379 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			379 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This transformation implements the well known scalar replacement of
 | |
| // aggregates transformation.  This xform breaks up alloca instructions of
 | |
| // aggregate type (structure or array) into individual alloca instructions for
 | |
| // each member (if possible).  Then, if possible, it transforms the individual
 | |
| // alloca instructions into nice clean scalar SSA form.
 | |
| //
 | |
| // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
 | |
| // often interact, especially for C++ programs.  As such, iterating between
 | |
| // SRoA, then Mem2Reg until we run out of things to promote works well.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
 | |
|   Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");
 | |
| 
 | |
|   struct SROA : public FunctionPass {
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     bool performScalarRepl(Function &F);
 | |
|     bool performPromotion(Function &F);
 | |
| 
 | |
|     // getAnalysisUsage - This pass does not require any passes, but we know it
 | |
|     // will not alter the CFG, so say so.
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<DominanceFrontier>();
 | |
|       AU.addRequired<TargetData>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     int isSafeElementUse(Value *Ptr);
 | |
|     int isSafeUseOfAllocation(Instruction *User);
 | |
|     int isSafeAllocaToScalarRepl(AllocationInst *AI);
 | |
|     void CanonicalizeAllocaUsers(AllocationInst *AI);
 | |
|     AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
 | |
| }
 | |
| 
 | |
| // Public interface to the ScalarReplAggregates pass
 | |
| FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }
 | |
| 
 | |
| 
 | |
| bool SROA::runOnFunction(Function &F) {
 | |
|   bool Changed = performPromotion(F);
 | |
|   while (1) {
 | |
|     bool LocalChange = performScalarRepl(F);
 | |
|     if (!LocalChange) break;   // No need to repromote if no scalarrepl
 | |
|     Changed = true;
 | |
|     LocalChange = performPromotion(F);
 | |
|     if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool SROA::performPromotion(Function &F) {
 | |
|   std::vector<AllocaInst*> Allocas;
 | |
|   const TargetData &TD = getAnalysis<TargetData>();
 | |
|   DominatorTree     &DT = getAnalysis<DominatorTree>();
 | |
|   DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
 | |
| 
 | |
|   BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
 | |
| 
 | |
|   bool Changed = false;
 | |
|   
 | |
|   while (1) {
 | |
|     Allocas.clear();
 | |
| 
 | |
|     // Find allocas that are safe to promote, by looking at all instructions in
 | |
|     // the entry node
 | |
|     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
 | |
|       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
 | |
|         if (isAllocaPromotable(AI, TD))
 | |
|           Allocas.push_back(AI);
 | |
| 
 | |
|     if (Allocas.empty()) break;
 | |
| 
 | |
|     PromoteMemToReg(Allocas, DT, DF, TD);
 | |
|     NumPromoted += Allocas.size();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| // performScalarRepl - This algorithm is a simple worklist driven algorithm,
 | |
| // which runs on all of the malloc/alloca instructions in the function, removing
 | |
| // them if they are only used by getelementptr instructions.
 | |
| //
 | |
| bool SROA::performScalarRepl(Function &F) {
 | |
|   std::vector<AllocationInst*> WorkList;
 | |
| 
 | |
|   // Scan the entry basic block, adding any alloca's and mallocs to the worklist
 | |
|   BasicBlock &BB = F.getEntryBlock();
 | |
|   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
 | |
|     if (AllocationInst *A = dyn_cast<AllocationInst>(I))
 | |
|       WorkList.push_back(A);
 | |
| 
 | |
|   // Process the worklist
 | |
|   bool Changed = false;
 | |
|   while (!WorkList.empty()) {
 | |
|     AllocationInst *AI = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     // We cannot transform the allocation instruction if it is an array
 | |
|     // allocation (allocations OF arrays are ok though), and an allocation of a
 | |
|     // scalar value cannot be decomposed at all.
 | |
|     //
 | |
|     if (AI->isArrayAllocation() ||
 | |
|         (!isa<StructType>(AI->getAllocatedType()) &&
 | |
|          !isa<ArrayType>(AI->getAllocatedType()))) continue;
 | |
| 
 | |
|     // Check that all of the users of the allocation are capable of being
 | |
|     // transformed.
 | |
|     switch (isSafeAllocaToScalarRepl(AI)) {
 | |
|     default: assert(0 && "Unexpected value!");
 | |
|     case 0:  // Not safe to scalar replace.
 | |
|       continue;
 | |
|     case 1:  // Safe, but requires cleanup/canonicalizations first
 | |
|       CanonicalizeAllocaUsers(AI);
 | |
|     case 3:  // Safe to scalar replace.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     DEBUG(std::cerr << "Found inst to xform: " << *AI);
 | |
|     Changed = true;
 | |
|     
 | |
|     std::vector<AllocaInst*> ElementAllocas;
 | |
|     if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
 | |
|       ElementAllocas.reserve(ST->getNumContainedTypes());
 | |
|       for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
 | |
|         AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
 | |
|                                         AI->getName() + "." + utostr(i), AI);
 | |
|         ElementAllocas.push_back(NA);
 | |
|         WorkList.push_back(NA);  // Add to worklist for recursive processing
 | |
|       }
 | |
|     } else {
 | |
|       const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
 | |
|       ElementAllocas.reserve(AT->getNumElements());
 | |
|       const Type *ElTy = AT->getElementType();
 | |
|       for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | |
|         AllocaInst *NA = new AllocaInst(ElTy, 0,
 | |
|                                         AI->getName() + "." + utostr(i), AI);
 | |
|         ElementAllocas.push_back(NA);
 | |
|         WorkList.push_back(NA);  // Add to worklist for recursive processing
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Now that we have created the alloca instructions that we want to use,
 | |
|     // expand the getelementptr instructions to use them.
 | |
|     //
 | |
|     while (!AI->use_empty()) {
 | |
|       Instruction *User = cast<Instruction>(AI->use_back());
 | |
|       GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
 | |
|       // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
 | |
|       uint64_t Idx = cast<ConstantInt>(GEPI->getOperand(2))->getRawValue();
 | |
|       
 | |
|       assert(Idx < ElementAllocas.size() && "Index out of range?");
 | |
|       AllocaInst *AllocaToUse = ElementAllocas[Idx];
 | |
|       
 | |
|       Value *RepValue;
 | |
|       if (GEPI->getNumOperands() == 3) {
 | |
|         // Do not insert a new getelementptr instruction with zero indices, only
 | |
|         // to have it optimized out later.
 | |
|         RepValue = AllocaToUse;
 | |
|       } else {
 | |
|         // We are indexing deeply into the structure, so we still need a
 | |
|         // getelement ptr instruction to finish the indexing.  This may be
 | |
|         // expanded itself once the worklist is rerun.
 | |
|         //
 | |
|         std::string OldName = GEPI->getName();  // Steal the old name.
 | |
|         std::vector<Value*> NewArgs;
 | |
|         NewArgs.push_back(Constant::getNullValue(Type::IntTy));
 | |
|         NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
 | |
|         GEPI->setName("");
 | |
|         RepValue = new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
 | |
|       }
 | |
|       
 | |
|       // Move all of the users over to the new GEP.
 | |
|       GEPI->replaceAllUsesWith(RepValue);
 | |
|       // Delete the old GEP
 | |
|       GEPI->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     // Finally, delete the Alloca instruction
 | |
|     AI->getParent()->getInstList().erase(AI);
 | |
|     NumReplaced++;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isSafeElementUse - Check to see if this use is an allowed use for a
 | |
| /// getelementptr instruction of an array aggregate allocation.
 | |
| ///
 | |
| int SROA::isSafeElementUse(Value *Ptr) {
 | |
|   for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
 | |
|        I != E; ++I) {
 | |
|     Instruction *User = cast<Instruction>(*I);
 | |
|     switch (User->getOpcode()) {
 | |
|     case Instruction::Load:  break;
 | |
|     case Instruction::Store:
 | |
|       // Store is ok if storing INTO the pointer, not storing the pointer
 | |
|       if (User->getOperand(0) == Ptr) return 0;
 | |
|       break;
 | |
|     case Instruction::GetElementPtr: {
 | |
|       GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
 | |
|       if (GEP->getNumOperands() > 1) {
 | |
|         if (!isa<Constant>(GEP->getOperand(1)) ||
 | |
|             !cast<Constant>(GEP->getOperand(1))->isNullValue())
 | |
|           return 0;  // Using pointer arithmetic to navigate the array...
 | |
|       }
 | |
|       if (!isSafeElementUse(GEP)) return 0;
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   return 3;  // All users look ok :)
 | |
| }
 | |
| 
 | |
| /// AllUsersAreLoads - Return true if all users of this value are loads.
 | |
| static bool AllUsersAreLoads(Value *Ptr) {
 | |
|   for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
 | |
|        I != E; ++I)
 | |
|     if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
 | |
|       return false;
 | |
|   return true; 
 | |
| }
 | |
| 
 | |
| /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
 | |
| /// aggregate allocation.
 | |
| ///
 | |
| int SROA::isSafeUseOfAllocation(Instruction *User) {
 | |
|   if (!isa<GetElementPtrInst>(User)) return 0;
 | |
| 
 | |
|   GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
 | |
|   gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
 | |
| 
 | |
|   // The GEP is safe to transform if it is of the form GEP <ptr>, 0, <cst>
 | |
|   if (I == E ||
 | |
|       I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
 | |
|     return 0;
 | |
| 
 | |
|   ++I;
 | |
|   if (I == E) return 0;  // ran out of GEP indices??
 | |
| 
 | |
|   // If this is a use of an array allocation, do a bit more checking for sanity.
 | |
|   if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
 | |
|     uint64_t NumElements = AT->getNumElements();
 | |
| 
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
 | |
|       // Check to make sure that index falls within the array.  If not,
 | |
|       // something funny is going on, so we won't do the optimization.
 | |
|       //
 | |
|       if (cast<ConstantInt>(GEPI->getOperand(2))->getRawValue() >= NumElements)
 | |
|         return 0;
 | |
|       
 | |
|     } else {
 | |
|       // If this is an array index and the index is not constant, we cannot
 | |
|       // promote... that is unless the array has exactly one or two elements in
 | |
|       // it, in which case we CAN promote it, but we have to canonicalize this
 | |
|       // out if this is the only problem.
 | |
|       if (NumElements == 1 || NumElements == 2)
 | |
|         return AllUsersAreLoads(GEPI) ? 1 : 0;  // Canonicalization required!
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are any non-simple uses of this getelementptr, make sure to reject
 | |
|   // them.
 | |
|   return isSafeElementUse(GEPI);
 | |
| }
 | |
| 
 | |
| /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
 | |
| /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
 | |
| /// or 1 if safe after canonicalization has been performed.
 | |
| ///
 | |
| int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
 | |
|   // Loop over the use list of the alloca.  We can only transform it if all of
 | |
|   // the users are safe to transform.
 | |
|   //
 | |
|   int isSafe = 3;
 | |
|   for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
 | |
|        I != E; ++I) {
 | |
|     isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I));
 | |
|     if (isSafe == 0) {
 | |
|       DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
 | |
|             << **I);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   // If we require cleanup, isSafe is now 1, otherwise it is 3.
 | |
|   return isSafe;
 | |
| }
 | |
| 
 | |
| /// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
 | |
| /// allocation, but only if cleaned up, perform the cleanups required.
 | |
| void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
 | |
|   // At this point, we know that the end result will be SROA'd and promoted, so
 | |
|   // we can insert ugly code if required so long as sroa+mem2reg will clean it
 | |
|   // up.
 | |
|   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | |
|        UI != E; ) {
 | |
|     GetElementPtrInst *GEPI = cast<GetElementPtrInst>(*UI++);
 | |
|     gep_type_iterator I = gep_type_begin(GEPI);
 | |
|     ++I;
 | |
| 
 | |
|     if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
 | |
|       uint64_t NumElements = AT->getNumElements();
 | |
|       
 | |
|       if (!isa<ConstantInt>(I.getOperand())) {
 | |
|         if (NumElements == 1) {
 | |
|           GEPI->setOperand(2, Constant::getNullValue(Type::IntTy));
 | |
|         } else {
 | |
|           assert(NumElements == 2 && "Unhandled case!");
 | |
|           // All users of the GEP must be loads.  At each use of the GEP, insert
 | |
|           // two loads of the appropriate indexed GEP and select between them.
 | |
|           Value *IsOne = BinaryOperator::createSetNE(I.getOperand(),
 | |
|                               Constant::getNullValue(I.getOperand()->getType()),
 | |
|                                                      "isone", GEPI);
 | |
|           // Insert the new GEP instructions, which are properly indexed.
 | |
|           std::vector<Value*> Indices(GEPI->op_begin()+1, GEPI->op_end());
 | |
|           Indices[1] = Constant::getNullValue(Type::IntTy);
 | |
|           Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
 | |
|                                                  GEPI->getName()+".0", GEPI);
 | |
|           Indices[1] = ConstantInt::get(Type::IntTy, 1);
 | |
|           Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
 | |
|                                                 GEPI->getName()+".1", GEPI);
 | |
|           // Replace all loads of the variable index GEP with loads from both
 | |
|           // indexes and a select.
 | |
|           while (!GEPI->use_empty()) {
 | |
|             LoadInst *LI = cast<LoadInst>(GEPI->use_back());
 | |
|             Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
 | |
|             Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
 | |
|             Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
 | |
|             LI->replaceAllUsesWith(R);
 | |
|             LI->eraseFromParent();
 | |
|           }
 | |
|           GEPI->eraseFromParent();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 |