649 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			649 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "HexagonMCInstrInfo.h"
 | |
| 
 | |
| #include "Hexagon.h"
 | |
| #include "HexagonBaseInfo.h"
 | |
| #include "HexagonMCChecker.h"
 | |
| 
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCInstrInfo.h"
 | |
| #include "llvm/MC/MCSubtargetInfo.h"
 | |
| 
 | |
| namespace llvm {
 | |
| void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
 | |
|                                      MCContext &Context) {
 | |
|   MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
 | |
|                                           MCInstrInfo const &MCII, MCInst &MCB,
 | |
|                                           MCInst const &MCI) {
 | |
|   assert(HexagonMCInstrInfo::isBundle(MCB));
 | |
|   MCOperand const &exOp =
 | |
|       MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
 | |
| 
 | |
|   // Create the extender.
 | |
|   MCInst *XMCI =
 | |
|       new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
 | |
| 
 | |
|   MCB.addOperand(MCOperand::createInst(XMCI));
 | |
| }
 | |
| 
 | |
| iterator_range<MCInst::const_iterator>
 | |
| HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end());
 | |
| }
 | |
| 
 | |
| size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
 | |
|   if (HexagonMCInstrInfo::isBundle(MCI))
 | |
|     return (MCI.size() - bundleInstructionsOffset);
 | |
|   else
 | |
|     return (1);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
 | |
|                                             MCSubtargetInfo const &STI,
 | |
|                                             MCContext &Context, MCInst &MCB,
 | |
|                                             HexagonMCChecker *Check) {
 | |
|   // Examine the packet and convert pairs of instructions to compound
 | |
|   // instructions when possible.
 | |
|   if (!HexagonDisableCompound)
 | |
|     HexagonMCInstrInfo::tryCompound(MCII, Context, MCB);
 | |
|   // Check the bundle for errors.
 | |
|   bool CheckOk = Check ? Check->check() : true;
 | |
|   if (!CheckOk)
 | |
|     return false;
 | |
|   HexagonMCShuffle(MCII, STI, MCB);
 | |
|   // Examine the packet and convert pairs of instructions to duplex
 | |
|   // instructions when possible.
 | |
|   MCInst InstBundlePreDuplex = MCInst(MCB);
 | |
|   if (!HexagonDisableDuplex) {
 | |
|     SmallVector<DuplexCandidate, 8> possibleDuplexes;
 | |
|     possibleDuplexes = HexagonMCInstrInfo::getDuplexPossibilties(MCII, MCB);
 | |
|     HexagonMCShuffle(MCII, STI, Context, MCB, possibleDuplexes);
 | |
|   }
 | |
|   // Examines packet and pad the packet, if needed, when an
 | |
|   // end-loop is in the bundle.
 | |
|   HexagonMCInstrInfo::padEndloop(Context, MCB);
 | |
|   // If compounding and duplexing didn't reduce the size below
 | |
|   // 4 or less we have a packet that is too big.
 | |
|   if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
 | |
|     return false;
 | |
|   HexagonMCShuffle(MCII, STI, MCB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::clampExtended(MCInstrInfo const &MCII,
 | |
|                                        MCContext &Context, MCInst &MCI) {
 | |
|   assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
 | |
|          HexagonMCInstrInfo::isExtended(MCII, MCI));
 | |
|   MCOperand &exOp =
 | |
|       MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
 | |
|   // If the extended value is a constant, then use it for the extended and
 | |
|   // for the extender instructions, masking off the lower 6 bits and
 | |
|   // including the assumed bits.
 | |
|   int64_t Value;
 | |
|   if (exOp.getExpr()->evaluateAsAbsolute(Value)) {
 | |
|     unsigned Shift = HexagonMCInstrInfo::getExtentAlignment(MCII, MCI);
 | |
|     exOp.setExpr(MCConstantExpr::create((Value & 0x3f) << Shift, Context));
 | |
|   }
 | |
| }
 | |
| 
 | |
| MCInst HexagonMCInstrInfo::createBundle() {
 | |
|   MCInst Result;
 | |
|   Result.setOpcode(Hexagon::BUNDLE);
 | |
|   Result.addOperand(MCOperand::createImm(0));
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
 | |
|                                          MCInst const &inst0,
 | |
|                                          MCInst const &inst1) {
 | |
|   assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
 | |
|   MCInst *duplexInst = new (Context) MCInst;
 | |
|   duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
 | |
| 
 | |
|   MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
 | |
|   MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
 | |
|   duplexInst->addOperand(MCOperand::createInst(SubInst0));
 | |
|   duplexInst->addOperand(MCOperand::createInst(SubInst1));
 | |
|   return duplexInst;
 | |
| }
 | |
| 
 | |
| MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
 | |
|                                           MCInst const &Inst,
 | |
|                                           MCOperand const &MO) {
 | |
|   assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
 | |
|          HexagonMCInstrInfo::isExtended(MCII, Inst));
 | |
| 
 | |
|   MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, Inst);
 | |
|   MCInst XMI;
 | |
|   XMI.setOpcode((Desc.isBranch() || Desc.isCall() ||
 | |
|                  HexagonMCInstrInfo::getType(MCII, Inst) == HexagonII::TypeCR)
 | |
|                     ? Hexagon::A4_ext_b
 | |
|                     : Hexagon::A4_ext);
 | |
|   if (MO.isImm())
 | |
|     XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
 | |
|   else if (MO.isExpr())
 | |
|     XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
 | |
|   else
 | |
|     llvm_unreachable("invalid extendable operand");
 | |
|   return XMI;
 | |
| }
 | |
| 
 | |
| MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
 | |
|                                                    size_t Index) {
 | |
|   assert(Index <= bundleSize(MCB));
 | |
|   if (Index == 0)
 | |
|     return nullptr;
 | |
|   MCInst const *Inst =
 | |
|       MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
 | |
|   if (isImmext(*Inst))
 | |
|     return Inst;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
 | |
|                                         MCInstrInfo const &MCII, MCInst &MCB,
 | |
|                                         MCInst const &MCI, bool MustExtend) {
 | |
|   if (isConstExtended(MCII, MCI) || MustExtend)
 | |
|     addConstExtender(Context, MCII, MCB, MCI);
 | |
| }
 | |
| 
 | |
| HexagonII::MemAccessSize
 | |
| HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
| 
 | |
|   return (HexagonII::MemAccessSize((F >> HexagonII::MemAccessSizePos) &
 | |
|                                    HexagonII::MemAccesSizeMask));
 | |
| }
 | |
| 
 | |
| unsigned HexagonMCInstrInfo::getBitCount(MCInstrInfo const &MCII,
 | |
|                                          MCInst const &MCI) {
 | |
|   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
 | |
| }
 | |
| 
 | |
| // Return constant extended operand number.
 | |
| unsigned short HexagonMCInstrInfo::getCExtOpNum(MCInstrInfo const &MCII,
 | |
|                                                 MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
 | |
| }
 | |
| 
 | |
| MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
 | |
|                                                MCInst const &MCI) {
 | |
|   return (MCII.get(MCI.getOpcode()));
 | |
| }
 | |
| 
 | |
| unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
 | |
|                                                    MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
 | |
| }
 | |
| 
 | |
| MCOperand const &
 | |
| HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
 | |
|                                          MCInst const &MCI) {
 | |
|   unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
 | |
|   MCOperand const &MO = MCI.getOperand(O);
 | |
| 
 | |
|   assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
 | |
|           HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
 | |
|          (MO.isImm() || MO.isExpr()));
 | |
|   return (MO);
 | |
| }
 | |
| 
 | |
| unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
 | |
|                                                 MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
 | |
| }
 | |
| 
 | |
| unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
 | |
|                                            MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
 | |
| }
 | |
| 
 | |
| // Return the max value that a constant extendable operand can have
 | |
| // without being extended.
 | |
| int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
 | |
|                                     MCInst const &MCI) {
 | |
|   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   unsigned isSigned =
 | |
|       (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
 | |
|   unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
 | |
| 
 | |
|   if (isSigned) // if value is signed
 | |
|     return ~(-1U << (bits - 1));
 | |
|   else
 | |
|     return ~(-1U << bits);
 | |
| }
 | |
| 
 | |
| // Return the min value that a constant extendable operand can have
 | |
| // without being extended.
 | |
| int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
 | |
|                                     MCInst const &MCI) {
 | |
|   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   unsigned isSigned =
 | |
|       (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
 | |
|   unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
 | |
| 
 | |
|   if (isSigned) // if value is signed
 | |
|     return -1U << (bits - 1);
 | |
|   else
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| char const *HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
 | |
|                                         MCInst const &MCI) {
 | |
|   return MCII.getName(MCI.getOpcode());
 | |
| }
 | |
| 
 | |
| unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
 | |
|                                                  MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
 | |
| }
 | |
| 
 | |
| MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
 | |
|                                                         MCInst const &MCI) {
 | |
|   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   unsigned const O =
 | |
|       (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask;
 | |
|   MCOperand const &MCO = MCI.getOperand(O);
 | |
| 
 | |
|   assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
 | |
|           HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
 | |
|          MCO.isReg());
 | |
|   return (MCO);
 | |
| }
 | |
| 
 | |
| /// Return the new value or the newly produced value.
 | |
| unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
 | |
|                                                   MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
 | |
| }
 | |
| 
 | |
| MCOperand const &
 | |
| HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
 | |
|                                         MCInst const &MCI) {
 | |
|   unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
 | |
|   MCOperand const &MCO = MCI.getOperand(O);
 | |
| 
 | |
|   assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
 | |
|           HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
 | |
|          MCO.isReg());
 | |
|   return (MCO);
 | |
| }
 | |
| 
 | |
| int HexagonMCInstrInfo::getSubTarget(MCInstrInfo const &MCII,
 | |
|                                      MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
| 
 | |
|   HexagonII::SubTarget Target = static_cast<HexagonII::SubTarget>(
 | |
|       (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask);
 | |
| 
 | |
|   switch (Target) {
 | |
|   default:
 | |
|     return Hexagon::ArchV4;
 | |
|   case HexagonII::HasV5SubT:
 | |
|     return Hexagon::ArchV5;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return the Hexagon ISA class for the insn.
 | |
| unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
 | |
|                                      MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
| 
 | |
|   return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
 | |
| }
 | |
| 
 | |
| unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
 | |
|                                       MCSubtargetInfo const &STI,
 | |
|                                       MCInst const &MCI) {
 | |
| 
 | |
|   const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
 | |
|   int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
 | |
|   return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
 | |
|   if (!HexagonMCInstrInfo::isBundle(MCI))
 | |
|     return false;
 | |
| 
 | |
|   for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
 | |
|     auto MI = I.getInst();
 | |
|     if (isImmext(*MI))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
 | |
|   return extenderForIndex(MCB, Index) != nullptr;
 | |
| }
 | |
| 
 | |
| // Return whether the instruction is a legal new-value producer.
 | |
| bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
 | |
|                                      MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
 | |
| }
 | |
| 
 | |
| /// Return whether the insn produces a second value.
 | |
| bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
 | |
|                                       MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
 | |
| }
 | |
| 
 | |
| MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
 | |
|   assert(isBundle(MCB));
 | |
|   assert(Index < HEXAGON_PACKET_SIZE);
 | |
|   return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
 | |
|   auto Result = Hexagon::BUNDLE == MCI.getOpcode();
 | |
|   assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // Return whether the insn is an actual insn.
 | |
| bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   return (!HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
 | |
|           !HexagonMCInstrInfo::isPrefix(MCII, MCI) &&
 | |
|           HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
 | |
|                                     MCInst const &MCI) {
 | |
|   return (getType(MCII, MCI) == HexagonII::TypeCOMPOUND);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
 | |
|   return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
 | |
|           (Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
 | |
| }
 | |
| 
 | |
| // Return whether the instruction needs to be constant extended.
 | |
| // 1) Always return true if the instruction has 'isExtended' flag set.
 | |
| //
 | |
| // isExtendable:
 | |
| // 2) For immediate extended operands, return true only if the value is
 | |
| //    out-of-range.
 | |
| // 3) For global address, always return true.
 | |
| 
 | |
| bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
 | |
|                                          MCInst const &MCI) {
 | |
|   if (HexagonMCInstrInfo::isExtended(MCII, MCI))
 | |
|     return true;
 | |
|   // Branch insns are handled as necessary by relaxation.
 | |
|   if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
 | |
|       (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCOMPOUND &&
 | |
|        HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
 | |
|       (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV &&
 | |
|        HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
 | |
|     return false;
 | |
|   // Otherwise loop instructions and other CR insts are handled by relaxation
 | |
|   else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
 | |
|            (MCI.getOpcode() != Hexagon::C4_addipc))
 | |
|     return false;
 | |
|   else if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
 | |
|     return false;
 | |
| 
 | |
|   MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
 | |
| 
 | |
|   // We could be using an instruction with an extendable immediate and shoehorn
 | |
|   // a global address into it. If it is a global address it will be constant
 | |
|   // extended. We do this for COMBINE.
 | |
|   // We currently only handle isGlobal() because it is the only kind of
 | |
|   // object we are going to end up with here for now.
 | |
|   // In the future we probably should add isSymbol(), etc.
 | |
|   assert(!MO.isImm());
 | |
|   int64_t Value;
 | |
|   if (!MO.getExpr()->evaluateAsAbsolute(Value))
 | |
|     return true;
 | |
|   int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
 | |
|   int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
 | |
|   return (MinValue > Value || Value > MaxValue);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
 | |
|                                       MCInst const &MCI) {
 | |
|   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
 | |
|                                     MCInst const &MCI) {
 | |
|   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
 | |
|   auto Op = MCI.getOpcode();
 | |
|   return (Op == Hexagon::A4_ext_b || Op == Hexagon::A4_ext_c ||
 | |
|           Op == Hexagon::A4_ext_g || Op == Hexagon::A4_ext);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   int64_t Flags = MCI.getOperand(0).getImm();
 | |
|   return (Flags & innerLoopMask) != 0;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
 | |
|   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
 | |
|   return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
 | |
|           (Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
 | |
| }
 | |
| 
 | |
| // Return whether the insn is a new-value consumer.
 | |
| bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
 | |
|                                     MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
 | |
| }
 | |
| 
 | |
| // Return whether the operand can be constant extended.
 | |
| bool HexagonMCInstrInfo::isOperandExtended(MCInstrInfo const &MCII,
 | |
|                                            MCInst const &MCI,
 | |
|                                            unsigned short OperandNum) {
 | |
|   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) ==
 | |
|          OperandNum;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   int64_t Flags = MCI.getOperand(0).getImm();
 | |
|   return (Flags & outerLoopMask) != 0;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
 | |
|                                       MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
 | |
|                                          MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
 | |
| }
 | |
| 
 | |
| /// Return whether the insn is newly predicated.
 | |
| bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
 | |
|                                          MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
 | |
|                                           MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return (
 | |
|       !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
 | |
|   return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   auto Flags = MCI.getOperand(0).getImm();
 | |
|   return (Flags & memReorderDisabledMask) != 0;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isMemStoreReorderEnabled(MCInst const &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   auto Flags = MCI.getOperand(0).getImm();
 | |
|   return (Flags & memStoreReorderEnabledMask) != 0;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isSoloAin1(MCInstrInfo const &MCII,
 | |
|                                     MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::SoloAin1Pos) & HexagonII::SoloAin1Mask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
 | |
|       (getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
 | |
|   auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
 | |
|                   << 8;
 | |
|   if (MCI.size() <= Index)
 | |
|     return Sentinal;
 | |
|   MCOperand const &MCO = MCI.getOperand(Index);
 | |
|   if (!MCO.isExpr())
 | |
|     return Sentinal;
 | |
|   int64_t Value;
 | |
|   if (!MCO.getExpr()->evaluateAsAbsolute(Value))
 | |
|     return Sentinal;
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::padEndloop(MCContext &Context, MCInst &MCB) {
 | |
|   MCInst Nop;
 | |
|   Nop.setOpcode(Hexagon::A2_nop);
 | |
|   assert(isBundle(MCB));
 | |
|   while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
 | |
|           (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
 | |
|          ((HexagonMCInstrInfo::isOuterLoop(MCB) &&
 | |
|            (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
 | |
|     MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
 | |
|                                       MCInst const &MCI) {
 | |
|   if (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR)
 | |
|     return false;
 | |
| 
 | |
|   unsigned SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
 | |
|   switch (SchedClass) {
 | |
|   case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
 | |
|   case Hexagon::Sched::ALU64_tc_2_SLOT23:
 | |
|   case Hexagon::Sched::ALU64_tc_3x_SLOT23:
 | |
|   case Hexagon::Sched::M_tc_2_SLOT23:
 | |
|   case Hexagon::Sched::M_tc_3x_SLOT23:
 | |
|   case Hexagon::Sched::S_2op_tc_2_SLOT23:
 | |
|   case Hexagon::Sched::S_3op_tc_2_SLOT23:
 | |
|   case Hexagon::Sched::S_3op_tc_3x_SLOT23:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
 | |
|                                        DuplexCandidate Candidate) {
 | |
|   assert(Candidate.packetIndexI < MCB.size());
 | |
|   assert(Candidate.packetIndexJ < MCB.size());
 | |
|   assert(isBundle(MCB));
 | |
|   MCInst *Duplex =
 | |
|       deriveDuplex(Context, Candidate.iClass,
 | |
|                    *MCB.getOperand(Candidate.packetIndexJ).getInst(),
 | |
|                    *MCB.getOperand(Candidate.packetIndexI).getInst());
 | |
|   assert(Duplex != nullptr);
 | |
|   MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
 | |
|   MCB.erase(MCB.begin() + Candidate.packetIndexJ);
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   MCOperand &Operand = MCI.getOperand(0);
 | |
|   Operand.setImm(Operand.getImm() | innerLoopMask);
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   MCOperand &Operand = MCI.getOperand(0);
 | |
|   Operand.setImm(Operand.getImm() | memReorderDisabledMask);
 | |
|   assert(isMemReorderDisabled(MCI));
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::setMemStoreReorderEnabled(MCInst &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   MCOperand &Operand = MCI.getOperand(0);
 | |
|   Operand.setImm(Operand.getImm() | memStoreReorderEnabledMask);
 | |
|   assert(isMemStoreReorderEnabled(MCI));
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   MCOperand &Operand = MCI.getOperand(0);
 | |
|   Operand.setImm(Operand.getImm() | outerLoopMask);
 | |
| }
 | |
| }
 |