ReplaceInstUsesWith(I, RHS);
 | |
|             case Instruction::SetNE:
 | |
|               if (LHSCst == SubOne(RHSCst)) {// (X != 13 & X != 14) -> X-13 >u 1
 | |
|                 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | |
|                 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
 | |
|                                                       LHSVal->getName()+".off");
 | |
|                 InsertNewInstBefore(Add, I);
 | |
|                 const Type *UnsType = Add->getType()->getUnsignedVersion();
 | |
|                 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
 | |
|                 AddCST = ConstantExpr::getSub(RHSCst, LHSCst);
 | |
|                 AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | |
|                 return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
 | |
|               }
 | |
|               break;                        // (X != 13 & X != 15) -> no change
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::SetLT:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:  // (X < 13 & X == 15) -> false
 | |
|             case Instruction::SetGT:  // (X < 13 & X > 15)  -> false
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|             case Instruction::SetNE:  // (X < 13 & X != 15) -> X < 13
 | |
|             case Instruction::SetLT:  // (X < 13 & X < 15) -> X < 13
 | |
|               return ReplaceInstUsesWith(I, LHS);
 | |
|             }
 | |
|           case Instruction::SetGT:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:  // (X > 13 & X == 15) -> X > 13
 | |
|               return ReplaceInstUsesWith(I, LHS);
 | |
|             case Instruction::SetGT:  // (X > 13 & X > 15)  -> X > 15
 | |
|               return ReplaceInstUsesWith(I, RHS);
 | |
|             case Instruction::SetNE:
 | |
|               if (RHSCst == AddOne(LHSCst)) // (X > 13 & X != 14) -> X > 14
 | |
|                 return new SetCondInst(Instruction::SetGT, LHSVal, RHSCst);
 | |
|               break;                        // (X > 13 & X != 15) -> no change
 | |
|             case Instruction::SetLT:   // (X > 13 & X < 15) -> (X-14) <u 1
 | |
|               return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, I);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitOr(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I,                         // X | undef -> -1
 | |
|                                ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   // or X, X = X   or X, 0 == X
 | |
|   if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
 | |
|     return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|   // or X, -1 == -1
 | |
|   if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | |
|     if (RHS->isAllOnesValue())
 | |
|       return ReplaceInstUsesWith(I, Op1);
 | |
| 
 | |
|     ConstantInt *C1; Value *X;
 | |
|     // (X & C1) | C2 --> (X | C2) & (C1|C2)
 | |
|     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
 | |
|       std::string Op0Name = Op0->getName(); Op0->setName("");
 | |
|       Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
 | |
|       InsertNewInstBefore(Or, I);
 | |
|       return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1));
 | |
|     }
 | |
| 
 | |
|     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
 | |
|     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
 | |
|       std::string Op0Name = Op0->getName(); Op0->setName("");
 | |
|       Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
 | |
|       InsertNewInstBefore(Or, I);
 | |
|       return BinaryOperator::createXor(Or,
 | |
|                  ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS)));
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   // (A & C1)|(A & C2) == A & (C1|C2)
 | |
|   Value *A, *B; ConstantInt *C1, *C2;
 | |
|   if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
 | |
|       match(Op1, m_And(m_Value(B), m_ConstantInt(C2))) && A == B)
 | |
|     return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2));
 | |
| 
 | |
|   if (match(Op0, m_Not(m_Value(A)))) {   // ~A | Op1
 | |
|     if (A == Op1)   // ~A | A == -1
 | |
|       return ReplaceInstUsesWith(I, 
 | |
|                                 ConstantIntegral::getAllOnesValue(I.getType()));
 | |
|   } else {
 | |
|     A = 0;
 | |
|   }
 | |
| 
 | |
|   if (match(Op1, m_Not(m_Value(B)))) {   // Op0 | ~B
 | |
|     if (Op0 == B)
 | |
|       return ReplaceInstUsesWith(I, 
 | |
|                                 ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|     // (~A | ~B) == (~(A & B)) - De Morgan's Law
 | |
|     if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | |
|       Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
 | |
|                                               I.getName()+".demorgan"), I);
 | |
|       return BinaryOperator::createNot(And);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
 | |
|   if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1))) {
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|     Value *LHSVal, *RHSVal;
 | |
|     ConstantInt *LHSCst, *RHSCst;
 | |
|     Instruction::BinaryOps LHSCC, RHSCC;
 | |
|     if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
 | |
|       if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
 | |
|         if (LHSVal == RHSVal &&    // Found (X setcc C1) | (X setcc C2)
 | |
|             // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
 | |
|             LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE && 
 | |
|             RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
 | |
|           // Ensure that the larger constant is on the RHS.
 | |
|           Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
 | |
|           SetCondInst *LHS = cast<SetCondInst>(Op0);
 | |
|           if (cast<ConstantBool>(Cmp)->getValue()) {
 | |
|             std::swap(LHS, RHS);
 | |
|             std::swap(LHSCst, RHSCst);
 | |
|             std::swap(LHSCC, RHSCC);
 | |
|           }
 | |
| 
 | |
|           // At this point, we know we have have two setcc instructions
 | |
|           // comparing a value against two constants and or'ing the result
 | |
|           // together.  Because of the above check, we know that we only have
 | |
|           // SetEQ, SetNE, SetLT, and SetGT here.  We also know (from the
 | |
|           // FoldSetCCLogical check above), that the two constants are not
 | |
|           // equal.
 | |
|           assert(LHSCst != RHSCst && "Compares not folded above?");
 | |
| 
 | |
|           switch (LHSCC) {
 | |
|           default: assert(0 && "Unknown integer condition code!");
 | |
|           case Instruction::SetEQ:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:
 | |
|               if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
 | |
|                 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | |
|                 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
 | |
|                                                       LHSVal->getName()+".off");
 | |
|                 InsertNewInstBefore(Add, I);
 | |
|                 const Type *UnsType = Add->getType()->getUnsignedVersion();
 | |
|                 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
 | |
|                 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
 | |
|                 AddCST = ConstantExpr::getCast(AddCST, UnsType);
 | |
|                 return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
 | |
|               }
 | |
|               break;                  // (X == 13 | X == 15) -> no change
 | |
| 
 | |
|             case Instruction::SetGT:
 | |
|               if (LHSCst == SubOne(RHSCst)) // (X == 13 | X > 14) -> X > 13
 | |
|                 return new SetCondInst(Instruction::SetGT, LHSVal, LHSCst);
 | |
|               break;                        // (X == 13 | X > 15) -> no change
 | |
|             case Instruction::SetNE:  // (X == 13 | X != 15) -> X != 15
 | |
|             case Instruction::SetLT:  // (X == 13 | X < 15)  -> X < 15
 | |
|               return ReplaceInstUsesWith(I, RHS);
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::SetNE:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetLT:        // (X != 13 | X < 15) -> X < 15
 | |
|               return ReplaceInstUsesWith(I, RHS);
 | |
|             case Instruction::SetEQ:        // (X != 13 | X == 15) -> X != 13
 | |
|             case Instruction::SetGT:        // (X != 13 | X > 15)  -> X != 13
 | |
|               return ReplaceInstUsesWith(I, LHS);
 | |
|             case Instruction::SetNE:        // (X != 13 | X != 15) -> true
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::SetLT:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:  // (X < 13 | X == 14) -> no change
 | |
|               break;
 | |
|             case Instruction::SetGT:  // (X < 13 | X > 15)  -> (X-13) > 2
 | |
|               return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, I);
 | |
|             case Instruction::SetNE:  // (X < 13 | X != 15) -> X != 15
 | |
|             case Instruction::SetLT:  // (X < 13 | X < 15) -> X < 15
 | |
|               return ReplaceInstUsesWith(I, RHS);
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::SetGT:
 | |
|             switch (RHSCC) {
 | |
|             default: assert(0 && "Unknown integer condition code!");
 | |
|             case Instruction::SetEQ:  // (X > 13 | X == 15) -> X > 13
 | |
|             case Instruction::SetGT:  // (X > 13 | X > 15)  -> X > 13
 | |
|               return ReplaceInstUsesWith(I, LHS);
 | |
|             case Instruction::SetNE:  // (X > 13 | X != 15)  -> true
 | |
|             case Instruction::SetLT:  // (X > 13 | X < 15) -> true
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|   }
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| // XorSelf - Implements: X ^ X --> 0
 | |
| struct XorSelf {
 | |
|   Value *RHS;
 | |
|   XorSelf(Value *rhs) : RHS(rhs) {}
 | |
|   bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | |
|   Instruction *apply(BinaryOperator &Xor) const {
 | |
|     return &Xor;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitXor(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I, Op1);  // X ^ undef -> undef
 | |
| 
 | |
|   // xor X, X = 0, even if X is nested in a sequence of Xor's.
 | |
|   if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
 | |
|     assert(Result == &I && "AssociativeOpt didn't work?");
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   }
 | |
| 
 | |
|   if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | |
|     // xor X, 0 == X
 | |
|     if (RHS->isNullValue())
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
 | |
|       if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
 | |
|         if (RHS == ConstantBool::True && SCI->hasOneUse())
 | |
|           return new SetCondInst(SCI->getInverseCondition(),
 | |
|                                  SCI->getOperand(0), SCI->getOperand(1));
 | |
| 
 | |
|       // ~(c-X) == X-c-1 == X+(-c-1)
 | |
|       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
 | |
|         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
 | |
|           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
 | |
|           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
 | |
|                                               ConstantInt::get(I.getType(), 1));
 | |
|           return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
 | |
|         }
 | |
| 
 | |
|       // ~(~X & Y) --> (X | ~Y)
 | |
|       if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
 | |
|         if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
 | |
|         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
 | |
|           Instruction *NotY =
 | |
|             BinaryOperator::createNot(Op0I->getOperand(1), 
 | |
|                                       Op0I->getOperand(1)->getName()+".not");
 | |
|           InsertNewInstBefore(NotY, I);
 | |
|           return BinaryOperator::createOr(Op0NotVal, NotY);
 | |
|         }
 | |
|       }
 | |
|           
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | |
|         switch (Op0I->getOpcode()) {
 | |
|         case Instruction::Add:
 | |
|           // ~(X-c) --> (-c-1)-X
 | |
|           if (RHS->isAllOnesValue()) {
 | |
|             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
 | |
|             return BinaryOperator::createSub(
 | |
|                            ConstantExpr::getSub(NegOp0CI,
 | |
|                                              ConstantInt::get(I.getType(), 1)),
 | |
|                                           Op0I->getOperand(0));
 | |
|           }
 | |
|           break;
 | |
|         case Instruction::And:
 | |
|           // (X & C1) ^ C2 --> (X & C1) | C2 iff (C1&C2) == 0
 | |
|           if (ConstantExpr::getAnd(RHS, Op0CI)->isNullValue())
 | |
|             return BinaryOperator::createOr(Op0, RHS);
 | |
|           break;
 | |
|         case Instruction::Or:
 | |
|           // (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | |
|           if (ConstantExpr::getAnd(RHS, Op0CI) == RHS)
 | |
|             return BinaryOperator::createAnd(Op0, ConstantExpr::getNot(RHS));
 | |
|           break;
 | |
|         default: break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
 | |
|     if (X == Op1)
 | |
|       return ReplaceInstUsesWith(I,
 | |
|                                 ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
 | |
|     if (X == Op0)
 | |
|       return ReplaceInstUsesWith(I,
 | |
|                                 ConstantIntegral::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
 | |
|     if (Op1I->getOpcode() == Instruction::Or) {
 | |
|       if (Op1I->getOperand(0) == Op0) {              // B^(B|A) == (A|B)^B
 | |
|         cast<BinaryOperator>(Op1I)->swapOperands();
 | |
|         I.swapOperands();
 | |
|         std::swap(Op0, Op1);
 | |
|       } else if (Op1I->getOperand(1) == Op0) {       // B^(A|B) == (A|B)^B
 | |
|         I.swapOperands();
 | |
|         std::swap(Op0, Op1);
 | |
|       }      
 | |
|     } else if (Op1I->getOpcode() == Instruction::Xor) {
 | |
|       if (Op0 == Op1I->getOperand(0))                        // A^(A^B) == B
 | |
|         return ReplaceInstUsesWith(I, Op1I->getOperand(1));
 | |
|       else if (Op0 == Op1I->getOperand(1))                   // A^(B^A) == B
 | |
|         return ReplaceInstUsesWith(I, Op1I->getOperand(0));
 | |
|     }
 | |
| 
 | |
|   if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
 | |
|     if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
 | |
|       if (Op0I->getOperand(0) == Op1)                // (B|A)^B == (A|B)^B
 | |
|         cast<BinaryOperator>(Op0I)->swapOperands();
 | |
|       if (Op0I->getOperand(1) == Op1) {              // (A|B)^B == A & ~B
 | |
|         Value *NotB = InsertNewInstBefore(BinaryOperator::createNot(Op1,
 | |
|                                                      Op1->getName()+".not"), I);
 | |
|         return BinaryOperator::createAnd(Op0I->getOperand(0), NotB);
 | |
|       }
 | |
|     } else if (Op0I->getOpcode() == Instruction::Xor) {
 | |
|       if (Op1 == Op0I->getOperand(0))                        // (A^B)^A == B
 | |
|         return ReplaceInstUsesWith(I, Op0I->getOperand(1));
 | |
|       else if (Op1 == Op0I->getOperand(1))                   // (B^A)^A == B
 | |
|         return ReplaceInstUsesWith(I, Op0I->getOperand(0));
 | |
|     }
 | |
| 
 | |
|   // (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|   Value *A, *B; ConstantInt *C1, *C2;
 | |
|   if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
 | |
|       match(Op1, m_And(m_Value(B), m_ConstantInt(C2))) &&
 | |
|       ConstantExpr::getAnd(C1, C2)->isNullValue())
 | |
|     return BinaryOperator::createOr(Op0, Op1);
 | |
| 
 | |
|   // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
 | |
|   if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| /// MulWithOverflow - Compute Result = In1*In2, returning true if the result
 | |
| /// overflowed for this type.
 | |
| static bool MulWithOverflow(ConstantInt *&Result, ConstantInt *In1,
 | |
|                             ConstantInt *In2) {
 | |
|   Result = cast<ConstantInt>(ConstantExpr::getMul(In1, In2));
 | |
|   return !In2->isNullValue() && ConstantExpr::getDiv(Result, In2) != In1;
 | |
| }
 | |
| 
 | |
| static bool isPositive(ConstantInt *C) {
 | |
|   return cast<ConstantSInt>(C)->getValue() >= 0;
 | |
| }
 | |
| 
 | |
| /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
 | |
| /// overflowed for this type.
 | |
| static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
 | |
|                             ConstantInt *In2) {
 | |
|   Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2));
 | |
| 
 | |
|   if (In1->getType()->isUnsigned())
 | |
|     return cast<ConstantUInt>(Result)->getValue() <
 | |
|            cast<ConstantUInt>(In1)->getValue();
 | |
|   if (isPositive(In1) != isPositive(In2))
 | |
|     return false;
 | |
|   if (isPositive(In1))
 | |
|     return cast<ConstantSInt>(Result)->getValue() <
 | |
|            cast<ConstantSInt>(In1)->getValue();
 | |
|   return cast<ConstantSInt>(Result)->getValue() >
 | |
|          cast<ConstantSInt>(In1)->getValue();
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   const Type *Ty = Op0->getType();
 | |
| 
 | |
|   // setcc X, X
 | |
|   if (Op0 == Op1)
 | |
|     return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
 | |
| 
 | |
|   if (isa<UndefValue>(Op1))                  // X setcc undef -> undef
 | |
|     return ReplaceInstUsesWith(I, UndefValue::get(Type::BoolTy));
 | |
| 
 | |
|   // setcc <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
 | |
|   // addresses never equal each other!  We already know that Op0 != Op1.
 | |
|   if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) || 
 | |
|        isa<ConstantPointerNull>(Op0)) && 
 | |
|       (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) || 
 | |
|        isa<ConstantPointerNull>(Op1)))
 | |
|     return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
 | |
| 
 | |
|   // setcc's with boolean values can always be turned into bitwise operations
 | |
|   if (Ty == Type::BoolTy) {
 | |
|     switch (I.getOpcode()) {
 | |
|     default: assert(0 && "Invalid setcc instruction!");
 | |
|     case Instruction::SetEQ: {     //  seteq bool %A, %B -> ~(A^B)
 | |
|       Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
 | |
|       InsertNewInstBefore(Xor, I);
 | |
|       return BinaryOperator::createNot(Xor);
 | |
|     }
 | |
|     case Instruction::SetNE:
 | |
|       return BinaryOperator::createXor(Op0, Op1);
 | |
| 
 | |
|     case Instruction::SetGT:
 | |
|       std::swap(Op0, Op1);                   // Change setgt -> setlt
 | |
|       // FALL THROUGH
 | |
|     case Instruction::SetLT: {               // setlt bool A, B -> ~X & Y
 | |
|       Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
 | |
|       InsertNewInstBefore(Not, I);
 | |
|       return BinaryOperator::createAnd(Not, Op1);
 | |
|     }
 | |
|     case Instruction::SetGE:
 | |
|       std::swap(Op0, Op1);                   // Change setge -> setle
 | |
|       // FALL THROUGH
 | |
|     case Instruction::SetLE: {     //  setle bool %A, %B -> ~A | B
 | |
|       Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
 | |
|       InsertNewInstBefore(Not, I);
 | |
|       return BinaryOperator::createOr(Not, Op1);
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we are doing a comparison between a constant and an instruction that
 | |
|   // can be folded into the comparison.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // Check to see if we are comparing against the minimum or maximum value...
 | |
|     if (CI->isMinValue()) {
 | |
|       if (I.getOpcode() == Instruction::SetLT)       // A < MIN -> FALSE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|       if (I.getOpcode() == Instruction::SetGE)       // A >= MIN -> TRUE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|       if (I.getOpcode() == Instruction::SetLE)       // A <= MIN -> A == MIN
 | |
|         return BinaryOperator::createSetEQ(Op0, Op1);
 | |
|       if (I.getOpcode() == Instruction::SetGT)       // A > MIN -> A != MIN
 | |
|         return BinaryOperator::createSetNE(Op0, Op1);
 | |
| 
 | |
|     } else if (CI->isMaxValue()) {
 | |
|       if (I.getOpcode() == Instruction::SetGT)       // A > MAX -> FALSE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|       if (I.getOpcode() == Instruction::SetLE)       // A <= MAX -> TRUE
 | |
|         return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|       if (I.getOpcode() == Instruction::SetGE)       // A >= MAX -> A == MAX
 | |
|         return BinaryOperator::createSetEQ(Op0, Op1);
 | |
|       if (I.getOpcode() == Instruction::SetLT)       // A < MAX -> A != MAX
 | |
|         return BinaryOperator::createSetNE(Op0, Op1);
 | |
| 
 | |
|       // Comparing against a value really close to min or max?
 | |
|     } else if (isMinValuePlusOne(CI)) {
 | |
|       if (I.getOpcode() == Instruction::SetLT)       // A < MIN+1 -> A == MIN
 | |
|         return BinaryOperator::createSetEQ(Op0, SubOne(CI));
 | |
|       if (I.getOpcode() == Instruction::SetGE)       // A >= MIN-1 -> A != MIN
 | |
|         return BinaryOperator::createSetNE(Op0, SubOne(CI));
 | |
| 
 | |
|     } else if (isMaxValueMinusOne(CI)) {
 | |
|       if (I.getOpcode() == Instruction::SetGT)       // A > MAX-1 -> A == MAX
 | |
|         return BinaryOperator::createSetEQ(Op0, AddOne(CI));
 | |
|       if (I.getOpcode() == Instruction::SetLE)       // A <= MAX-1 -> A != MAX
 | |
|         return BinaryOperator::createSetNE(Op0, AddOne(CI));
 | |
|     }
 | |
| 
 | |
|     // If we still have a setle or setge instruction, turn it into the
 | |
|     // appropriate setlt or setgt instruction.  Since the border cases have
 | |
|     // already been handled above, this requires little checking.
 | |
|     //
 | |
|     if (I.getOpcode() == Instruction::SetLE)
 | |
|       return BinaryOperator::createSetLT(Op0, AddOne(CI));
 | |
|     if (I.getOpcode() == Instruction::SetGE)
 | |
|       return BinaryOperator::createSetGT(Op0, SubOne(CI));
 | |
| 
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | |
|       switch (LHSI->getOpcode()) {
 | |
|       case Instruction::PHI:
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|         break;
 | |
|       case Instruction::And:
 | |
|         if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
 | |
|             LHSI->getOperand(0)->hasOneUse()) {
 | |
|           // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
 | |
|           // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
 | |
|           // happens a LOT in code produced by the C front-end, for bitfield
 | |
|           // access.
 | |
|           ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0));
 | |
|           ConstantUInt *ShAmt;
 | |
|           ShAmt = Shift ? dyn_cast<ConstantUInt>(Shift->getOperand(1)) : 0;
 | |
|           ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
 | |
|           const Type *Ty = LHSI->getType();
 | |
|           
 | |
|           // We can fold this as long as we can't shift unknown bits
 | |
|           // into the mask.  This can only happen with signed shift
 | |
|           // rights, as they sign-extend.
 | |
|           if (ShAmt) {
 | |
|             bool CanFold = Shift->getOpcode() != Instruction::Shr ||
 | |
|                            Shift->getType()->isUnsigned();
 | |
|             if (!CanFold) {
 | |
|               // To test for the bad case of the signed shr, see if any
 | |
|               // of the bits shifted in could be tested after the mask.
 | |
|               Constant *OShAmt = ConstantUInt::get(Type::UByteTy, 
 | |
|                                    Ty->getPrimitiveSize()*8-ShAmt->getValue());
 | |
|               Constant *ShVal = 
 | |
|                 ConstantExpr::getShl(ConstantInt::getAllOnesValue(Ty), OShAmt);
 | |
|               if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue())
 | |
|                 CanFold = true;
 | |
|             }
 | |
|             
 | |
|             if (CanFold) {
 | |
|               Constant *NewCst;
 | |
|               if (Shift->getOpcode() == Instruction::Shl)
 | |
|                 NewCst = ConstantExpr::getUShr(CI, ShAmt);
 | |
|               else
 | |
|                 NewCst = ConstantExpr::getShl(CI, ShAmt);
 | |
| 
 | |
|               // Check to see if we are shifting out any of the bits being
 | |
|               // compared.
 | |
|               if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){
 | |
|                 // If we shifted bits out, the fold is not going to work out.
 | |
|                 // As a special case, check to see if this means that the
 | |
|                 // result is always true or false now.
 | |
|                 if (I.getOpcode() == Instruction::SetEQ)
 | |
|                   return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|                 if (I.getOpcode() == Instruction::SetNE)
 | |
|                   return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|               } else {
 | |
|                 I.setOperand(1, NewCst);
 | |
|                 Constant *NewAndCST;
 | |
|                 if (Shift->getOpcode() == Instruction::Shl)
 | |
|                   NewAndCST = ConstantExpr::getUShr(AndCST, ShAmt);
 | |
|                 else
 | |
|                   NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
 | |
|                 LHSI->setOperand(1, NewAndCST);
 | |
|                 LHSI->setOperand(0, Shift->getOperand(0));
 | |
|                 WorkList.push_back(Shift); // Shift is dead.
 | |
|                 AddUsesToWorkList(I);
 | |
|                 return &I;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       // (setcc (cast X to larger), CI)
 | |
|       case Instruction::Cast: {        
 | |
|         Instruction* replacement = 
 | |
|           visitSetCondInstWithCastAndConstant(I,cast<CastInst>(LHSI),CI);
 | |
|         if (replacement)
 | |
|           return replacement;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       case Instruction::Shl:         // (setcc (shl X, ShAmt), CI)
 | |
|         if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
 | |
|           switch (I.getOpcode()) {
 | |
|           default: break;
 | |
|           case Instruction::SetEQ:
 | |
|           case Instruction::SetNE: {
 | |
|             // If we are comparing against bits always shifted out, the
 | |
|             // comparison cannot succeed.
 | |
|             Constant *Comp = 
 | |
|               ConstantExpr::getShl(ConstantExpr::getShr(CI, ShAmt), ShAmt);
 | |
|             if (Comp != CI) {// Comparing against a bit that we know is zero.
 | |
|               bool IsSetNE = I.getOpcode() == Instruction::SetNE;
 | |
|               Constant *Cst = ConstantBool::get(IsSetNE);
 | |
|               return ReplaceInstUsesWith(I, Cst);
 | |
|             }
 | |
| 
 | |
|             if (LHSI->hasOneUse()) {
 | |
|               // Otherwise strength reduce the shift into an and.
 | |
|               unsigned ShAmtVal = ShAmt->getValue();
 | |
|               unsigned TypeBits = CI->getType()->getPrimitiveSize()*8;
 | |
|               uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1;
 | |
| 
 | |
|               Constant *Mask;
 | |
|               if (CI->getType()->isUnsigned()) {
 | |
|                 Mask = ConstantUInt::get(CI->getType(), Val);
 | |
|               } else if (ShAmtVal != 0) {
 | |
|                 Mask = ConstantSInt::get(CI->getType(), Val);
 | |
|               } else {
 | |
|                 Mask = ConstantInt::getAllOnesValue(CI->getType());
 | |
|               }
 | |
|               
 | |
|               Instruction *AndI =
 | |
|                 BinaryOperator::createAnd(LHSI->getOperand(0),
 | |
|                                           Mask, LHSI->getName()+".mask");
 | |
|               Value *And = InsertNewInstBefore(AndI, I);
 | |
|               return new SetCondInst(I.getOpcode(), And,
 | |
|                                      ConstantExpr::getUShr(CI, ShAmt));
 | |
|             }
 | |
|           }
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Shr:         // (setcc (shr X, ShAmt), CI)
 | |
|         if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
 | |
|           switch (I.getOpcode()) {
 | |
|           default: break;
 | |
|           case Instruction::SetEQ:
 | |
|           case Instruction::SetNE: {
 | |
|             // If we are comparing against bits always shifted out, the
 | |
|             // comparison cannot succeed.
 | |
|             Constant *Comp = 
 | |
|               ConstantExpr::getShr(ConstantExpr::getShl(CI, ShAmt), ShAmt);
 | |
|             
 | |
|             if (Comp != CI) {// Comparing against a bit that we know is zero.
 | |
|               bool IsSetNE = I.getOpcode() == Instruction::SetNE;
 | |
|               Constant *Cst = ConstantBool::get(IsSetNE);
 | |
|               return ReplaceInstUsesWith(I, Cst);
 | |
|             }
 | |
|               
 | |
|             if (LHSI->hasOneUse() || CI->isNullValue()) {
 | |
|               unsigned ShAmtVal = ShAmt->getValue();
 | |
| 
 | |
|               // Otherwise strength reduce the shift into an and.
 | |
|               uint64_t Val = ~0ULL;          // All ones.
 | |
|               Val <<= ShAmtVal;              // Shift over to the right spot.
 | |
| 
 | |
|               Constant *Mask;
 | |
|               if (CI->getType()->isUnsigned()) {
 | |
|                 unsigned TypeBits = CI->getType()->getPrimitiveSize()*8;
 | |
|                 Val &= (1ULL << TypeBits)-1;
 | |
|                 Mask = ConstantUInt::get(CI->getType(), Val);
 | |
|               } else {
 | |
|                 Mask = ConstantSInt::get(CI->getType(), Val);
 | |
|               }
 | |
|               
 | |
|               Instruction *AndI =
 | |
|                 BinaryOperator::createAnd(LHSI->getOperand(0),
 | |
|                                           Mask, LHSI->getName()+".mask");
 | |
|               Value *And = InsertNewInstBefore(AndI, I);
 | |
|               return new SetCondInst(I.getOpcode(), And,
 | |
|                                      ConstantExpr::getShl(CI, ShAmt));
 | |
|             }
 | |
|             break;
 | |
|           }
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Div:
 | |
|         // Fold: (div X, C1) op C2 -> range check
 | |
|         if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
 | |
|           // Fold this div into the comparison, producing a range check.
 | |
|           // Determine, based on the divide type, what the range is being
 | |
|           // checked.  If there is an overflow on the low or high side, remember
 | |
|           // it, otherwise compute the range [low, hi) bounding the new value.
 | |
|           bool LoOverflow = false, HiOverflow = 0;
 | |
|           ConstantInt *LoBound = 0, *HiBound = 0;
 | |
| 
 | |
|           ConstantInt *Prod;
 | |
|           bool ProdOV = MulWithOverflow(Prod, CI, DivRHS);
 | |
| 
 | |
|           Instruction::BinaryOps Opcode = I.getOpcode();
 | |
| 
 | |
|           if (DivRHS->isNullValue()) {  // Don't hack on divide by zeros.
 | |
|           } else if (LHSI->getType()->isUnsigned()) {  // udiv
 | |
|             LoBound = Prod;
 | |
|             LoOverflow = ProdOV;
 | |
|             HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
 | |
|           } else if (isPositive(DivRHS)) {             // Divisor is > 0.
 | |
|             if (CI->isNullValue()) {       // (X / pos) op 0
 | |
|               // Can't overflow.
 | |
|               LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
 | |
|               HiBound = DivRHS;
 | |
|             } else if (isPositive(CI)) {   // (X / pos) op pos
 | |
|               LoBound = Prod;
 | |
|               LoOverflow = ProdOV;
 | |
|               HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS);
 | |
|             } else {                       // (X / pos) op neg
 | |
|               Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
 | |
|               LoOverflow = AddWithOverflow(LoBound, Prod,
 | |
|                                            cast<ConstantInt>(DivRHSH));
 | |
|               HiBound = Prod;
 | |
|               HiOverflow = ProdOV;
 | |
|             }
 | |
|           } else {                                     // Divisor is < 0.
 | |
|             if (CI->isNullValue()) {       // (X / neg) op 0
 | |
|               LoBound = AddOne(DivRHS);
 | |
|               HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
 | |
|             } else if (isPositive(CI)) {   // (X / neg) op pos
 | |
|               HiOverflow = LoOverflow = ProdOV;
 | |
|               if (!LoOverflow)
 | |
|                 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS));
 | |
|               HiBound = AddOne(Prod);
 | |
|             } else {                       // (X / neg) op neg
 | |
|               LoBound = Prod;
 | |
|               LoOverflow = HiOverflow = ProdOV;
 | |
|               HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS));
 | |
|             }
 | |
| 
 | |
|             // Dividing by a negate swaps the condition.
 | |
|             Opcode = SetCondInst::getSwappedCondition(Opcode);
 | |
|           }
 | |
| 
 | |
|           if (LoBound) {
 | |
|             Value *X = LHSI->getOperand(0);
 | |
|             switch (Opcode) {
 | |
|             default: assert(0 && "Unhandled setcc opcode!");
 | |
|             case Instruction::SetEQ:
 | |
|               if (LoOverflow && HiOverflow)
 | |
|                 return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|               else if (HiOverflow)
 | |
|                 return new SetCondInst(Instruction::SetGE, X, LoBound);
 | |
|               else if (LoOverflow)
 | |
|                 return new SetCondInst(Instruction::SetLT, X, HiBound);
 | |
|               else
 | |
|                 return InsertRangeTest(X, LoBound, HiBound, true, I);
 | |
|             case Instruction::SetNE:
 | |
|               if (LoOverflow && HiOverflow)
 | |
|                 return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|               else if (HiOverflow)
 | |
|                 return new SetCondInst(Instruction::SetLT, X, LoBound);
 | |
|               else if (LoOverflow)
 | |
|                 return new SetCondInst(Instruction::SetGE, X, HiBound);
 | |
|               else
 | |
|                 return InsertRangeTest(X, LoBound, HiBound, false, I);
 | |
|             case Instruction::SetLT:
 | |
|               if (LoOverflow)
 | |
|                 return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|               return new SetCondInst(Instruction::SetLT, X, LoBound);
 | |
|             case Instruction::SetGT:
 | |
|               if (HiOverflow)
 | |
|                 return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|               return new SetCondInst(Instruction::SetGE, X, HiBound);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Select:
 | |
|         // If either operand of the select is a constant, we can fold the
 | |
|         // comparison into the select arms, which will cause one to be
 | |
|         // constant folded and the select turned into a bitwise or.
 | |
|         Value *Op1 = 0, *Op2 = 0;
 | |
|         if (LHSI->hasOneUse()) {
 | |
|           if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
 | |
|             // Fold the known value into the constant operand.
 | |
|             Op1 = ConstantExpr::get(I.getOpcode(), C, CI);
 | |
|             // Insert a new SetCC of the other select operand.
 | |
|             Op2 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
 | |
|                                                       LHSI->getOperand(2), CI,
 | |
|                                                       I.getName()), I);
 | |
|           } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
 | |
|             // Fold the known value into the constant operand.
 | |
|             Op2 = ConstantExpr::get(I.getOpcode(), C, CI);
 | |
|             // Insert a new SetCC of the other select operand.
 | |
|             Op1 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
 | |
|                                                       LHSI->getOperand(1), CI,
 | |
|                                                       I.getName()), I);
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         if (Op1)
 | |
|           return new SelectInst(LHSI->getOperand(0), Op1, Op2);
 | |
|         break;
 | |
|       }
 | |
|     
 | |
|     // Simplify seteq and setne instructions...
 | |
|     if (I.getOpcode() == Instruction::SetEQ ||
 | |
|         I.getOpcode() == Instruction::SetNE) {
 | |
|       bool isSetNE = I.getOpcode() == Instruction::SetNE;
 | |
| 
 | |
|       // If the first operand is (and|or|xor) with a constant, and the second
 | |
|       // operand is a constant, simplify a bit.
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
 | |
|         switch (BO->getOpcode()) {
 | |
|         case Instruction::Rem:
 | |
|           // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
 | |
|           if (CI->isNullValue() && isa<ConstantSInt>(BO->getOperand(1)) &&
 | |
|               BO->hasOneUse() &&
 | |
|               cast<ConstantSInt>(BO->getOperand(1))->getValue() > 1)
 | |
|             if (unsigned L2 =
 | |
|                 Log2(cast<ConstantSInt>(BO->getOperand(1))->getValue())) {
 | |
|               const Type *UTy = BO->getType()->getUnsignedVersion();
 | |
|               Value *NewX = InsertNewInstBefore(new CastInst(BO->getOperand(0),
 | |
|                                                              UTy, "tmp"), I);
 | |
|               Constant *RHSCst = ConstantUInt::get(UTy, 1ULL << L2);
 | |
|               Value *NewRem =InsertNewInstBefore(BinaryOperator::createRem(NewX,
 | |
|                                                     RHSCst, BO->getName()), I);
 | |
|               return BinaryOperator::create(I.getOpcode(), NewRem,
 | |
|                                             Constant::getNullValue(UTy));
 | |
|             }
 | |
|           break;          
 | |
| 
 | |
|         case Instruction::Add:
 | |
|           // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
 | |
|           if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|             if (BO->hasOneUse())
 | |
|               return new SetCondInst(I.getOpcode(), BO->getOperand(0),
 | |
|                                      ConstantExpr::getSub(CI, BOp1C));
 | |
|           } else if (CI->isNullValue()) {
 | |
|             // Replace ((add A, B) != 0) with (A != -B) if A or B is
 | |
|             // efficiently invertible, or if the add has just this one use.
 | |
|             Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
 | |
|             
 | |
|             if (Value *NegVal = dyn_castNegVal(BOp1))
 | |
|               return new SetCondInst(I.getOpcode(), BOp0, NegVal);
 | |
|             else if (Value *NegVal = dyn_castNegVal(BOp0))
 | |
|               return new SetCondInst(I.getOpcode(), NegVal, BOp1);
 | |
|             else if (BO->hasOneUse()) {
 | |
|               Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
 | |
|               BO->setName("");
 | |
|               InsertNewInstBefore(Neg, I);
 | |
|               return new SetCondInst(I.getOpcode(), BOp0, Neg);
 | |
|             }
 | |
|           }
 | |
|           break;
 | |
|         case Instruction::Xor:
 | |
|           // For the xor case, we can xor two constants together, eliminating
 | |
|           // the explicit xor.
 | |
|           if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
 | |
|             return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
 | |
|                                   ConstantExpr::getXor(CI, BOC));
 | |
| 
 | |
|           // FALLTHROUGH
 | |
|         case Instruction::Sub:
 | |
|           // Replace (([sub|xor] A, B) != 0) with (A != B)
 | |
|           if (CI->isNullValue())
 | |
|             return new SetCondInst(I.getOpcode(), BO->getOperand(0),
 | |
|                                    BO->getOperand(1));
 | |
|           break;
 | |
| 
 | |
|         case Instruction::Or:
 | |
|           // If bits are being or'd in that are not present in the constant we
 | |
|           // are comparing against, then the comparison could never succeed!
 | |
|           if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
 | |
|             Constant *NotCI = ConstantExpr::getNot(CI);
 | |
|             if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
 | |
|           }
 | |
|           break;
 | |
| 
 | |
|         case Instruction::And:
 | |
|           if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|             // If bits are being compared against that are and'd out, then the
 | |
|             // comparison can never succeed!
 | |
|             if (!ConstantExpr::getAnd(CI,
 | |
|                                       ConstantExpr::getNot(BOC))->isNullValue())
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
 | |
| 
 | |
|             // If we have ((X & C) == C), turn it into ((X & C) != 0).
 | |
|             if (CI == BOC && isOneBitSet(CI))
 | |
|               return new SetCondInst(isSetNE ? Instruction::SetEQ :
 | |
|                                      Instruction::SetNE, Op0,
 | |
|                                      Constant::getNullValue(CI->getType()));
 | |
| 
 | |
|             // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
 | |
|             // to be a signed value as appropriate.
 | |
|             if (isSignBit(BOC)) {
 | |
|               Value *X = BO->getOperand(0);
 | |
|               // If 'X' is not signed, insert a cast now...
 | |
|               if (!BOC->getType()->isSigned()) {
 | |
|                 const Type *DestTy = BOC->getType()->getSignedVersion();
 | |
|                 X = InsertCastBefore(X, DestTy, I);
 | |
|               }
 | |
|               return new SetCondInst(isSetNE ? Instruction::SetLT :
 | |
|                                          Instruction::SetGE, X,
 | |
|                                      Constant::getNullValue(X->getType()));
 | |
|             }
 | |
|             
 | |
|             // ((X & ~7) == 0) --> X < 8
 | |
|             if (CI->isNullValue() && isHighOnes(BOC)) {
 | |
|               Value *X = BO->getOperand(0);
 | |
|               Constant *NegX = ConstantExpr::getNeg(BOC);
 | |
| 
 | |
|               // If 'X' is signed, insert a cast now.
 | |
|               if (NegX->getType()->isSigned()) {
 | |
|                 const Type *DestTy = NegX->getType()->getUnsignedVersion();
 | |
|                 X = InsertCastBefore(X, DestTy, I);
 | |
|                 NegX = ConstantExpr::getCast(NegX, DestTy);
 | |
|               }
 | |
| 
 | |
|               return new SetCondInst(isSetNE ? Instruction::SetGE :
 | |
|                                      Instruction::SetLT, X, NegX);
 | |
|             }
 | |
| 
 | |
|           }
 | |
|         default: break;
 | |
|         }
 | |
|       }
 | |
|     } else {  // Not a SetEQ/SetNE
 | |
|       // If the LHS is a cast from an integral value of the same size, 
 | |
|       if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
 | |
|         Value *CastOp = Cast->getOperand(0);
 | |
|         const Type *SrcTy = CastOp->getType();
 | |
|         unsigned SrcTySize = SrcTy->getPrimitiveSize();
 | |
|         if (SrcTy != Cast->getType() && SrcTy->isInteger() &&
 | |
|             SrcTySize == Cast->getType()->getPrimitiveSize()) {
 | |
|           assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) && 
 | |
|                  "Source and destination signednesses should differ!");
 | |
|           if (Cast->getType()->isSigned()) {
 | |
|             // If this is a signed comparison, check for comparisons in the
 | |
|             // vicinity of zero.
 | |
|             if (I.getOpcode() == Instruction::SetLT && CI->isNullValue())
 | |
|               // X < 0  => x > 127
 | |
|               return BinaryOperator::createSetGT(CastOp,
 | |
|                          ConstantUInt::get(SrcTy, (1ULL << (SrcTySize*8-1))-1));
 | |
|             else if (I.getOpcode() == Instruction::SetGT &&
 | |
|                      cast<ConstantSInt>(CI)->getValue() == -1)
 | |
|               // X > -1  => x < 128
 | |
|               return BinaryOperator::createSetLT(CastOp,
 | |
|                          ConstantUInt::get(SrcTy, 1ULL << (SrcTySize*8-1)));
 | |
|           } else {
 | |
|             ConstantUInt *CUI = cast<ConstantUInt>(CI);
 | |
|             if (I.getOpcode() == Instruction::SetLT &&
 | |
|                 CUI->getValue() == 1ULL << (SrcTySize*8-1))
 | |
|               // X < 128 => X > -1
 | |
|               return BinaryOperator::createSetGT(CastOp,
 | |
|                                                  ConstantSInt::get(SrcTy, -1));
 | |
|             else if (I.getOpcode() == Instruction::SetGT &&
 | |
|                      CUI->getValue() == (1ULL << (SrcTySize*8-1))-1)
 | |
|               // X > 127 => X < 0
 | |
|               return BinaryOperator::createSetLT(CastOp,
 | |
|                                                  Constant::getNullValue(SrcTy));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Test to see if the operands of the setcc are casted versions of other
 | |
|   // values.  If the cast can be stripped off both arguments, we do so now.
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
 | |
|     Value *CastOp0 = CI->getOperand(0);
 | |
|     if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
 | |
|         (isa<Constant>(Op1) || isa<CastInst>(Op1)) &&
 | |
|         (I.getOpcode() == Instruction::SetEQ ||
 | |
|          I.getOpcode() == Instruction::SetNE)) {
 | |
|       // We keep moving the cast from the left operand over to the right
 | |
|       // operand, where it can often be eliminated completely.
 | |
|       Op0 = CastOp0;
 | |
|       
 | |
|       // If operand #1 is a cast instruction, see if we can eliminate it as
 | |
|       // well.
 | |
|       if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
 | |
|         if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
 | |
|                                                                Op0->getType()))
 | |
|           Op1 = CI2->getOperand(0);
 | |
|       
 | |
|       // If Op1 is a constant, we can fold the cast into the constant.
 | |
|       if (Op1->getType() != Op0->getType())
 | |
|         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | |
|           Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
 | |
|         } else {
 | |
|           // Otherwise, cast the RHS right before the setcc
 | |
|           Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
 | |
|           InsertNewInstBefore(cast<Instruction>(Op1), I);
 | |
|         }
 | |
|       return BinaryOperator::create(I.getOpcode(), Op0, Op1);
 | |
|     }
 | |
| 
 | |
|     // Handle the special case of: setcc (cast bool to X), <cst>
 | |
|     // This comes up when you have code like
 | |
|     //   int X = A < B;
 | |
|     //   if (X) ...
 | |
|     // For generality, we handle any zero-extension of any operand comparison
 | |
|     // with a constant.
 | |
|     if (ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|       const Type *SrcTy = CastOp0->getType();
 | |
|       const Type *DestTy = Op0->getType();
 | |
|       if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
 | |
|           (SrcTy->isUnsigned() || SrcTy == Type::BoolTy)) {
 | |
|         // Ok, we have an expansion of operand 0 into a new type.  Get the
 | |
|         // constant value, masink off bits which are not set in the RHS.  These
 | |
|         // could be set if the destination value is signed.
 | |
|         uint64_t ConstVal = ConstantRHS->getRawValue();
 | |
|         ConstVal &= (1ULL << DestTy->getPrimitiveSize()*8)-1;
 | |
| 
 | |
|         // If the constant we are comparing it with has high bits set, which
 | |
|         // don't exist in the original value, the values could never be equal,
 | |
|         // because the source would be zero extended.
 | |
|         unsigned SrcBits =
 | |
|           SrcTy == Type::BoolTy ? 1 : SrcTy->getPrimitiveSize()*8;
 | |
|         bool HasSignBit = ConstVal & (1ULL << (DestTy->getPrimitiveSize()*8-1));
 | |
|         if (ConstVal & ~((1ULL << SrcBits)-1)) {
 | |
|           switch (I.getOpcode()) {
 | |
|           default: assert(0 && "Unknown comparison type!");
 | |
|           case Instruction::SetEQ:
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|           case Instruction::SetNE:
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|           case Instruction::SetLT:
 | |
|           case Instruction::SetLE:
 | |
|             if (DestTy->isSigned() && HasSignBit)
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|           case Instruction::SetGT:
 | |
|           case Instruction::SetGE:
 | |
|             if (DestTy->isSigned() && HasSignBit)
 | |
|               return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|             return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         // Otherwise, we can replace the setcc with a setcc of the smaller
 | |
|         // operand value.
 | |
|         Op1 = ConstantExpr::getCast(cast<Constant>(Op1), SrcTy);
 | |
|         return BinaryOperator::create(I.getOpcode(), CastOp0, Op1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| // visitSetCondInstWithCastAndConstant - this method is part of the 
 | |
| // visitSetCondInst method. It handles the situation where we have:
 | |
| //   (setcc (cast X to larger), CI)
 | |
| // It tries to remove the cast and even the setcc if the CI value 
 | |
| // and range of the cast allow it.
 | |
| Instruction *
 | |
| InstCombiner::visitSetCondInstWithCastAndConstant(BinaryOperator&I,
 | |
|                                                   CastInst* LHSI,
 | |
|                                                   ConstantInt* CI) {
 | |
|   const Type *SrcTy = LHSI->getOperand(0)->getType();
 | |
|   const Type *DestTy = LHSI->getType();
 | |
|   if (SrcTy->isIntegral() && DestTy->isIntegral()) {
 | |
|     unsigned SrcBits = SrcTy->getPrimitiveSize()*8;
 | |
|     unsigned DestBits = DestTy->getPrimitiveSize()*8;
 | |
|     if (SrcTy == Type::BoolTy) 
 | |
|       SrcBits = 1;
 | |
|     if (DestTy == Type::BoolTy) 
 | |
|       DestBits = 1;
 | |
|     if (SrcBits < DestBits) {
 | |
|       // There are fewer bits in the source of the cast than in the result
 | |
|       // of the cast. Any other case doesn't matter because the constant
 | |
|       // value won't have changed due to sign extension.
 | |
|       Constant *NewCst = ConstantExpr::getCast(CI, SrcTy);
 | |
|       if (ConstantExpr::getCast(NewCst, DestTy) == CI) {
 | |
|         // The constant value operand of the setCC before and after a 
 | |
|         // cast to the source type of the cast instruction is the same 
 | |
|         // value, so we just replace with the same setcc opcode, but 
 | |
|         // using the source value compared to the constant casted to the 
 | |
|         // source type. 
 | |
|         if (SrcTy->isSigned() && DestTy->isUnsigned()) {
 | |
|           CastInst* Cst = new CastInst(LHSI->getOperand(0),
 | |
|             SrcTy->getUnsignedVersion(), LHSI->getName());
 | |
|           InsertNewInstBefore(Cst,I);
 | |
|           return new SetCondInst(I.getOpcode(), Cst, 
 | |
|               ConstantExpr::getCast(CI, SrcTy->getUnsignedVersion()));
 | |
|         }
 | |
|         return new SetCondInst(I.getOpcode(), LHSI->getOperand(0),NewCst);
 | |
|       }
 | |
|       // The constant value before and after a cast to the source type 
 | |
|       // is different, so various cases are possible depending on the 
 | |
|       // opcode and the signs of the types involved in the cast.
 | |
|       switch (I.getOpcode()) {
 | |
|         case Instruction::SetLT: {
 | |
|           Constant* Max = ConstantIntegral::getMaxValue(SrcTy);
 | |
|           Max = ConstantExpr::getCast(Max, DestTy);
 | |
|           return ReplaceInstUsesWith(I, ConstantExpr::getSetLT(Max, CI));
 | |
|         }
 | |
|         case Instruction::SetGT: {
 | |
|           Constant* Min = ConstantIntegral::getMinValue(SrcTy);
 | |
|           Min = ConstantExpr::getCast(Min, DestTy);
 | |
|           return ReplaceInstUsesWith(I, ConstantExpr::getSetGT(Min, CI));
 | |
|         }
 | |
|         case Instruction::SetEQ:
 | |
|           // We're looking for equality, and we know the values are not
 | |
|           // equal so replace with constant False.
 | |
|           return ReplaceInstUsesWith(I, ConstantBool::False);
 | |
|         case Instruction::SetNE: 
 | |
|           // We're testing for inequality, and we know the values are not
 | |
|           // equal so replace with constant True.
 | |
|           return ReplaceInstUsesWith(I, ConstantBool::True);
 | |
|         case Instruction::SetLE: 
 | |
|         case Instruction::SetGE: 
 | |
|           assert(!"SetLE and SetGE should be handled elsewhere");
 | |
|         default: 
 | |
|           assert(!"unknown integer comparison");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
 | |
|   assert(I.getOperand(1)->getType() == Type::UByteTy);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   bool isLeftShift = I.getOpcode() == Instruction::Shl;
 | |
| 
 | |
|   // shl X, 0 == X and shr X, 0 == X
 | |
|   // shl 0, X == 0 and shr 0, X == 0
 | |
|   if (Op1 == Constant::getNullValue(Type::UByteTy) ||
 | |
|       Op0 == Constant::getNullValue(Op0->getType()))
 | |
|     return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|   if (isa<UndefValue>(Op0)) {            // undef >>s X -> undef
 | |
|     if (!isLeftShift && I.getType()->isSigned())
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
|     else                         // undef << X -> 0   AND  undef >>u X -> 0
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   }
 | |
|   if (isa<UndefValue>(Op1)) {
 | |
|     if (isLeftShift || I.getType()->isUnsigned())
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|     else
 | |
|       return ReplaceInstUsesWith(I, Op0);          // X >>s undef -> X
 | |
|   }
 | |
| 
 | |
|   // shr int -1, X = -1   (for any arithmetic shift rights of ~0)
 | |
|   if (!isLeftShift)
 | |
|     if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
 | |
|       if (CSI->isAllOnesValue())
 | |
|         return ReplaceInstUsesWith(I, CSI);
 | |
| 
 | |
|   // Try to fold constant and into select arguments.
 | |
|   if (isa<Constant>(Op0))
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|       if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
| 
 | |
|   if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) {
 | |
|     // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
 | |
|     // of a signed value.
 | |
|     //
 | |
|     unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8;
 | |
|     if (CUI->getValue() >= TypeBits) {
 | |
|       if (!Op0->getType()->isSigned() || isLeftShift)
 | |
|         return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
 | |
|       else {
 | |
|         I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1));
 | |
|         return &I;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // ((X*C1) << C2) == (X * (C1 << C2))
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
 | |
|       if (BO->getOpcode() == Instruction::Mul && isLeftShift)
 | |
|         if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
 | |
|           return BinaryOperator::createMul(BO->getOperand(0),
 | |
|                                            ConstantExpr::getShl(BOOp, CUI));
 | |
|     
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
| 
 | |
|     // If the operand is an bitwise operator with a constant RHS, and the
 | |
|     // shift is the only use, we can pull it out of the shift.
 | |
|     if (Op0->hasOneUse())
 | |
|       if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0))
 | |
|         if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
 | |
|           bool isValid = true;     // Valid only for And, Or, Xor
 | |
|           bool highBitSet = false; // Transform if high bit of constant set?
 | |
| 
 | |
|           switch (Op0BO->getOpcode()) {
 | |
|           default: isValid = false; break;   // Do not perform transform!
 | |
|           case Instruction::Add:
 | |
|             isValid = isLeftShift;
 | |
|             break;
 | |
|           case Instruction::Or:
 | |
|           case Instruction::Xor:
 | |
|             highBitSet = false;
 | |
|             break;
 | |
|           case Instruction::And:
 | |
|             highBitSet = true;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // If this is a signed shift right, and the high bit is modified
 | |
|           // by the logical operation, do not perform the transformation.
 | |
|           // The highBitSet boolean indicates the value of the high bit of
 | |
|           // the constant which would cause it to be modified for this
 | |
|           // operation.
 | |
|           //
 | |
|           if (isValid && !isLeftShift && !I.getType()->isUnsigned()) {
 | |
|             uint64_t Val = Op0C->getRawValue();
 | |
|             isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
 | |
|           }
 | |
| 
 | |
|           if (isValid) {
 | |
|             Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, CUI);
 | |
| 
 | |
|             Instruction *NewShift =
 | |
|               new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), CUI,
 | |
|                             Op0BO->getName());
 | |
|             Op0BO->setName("");
 | |
|             InsertNewInstBefore(NewShift, I);
 | |
| 
 | |
|             return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
 | |
|                                           NewRHS);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|     // If this is a shift of a shift, see if we can fold the two together...
 | |
|     if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
 | |
|       if (ConstantUInt *ShiftAmt1C =
 | |
|                                  dyn_cast<ConstantUInt>(Op0SI->getOperand(1))) {
 | |
|         unsigned ShiftAmt1 = ShiftAmt1C->getValue();
 | |
|         unsigned ShiftAmt2 = CUI->getValue();
 | |
|         
 | |
|         // Check for (A << c1) << c2   and   (A >> c1) >> c2
 | |
|         if (I.getOpcode() == Op0SI->getOpcode()) {
 | |
|           unsigned Amt = ShiftAmt1+ShiftAmt2;   // Fold into one big shift...
 | |
|           if (Op0->getType()->getPrimitiveSize()*8 < Amt)
 | |
|             Amt = Op0->getType()->getPrimitiveSize()*8;
 | |
|           return new ShiftInst(I.getOpcode(), Op0SI->getOperand(0),
 | |
|                                ConstantUInt::get(Type::UByteTy, Amt));
 | |
|         }
 | |
|         
 | |
|         // Check for (A << c1) >> c2 or visaversa.  If we are dealing with
 | |
|         // signed types, we can only support the (A >> c1) << c2 configuration,
 | |
|         // because it can not turn an arbitrary bit of A into a sign bit.
 | |
|         if (I.getType()->isUnsigned() || isLeftShift) {
 | |
|           // Calculate bitmask for what gets shifted off the edge...
 | |
|           Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
 | |
|           if (isLeftShift)
 | |
|             C = ConstantExpr::getShl(C, ShiftAmt1C);
 | |
|           else
 | |
|             C = ConstantExpr::getShr(C, ShiftAmt1C);
 | |
|           
 | |
|           Instruction *Mask =
 | |
|             BinaryOperator::createAnd(Op0SI->getOperand(0), C,
 | |
|                                       Op0SI->getOperand(0)->getName()+".mask");
 | |
|           InsertNewInstBefore(Mask, I);
 | |
|           
 | |
|           // Figure out what flavor of shift we should use...
 | |
|           if (ShiftAmt1 == ShiftAmt2)
 | |
|             return ReplaceInstUsesWith(I, Mask);  // (A << c) >> c  === A & c2
 | |
|           else if (ShiftAmt1 < ShiftAmt2) {
 | |
|             return new ShiftInst(I.getOpcode(), Mask,
 | |
|                          ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
 | |
|           } else {
 | |
|             return new ShiftInst(Op0SI->getOpcode(), Mask,
 | |
|                          ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| enum CastType {
 | |
|   Noop     = 0,
 | |
|   Truncate = 1,
 | |
|   Signext  = 2,
 | |
|   Zeroext  = 3
 | |
| };
 | |
| 
 | |
| /// getCastType - In the future, we will split the cast instruction into these
 | |
| /// various types.  Until then, we have to do the analysis here.
 | |
| static CastType getCastType(const Type *Src, const Type *Dest) {
 | |
|   assert(Src->isIntegral() && Dest->isIntegral() &&
 | |
|          "Only works on integral types!");
 | |
|   unsigned SrcSize = Src->getPrimitiveSize()*8;
 | |
|   if (Src == Type::BoolTy) SrcSize = 1;
 | |
|   unsigned DestSize = Dest->getPrimitiveSize()*8;
 | |
|   if (Dest == Type::BoolTy) DestSize = 1;
 | |
| 
 | |
|   if (SrcSize == DestSize) return Noop;
 | |
|   if (SrcSize > DestSize)  return Truncate;
 | |
|   if (Src->isSigned()) return Signext;
 | |
|   return Zeroext;
 | |
| }
 | |
| 
 | |
| 
 | |
| // isEliminableCastOfCast - Return true if it is valid to eliminate the CI
 | |
| // instruction.
 | |
| //
 | |
| static inline bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
 | |
|                                           const Type *DstTy, TargetData *TD) {
 | |
| 
 | |
|   // It is legal to eliminate the instruction if casting A->B->A if the sizes
 | |
|   // are identical and the bits don't get reinterpreted (for example 
 | |
|   // int->float->int would not be allowed).
 | |
|   if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
 | |
|     return true;
 | |
| 
 | |
|   // If we are casting between pointer and integer types, treat pointers as
 | |
|   // integers of the appropriate size for the code below.
 | |
|   if (isa<PointerType>(SrcTy)) SrcTy = TD->getIntPtrType();
 | |
|   if (isa<PointerType>(MidTy)) MidTy = TD->getIntPtrType();
 | |
|   if (isa<PointerType>(DstTy)) DstTy = TD->getIntPtrType();
 | |
| 
 | |
|   // Allow free casting and conversion of sizes as long as the sign doesn't
 | |
|   // change...
 | |
|   if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
 | |
|     CastType FirstCast = getCastType(SrcTy, MidTy);
 | |
|     CastType SecondCast = getCastType(MidTy, DstTy);
 | |
| 
 | |
|     // Capture the effect of these two casts.  If the result is a legal cast,
 | |
|     // the CastType is stored here, otherwise a special code is used.
 | |
|     static const unsigned CastResult[] = {
 | |
|       // First cast is noop
 | |
|       0, 1, 2, 3,
 | |
|       // First cast is a truncate
 | |
|       1, 1, 4, 4,         // trunc->extend is not safe to eliminate
 | |
|       // First cast is a sign ext
 | |
|       2, 5, 2, 4,         // signext->zeroext never ok
 | |
|       // First cast is a zero ext
 | |
|       3, 5, 3, 3,
 | |
|     };
 | |
| 
 | |
|     unsigned Result = CastResult[FirstCast*4+SecondCast];
 | |
|     switch (Result) {
 | |
|     default: assert(0 && "Illegal table value!");
 | |
|     case 0:
 | |
|     case 1:
 | |
|     case 2:
 | |
|     case 3:
 | |
|       // FIXME: in the future, when LLVM has explicit sign/zeroextends and
 | |
|       // truncates, we could eliminate more casts.
 | |
|       return (unsigned)getCastType(SrcTy, DstTy) == Result;
 | |
|     case 4:
 | |
|       return false;  // Not possible to eliminate this here.
 | |
|     case 5:
 | |
|       // Sign or zero extend followed by truncate is always ok if the result
 | |
|       // is a truncate or noop.
 | |
|       CastType ResultCast = getCastType(SrcTy, DstTy);
 | |
|       if (ResultCast == Noop || ResultCast == Truncate)
 | |
|         return true;
 | |
|       // Otherwise we are still growing the value, we are only safe if the 
 | |
|       // result will match the sign/zeroextendness of the result.
 | |
|       return ResultCast == FirstCast;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) {
 | |
|   if (V->getType() == Ty || isa<Constant>(V)) return false;
 | |
|   if (const CastInst *CI = dyn_cast<CastInst>(V))
 | |
|     if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty,
 | |
|                                TD))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | |
| /// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | |
| /// casts that are known to not do anything...
 | |
| ///
 | |
| Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
 | |
|                                              Instruction *InsertBefore) {
 | |
|   if (V->getType() == DestTy) return V;
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getCast(C, DestTy);
 | |
| 
 | |
|   CastInst *CI = new CastInst(V, DestTy, V->getName());
 | |
|   InsertNewInstBefore(CI, *InsertBefore);
 | |
|   return CI;
 | |
| }
 | |
| 
 | |
| // CastInst simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitCastInst(CastInst &CI) {
 | |
|   Value *Src = CI.getOperand(0);
 | |
| 
 | |
|   // If the user is casting a value to the same type, eliminate this cast
 | |
|   // instruction...
 | |
|   if (CI.getType() == Src->getType())
 | |
|     return ReplaceInstUsesWith(CI, Src);
 | |
| 
 | |
|   if (isa<UndefValue>(Src))   // cast undef -> undef
 | |
|     return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType()));
 | |
| 
 | |
|   // If casting the result of another cast instruction, try to eliminate this
 | |
|   // one!
 | |
|   //
 | |
|   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {
 | |
|     if (isEliminableCastOfCast(CSrc->getOperand(0)->getType(),
 | |
|                                CSrc->getType(), CI.getType(), TD)) {
 | |
|       // This instruction now refers directly to the cast's src operand.  This
 | |
|       // has a good chance of making CSrc dead.
 | |
|       CI.setOperand(0, CSrc->getOperand(0));
 | |
|       return &CI;
 | |
|     }
 | |
| 
 | |
|     // If this is an A->B->A cast, and we are dealing with integral types, try
 | |
|     // to convert this into a logical 'and' instruction.
 | |
|     //
 | |
|     if (CSrc->getOperand(0)->getType() == CI.getType() &&
 | |
|         CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
 | |
|         CI.getType()->isUnsigned() && CSrc->getType()->isUnsigned() &&
 | |
|         CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()){
 | |
|       assert(CSrc->getType() != Type::ULongTy &&
 | |
|              "Cannot have type bigger than ulong!");
 | |
|       uint64_t AndValue = (1ULL << CSrc->getType()->getPrimitiveSize()*8)-1;
 | |
|       Constant *AndOp = ConstantUInt::get(CI.getType(), AndValue);
 | |
|       return BinaryOperator::createAnd(CSrc->getOperand(0), AndOp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a cast to bool, turn it into the appropriate setne instruction.
 | |
|   if (CI.getType() == Type::BoolTy)
 | |
|     return BinaryOperator::createSetNE(CI.getOperand(0),
 | |
|                        Constant::getNullValue(CI.getOperand(0)->getType()));
 | |
| 
 | |
|   // If casting the result of a getelementptr instruction with no offset, turn
 | |
|   // this into a cast of the original pointer!
 | |
|   //
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | |
|     bool AllZeroOperands = true;
 | |
|     for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<Constant>(GEP->getOperand(i)) ||
 | |
|           !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
 | |
|         AllZeroOperands = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllZeroOperands) {
 | |
|       CI.setOperand(0, GEP->getOperand(0));
 | |
|       return &CI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are casting a malloc or alloca to a pointer to a type of the same
 | |
|   // size, rewrite the allocation instruction to allocate the "right" type.
 | |
|   //
 | |
|   if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
 | |
|     if (AI->hasOneUse() && !AI->isArrayAllocation())
 | |
|       if (const PointerType *PTy = dyn_cast<PointerType>(CI.getType())) {
 | |
|         // Get the type really allocated and the type casted to...
 | |
|         const Type *AllocElTy = AI->getAllocatedType();
 | |
|         const Type *CastElTy = PTy->getElementType();
 | |
|         if (AllocElTy->isSized() && CastElTy->isSized()) {
 | |
|           unsigned AllocElTySize = TD->getTypeSize(AllocElTy);
 | |
|           unsigned CastElTySize = TD->getTypeSize(CastElTy);
 | |
| 
 | |
|           // If the allocation is for an even multiple of the cast type size
 | |
|           if (CastElTySize && (AllocElTySize % CastElTySize == 0)) {
 | |
|             Value *Amt = ConstantUInt::get(Type::UIntTy, 
 | |
|                                          AllocElTySize/CastElTySize);
 | |
|             std::string Name = AI->getName(); AI->setName("");
 | |
|             AllocationInst *New;
 | |
|             if (isa<MallocInst>(AI))
 | |
|               New = new MallocInst(CastElTy, Amt, Name);
 | |
|             else
 | |
|               New = new AllocaInst(CastElTy, Amt, Name);
 | |
|             InsertNewInstBefore(New, *AI);
 | |
|             return ReplaceInstUsesWith(CI, New);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   if (isa<PHINode>(Src))
 | |
|     if (Instruction *NV = FoldOpIntoPhi(CI))
 | |
|       return NV;
 | |
| 
 | |
|   // If the source value is an instruction with only this use, we can attempt to
 | |
|   // propagate the cast into the instruction.  Also, only handle integral types
 | |
|   // for now.
 | |
|   if (Instruction *SrcI = dyn_cast<Instruction>(Src))
 | |
|     if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
 | |
|         CI.getType()->isInteger()) {  // Don't mess with casts to bool here
 | |
|       const Type *DestTy = CI.getType();
 | |
|       unsigned SrcBitSize = getTypeSizeInBits(Src->getType());
 | |
|       unsigned DestBitSize = getTypeSizeInBits(DestTy);
 | |
| 
 | |
|       Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
 | |
|       Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
 | |
| 
 | |
|       switch (SrcI->getOpcode()) {
 | |
|       case Instruction::Add:
 | |
|       case Instruction::Mul:
 | |
|       case Instruction::And:
 | |
|       case Instruction::Or:
 | |
|       case Instruction::Xor:
 | |
|         // If we are discarding information, or just changing the sign, rewrite.
 | |
|         if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
 | |
|           // Don't insert two casts if they cannot be eliminated.  We allow two
 | |
|           // casts to be inserted if the sizes are the same.  This could only be
 | |
|           // converting signedness, which is a noop.
 | |
|           if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy,TD) ||
 | |
|               !ValueRequiresCast(Op0, DestTy, TD)) {
 | |
|             Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
 | |
|             Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
 | |
|             return BinaryOperator::create(cast<BinaryOperator>(SrcI)
 | |
|                              ->getOpcode(), Op0c, Op1c);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Shl:
 | |
|         // Allow changing the sign of the source operand.  Do not allow changing
 | |
|         // the size of the shift, UNLESS the shift amount is a constant.  We
 | |
|         // mush not change variable sized shifts to a smaller size, because it
 | |
|         // is undefined to shift more bits out than exist in the value.
 | |
|         if (DestBitSize == SrcBitSize ||
 | |
|             (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
 | |
|           Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
 | |
|           return new ShiftInst(Instruction::Shl, Op0c, Op1);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// GetSelectFoldableOperands - We want to turn code that looks like this:
 | |
| ///   %C = or %A, %B
 | |
| ///   %D = select %cond, %C, %A
 | |
| /// into:
 | |
| ///   %C = select %cond, %B, 0
 | |
| ///   %D = or %A, %C
 | |
| ///
 | |
| /// Assuming that the specified instruction is an operand to the select, return
 | |
| /// a bitmask indicating which operands of this instruction are foldable if they
 | |
| /// equal the other incoming value of the select.
 | |
| ///
 | |
| static unsigned GetSelectFoldableOperands(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     return 3;              // Can fold through either operand.
 | |
|   case Instruction::Sub:   // Can only fold on the amount subtracted.
 | |
|   case Instruction::Shl:   // Can only fold on the shift amount.
 | |
|   case Instruction::Shr:
 | |
|     return 1;           
 | |
|   default:
 | |
|     return 0;              // Cannot fold
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetSelectFoldableConstant - For the same transformation as the previous
 | |
| /// function, return the identity constant that goes into the select.
 | |
| static Constant *GetSelectFoldableConstant(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   default: assert(0 && "This cannot happen!"); abort();
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     return Constant::getNullValue(I->getType());
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::Shr:
 | |
|     return Constant::getNullValue(Type::UByteTy);
 | |
|   case Instruction::And:
 | |
|     return ConstantInt::getAllOnesValue(I->getType());
 | |
|   case Instruction::Mul:
 | |
|     return ConstantInt::get(I->getType(), 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
 | |
|   Value *CondVal = SI.getCondition();
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
| 
 | |
|   // select true, X, Y  -> X
 | |
|   // select false, X, Y -> Y
 | |
|   if (ConstantBool *C = dyn_cast<ConstantBool>(CondVal))
 | |
|     if (C == ConstantBool::True)
 | |
|       return ReplaceInstUsesWith(SI, TrueVal);
 | |
|     else {
 | |
|       assert(C == ConstantBool::False);
 | |
|       return ReplaceInstUsesWith(SI, FalseVal);
 | |
|     }
 | |
| 
 | |
|   // select C, X, X -> X
 | |
|   if (TrueVal == FalseVal)
 | |
|     return ReplaceInstUsesWith(SI, TrueVal);
 | |
| 
 | |
|   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
 | |
|     return ReplaceInstUsesWith(SI, FalseVal);
 | |
|   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
 | |
|     return ReplaceInstUsesWith(SI, TrueVal);
 | |
|   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
 | |
|     if (isa<Constant>(TrueVal))
 | |
|       return ReplaceInstUsesWith(SI, TrueVal);
 | |
|     else
 | |
|       return ReplaceInstUsesWith(SI, FalseVal);
 | |
|   }
 | |
| 
 | |
|   if (SI.getType() == Type::BoolTy)
 | |
|     if (ConstantBool *C = dyn_cast<ConstantBool>(TrueVal)) {
 | |
|       if (C == ConstantBool::True) {
 | |
|         // Change: A = select B, true, C --> A = or B, C
 | |
|         return BinaryOperator::createOr(CondVal, FalseVal);
 | |
|       } else {
 | |
|         // Change: A = select B, false, C --> A = and !B, C
 | |
|         Value *NotCond =
 | |
|           InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | |
|                                              "not."+CondVal->getName()), SI);
 | |
|         return BinaryOperator::createAnd(NotCond, FalseVal);
 | |
|       }
 | |
|     } else if (ConstantBool *C = dyn_cast<ConstantBool>(FalseVal)) {
 | |
|       if (C == ConstantBool::False) {
 | |
|         // Change: A = select B, C, false --> A = and B, C
 | |
|         return BinaryOperator::createAnd(CondVal, TrueVal);
 | |
|       } else {
 | |
|         // Change: A = select B, C, true --> A = or !B, C
 | |
|         Value *NotCond =
 | |
|           InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | |
|                                              "not."+CondVal->getName()), SI);
 | |
|         return BinaryOperator::createOr(NotCond, TrueVal);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Selecting between two integer constants?
 | |
|   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
 | |
|     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
 | |
|       // select C, 1, 0 -> cast C to int
 | |
|       if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) {
 | |
|         return new CastInst(CondVal, SI.getType());
 | |
|       } else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) {
 | |
|         // select C, 0, 1 -> cast !C to int
 | |
|         Value *NotCond =
 | |
|           InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | |
|                                                "not."+CondVal->getName()), SI);
 | |
|         return new CastInst(NotCond, SI.getType());
 | |
|       }
 | |
| 
 | |
|       // If one of the constants is zero (we know they can't both be) and we
 | |
|       // have a setcc instruction with zero, and we have an 'and' with the
 | |
|       // non-constant value, eliminate this whole mess.  This corresponds to
 | |
|       // cases like this: ((X & 27) ? 27 : 0)
 | |
|       if (TrueValC->isNullValue() || FalseValC->isNullValue())
 | |
|         if (Instruction *IC = dyn_cast<Instruction>(SI.getCondition()))
 | |
|           if ((IC->getOpcode() == Instruction::SetEQ ||
 | |
|                IC->getOpcode() == Instruction::SetNE) &&
 | |
|               isa<ConstantInt>(IC->getOperand(1)) &&
 | |
|               cast<Constant>(IC->getOperand(1))->isNullValue())
 | |
|             if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
 | |
|               if (ICA->getOpcode() == Instruction::And &&
 | |
|                   isa<ConstantInt>(ICA->getOperand(1)) && 
 | |
|                   (ICA->getOperand(1) == TrueValC || 
 | |
|                    ICA->getOperand(1) == FalseValC) && 
 | |
|                   isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
 | |
|                 // Okay, now we know that everything is set up, we just don't
 | |
|                 // know whether we have a setne or seteq and whether the true or
 | |
|                 // false val is the zero.
 | |
|                 bool ShouldNotVal = !TrueValC->isNullValue();
 | |
|                 ShouldNotVal ^= IC->getOpcode() == Instruction::SetNE;
 | |
|                 Value *V = ICA;
 | |
|                 if (ShouldNotVal)
 | |
|                   V = InsertNewInstBefore(BinaryOperator::create(
 | |
|                                   Instruction::Xor, V, ICA->getOperand(1)), SI);
 | |
|                 return ReplaceInstUsesWith(SI, V);
 | |
|               }
 | |
|     }
 | |
| 
 | |
|   // See if we are selecting two values based on a comparison of the two values.
 | |
|   if (SetCondInst *SCI = dyn_cast<SetCondInst>(CondVal)) {
 | |
|     if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) {
 | |
|       // Transform (X == Y) ? X : Y  -> Y
 | |
|       if (SCI->getOpcode() == Instruction::SetEQ)
 | |
|         return ReplaceInstUsesWith(SI, FalseVal);
 | |
|       // Transform (X != Y) ? X : Y  -> X
 | |
|       if (SCI->getOpcode() == Instruction::SetNE)
 | |
|         return ReplaceInstUsesWith(SI, TrueVal);
 | |
|       // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | |
| 
 | |
|     } else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){
 | |
|       // Transform (X == Y) ? Y : X  -> X
 | |
|       if (SCI->getOpcode() == Instruction::SetEQ)
 | |
|         return ReplaceInstUsesWith(SI, FalseVal);
 | |
|       // Transform (X != Y) ? Y : X  -> Y
 | |
|       if (SCI->getOpcode() == Instruction::SetNE)
 | |
|         return ReplaceInstUsesWith(SI, TrueVal);
 | |
|       // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // See if we can fold the select into one of our operands.
 | |
|   if (SI.getType()->isInteger()) {
 | |
|     // See the comment above GetSelectFoldableOperands for a description of the
 | |
|     // transformation we are doing here.
 | |
|     if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
 | |
|       if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
 | |
|           !isa<Constant>(FalseVal))
 | |
|         if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
 | |
|           unsigned OpToFold = 0;
 | |
|           if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
 | |
|             OpToFold = 1;
 | |
|           } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
 | |
|             OpToFold = 2;
 | |
|           }
 | |
| 
 | |
|           if (OpToFold) {
 | |
|             Constant *C = GetSelectFoldableConstant(TVI);
 | |
|             std::string Name = TVI->getName(); TVI->setName("");
 | |
|             Instruction *NewSel =
 | |
|               new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C,
 | |
|                              Name);
 | |
|             InsertNewInstBefore(NewSel, SI);
 | |
|             if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
 | |
|               return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
 | |
|             else if (ShiftInst *SI = dyn_cast<ShiftInst>(TVI))
 | |
|               return new ShiftInst(SI->getOpcode(), FalseVal, NewSel);
 | |
|             else {
 | |
|               assert(0 && "Unknown instruction!!");
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|     if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
 | |
|       if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
 | |
|           !isa<Constant>(TrueVal))
 | |
|         if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
 | |
|           unsigned OpToFold = 0;
 | |
|           if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
 | |
|             OpToFold = 1;
 | |
|           } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
 | |
|             OpToFold = 2;
 | |
|           }
 | |
| 
 | |
|           if (OpToFold) {
 | |
|             Constant *C = GetSelectFoldableConstant(FVI);
 | |
|             std::string Name = FVI->getName(); FVI->setName("");
 | |
|             Instruction *NewSel =
 | |
|               new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold),
 | |
|                              Name);
 | |
|             InsertNewInstBefore(NewSel, SI);
 | |
|             if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
 | |
|               return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
 | |
|             else if (ShiftInst *SI = dyn_cast<ShiftInst>(FVI))
 | |
|               return new ShiftInst(SI->getOpcode(), TrueVal, NewSel);
 | |
|             else {
 | |
|               assert(0 && "Unknown instruction!!");
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // CallInst simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitCallInst(CallInst &CI) {
 | |
|   // Intrinsics cannot occur in an invoke, so handle them here instead of in
 | |
|   // visitCallSite.
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&CI)) {
 | |
|     bool Changed = false;
 | |
| 
 | |
|     // memmove/cpy/set of zero bytes is a noop.
 | |
|     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
 | |
|       if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
 | |
| 
 | |
|       // FIXME: Increase alignment here.
 | |
|       
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
 | |
|         if (CI->getRawValue() == 1) {
 | |
|           // Replace the instruction with just byte operations.  We would
 | |
|           // transform other cases to loads/stores, but we don't know if
 | |
|           // alignment is sufficient.
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we have a memmove and the source operation is a constant global,
 | |
|     // then the source and dest pointers can't alias, so we can change this
 | |
|     // into a call to memcpy.
 | |
|     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI))
 | |
|       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
 | |
|         if (GVSrc->isConstant()) {
 | |
|           Module *M = CI.getParent()->getParent()->getParent();
 | |
|           Function *MemCpy = M->getOrInsertFunction("llvm.memcpy",
 | |
|                                      CI.getCalledFunction()->getFunctionType());
 | |
|           CI.setOperand(0, MemCpy);
 | |
|           Changed = true;
 | |
|         }
 | |
| 
 | |
|     if (Changed) return &CI;
 | |
|   } else if (DbgStopPointInst *SPI = dyn_cast<DbgStopPointInst>(&CI)) {
 | |
|     // If this stoppoint is at the same source location as the previous
 | |
|     // stoppoint in the chain, it is not needed.
 | |
|     if (DbgStopPointInst *PrevSPI =
 | |
|         dyn_cast<DbgStopPointInst>(SPI->getChain()))
 | |
|       if (SPI->getLineNo() == PrevSPI->getLineNo() &&
 | |
|           SPI->getColNo() == PrevSPI->getColNo()) {
 | |
|         SPI->replaceAllUsesWith(PrevSPI);
 | |
|         return EraseInstFromFunction(CI);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return visitCallSite(&CI);
 | |
| }
 | |
| 
 | |
| // InvokeInst simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
 | |
|   return visitCallSite(&II);
 | |
| }
 | |
| 
 | |
| // visitCallSite - Improvements for call and invoke instructions.
 | |
| //
 | |
| Instruction *InstCombiner::visitCallSite(CallSite CS) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // If the callee is a constexpr cast of a function, attempt to move the cast
 | |
|   // to the arguments of the call/invoke.
 | |
|   if (transformConstExprCastCall(CS)) return 0;
 | |
| 
 | |
|   Value *Callee = CS.getCalledValue();
 | |
| 
 | |
|   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | |
|     // This instruction is not reachable, just remove it.  We insert a store to
 | |
|     // undef so that we know that this code is not reachable, despite the fact
 | |
|     // that we can't modify the CFG here.
 | |
|     new StoreInst(ConstantBool::True,
 | |
|                   UndefValue::get(PointerType::get(Type::BoolTy)),
 | |
|                   CS.getInstruction());
 | |
| 
 | |
|     if (!CS.getInstruction()->use_empty())
 | |
|       CS.getInstruction()->
 | |
|         replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
 | |
| 
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
 | |
|       // Don't break the CFG, insert a dummy cond branch.
 | |
|       new BranchInst(II->getNormalDest(), II->getUnwindDest(),
 | |
|                      ConstantBool::True, II);
 | |
|     }
 | |
|     return EraseInstFromFunction(*CS.getInstruction());
 | |
|   }
 | |
| 
 | |
|   const PointerType *PTy = cast<PointerType>(Callee->getType());
 | |
|   const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|   if (FTy->isVarArg()) {
 | |
|     // See if we can optimize any arguments passed through the varargs area of
 | |
|     // the call.
 | |
|     for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
 | |
|            E = CS.arg_end(); I != E; ++I)
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(*I)) {
 | |
|         // If this cast does not effect the value passed through the varargs
 | |
|         // area, we can eliminate the use of the cast.
 | |
|         Value *Op = CI->getOperand(0);
 | |
|         if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
 | |
|           *I = Op;
 | |
|           Changed = true;
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   return Changed ? CS.getInstruction() : 0;
 | |
| }
 | |
| 
 | |
| // transformConstExprCastCall - If the callee is a constexpr cast of a function,
 | |
| // attempt to move the cast to the arguments of the call/invoke.
 | |
| //
 | |
| bool InstCombiner::transformConstExprCastCall(CallSite CS) {
 | |
|   if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
 | |
|   ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
 | |
|   if (CE->getOpcode() != Instruction::Cast || !isa<Function>(CE->getOperand(0)))
 | |
|     return false;
 | |
|   Function *Callee = cast<Function>(CE->getOperand(0));
 | |
|   Instruction *Caller = CS.getInstruction();
 | |
| 
 | |
|   // Okay, this is a cast from a function to a different type.  Unless doing so
 | |
|   // would cause a type conversion of one of our arguments, change this call to
 | |
|   // be a direct call with arguments casted to the appropriate types.
 | |
|   //
 | |
|   const FunctionType *FT = Callee->getFunctionType();
 | |
|   const Type *OldRetTy = Caller->getType();
 | |
| 
 | |
|   // Check to see if we are changing the return type...
 | |
|   if (OldRetTy != FT->getReturnType()) {
 | |
|     if (Callee->isExternal() &&
 | |
|         !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) &&
 | |
|         !Caller->use_empty())
 | |
|       return false;   // Cannot transform this return value...
 | |
| 
 | |
|     // If the callsite is an invoke instruction, and the return value is used by
 | |
|     // a PHI node in a successor, we cannot change the return type of the call
 | |
|     // because there is no place to put the cast instruction (without breaking
 | |
|     // the critical edge).  Bail out in this case.
 | |
|     if (!Caller->use_empty())
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
 | |
|         for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
 | |
|              UI != E; ++UI)
 | |
|           if (PHINode *PN = dyn_cast<PHINode>(*UI))
 | |
|             if (PN->getParent() == II->getNormalDest() ||
 | |
|                 PN->getParent() == II->getUnwindDest())
 | |
|               return false;
 | |
|   }
 | |
| 
 | |
|   unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
 | |
|   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
 | |
|                                     
 | |
|   CallSite::arg_iterator AI = CS.arg_begin();
 | |
|   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
 | |
|     const Type *ParamTy = FT->getParamType(i);
 | |
|     bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
 | |
|     if (Callee->isExternal() && !isConvertible) return false;    
 | |
|   }
 | |
| 
 | |
|   if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
 | |
|       Callee->isExternal())
 | |
|     return false;   // Do not delete arguments unless we have a function body...
 | |
| 
 | |
|   // Okay, we decided that this is a safe thing to do: go ahead and start
 | |
|   // inserting cast instructions as necessary...
 | |
|   std::vector<Value*> Args;
 | |
|   Args.reserve(NumActualArgs);
 | |
| 
 | |
|   AI = CS.arg_begin();
 | |
|   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
 | |
|     const Type *ParamTy = FT->getParamType(i);
 | |
|     if ((*AI)->getType() == ParamTy) {
 | |
|       Args.push_back(*AI);
 | |
|     } else {
 | |
|       Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"),
 | |
|                                          *Caller));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the function takes more arguments than the call was taking, add them
 | |
|   // now...
 | |
|   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
 | |
|     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
 | |
| 
 | |
|   // If we are removing arguments to the function, emit an obnoxious warning...
 | |
|   if (FT->getNumParams() < NumActualArgs)
 | |
|     if (!FT->isVarArg()) {
 | |
|       std::cerr << "WARNING: While resolving call to function '"
 | |
|                 << Callee->getName() << "' arguments were dropped!\n";
 | |
|     } else {
 | |
|       // Add all of the arguments in their promoted form to the arg list...
 | |
|       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
 | |
|         const Type *PTy = getPromotedType((*AI)->getType());
 | |
|         if (PTy != (*AI)->getType()) {
 | |
|           // Must promote to pass through va_arg area!
 | |
|           Instruction *Cast = new CastInst(*AI, PTy, "tmp");
 | |
|           InsertNewInstBefore(Cast, *Caller);
 | |
|           Args.push_back(Cast);
 | |
|         } else {
 | |
|           Args.push_back(*AI);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   if (FT->getReturnType() == Type::VoidTy)
 | |
|     Caller->setName("");   // Void type should not have a name...
 | |
| 
 | |
|   Instruction *NC;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|     NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
 | |
|                         Args, Caller->getName(), Caller);
 | |
|   } else {
 | |
|     NC = new CallInst(Callee, Args, Caller->getName(), Caller);
 | |
|   }
 | |
| 
 | |
|   // Insert a cast of the return type as necessary...
 | |
|   Value *NV = NC;
 | |
|   if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
 | |
|     if (NV->getType() != Type::VoidTy) {
 | |
|       NV = NC = new CastInst(NC, Caller->getType(), "tmp");
 | |
| 
 | |
|       // If this is an invoke instruction, we should insert it after the first
 | |
|       // non-phi, instruction in the normal successor block.
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|         BasicBlock::iterator I = II->getNormalDest()->begin();
 | |
|         while (isa<PHINode>(I)) ++I;
 | |
|         InsertNewInstBefore(NC, *I);
 | |
|       } else {
 | |
|         // Otherwise, it's a call, just insert cast right after the call instr
 | |
|         InsertNewInstBefore(NC, *Caller);
 | |
|       }
 | |
|       AddUsersToWorkList(*Caller);
 | |
|     } else {
 | |
|       NV = UndefValue::get(Caller->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
 | |
|     Caller->replaceAllUsesWith(NV);
 | |
|   Caller->getParent()->getInstList().erase(Caller);
 | |
|   removeFromWorkList(Caller);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | |
| // operator and they all are only used by the PHI, PHI together their
 | |
| // inputs, and do the operation once, to the result of the PHI.
 | |
| Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
 | |
|   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
 | |
| 
 | |
|   // Scan the instruction, looking for input operations that can be folded away.
 | |
|   // If all input operands to the phi are the same instruction (e.g. a cast from
 | |
|   // the same type or "+42") we can pull the operation through the PHI, reducing
 | |
|   // code size and simplifying code.
 | |
|   Constant *ConstantOp = 0;
 | |
|   const Type *CastSrcTy = 0;
 | |
|   if (isa<CastInst>(FirstInst)) {
 | |
|     CastSrcTy = FirstInst->getOperand(0)->getType();
 | |
|   } else if (isa<BinaryOperator>(FirstInst) || isa<ShiftInst>(FirstInst)) {
 | |
|     // Can fold binop or shift if the RHS is a constant.
 | |
|     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
 | |
|     if (ConstantOp == 0) return 0;
 | |
|   } else {
 | |
|     return 0;  // Cannot fold this operation.
 | |
|   }
 | |
| 
 | |
|   // Check to see if all arguments are the same operation.
 | |
|   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
 | |
|     Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
 | |
|     if (!I->hasOneUse() || I->getOpcode() != FirstInst->getOpcode())
 | |
|       return 0;
 | |
|     if (CastSrcTy) {
 | |
|       if (I->getOperand(0)->getType() != CastSrcTy)
 | |
|         return 0;  // Cast operation must match.
 | |
|     } else if (I->getOperand(1) != ConstantOp) {
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, they are all the same operation.  Create a new PHI node of the
 | |
|   // correct type, and PHI together all of the LHS's of the instructions.
 | |
|   PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
 | |
|                                PN.getName()+".in");
 | |
|   NewPN->op_reserve(PN.getNumOperands());
 | |
| 
 | |
|   Value *InVal = FirstInst->getOperand(0);
 | |
|   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
 | |
| 
 | |
|   // Add all operands to the new PHI.
 | |
|   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
 | |
|     if (NewInVal != InVal)
 | |
|       InVal = 0;
 | |
|     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
 | |
|   }
 | |
| 
 | |
|   Value *PhiVal;
 | |
|   if (InVal) {
 | |
|     // The new PHI unions all of the same values together.  This is really
 | |
|     // common, so we handle it intelligently here for compile-time speed.
 | |
|     PhiVal = InVal;
 | |
|     delete NewPN;
 | |
|   } else {
 | |
|     InsertNewInstBefore(NewPN, PN);
 | |
|     PhiVal = NewPN;
 | |
|   }
 | |
|   
 | |
|   // Insert and return the new operation.
 | |
|   if (isa<CastInst>(FirstInst))
 | |
|     return new CastInst(PhiVal, PN.getType());
 | |
|   else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
 | |
|     return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
 | |
|   else
 | |
|     return new ShiftInst(cast<ShiftInst>(FirstInst)->getOpcode(),
 | |
|                          PhiVal, ConstantOp);
 | |
| }
 | |
| 
 | |
| // PHINode simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitPHINode(PHINode &PN) {
 | |
|   if (Value *V = hasConstantValue(&PN)) {
 | |
|     // If V is an instruction, we have to be certain that it dominates PN.
 | |
|     // However, because we don't have dom info, we can't do a perfect job.
 | |
|     if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|       // We know that the instruction dominates the PHI if there are no undef
 | |
|       // values coming in.
 | |
|       if (I->getParent() != &I->getParent()->getParent()->front() ||
 | |
|           isa<InvokeInst>(I))
 | |
|         for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|           if (isa<UndefValue>(PN.getIncomingValue(i))) {
 | |
|             V = 0;
 | |
|             break;
 | |
|           }
 | |
|     }
 | |
| 
 | |
|     if (V)
 | |
|       return ReplaceInstUsesWith(PN, V);
 | |
|   }
 | |
| 
 | |
|   // If the only user of this instruction is a cast instruction, and all of the
 | |
|   // incoming values are constants, change this PHI to merge together the casted
 | |
|   // constants.
 | |
|   if (PN.hasOneUse())
 | |
|     if (CastInst *CI = dyn_cast<CastInst>(PN.use_back()))
 | |
|       if (CI->getType() != PN.getType()) {  // noop casts will be folded
 | |
|         bool AllConstant = true;
 | |
|         for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|           if (!isa<Constant>(PN.getIncomingValue(i))) {
 | |
|             AllConstant = false;
 | |
|             break;
 | |
|           }
 | |
|         if (AllConstant) {
 | |
|           // Make a new PHI with all casted values.
 | |
|           PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN);
 | |
|           for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|             Constant *OldArg = cast<Constant>(PN.getIncomingValue(i));
 | |
|             New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()),
 | |
|                              PN.getIncomingBlock(i));
 | |
|           }
 | |
| 
 | |
|           // Update the cast instruction.
 | |
|           CI->setOperand(0, New);
 | |
|           WorkList.push_back(CI);    // revisit the cast instruction to fold.
 | |
|           WorkList.push_back(New);   // Make sure to revisit the new Phi
 | |
|           return &PN;                // PN is now dead!
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   // If all PHI operands are the same operation, pull them through the PHI,
 | |
|   // reducing code size.
 | |
|   if (isa<Instruction>(PN.getIncomingValue(0)) &&
 | |
|       PN.getIncomingValue(0)->hasOneUse())
 | |
|     if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
 | |
|       return Result;
 | |
| 
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy,
 | |
|                                       Instruction *InsertPoint,
 | |
|                                       InstCombiner *IC) {
 | |
|   unsigned PS = IC->getTargetData().getPointerSize();
 | |
|   const Type *VTy = V->getType();
 | |
|   if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS)
 | |
|     // We must insert a cast to ensure we sign-extend.
 | |
|     V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(),
 | |
|                                              V->getName()), *InsertPoint);
 | |
|   return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()),
 | |
|                                  *InsertPoint);
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   Value *PtrOp = GEP.getOperand(0);
 | |
|   // Is it 'getelementptr %P, long 0'  or 'getelementptr %P'
 | |
|   // If so, eliminate the noop.
 | |
|   if (GEP.getNumOperands() == 1)
 | |
|     return ReplaceInstUsesWith(GEP, PtrOp);
 | |
| 
 | |
|   if (isa<UndefValue>(GEP.getOperand(0)))
 | |
|     return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
 | |
| 
 | |
|   bool HasZeroPointerIndex = false;
 | |
|   if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
 | |
|     HasZeroPointerIndex = C->isNullValue();
 | |
| 
 | |
|   if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
 | |
|     return ReplaceInstUsesWith(GEP, PtrOp);
 | |
| 
 | |
|   // Eliminate unneeded casts for indices.
 | |
|   bool MadeChange = false;
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
 | |
|     if (isa<SequentialType>(*GTI)) {
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
 | |
|         Value *Src = CI->getOperand(0);
 | |
|         const Type *SrcTy = Src->getType();
 | |
|         const Type *DestTy = CI->getType();
 | |
|         if (Src->getType()->isInteger()) {
 | |
|           if (SrcTy->getPrimitiveSize() == DestTy->getPrimitiveSize()) {
 | |
|             // We can always eliminate a cast from ulong or long to the other.
 | |
|             // We can always eliminate a cast from uint to int or the other on
 | |
|             // 32-bit pointer platforms.
 | |
|             if (DestTy->getPrimitiveSize() >= TD->getPointerSize()) {
 | |
|               MadeChange = true;
 | |
|               GEP.setOperand(i, Src);
 | |
|             }
 | |
|           } else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
 | |
|                      SrcTy->getPrimitiveSize() == 4) {
 | |
|             // We can always eliminate a cast from int to [u]long.  We can
 | |
|             // eliminate a cast from uint to [u]long iff the target is a 32-bit
 | |
|             // pointer target.
 | |
|             if (SrcTy->isSigned() || 
 | |
|                 SrcTy->getPrimitiveSize() >= TD->getPointerSize()) {
 | |
|               MadeChange = true;
 | |
|               GEP.setOperand(i, Src);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       // If we are using a wider index than needed for this platform, shrink it
 | |
|       // to what we need.  If the incoming value needs a cast instruction,
 | |
|       // insert it.  This explicit cast can make subsequent optimizations more
 | |
|       // obvious.
 | |
|       Value *Op = GEP.getOperand(i);
 | |
|       if (Op->getType()->getPrimitiveSize() > TD->getPointerSize())
 | |
|         if (Constant *C = dyn_cast<Constant>(Op)) {
 | |
|           GEP.setOperand(i, ConstantExpr::getCast(C,
 | |
|                                      TD->getIntPtrType()->getSignedVersion()));
 | |
|           MadeChange = true;
 | |
|         } else {
 | |
|           Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(),
 | |
|                                                 Op->getName()), GEP);
 | |
|           GEP.setOperand(i, Op);
 | |
|           MadeChange = true;
 | |
|         }
 | |
| 
 | |
|       // If this is a constant idx, make sure to canonicalize it to be a signed
 | |
|       // operand, otherwise CSE and other optimizations are pessimized.
 | |
|       if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op)) {
 | |
|         GEP.setOperand(i, ConstantExpr::getCast(CUI,
 | |
|                                           CUI->getType()->getSignedVersion()));
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
|   if (MadeChange) return &GEP;
 | |
| 
 | |
|   // Combine Indices - If the source pointer to this getelementptr instruction
 | |
|   // is a getelementptr instruction, combine the indices of the two
 | |
|   // getelementptr instructions into a single instruction.
 | |
|   //
 | |
|   std::vector<Value*> SrcGEPOperands;
 | |
|   if (GetElementPtrInst *Src = dyn_cast<GetElementPtrInst>(PtrOp)) {
 | |
|     SrcGEPOperands.assign(Src->op_begin(), Src->op_end());
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PtrOp)) {
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       SrcGEPOperands.assign(CE->op_begin(), CE->op_end());
 | |
|   }
 | |
| 
 | |
|   if (!SrcGEPOperands.empty()) {
 | |
|     // Note that if our source is a gep chain itself that we wait for that
 | |
|     // chain to be resolved before we perform this transformation.  This
 | |
|     // avoids us creating a TON of code in some cases.
 | |
|     //
 | |
|     if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
 | |
|         cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
 | |
|       return 0;   // Wait until our source is folded to completion.
 | |
| 
 | |
|     std::vector<Value *> Indices;
 | |
| 
 | |
|     // Find out whether the last index in the source GEP is a sequential idx.
 | |
|     bool EndsWithSequential = false;
 | |
|     for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
 | |
|            E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
 | |
|       EndsWithSequential = !isa<StructType>(*I);
 | |
|   
 | |
|     // Can we combine the two pointer arithmetics offsets?
 | |
|     if (EndsWithSequential) {
 | |
|       // Replace: gep (gep %P, long B), long A, ...
 | |
|       // With:    T = long A+B; gep %P, T, ...
 | |
|       //
 | |
|       Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
 | |
|       if (SO1 == Constant::getNullValue(SO1->getType())) {
 | |
|         Sum = GO1;
 | |
|       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
 | |
|         Sum = SO1;
 | |
|       } else {
 | |
|         // If they aren't the same type, convert both to an integer of the
 | |
|         // target's pointer size.
 | |
|         if (SO1->getType() != GO1->getType()) {
 | |
|           if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
 | |
|             SO1 = ConstantExpr::getCast(SO1C, GO1->getType());
 | |
|           } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
 | |
|             GO1 = ConstantExpr::getCast(GO1C, SO1->getType());
 | |
|           } else {
 | |
|             unsigned PS = TD->getPointerSize();
 | |
|             if (SO1->getType()->getPrimitiveSize() == PS) {
 | |
|               // Convert GO1 to SO1's type.
 | |
|               GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this);
 | |
| 
 | |
|             } else if (GO1->getType()->getPrimitiveSize() == PS) {
 | |
|               // Convert SO1 to GO1's type.
 | |
|               SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this);
 | |
|             } else {
 | |
|               const Type *PT = TD->getIntPtrType();
 | |
|               SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this);
 | |
|               GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if (isa<Constant>(SO1) && isa<Constant>(GO1))
 | |
|           Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
 | |
|         else {
 | |
|           Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
 | |
|           InsertNewInstBefore(cast<Instruction>(Sum), GEP);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Recycle the GEP we already have if possible.
 | |
|       if (SrcGEPOperands.size() == 2) {
 | |
|         GEP.setOperand(0, SrcGEPOperands[0]);
 | |
|         GEP.setOperand(1, Sum);
 | |
|         return &GEP;
 | |
|       } else {
 | |
|         Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
 | |
|                        SrcGEPOperands.end()-1);
 | |
|         Indices.push_back(Sum);
 | |
|         Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
 | |
|       }
 | |
|     } else if (isa<Constant>(*GEP.idx_begin()) && 
 | |
|                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
 | |
|                SrcGEPOperands.size() != 1) { 
 | |
|       // Otherwise we can do the fold if the first index of the GEP is a zero
 | |
|       Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
 | |
|                      SrcGEPOperands.end());
 | |
|       Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
 | |
|     }
 | |
| 
 | |
|     if (!Indices.empty())
 | |
|       return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName());
 | |
| 
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
 | |
|     // GEP of global variable.  If all of the indices for this GEP are
 | |
|     // constants, we can promote this to a constexpr instead of an instruction.
 | |
| 
 | |
|     // Scan for nonconstants...
 | |
|     std::vector<Constant*> Indices;
 | |
|     User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
 | |
|     for (; I != E && isa<Constant>(*I); ++I)
 | |
|       Indices.push_back(cast<Constant>(*I));
 | |
| 
 | |
|     if (I == E) {  // If they are all constants...
 | |
|       Constant *CE = ConstantExpr::getGetElementPtr(GV, Indices);
 | |
| 
 | |
|       // Replace all uses of the GEP with the new constexpr...
 | |
|       return ReplaceInstUsesWith(GEP, CE);
 | |
|     }
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PtrOp)) {
 | |
|     if (CE->getOpcode() == Instruction::Cast) {
 | |
|       if (HasZeroPointerIndex) {
 | |
|         // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
 | |
|         // into     : GEP [10 x ubyte]* X, long 0, ...
 | |
|         //
 | |
|         // This occurs when the program declares an array extern like "int X[];"
 | |
|         //
 | |
|         Constant *X = CE->getOperand(0);
 | |
|         const PointerType *CPTy = cast<PointerType>(CE->getType());
 | |
|         if (const PointerType *XTy = dyn_cast<PointerType>(X->getType()))
 | |
|           if (const ArrayType *XATy =
 | |
|               dyn_cast<ArrayType>(XTy->getElementType()))
 | |
|             if (const ArrayType *CATy =
 | |
|                 dyn_cast<ArrayType>(CPTy->getElementType()))
 | |
|               if (CATy->getElementType() == XATy->getElementType()) {
 | |
|                 // At this point, we know that the cast source type is a pointer
 | |
|                 // to an array of the same type as the destination pointer
 | |
|                 // array.  Because the array type is never stepped over (there
 | |
|                 // is a leading zero) we can fold the cast into this GEP.
 | |
|                 GEP.setOperand(0, X);
 | |
|                 return &GEP;
 | |
|               }
 | |
|       } else if (GEP.getNumOperands() == 2) {
 | |
|         // Transform things like:
 | |
|         // %t = getelementptr ubyte* cast ([2 x sbyte]* %str to ubyte*), uint %V
 | |
|         // into:  %t1 = getelementptr [2 x sbyte*]* %str, int 0, uint %V; cast
 | |
|         Constant *X = CE->getOperand(0);
 | |
|         const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
 | |
|         const Type *ResElTy =cast<PointerType>(CE->getType())->getElementType();
 | |
|         if (isa<ArrayType>(SrcElTy) &&
 | |
|             TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) == 
 | |
|             TD->getTypeSize(ResElTy)) {
 | |
|           Value *V = InsertNewInstBefore(
 | |
|                  new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
 | |
|                                        GEP.getOperand(1), GEP.getName()), GEP);
 | |
|           return new CastInst(V, GEP.getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
 | |
|   // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
 | |
|   if (AI.isArrayAllocation())    // Check C != 1
 | |
|     if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
 | |
|       const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
 | |
|       AllocationInst *New = 0;
 | |
| 
 | |
|       // Create and insert the replacement instruction...
 | |
|       if (isa<MallocInst>(AI))
 | |
|         New = new MallocInst(NewTy, 0, AI.getName());
 | |
|       else {
 | |
|         assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
 | |
|         New = new AllocaInst(NewTy, 0, AI.getName());
 | |
|       }
 | |
| 
 | |
|       InsertNewInstBefore(New, AI);
 | |
|       
 | |
|       // Scan to the end of the allocation instructions, to skip over a block of
 | |
|       // allocas if possible...
 | |
|       //
 | |
|       BasicBlock::iterator It = New;
 | |
|       while (isa<AllocationInst>(*It)) ++It;
 | |
| 
 | |
|       // Now that I is pointing to the first non-allocation-inst in the block,
 | |
|       // insert our getelementptr instruction...
 | |
|       //
 | |
|       std::vector<Value*> Idx(2, Constant::getNullValue(Type::IntTy));
 | |
|       Value *V = new GetElementPtrInst(New, Idx, New->getName()+".sub", It);
 | |
| 
 | |
|       // Now make everything use the getelementptr instead of the original
 | |
|       // allocation.
 | |
|       return ReplaceInstUsesWith(AI, V);
 | |
|     } else if (isa<UndefValue>(AI.getArraySize())) {
 | |
|       return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | |
|     }
 | |
| 
 | |
|   // If alloca'ing a zero byte object, replace the alloca with a null pointer.
 | |
|   // Note that we only do this for alloca's, because malloc should allocate and
 | |
|   // return a unique pointer, even for a zero byte allocation.
 | |
|   if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() && 
 | |
|       TD->getTypeSize(AI.getAllocatedType()) == 0)
 | |
|     return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
 | |
|   Value *Op = FI.getOperand(0);
 | |
| 
 | |
|   // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(Op))
 | |
|     if (isa<PointerType>(CI->getOperand(0)->getType())) {
 | |
|       FI.setOperand(0, CI->getOperand(0));
 | |
|       return &FI;
 | |
|     }
 | |
| 
 | |
|   // free undef -> unreachable.
 | |
|   if (isa<UndefValue>(Op)) {
 | |
|     // Insert a new store to null because we cannot modify the CFG here.
 | |
|     new StoreInst(ConstantBool::True,
 | |
|                   UndefValue::get(PointerType::get(Type::BoolTy)), &FI);
 | |
|     return EraseInstFromFunction(FI);
 | |
|   }
 | |
| 
 | |
|   // If we have 'free null' delete the instruction.  This can happen in stl code
 | |
|   // when lots of inlining happens.
 | |
|   if (isa<ConstantPointerNull>(Op))
 | |
|     return EraseInstFromFunction(FI);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetGEPGlobalInitializer - Given a constant, and a getelementptr
 | |
| /// constantexpr, return the constant value being addressed by the constant
 | |
| /// expression, or null if something is funny.
 | |
| ///
 | |
| static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
 | |
|   if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
 | |
|     return 0;  // Do not allow stepping over the value!
 | |
| 
 | |
|   // Loop over all of the operands, tracking down which value we are
 | |
|   // addressing...
 | |
|   gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
 | |
|   for (++I; I != E; ++I)
 | |
|     if (const StructType *STy = dyn_cast<StructType>(*I)) {
 | |
|       ConstantUInt *CU = cast<ConstantUInt>(I.getOperand());
 | |
|       assert(CU->getValue() < STy->getNumElements() &&
 | |
|              "Struct index out of range!");
 | |
|       if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
 | |
|         C = CS->getOperand(CU->getValue());
 | |
|       } else if (isa<ConstantAggregateZero>(C)) {
 | |
| 	C = Constant::getNullValue(STy->getElementType(CU->getValue()));
 | |
|       } else if (isa<UndefValue>(C)) {
 | |
| 	C = UndefValue::get(STy->getElementType(CU->getValue()));
 | |
|       } else {
 | |
|         return 0;
 | |
|       }
 | |
|     } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
 | |
|       const ArrayType *ATy = cast<ArrayType>(*I);
 | |
|       if ((uint64_t)CI->getRawValue() >= ATy->getNumElements()) return 0;
 | |
|       if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
 | |
|         C = CA->getOperand(CI->getRawValue());
 | |
|       else if (isa<ConstantAggregateZero>(C))
 | |
|         C = Constant::getNullValue(ATy->getElementType());
 | |
|       else if (isa<UndefValue>(C))
 | |
|         C = UndefValue::get(ATy->getElementType());
 | |
|       else
 | |
|         return 0;
 | |
|     } else {
 | |
|       return 0;
 | |
|     }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
 | |
|   User *CI = cast<User>(LI.getOperand(0));
 | |
| 
 | |
|   const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
 | |
|   if (const PointerType *SrcTy =
 | |
|       dyn_cast<PointerType>(CI->getOperand(0)->getType())) {
 | |
|     const Type *SrcPTy = SrcTy->getElementType();
 | |
|     if (SrcPTy->isSized() && DestPTy->isSized() &&
 | |
|         IC.getTargetData().getTypeSize(SrcPTy) == 
 | |
|             IC.getTargetData().getTypeSize(DestPTy) &&
 | |
|         (SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
 | |
|         (DestPTy->isInteger() || isa<PointerType>(DestPTy))) {
 | |
|       // Okay, we are casting from one integer or pointer type to another of
 | |
|       // the same size.  Instead of casting the pointer before the load, cast
 | |
|       // the result of the loaded value.
 | |
|       Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CI->getOperand(0),
 | |
|                                                            CI->getName(),
 | |
|                                                            LI.isVolatile()),LI);
 | |
|       // Now cast the result of the load.
 | |
|       return new CastInst(NewLoad, LI.getType());
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isSafeToLoadUnconditionally - Return true if we know that executing a load
 | |
| /// from this value cannot trap.  If it is not obviously safe to load from the
 | |
| /// specified pointer, we do a quick local scan of the basic block containing
 | |
| /// ScanFrom, to determine if the address is already accessed.
 | |
| static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
 | |
|   // If it is an alloca or global variable, it is always safe to load from.
 | |
|   if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
 | |
| 
 | |
|   // Otherwise, be a little bit agressive by scanning the local block where we
 | |
|   // want to check to see if the pointer is already being loaded or stored
 | |
|   // from/to.  If so, the previous load or store would have already trapped,
 | |
|   // so there is no harm doing an extra load (also, CSE will later eliminate
 | |
|   // the load entirely).
 | |
|   BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
 | |
| 
 | |
|   while (BBI != E) {
 | |
|     --BBI;
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|       if (LI->getOperand(0) == V) return true;
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
 | |
|       if (SI->getOperand(1) == V) return true;
 | |
|     
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
 | |
|   Value *Op = LI.getOperand(0);
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(Op)) {
 | |
|     if ((C->isNullValue() || isa<UndefValue>(C)) &&
 | |
|         !LI.isVolatile()) {                          // load null/undef -> undef
 | |
|       // Insert a new store to null instruction before the load to indicate that
 | |
|       // this code is not reachable.  We do this instead of inserting an
 | |
|       // unreachable instruction directly because we cannot modify the CFG.
 | |
|       new StoreInst(UndefValue::get(LI.getType()), C, &LI);
 | |
|       return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|     }
 | |
| 
 | |
|     // Instcombine load (constant global) into the value loaded.
 | |
|     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
 | |
|       if (GV->isConstant() && !GV->isExternal())
 | |
|         return ReplaceInstUsesWith(LI, GV->getInitializer());
 | |
|     
 | |
|     // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
 | |
|       if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
 | |
|           if (GV->isConstant() && !GV->isExternal())
 | |
|             if (Constant *V = GetGEPGlobalInitializer(GV->getInitializer(), CE))
 | |
|               return ReplaceInstUsesWith(LI, V);
 | |
|       } else if (CE->getOpcode() == Instruction::Cast) {
 | |
|         if (Instruction *Res = InstCombineLoadCast(*this, LI))
 | |
|           return Res;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // load (cast X) --> cast (load X) iff safe
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(Op))
 | |
|     if (Instruction *Res = InstCombineLoadCast(*this, LI))
 | |
|       return Res;
 | |
| 
 | |
|   if (!LI.isVolatile() && Op->hasOneUse()) {
 | |
|     // Change select and PHI nodes to select values instead of addresses: this
 | |
|     // helps alias analysis out a lot, allows many others simplifications, and
 | |
|     // exposes redundancy in the code.
 | |
|     //
 | |
|     // Note that we cannot do the transformation unless we know that the
 | |
|     // introduced loads cannot trap!  Something like this is valid as long as
 | |
|     // the condition is always false: load (select bool %C, int* null, int* %G),
 | |
|     // but it would not be valid if we transformed it to load from null
 | |
|     // unconditionally.
 | |
|     //
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
 | |
|       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
 | |
|       if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
 | |
|           isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
 | |
|         Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
 | |
|                                      SI->getOperand(1)->getName()+".val"), LI);
 | |
|         Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
 | |
|                                      SI->getOperand(2)->getName()+".val"), LI);
 | |
|         return new SelectInst(SI->getCondition(), V1, V2);
 | |
|       }
 | |
| 
 | |
|       // load (select (cond, null, P)) -> load P
 | |
|       if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|         if (C->isNullValue()) {
 | |
|           LI.setOperand(0, SI->getOperand(2));
 | |
|           return &LI;
 | |
|         }
 | |
| 
 | |
|       // load (select (cond, P, null)) -> load P
 | |
|       if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
 | |
|         if (C->isNullValue()) {
 | |
|           LI.setOperand(0, SI->getOperand(1));
 | |
|           return &LI;
 | |
|         }
 | |
| 
 | |
|     } else if (PHINode *PN = dyn_cast<PHINode>(Op)) {
 | |
|       // load (phi (&V1, &V2, &V3))  --> phi(load &V1, load &V2, load &V3)
 | |
|       bool Safe = PN->getParent() == LI.getParent();
 | |
| 
 | |
|       // Scan all of the instructions between the PHI and the load to make
 | |
|       // sure there are no instructions that might possibly alter the value
 | |
|       // loaded from the PHI.
 | |
|       if (Safe) {
 | |
|         BasicBlock::iterator I = &LI;
 | |
|         for (--I; !isa<PHINode>(I); --I)
 | |
|           if (isa<StoreInst>(I) || isa<CallInst>(I)) {
 | |
|             Safe = false;
 | |
|             break;
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e && Safe; ++i)
 | |
|         if (!isSafeToLoadUnconditionally(PN->getIncomingValue(i),
 | |
|                                     PN->getIncomingBlock(i)->getTerminator()))
 | |
|           Safe = false;
 | |
| 
 | |
|       if (Safe) {
 | |
|         // Create the PHI.
 | |
|         PHINode *NewPN = new PHINode(LI.getType(), PN->getName());
 | |
|         InsertNewInstBefore(NewPN, *PN);
 | |
|         std::map<BasicBlock*,Value*> LoadMap;  // Don't insert duplicate loads
 | |
| 
 | |
|         for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|           BasicBlock *BB = PN->getIncomingBlock(i);
 | |
|           Value *&TheLoad = LoadMap[BB];
 | |
|           if (TheLoad == 0) {
 | |
|             Value *InVal = PN->getIncomingValue(i);
 | |
|             TheLoad = InsertNewInstBefore(new LoadInst(InVal,
 | |
|                                                        InVal->getName()+".val"),
 | |
|                                           *BB->getTerminator());
 | |
|           }
 | |
|           NewPN->addIncoming(TheLoad, BB);
 | |
|         }
 | |
|         return ReplaceInstUsesWith(LI, NewPN);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | |
|   // Change br (not X), label True, label False to: br X, label False, True
 | |
|   Value *X;
 | |
|   BasicBlock *TrueDest;
 | |
|   BasicBlock *FalseDest;
 | |
|   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
 | |
|       !isa<Constant>(X)) {
 | |
|     // Swap Destinations and condition...
 | |
|     BI.setCondition(X);
 | |
|     BI.setSuccessor(0, FalseDest);
 | |
|     BI.setSuccessor(1, TrueDest);
 | |
|     return &BI;
 | |
|   }
 | |
| 
 | |
|   // Cannonicalize setne -> seteq
 | |
|   Instruction::BinaryOps Op; Value *Y;
 | |
|   if (match(&BI, m_Br(m_SetCond(Op, m_Value(X), m_Value(Y)),
 | |
|                       TrueDest, FalseDest)))
 | |
|     if ((Op == Instruction::SetNE || Op == Instruction::SetLE ||
 | |
|          Op == Instruction::SetGE) && BI.getCondition()->hasOneUse()) {
 | |
|       SetCondInst *I = cast<SetCondInst>(BI.getCondition());
 | |
|       std::string Name = I->getName(); I->setName("");
 | |
|       Instruction::BinaryOps NewOpcode = SetCondInst::getInverseCondition(Op);
 | |
|       Value *NewSCC =  BinaryOperator::create(NewOpcode, X, Y, Name, I);
 | |
|       // Swap Destinations and condition...
 | |
|       BI.setCondition(NewSCC);
 | |
|       BI.setSuccessor(0, FalseDest);
 | |
|       BI.setSuccessor(1, TrueDest);
 | |
|       removeFromWorkList(I);
 | |
|       I->getParent()->getInstList().erase(I);
 | |
|       WorkList.push_back(cast<Instruction>(NewSCC));
 | |
|       return &BI;
 | |
|     }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
 | |
|   Value *Cond = SI.getCondition();
 | |
|   if (Instruction *I = dyn_cast<Instruction>(Cond)) {
 | |
|     if (I->getOpcode() == Instruction::Add)
 | |
|       if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|         // change 'switch (X+4) case 1:' into 'switch (X) case -3'
 | |
|         for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
 | |
|           SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
 | |
|                                                 AddRHS));
 | |
|         SI.setOperand(0, I->getOperand(0));
 | |
|         WorkList.push_back(I);
 | |
|         return &SI;
 | |
|       }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void InstCombiner::removeFromWorkList(Instruction *I) {
 | |
|   WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
 | |
|                  WorkList.end());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// TryToSinkInstruction - Try to move the specified instruction from its
 | |
| /// current block into the beginning of DestBlock, which can only happen if it's
 | |
| /// safe to move the instruction past all of the instructions between it and the
 | |
| /// end of its block.
 | |
| static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
 | |
|   assert(I->hasOneUse() && "Invariants didn't hold!");
 | |
| 
 | |
|   // Cannot move control-flow-involving instructions.
 | |
|   if (isa<PHINode>(I) || isa<InvokeInst>(I) || isa<CallInst>(I)) return false;
 | |
|   
 | |
|   // Do not sink alloca instructions out of the entry block.
 | |
|   if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->front())
 | |
|     return false;
 | |
| 
 | |
|   // We can only sink load instructions if there is nothing between the load and
 | |
|   // the end of block that could change the value.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     if (LI->isVolatile()) return false;  // Don't sink volatile loads.
 | |
| 
 | |
|     for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
 | |
|          Scan != E; ++Scan)
 | |
|       if (Scan->mayWriteToMemory())
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   BasicBlock::iterator InsertPos = DestBlock->begin();
 | |
|   while (isa<PHINode>(InsertPos)) ++InsertPos;
 | |
| 
 | |
|   BasicBlock *SrcBlock = I->getParent();
 | |
|   DestBlock->getInstList().splice(InsertPos, SrcBlock->getInstList(), I);  
 | |
|   ++NumSunkInst;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool InstCombiner::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
|   TD = &getAnalysis<TargetData>();
 | |
| 
 | |
|   for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
 | |
|     WorkList.push_back(&*i);
 | |
| 
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     Instruction *I = WorkList.back();  // Get an instruction from the worklist
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     // Check to see if we can DCE or ConstantPropagate the instruction...
 | |
|     // Check to see if we can DIE the instruction...
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       // Add operands to the worklist...
 | |
|       if (I->getNumOperands() < 4)
 | |
|         AddUsesToWorkList(*I);
 | |
|       ++NumDeadInst;
 | |
| 
 | |
|       I->getParent()->getInstList().erase(I);
 | |
|       removeFromWorkList(I);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Instruction isn't dead, see if we can constant propagate it...
 | |
|     if (Constant *C = ConstantFoldInstruction(I)) {
 | |
|       Value* Ptr = I->getOperand(0);
 | |
|       if (isa<GetElementPtrInst>(I) &&
 | |
|           cast<Constant>(Ptr)->isNullValue() &&
 | |
|           !isa<ConstantPointerNull>(C) &&
 | |
|           cast<PointerType>(Ptr->getType())->getElementType()->isSized()) {
 | |
|         // If this is a constant expr gep that is effectively computing an
 | |
|         // "offsetof", fold it into 'cast int X to T*' instead of 'gep 0, 0, 12'
 | |
|         bool isFoldableGEP = true;
 | |
|         for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
 | |
|           if (!isa<ConstantInt>(I->getOperand(i)))
 | |
|             isFoldableGEP = false;
 | |
|         if (isFoldableGEP) {
 | |
|           uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
 | |
|                              std::vector<Value*>(I->op_begin()+1, I->op_end()));
 | |
|           C = ConstantUInt::get(Type::ULongTy, Offset);
 | |
|           C = ConstantExpr::getCast(C, TD->getIntPtrType());
 | |
|           C = ConstantExpr::getCast(C, I->getType());
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Add operands to the worklist...
 | |
|       AddUsesToWorkList(*I);
 | |
|       ReplaceInstUsesWith(*I, C);
 | |
| 
 | |
|       ++NumConstProp;
 | |
|       I->getParent()->getInstList().erase(I);
 | |
|       removeFromWorkList(I);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // See if we can trivially sink this instruction to a successor basic block.
 | |
|     if (I->hasOneUse()) {
 | |
|       BasicBlock *BB = I->getParent();
 | |
|       BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
 | |
|       if (UserParent != BB) {
 | |
|         bool UserIsSuccessor = false;
 | |
|         // See if the user is one of our successors.
 | |
|         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | |
|           if (*SI == UserParent) {
 | |
|             UserIsSuccessor = true;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|         // If the user is one of our immediate successors, and if that successor
 | |
|         // only has us as a predecessors (we'd have to split the critical edge
 | |
|         // otherwise), we can keep going.
 | |
|         if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
 | |
|             next(pred_begin(UserParent)) == pred_end(UserParent))
 | |
|           // Okay, the CFG is simple enough, try to sink this instruction.
 | |
|           Changed |= TryToSinkInstruction(I, UserParent);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that we have an instruction, try combining it to simplify it...
 | |
|     if (Instruction *Result = visit(*I)) {
 | |
|       ++NumCombined;
 | |
|       // Should we replace the old instruction with a new one?
 | |
|       if (Result != I) {
 | |
|         DEBUG(std::cerr << "IC: Old = " << *I
 | |
|                         << "    New = " << *Result);
 | |
| 
 | |
|         // Everything uses the new instruction now.
 | |
|         I->replaceAllUsesWith(Result);
 | |
| 
 | |
|         // Push the new instruction and any users onto the worklist.
 | |
|         WorkList.push_back(Result);
 | |
|         AddUsersToWorkList(*Result);
 | |
| 
 | |
|         // Move the name to the new instruction first...
 | |
|         std::string OldName = I->getName(); I->setName("");
 | |
|         Result->setName(OldName);
 | |
| 
 | |
|         // Insert the new instruction into the basic block...
 | |
|         BasicBlock *InstParent = I->getParent();
 | |
|         BasicBlock::iterator InsertPos = I;
 | |
| 
 | |
|         if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
 | |
|           while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
 | |
|             ++InsertPos;
 | |
| 
 | |
|         InstParent->getInstList().insert(InsertPos, Result);
 | |
| 
 | |
|         // Make sure that we reprocess all operands now that we reduced their
 | |
|         // use counts.
 | |
|         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|           if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|             WorkList.push_back(OpI);
 | |
| 
 | |
|         // Instructions can end up on the worklist more than once.  Make sure
 | |
|         // we do not process an instruction that has been deleted.
 | |
|         removeFromWorkList(I);
 | |
| 
 | |
|         // Erase the old instruction.
 | |
|         InstParent->getInstList().erase(I);
 | |
|       } else {
 | |
|         DEBUG(std::cerr << "IC: MOD = " << *I);
 | |
| 
 | |
|         // If the instruction was modified, it's possible that it is now dead.
 | |
|         // if so, remove it.
 | |
|         if (isInstructionTriviallyDead(I)) {
 | |
|           // Make sure we process all operands now that we are reducing their
 | |
|           // use counts.
 | |
|           for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|             if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|               WorkList.push_back(OpI);
 | |
|           
 | |
|           // Instructions may end up in the worklist more than once.  Erase all
 | |
|           // occurrances of this instruction.
 | |
|           removeFromWorkList(I);
 | |
|           I->getParent()->getInstList().erase(I);
 | |
|         } else {
 | |
|           WorkList.push_back(Result);
 | |
|           AddUsersToWorkList(*Result);
 | |
|         }
 | |
|       }
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createInstructionCombiningPass() {
 | |
|   return new InstCombiner();
 | |
| }
 | |
| 
 |