252 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			252 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Nate Begeman and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs a strength reduction on array references inside loops that
 | |
| // have as one or more of their components the loop induction variable.  This is
 | |
| // accomplished by creating a new Value to hold the initial value of the array
 | |
| // access for the first iteration, and then creating a new GEP instruction in
 | |
| // the loop to increment the value by the appropriate amount.
 | |
| //
 | |
| // There are currently several deficiencies in the implementation, marked with
 | |
| // FIXME in the code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumReduced ("loop-reduce", "Number of GEPs strength reduced");
 | |
| 
 | |
|   class LoopStrengthReduce : public FunctionPass {
 | |
|     LoopInfo *LI;
 | |
|     DominatorSet *DS;
 | |
|     bool Changed;
 | |
|   public:
 | |
|     virtual bool runOnFunction(Function &) {
 | |
|       LI = &getAnalysis<LoopInfo>();
 | |
|       DS = &getAnalysis<DominatorSet>();
 | |
|       Changed = false;
 | |
| 
 | |
|       for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | |
|         runOnLoop(*I);
 | |
|       return Changed;
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<DominatorSet>();
 | |
|     }
 | |
|   private:
 | |
|     void runOnLoop(Loop *L);
 | |
|     void strengthReduceGEP(GetElementPtrInst *GEPI, Loop *L,
 | |
|                            Instruction *InsertBefore,
 | |
|                            std::set<Instruction*> &DeadInsts);
 | |
|     void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
 | |
|   };
 | |
|   RegisterOpt<LoopStrengthReduce> X("loop-reduce", 
 | |
|                                     "Strength Reduce GEP Uses of Ind. Vars");
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createLoopStrengthReducePass() {
 | |
|   return new LoopStrengthReduce();
 | |
| }
 | |
| 
 | |
| /// DeleteTriviallyDeadInstructions - If any of the instructions is the
 | |
| /// specified set are trivially dead, delete them and see if this makes any of
 | |
| /// their operands subsequently dead.
 | |
| void LoopStrengthReduce::
 | |
| DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
 | |
|   while (!Insts.empty()) {
 | |
|     Instruction *I = *Insts.begin();
 | |
|     Insts.erase(Insts.begin());
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|         if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|           Insts.insert(U);
 | |
|       I->getParent()->getInstList().erase(I);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LoopStrengthReduce::strengthReduceGEP(GetElementPtrInst *GEPI, Loop *L,
 | |
|                                            Instruction *InsertBefore,
 | |
|                                            std::set<Instruction*> &DeadInsts) {
 | |
|   // We will strength reduce the GEP by splitting it into two parts.  The first
 | |
|   // is a GEP to hold the initial value of the non-strength-reduced GEP upon
 | |
|   // entering the loop, which we will insert at the end of the loop preheader.
 | |
|   // The second is a GEP to hold the incremented value of the initial GEP.
 | |
|   // The LoopIndVarSimplify pass guarantees that loop counts start at zero, so
 | |
|   // we will replace the indvar with a constant zero value to create the first
 | |
|   // GEP.
 | |
|   //
 | |
|   // We currently only handle GEP instructions that consist of zero or more
 | |
|   // constants and one instance of the canonical induction variable.
 | |
|   bool foundIndvar = false;
 | |
|   bool indvarLast = false;
 | |
|   std::vector<Value *> pre_op_vector;
 | |
|   std::vector<Value *> inc_op_vector;
 | |
|   Value *CanonicalIndVar = L->getCanonicalInductionVariable();
 | |
|   for (unsigned op = 1, e = GEPI->getNumOperands(); op != e; ++op) {
 | |
|     Value *operand = GEPI->getOperand(op);
 | |
|     if (operand == CanonicalIndVar) {
 | |
|       // FIXME: We currently only support strength reducing GEP instructions
 | |
|       // with one instance of the canonical induction variable.  This means that 
 | |
|       // we can't deal with statements of the form A[i][i].
 | |
|       if (foundIndvar == true)
 | |
|         return;
 | |
|         
 | |
|       // FIXME: use getCanonicalInductionVariableIncrement to choose between
 | |
|       // one and neg one maybe?  We need to support int *foo = GEP base, -1
 | |
|       const Type *Ty = CanonicalIndVar->getType();
 | |
|       pre_op_vector.push_back(Constant::getNullValue(Ty));
 | |
|       inc_op_vector.push_back(ConstantInt::get(Ty, 1));
 | |
|       foundIndvar = true;
 | |
|       indvarLast = true;
 | |
|     } else if (isa<Constant>(operand)) {
 | |
|       pre_op_vector.push_back(operand);
 | |
|       if (indvarLast == true) indvarLast = false;
 | |
|     } else
 | |
|       return;
 | |
|   }
 | |
|   // FIXME: handle GEPs where the indvar is not the last element of the index
 | |
|   // array.
 | |
|   if (indvarLast == false)
 | |
|     return;
 | |
|   assert(true == foundIndvar && "Indvar used by GEP not found in operand list");
 | |
|   
 | |
|   // FIXME: Being able to hoist the definition of the initial pointer value
 | |
|   // would allow us to strength reduce more loops.  For example, %tmp.32 in the
 | |
|   // following loop:
 | |
|   // entry:
 | |
|   //   br label %no_exit.0
 | |
|   // no_exit.0:		; preds = %entry, %no_exit.0
 | |
|   //   %init.1.0 = phi uint [ 0, %entry ], [ %indvar.next, %no_exit.0 ]
 | |
|   //   %tmp.32 = load uint** %CROSSING
 | |
|   //   %tmp.35 = getelementptr uint* %tmp.32, uint %init.1.0
 | |
|   //   br label %no_exit.0
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   if (Instruction *GepPtrOp = dyn_cast<Instruction>(GEPI->getOperand(0)))
 | |
|     if (!DS->dominates(GepPtrOp, Header->begin()))
 | |
|       return;
 | |
|   
 | |
|   // If all operands of the GEP we are going to insert into the preheader
 | |
|   // are constants, generate a GEP ConstantExpr instead. 
 | |
|   //
 | |
|   // If there is only one operand after the initial non-constant one, we know
 | |
|   // that it was the induction variable, and has been replaced by a constant
 | |
|   // null value.  In this case, replace the GEP with a use of pointer directly.
 | |
|   //
 | |
|   // 
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   Value *PreGEP;
 | |
|   if (isa<Constant>(GEPI->getOperand(0))) {
 | |
|     Constant *C = dyn_cast<Constant>(GEPI->getOperand(0));
 | |
|     PreGEP = ConstantExpr::getGetElementPtr(C, pre_op_vector);
 | |
|   } else if (pre_op_vector.size() == 1) {
 | |
|     PreGEP = GEPI->getOperand(0);
 | |
|   } else {
 | |
|     PreGEP = new GetElementPtrInst(GEPI->getOperand(0),
 | |
|                                    pre_op_vector, GEPI->getName(), 
 | |
|                                    Preheader->getTerminator());
 | |
|   }
 | |
| 
 | |
|   // The next step of the strength reduction is to create a PHI that will choose
 | |
|   // between the initial GEP we created and inserted into the preheader, and 
 | |
|   // the incremented GEP that we will create below and insert into the loop body
 | |
|   PHINode *NewPHI = new PHINode(PreGEP->getType(), 
 | |
|                                 GEPI->getName()+".str", InsertBefore);
 | |
|   NewPHI->addIncoming(PreGEP, Preheader);
 | |
|   
 | |
|   // Now, create the GEP instruction to increment the value selected by the PHI
 | |
|   // instruction we just created above by one, and add it as the second incoming
 | |
|   // Value and BasicBlock pair to the PHINode.
 | |
|   Instruction *IncrInst = 
 | |
|     const_cast<Instruction*>(L->getCanonicalInductionVariableIncrement());
 | |
|   GetElementPtrInst *StrGEP = new GetElementPtrInst(NewPHI, inc_op_vector,
 | |
|                                                     GEPI->getName()+".inc",
 | |
|                                                     IncrInst);
 | |
|   NewPHI->addIncoming(StrGEP, IncrInst->getParent());
 | |
|   
 | |
|   // Replace all uses of the old GEP instructions with the new PHI
 | |
|   GEPI->replaceAllUsesWith(NewPHI);
 | |
|   
 | |
|   // The old GEP is now dead.
 | |
|   DeadInsts.insert(GEPI);
 | |
|   ++NumReduced;
 | |
| }
 | |
| 
 | |
| void LoopStrengthReduce::runOnLoop(Loop *L) {
 | |
|   // First step, transform all loops nesting inside of this loop.
 | |
|   for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     runOnLoop(*I);
 | |
| 
 | |
|   // Next, get the first PHINode since it is guaranteed to be the canonical
 | |
|   // induction variable for the loop by the preceding IndVarSimplify pass.
 | |
|   PHINode *PN = L->getCanonicalInductionVariable();
 | |
|   if (0 == PN)
 | |
|     return;
 | |
| 
 | |
|   // Insert secondary PHI nodes after the canonical induction variable's PHI
 | |
|   // for the strength reduced pointers that we will be creating.
 | |
|   Instruction *InsertBefore = PN->getNext();
 | |
| 
 | |
|   // FIXME: Need to use SCEV to detect GEP uses of the indvar, since indvars
 | |
|   // pass creates code like this, which we can't currently detect:
 | |
|   //  %tmp.1 = sub uint 2000, %indvar
 | |
|   //  %tmp.8 = getelementptr int* %y, uint %tmp.1
 | |
|   
 | |
|   // Strength reduce all GEPs in the Loop
 | |
|   std::set<Instruction*> DeadInsts;
 | |
|   for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
 | |
|        UI != UE; ++UI)
 | |
|     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
 | |
|       strengthReduceGEP(GEPI, L, InsertBefore, DeadInsts);
 | |
| 
 | |
|   // Clean up after ourselves
 | |
|   if (!DeadInsts.empty()) {
 | |
|     DeleteTriviallyDeadInstructions(DeadInsts);
 | |
| 
 | |
|     // At this point, we know that we have killed one or more GEP instructions.
 | |
|     // It is worth checking to see if the cann indvar is also dead, so that we
 | |
|     // can remove it as well.  The requirements for the cann indvar to be
 | |
|     // considered dead are:
 | |
|     // 1. the cann indvar has one use
 | |
|     // 2. the use is an add instruction
 | |
|     // 3. the add has one use
 | |
|     // 4. the add is used by the cann indvar
 | |
|     // If all four cases above are true, then we can remove both the add and
 | |
|     // the cann indvar.
 | |
|     if (PN->hasOneUse()) {
 | |
|       BinaryOperator *BO = dyn_cast<BinaryOperator>(*(PN->use_begin()));
 | |
|       if (BO && BO->getOpcode() == Instruction::Add)
 | |
|         if (BO->hasOneUse()) {
 | |
|           PHINode *PotentialIndvar = dyn_cast<PHINode>(*(BO->use_begin()));
 | |
|           if (PotentialIndvar && PN == PotentialIndvar) {
 | |
|             PN->dropAllReferences();
 | |
|             DeadInsts.insert(BO);
 | |
|             DeadInsts.insert(PN);
 | |
|             DeleteTriviallyDeadInstructions(DeadInsts);
 | |
|           }
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| }
 |