75 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- DialectLinalg.cpp - 'sparse_tensor' dialect submodule --------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Dialects.h"
 | 
						|
#include "mlir-c/Dialect/SparseTensor.h"
 | 
						|
#include "mlir-c/IR.h"
 | 
						|
#include "mlir/Bindings/Python/PybindAdaptors.h"
 | 
						|
 | 
						|
namespace py = pybind11;
 | 
						|
using namespace llvm;
 | 
						|
using namespace mlir;
 | 
						|
using namespace mlir::python::adaptors;
 | 
						|
 | 
						|
void mlir::python::populateDialectSparseTensorSubmodule(
 | 
						|
    py::module m, const py::module &irModule) {
 | 
						|
  auto attributeClass = irModule.attr("Attribute");
 | 
						|
 | 
						|
  py::enum_<MlirSparseTensorDimLevelType>(m, "DimLevelType", py::module_local())
 | 
						|
      .value("dense", MLIR_SPARSE_TENSOR_DIM_LEVEL_DENSE)
 | 
						|
      .value("compressed", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED)
 | 
						|
      .value("singleton", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON);
 | 
						|
 | 
						|
  mlir_attribute_subclass(m, "EncodingAttr",
 | 
						|
                          mlirAttributeIsASparseTensorEncodingAttr,
 | 
						|
                          attributeClass)
 | 
						|
      .def_classmethod(
 | 
						|
          "get",
 | 
						|
          [](py::object cls,
 | 
						|
             std::vector<MlirSparseTensorDimLevelType> dimLevelTypes,
 | 
						|
             llvm::Optional<MlirAffineMap> dimOrdering, int pointerBitWidth,
 | 
						|
             int indexBitWidth, MlirContext context) {
 | 
						|
            return cls(mlirSparseTensorEncodingAttrGet(
 | 
						|
                context, dimLevelTypes.size(), dimLevelTypes.data(),
 | 
						|
                dimOrdering ? *dimOrdering : MlirAffineMap{nullptr},
 | 
						|
                pointerBitWidth, indexBitWidth));
 | 
						|
          },
 | 
						|
          py::arg("cls"), py::arg("dim_level_types"), py::arg("dim_ordering"),
 | 
						|
          py::arg("pointer_bit_width"), py::arg("index_bit_width"),
 | 
						|
          py::arg("context") = py::none(),
 | 
						|
          "Gets a sparse_tensor.encoding from parameters.")
 | 
						|
      .def_property_readonly(
 | 
						|
          "dim_level_types",
 | 
						|
          [](MlirAttribute self) {
 | 
						|
            std::vector<MlirSparseTensorDimLevelType> ret;
 | 
						|
            for (int i = 0,
 | 
						|
                     e = mlirSparseTensorEncodingGetNumDimLevelTypes(self);
 | 
						|
                 i < e; ++i)
 | 
						|
              ret.push_back(
 | 
						|
                  mlirSparseTensorEncodingAttrGetDimLevelType(self, i));
 | 
						|
            return ret;
 | 
						|
          })
 | 
						|
      .def_property_readonly(
 | 
						|
          "dim_ordering",
 | 
						|
          [](MlirAttribute self) -> llvm::Optional<MlirAffineMap> {
 | 
						|
            MlirAffineMap ret =
 | 
						|
                mlirSparseTensorEncodingAttrGetDimOrdering(self);
 | 
						|
            if (mlirAffineMapIsNull(ret))
 | 
						|
              return {};
 | 
						|
            return ret;
 | 
						|
          })
 | 
						|
      .def_property_readonly(
 | 
						|
          "pointer_bit_width",
 | 
						|
          [](MlirAttribute self) {
 | 
						|
            return mlirSparseTensorEncodingAttrGetPointerBitWidth(self);
 | 
						|
          })
 | 
						|
      .def_property_readonly("index_bit_width", [](MlirAttribute self) {
 | 
						|
        return mlirSparseTensorEncodingAttrGetIndexBitWidth(self);
 | 
						|
      });
 | 
						|
}
 |