1512 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1512 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the X86MCCodeEmitter class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "MCTargetDesc/X86MCTargetDesc.h"
 | 
						|
#include "MCTargetDesc/X86BaseInfo.h"
 | 
						|
#include "MCTargetDesc/X86FixupKinds.h"
 | 
						|
#include "llvm/MC/MCCodeEmitter.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCInst.h"
 | 
						|
#include "llvm/MC/MCInstrInfo.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/MC/MCSubtargetInfo.h"
 | 
						|
#include "llvm/MC/MCSymbol.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "mccodeemitter"
 | 
						|
 | 
						|
namespace {
 | 
						|
class X86MCCodeEmitter : public MCCodeEmitter {
 | 
						|
  X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
 | 
						|
  void operator=(const X86MCCodeEmitter &) = delete;
 | 
						|
  const MCInstrInfo &MCII;
 | 
						|
  MCContext &Ctx;
 | 
						|
public:
 | 
						|
  X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
 | 
						|
    : MCII(mcii), Ctx(ctx) {
 | 
						|
  }
 | 
						|
 | 
						|
  ~X86MCCodeEmitter() override {}
 | 
						|
 | 
						|
  bool is64BitMode(const MCSubtargetInfo &STI) const {
 | 
						|
    return STI.getFeatureBits()[X86::Mode64Bit];
 | 
						|
  }
 | 
						|
 | 
						|
  bool is32BitMode(const MCSubtargetInfo &STI) const {
 | 
						|
    return STI.getFeatureBits()[X86::Mode32Bit];
 | 
						|
  }
 | 
						|
 | 
						|
  bool is16BitMode(const MCSubtargetInfo &STI) const {
 | 
						|
    return STI.getFeatureBits()[X86::Mode16Bit];
 | 
						|
  }
 | 
						|
 | 
						|
  /// Is16BitMemOperand - Return true if the specified instruction has
 | 
						|
  /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
 | 
						|
  bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
 | 
						|
                         const MCSubtargetInfo &STI) const {
 | 
						|
    const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
 | 
						|
    const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
 | 
						|
    const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
 | 
						|
 | 
						|
    if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
 | 
						|
        Disp.isImm() && Disp.getImm() < 0x10000)
 | 
						|
      return true;
 | 
						|
    if ((BaseReg.getReg() != 0 &&
 | 
						|
         X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
 | 
						|
        (IndexReg.getReg() != 0 &&
 | 
						|
         X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned GetX86RegNum(const MCOperand &MO) const {
 | 
						|
    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
 | 
						|
  }
 | 
						|
 | 
						|
  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
 | 
						|
  // 0-7 and the difference between the 2 groups is given by the REX prefix.
 | 
						|
  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
 | 
						|
  // in 1's complement form, example:
 | 
						|
  //
 | 
						|
  //  ModRM field => XMM9 => 1
 | 
						|
  //  VEX.VVVV    => XMM9 => ~9
 | 
						|
  //
 | 
						|
  // See table 4-35 of Intel AVX Programming Reference for details.
 | 
						|
  unsigned char getVEXRegisterEncoding(const MCInst &MI,
 | 
						|
                                       unsigned OpNum) const {
 | 
						|
    unsigned SrcReg = MI.getOperand(OpNum).getReg();
 | 
						|
    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
 | 
						|
    if (X86II::isX86_64ExtendedReg(SrcReg))
 | 
						|
      SrcRegNum |= 8;
 | 
						|
 | 
						|
    // The registers represented through VEX_VVVV should
 | 
						|
    // be encoded in 1's complement form.
 | 
						|
    return (~SrcRegNum) & 0xf;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
 | 
						|
                                             unsigned OpNum) const {
 | 
						|
    assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
 | 
						|
           "Invalid mask register as write-mask!");
 | 
						|
    unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
 | 
						|
    return MaskRegNum;
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
 | 
						|
    OS << (char)C;
 | 
						|
    ++CurByte;
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
 | 
						|
                    raw_ostream &OS) const {
 | 
						|
    // Output the constant in little endian byte order.
 | 
						|
    for (unsigned i = 0; i != Size; ++i) {
 | 
						|
      EmitByte(Val & 255, CurByte, OS);
 | 
						|
      Val >>= 8;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
 | 
						|
                     unsigned ImmSize, MCFixupKind FixupKind,
 | 
						|
                     unsigned &CurByte, raw_ostream &OS,
 | 
						|
                     SmallVectorImpl<MCFixup> &Fixups,
 | 
						|
                     int ImmOffset = 0) const;
 | 
						|
 | 
						|
  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
 | 
						|
                                        unsigned RM) {
 | 
						|
    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
 | 
						|
    return RM | (RegOpcode << 3) | (Mod << 6);
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
 | 
						|
                        unsigned &CurByte, raw_ostream &OS) const {
 | 
						|
    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
 | 
						|
                   unsigned &CurByte, raw_ostream &OS) const {
 | 
						|
    // SIB byte is in the same format as the ModRMByte.
 | 
						|
    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
 | 
						|
                        unsigned RegOpcodeField,
 | 
						|
                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
 | 
						|
                        SmallVectorImpl<MCFixup> &Fixups,
 | 
						|
                        const MCSubtargetInfo &STI) const;
 | 
						|
 | 
						|
  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
 | 
						|
                         SmallVectorImpl<MCFixup> &Fixups,
 | 
						|
                         const MCSubtargetInfo &STI) const override;
 | 
						|
 | 
						|
  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
 | 
						|
                           const MCInst &MI, const MCInstrDesc &Desc,
 | 
						|
                           raw_ostream &OS) const;
 | 
						|
 | 
						|
  void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
 | 
						|
                                 const MCInst &MI, raw_ostream &OS) const;
 | 
						|
 | 
						|
  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
 | 
						|
                        const MCInst &MI, const MCInstrDesc &Desc,
 | 
						|
                        const MCSubtargetInfo &STI,
 | 
						|
                        raw_ostream &OS) const;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
 | 
						|
                                            const MCRegisterInfo &MRI,
 | 
						|
                                            MCContext &Ctx) {
 | 
						|
  return new X86MCCodeEmitter(MCII, Ctx);
 | 
						|
}
 | 
						|
 | 
						|
/// isDisp8 - Return true if this signed displacement fits in a 8-bit
 | 
						|
/// sign-extended field.
 | 
						|
static bool isDisp8(int Value) {
 | 
						|
  return Value == (signed char)Value;
 | 
						|
}
 | 
						|
 | 
						|
/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
 | 
						|
/// compressed dispacement field.
 | 
						|
static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
 | 
						|
  assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
 | 
						|
         "Compressed 8-bit displacement is only valid for EVEX inst.");
 | 
						|
 | 
						|
  unsigned CD8_Scale =
 | 
						|
    (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
 | 
						|
  if (CD8_Scale == 0) {
 | 
						|
    CValue = Value;
 | 
						|
    return isDisp8(Value);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Mask = CD8_Scale - 1;
 | 
						|
  assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
 | 
						|
  if (Value & Mask) // Unaligned offset
 | 
						|
    return false;
 | 
						|
  Value /= (int)CD8_Scale;
 | 
						|
  bool Ret = (Value == (signed char)Value);
 | 
						|
 | 
						|
  if (Ret)
 | 
						|
    CValue = Value;
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
 | 
						|
/// in an instruction with the specified TSFlags.
 | 
						|
static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
 | 
						|
  unsigned Size = X86II::getSizeOfImm(TSFlags);
 | 
						|
  bool isPCRel = X86II::isImmPCRel(TSFlags);
 | 
						|
 | 
						|
  if (X86II::isImmSigned(TSFlags)) {
 | 
						|
    switch (Size) {
 | 
						|
    default: llvm_unreachable("Unsupported signed fixup size!");
 | 
						|
    case 4: return MCFixupKind(X86::reloc_signed_4byte);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MCFixup::getKindForSize(Size, isPCRel);
 | 
						|
}
 | 
						|
 | 
						|
/// Is32BitMemOperand - Return true if the specified instruction has
 | 
						|
/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
 | 
						|
static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
 | 
						|
  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
 | 
						|
  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
 | 
						|
 | 
						|
  if ((BaseReg.getReg() != 0 &&
 | 
						|
       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
 | 
						|
      (IndexReg.getReg() != 0 &&
 | 
						|
       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
 | 
						|
    return true;
 | 
						|
  if (BaseReg.getReg() == X86::EIP) {
 | 
						|
    assert(IndexReg.getReg() == 0 && "Invalid eip-based address.");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Is64BitMemOperand - Return true if the specified instruction has
 | 
						|
/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
 | 
						|
#ifndef NDEBUG
 | 
						|
static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
 | 
						|
  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
 | 
						|
  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
 | 
						|
 | 
						|
  if ((BaseReg.getReg() != 0 &&
 | 
						|
       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
 | 
						|
      (IndexReg.getReg() != 0 &&
 | 
						|
       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// StartsWithGlobalOffsetTable - Check if this expression starts with
 | 
						|
///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
 | 
						|
///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
 | 
						|
/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
 | 
						|
/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
 | 
						|
/// of a binary expression.
 | 
						|
enum GlobalOffsetTableExprKind {
 | 
						|
  GOT_None,
 | 
						|
  GOT_Normal,
 | 
						|
  GOT_SymDiff
 | 
						|
};
 | 
						|
static GlobalOffsetTableExprKind
 | 
						|
StartsWithGlobalOffsetTable(const MCExpr *Expr) {
 | 
						|
  const MCExpr *RHS = nullptr;
 | 
						|
  if (Expr->getKind() == MCExpr::Binary) {
 | 
						|
    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
 | 
						|
    Expr = BE->getLHS();
 | 
						|
    RHS = BE->getRHS();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Expr->getKind() != MCExpr::SymbolRef)
 | 
						|
    return GOT_None;
 | 
						|
 | 
						|
  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
 | 
						|
  const MCSymbol &S = Ref->getSymbol();
 | 
						|
  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
 | 
						|
    return GOT_None;
 | 
						|
  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
 | 
						|
    return GOT_SymDiff;
 | 
						|
  return GOT_Normal;
 | 
						|
}
 | 
						|
 | 
						|
static bool HasSecRelSymbolRef(const MCExpr *Expr) {
 | 
						|
  if (Expr->getKind() == MCExpr::SymbolRef) {
 | 
						|
    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
 | 
						|
    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void X86MCCodeEmitter::
 | 
						|
EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
 | 
						|
              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
 | 
						|
              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
 | 
						|
  const MCExpr *Expr = nullptr;
 | 
						|
  if (DispOp.isImm()) {
 | 
						|
    // If this is a simple integer displacement that doesn't require a
 | 
						|
    // relocation, emit it now.
 | 
						|
    if (FixupKind != FK_PCRel_1 &&
 | 
						|
        FixupKind != FK_PCRel_2 &&
 | 
						|
        FixupKind != FK_PCRel_4) {
 | 
						|
      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
 | 
						|
  } else {
 | 
						|
    Expr = DispOp.getExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have an immoffset, add it to the expression.
 | 
						|
  if ((FixupKind == FK_Data_4 ||
 | 
						|
       FixupKind == FK_Data_8 ||
 | 
						|
       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
 | 
						|
    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
 | 
						|
    if (Kind != GOT_None) {
 | 
						|
      assert(ImmOffset == 0);
 | 
						|
 | 
						|
      if (Size == 8) {
 | 
						|
        FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
 | 
						|
      } else {
 | 
						|
        assert(Size == 4);
 | 
						|
        FixupKind = MCFixupKind(X86::reloc_global_offset_table);
 | 
						|
      }
 | 
						|
 | 
						|
      if (Kind == GOT_Normal)
 | 
						|
        ImmOffset = CurByte;
 | 
						|
    } else if (Expr->getKind() == MCExpr::SymbolRef) {
 | 
						|
      if (HasSecRelSymbolRef(Expr)) {
 | 
						|
        FixupKind = MCFixupKind(FK_SecRel_4);
 | 
						|
      }
 | 
						|
    } else if (Expr->getKind() == MCExpr::Binary) {
 | 
						|
      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
 | 
						|
      if (HasSecRelSymbolRef(Bin->getLHS())
 | 
						|
          || HasSecRelSymbolRef(Bin->getRHS())) {
 | 
						|
        FixupKind = MCFixupKind(FK_SecRel_4);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the fixup is pc-relative, we need to bias the value to be relative to
 | 
						|
  // the start of the field, not the end of the field.
 | 
						|
  if (FixupKind == FK_PCRel_4 ||
 | 
						|
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
 | 
						|
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
 | 
						|
    ImmOffset -= 4;
 | 
						|
  if (FixupKind == FK_PCRel_2)
 | 
						|
    ImmOffset -= 2;
 | 
						|
  if (FixupKind == FK_PCRel_1)
 | 
						|
    ImmOffset -= 1;
 | 
						|
 | 
						|
  if (ImmOffset)
 | 
						|
    Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
 | 
						|
                                   Ctx);
 | 
						|
 | 
						|
  // Emit a symbolic constant as a fixup and 4 zeros.
 | 
						|
  Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
 | 
						|
  EmitConstant(0, Size, CurByte, OS);
 | 
						|
}
 | 
						|
 | 
						|
void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
 | 
						|
                                        unsigned RegOpcodeField,
 | 
						|
                                        uint64_t TSFlags, unsigned &CurByte,
 | 
						|
                                        raw_ostream &OS,
 | 
						|
                                        SmallVectorImpl<MCFixup> &Fixups,
 | 
						|
                                        const MCSubtargetInfo &STI) const{
 | 
						|
  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
 | 
						|
  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
 | 
						|
  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
 | 
						|
  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
 | 
						|
  unsigned BaseReg = Base.getReg();
 | 
						|
  bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
 | 
						|
 | 
						|
  // Handle %rip relative addressing.
 | 
						|
  if (BaseReg == X86::RIP ||
 | 
						|
      BaseReg == X86::EIP) {    // [disp32+rIP] in X86-64 mode
 | 
						|
    assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
 | 
						|
    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
 | 
						|
    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
 | 
						|
 | 
						|
    unsigned FixupKind = X86::reloc_riprel_4byte;
 | 
						|
 | 
						|
    // movq loads are handled with a special relocation form which allows the
 | 
						|
    // linker to eliminate some loads for GOT references which end up in the
 | 
						|
    // same linkage unit.
 | 
						|
    if (MI.getOpcode() == X86::MOV64rm)
 | 
						|
      FixupKind = X86::reloc_riprel_4byte_movq_load;
 | 
						|
 | 
						|
    // rip-relative addressing is actually relative to the *next* instruction.
 | 
						|
    // Since an immediate can follow the mod/rm byte for an instruction, this
 | 
						|
    // means that we need to bias the immediate field of the instruction with
 | 
						|
    // the size of the immediate field.  If we have this case, add it into the
 | 
						|
    // expression to emit.
 | 
						|
    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
 | 
						|
 | 
						|
    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
 | 
						|
                  CurByte, OS, Fixups, -ImmSize);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
 | 
						|
 | 
						|
  // 16-bit addressing forms of the ModR/M byte have a different encoding for
 | 
						|
  // the R/M field and are far more limited in which registers can be used.
 | 
						|
  if (Is16BitMemOperand(MI, Op, STI)) {
 | 
						|
    if (BaseReg) {
 | 
						|
      // For 32-bit addressing, the row and column values in Table 2-2 are
 | 
						|
      // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
 | 
						|
      // some special cases. And GetX86RegNum reflects that numbering.
 | 
						|
      // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
 | 
						|
      // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
 | 
						|
      // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
 | 
						|
      // while values 0-3 indicate the allowed combinations (base+index) of
 | 
						|
      // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
 | 
						|
      //
 | 
						|
      // R16Table[] is a lookup from the normal RegNo, to the row values from
 | 
						|
      // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
 | 
						|
      static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
 | 
						|
      unsigned RMfield = R16Table[BaseRegNo];
 | 
						|
 | 
						|
      assert(RMfield && "invalid 16-bit base register");
 | 
						|
 | 
						|
      if (IndexReg.getReg()) {
 | 
						|
        unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
 | 
						|
 | 
						|
        assert(IndexReg16 && "invalid 16-bit index register");
 | 
						|
        // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
 | 
						|
        assert(((IndexReg16 ^ RMfield) & 2) &&
 | 
						|
               "invalid 16-bit base/index register combination");
 | 
						|
        assert(Scale.getImm() == 1 &&
 | 
						|
               "invalid scale for 16-bit memory reference");
 | 
						|
 | 
						|
        // Allow base/index to appear in either order (although GAS doesn't).
 | 
						|
        if (IndexReg16 & 2)
 | 
						|
          RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
 | 
						|
        else
 | 
						|
          RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
 | 
						|
      }
 | 
						|
 | 
						|
      if (Disp.isImm() && isDisp8(Disp.getImm())) {
 | 
						|
        if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
 | 
						|
          // There is no displacement; just the register.
 | 
						|
          EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
 | 
						|
        EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
 | 
						|
        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      // This is the [REG]+disp16 case.
 | 
						|
      EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
 | 
						|
    } else {
 | 
						|
      // There is no BaseReg; this is the plain [disp16] case.
 | 
						|
      EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
 | 
						|
    EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine whether a SIB byte is needed.
 | 
						|
  // If no BaseReg, issue a RIP relative instruction only if the MCE can
 | 
						|
  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
 | 
						|
  // 2-7) and absolute references.
 | 
						|
 | 
						|
  if (// The SIB byte must be used if there is an index register.
 | 
						|
      IndexReg.getReg() == 0 &&
 | 
						|
      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
 | 
						|
      // encode to an R/M value of 4, which indicates that a SIB byte is
 | 
						|
      // present.
 | 
						|
      BaseRegNo != N86::ESP &&
 | 
						|
      // If there is no base register and we're in 64-bit mode, we need a SIB
 | 
						|
      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
 | 
						|
      (!is64BitMode(STI) || BaseReg != 0)) {
 | 
						|
 | 
						|
    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
 | 
						|
      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
 | 
						|
      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the base is not EBP/ESP and there is no displacement, use simple
 | 
						|
    // indirect register encoding, this handles addresses like [EAX].  The
 | 
						|
    // encoding for [EBP] with no displacement means [disp32] so we handle it
 | 
						|
    // by emitting a displacement of 0 below.
 | 
						|
    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
 | 
						|
      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
 | 
						|
    if (Disp.isImm()) {
 | 
						|
      if (!HasEVEX && isDisp8(Disp.getImm())) {
 | 
						|
        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
 | 
						|
        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
 | 
						|
      // 32-bit displacement.
 | 
						|
      int CDisp8 = 0;
 | 
						|
      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
 | 
						|
        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
 | 
						|
        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
 | 
						|
                      CDisp8 - Disp.getImm());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
 | 
						|
    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
 | 
						|
    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
 | 
						|
                  CurByte, OS, Fixups);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We need a SIB byte, so start by outputting the ModR/M byte first
 | 
						|
  assert(IndexReg.getReg() != X86::ESP &&
 | 
						|
         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
 | 
						|
 | 
						|
  bool ForceDisp32 = false;
 | 
						|
  bool ForceDisp8  = false;
 | 
						|
  int CDisp8 = 0;
 | 
						|
  int ImmOffset = 0;
 | 
						|
  if (BaseReg == 0) {
 | 
						|
    // If there is no base register, we emit the special case SIB byte with
 | 
						|
    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
 | 
						|
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
 | 
						|
    ForceDisp32 = true;
 | 
						|
  } else if (!Disp.isImm()) {
 | 
						|
    // Emit the normal disp32 encoding.
 | 
						|
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
 | 
						|
    ForceDisp32 = true;
 | 
						|
  } else if (Disp.getImm() == 0 &&
 | 
						|
             // Base reg can't be anything that ends up with '5' as the base
 | 
						|
             // reg, it is the magic [*] nomenclature that indicates no base.
 | 
						|
             BaseRegNo != N86::EBP) {
 | 
						|
    // Emit no displacement ModR/M byte
 | 
						|
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
 | 
						|
  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
 | 
						|
    // Emit the disp8 encoding.
 | 
						|
    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
 | 
						|
    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
 | 
						|
  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
 | 
						|
    // Emit the disp8 encoding.
 | 
						|
    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
 | 
						|
    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
 | 
						|
    ImmOffset = CDisp8 - Disp.getImm();
 | 
						|
  } else {
 | 
						|
    // Emit the normal disp32 encoding.
 | 
						|
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate what the SS field value should be...
 | 
						|
  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
 | 
						|
  unsigned SS = SSTable[Scale.getImm()];
 | 
						|
 | 
						|
  if (BaseReg == 0) {
 | 
						|
    // Handle the SIB byte for the case where there is no base, see Intel
 | 
						|
    // Manual 2A, table 2-7. The displacement has already been output.
 | 
						|
    unsigned IndexRegNo;
 | 
						|
    if (IndexReg.getReg())
 | 
						|
      IndexRegNo = GetX86RegNum(IndexReg);
 | 
						|
    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
 | 
						|
      IndexRegNo = 4;
 | 
						|
    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
 | 
						|
  } else {
 | 
						|
    unsigned IndexRegNo;
 | 
						|
    if (IndexReg.getReg())
 | 
						|
      IndexRegNo = GetX86RegNum(IndexReg);
 | 
						|
    else
 | 
						|
      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
 | 
						|
    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Do we need to output a displacement?
 | 
						|
  if (ForceDisp8)
 | 
						|
    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
 | 
						|
  else if (ForceDisp32 || Disp.getImm() != 0)
 | 
						|
    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
 | 
						|
                  CurByte, OS, Fixups);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
 | 
						|
/// called VEX.
 | 
						|
void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
 | 
						|
                                           int MemOperand, const MCInst &MI,
 | 
						|
                                           const MCInstrDesc &Desc,
 | 
						|
                                           raw_ostream &OS) const {
 | 
						|
  assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
 | 
						|
 | 
						|
  uint64_t Encoding = TSFlags & X86II::EncodingMask;
 | 
						|
  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
 | 
						|
  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
 | 
						|
  bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
 | 
						|
  bool HasMemOp4 = TSFlags & X86II::MemOp4;
 | 
						|
  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
 | 
						|
 | 
						|
  // VEX_R: opcode externsion equivalent to REX.R in
 | 
						|
  // 1's complement (inverted) form
 | 
						|
  //
 | 
						|
  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
 | 
						|
  //  0: Same as REX_R=1 (64 bit mode only)
 | 
						|
  //
 | 
						|
  unsigned char VEX_R = 0x1;
 | 
						|
  unsigned char EVEX_R2 = 0x1;
 | 
						|
 | 
						|
  // VEX_X: equivalent to REX.X, only used when a
 | 
						|
  // register is used for index in SIB Byte.
 | 
						|
  //
 | 
						|
  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
 | 
						|
  //  0: Same as REX.X=1 (64-bit mode only)
 | 
						|
  unsigned char VEX_X = 0x1;
 | 
						|
 | 
						|
  // VEX_B:
 | 
						|
  //
 | 
						|
  //  1: Same as REX_B=0 (ignored in 32-bit mode)
 | 
						|
  //  0: Same as REX_B=1 (64 bit mode only)
 | 
						|
  //
 | 
						|
  unsigned char VEX_B = 0x1;
 | 
						|
 | 
						|
  // VEX_W: opcode specific (use like REX.W, or used for
 | 
						|
  // opcode extension, or ignored, depending on the opcode byte)
 | 
						|
  unsigned char VEX_W = 0;
 | 
						|
 | 
						|
  // VEX_5M (VEX m-mmmmm field):
 | 
						|
  //
 | 
						|
  //  0b00000: Reserved for future use
 | 
						|
  //  0b00001: implied 0F leading opcode
 | 
						|
  //  0b00010: implied 0F 38 leading opcode bytes
 | 
						|
  //  0b00011: implied 0F 3A leading opcode bytes
 | 
						|
  //  0b00100-0b11111: Reserved for future use
 | 
						|
  //  0b01000: XOP map select - 08h instructions with imm byte
 | 
						|
  //  0b01001: XOP map select - 09h instructions with no imm byte
 | 
						|
  //  0b01010: XOP map select - 0Ah instructions with imm dword
 | 
						|
  unsigned char VEX_5M = 0;
 | 
						|
 | 
						|
  // VEX_4V (VEX vvvv field): a register specifier
 | 
						|
  // (in 1's complement form) or 1111 if unused.
 | 
						|
  unsigned char VEX_4V = 0xf;
 | 
						|
  unsigned char EVEX_V2 = 0x1;
 | 
						|
 | 
						|
  // VEX_L (Vector Length):
 | 
						|
  //
 | 
						|
  //  0: scalar or 128-bit vector
 | 
						|
  //  1: 256-bit vector
 | 
						|
  //
 | 
						|
  unsigned char VEX_L = 0;
 | 
						|
  unsigned char EVEX_L2 = 0;
 | 
						|
 | 
						|
  // VEX_PP: opcode extension providing equivalent
 | 
						|
  // functionality of a SIMD prefix
 | 
						|
  //
 | 
						|
  //  0b00: None
 | 
						|
  //  0b01: 66
 | 
						|
  //  0b10: F3
 | 
						|
  //  0b11: F2
 | 
						|
  //
 | 
						|
  unsigned char VEX_PP = 0;
 | 
						|
 | 
						|
  // EVEX_U
 | 
						|
  unsigned char EVEX_U = 1; // Always '1' so far
 | 
						|
 | 
						|
  // EVEX_z
 | 
						|
  unsigned char EVEX_z = 0;
 | 
						|
 | 
						|
  // EVEX_b
 | 
						|
  unsigned char EVEX_b = 0;
 | 
						|
 | 
						|
  // EVEX_rc
 | 
						|
  unsigned char EVEX_rc = 0;
 | 
						|
 | 
						|
  // EVEX_aaa
 | 
						|
  unsigned char EVEX_aaa = 0;
 | 
						|
 | 
						|
  bool EncodeRC = false;
 | 
						|
 | 
						|
  if (TSFlags & X86II::VEX_W)
 | 
						|
    VEX_W = 1;
 | 
						|
 | 
						|
  if (TSFlags & X86II::VEX_L)
 | 
						|
    VEX_L = 1;
 | 
						|
  if (TSFlags & X86II::EVEX_L2)
 | 
						|
    EVEX_L2 = 1;
 | 
						|
 | 
						|
  if (HasEVEX_K && (TSFlags & X86II::EVEX_Z))
 | 
						|
    EVEX_z = 1;
 | 
						|
 | 
						|
  if ((TSFlags & X86II::EVEX_B))
 | 
						|
    EVEX_b = 1;
 | 
						|
 | 
						|
  switch (TSFlags & X86II::OpPrefixMask) {
 | 
						|
  default: break; // VEX_PP already correct
 | 
						|
  case X86II::PD: VEX_PP = 0x1; break; // 66
 | 
						|
  case X86II::XS: VEX_PP = 0x2; break; // F3
 | 
						|
  case X86II::XD: VEX_PP = 0x3; break; // F2
 | 
						|
  }
 | 
						|
 | 
						|
  switch (TSFlags & X86II::OpMapMask) {
 | 
						|
  default: llvm_unreachable("Invalid prefix!");
 | 
						|
  case X86II::TB:   VEX_5M = 0x1; break; // 0F
 | 
						|
  case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
 | 
						|
  case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
 | 
						|
  case X86II::XOP8: VEX_5M = 0x8; break;
 | 
						|
  case X86II::XOP9: VEX_5M = 0x9; break;
 | 
						|
  case X86II::XOPA: VEX_5M = 0xA; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
 | 
						|
  unsigned NumOps = Desc.getNumOperands();
 | 
						|
  unsigned CurOp = X86II::getOperandBias(Desc);
 | 
						|
 | 
						|
  switch (TSFlags & X86II::FormMask) {
 | 
						|
  default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
 | 
						|
  case X86II::RawFrm:
 | 
						|
    break;
 | 
						|
  case X86II::MRMDestMem: {
 | 
						|
    // MRMDestMem instructions forms:
 | 
						|
    //  MemAddr, src1(ModR/M)
 | 
						|
    //  MemAddr, src1(VEX_4V), src2(ModR/M)
 | 
						|
    //  MemAddr, src1(ModR/M), imm8
 | 
						|
    //
 | 
						|
    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
 | 
						|
                                                 X86::AddrBaseReg).getReg()))
 | 
						|
      VEX_B = 0x0;
 | 
						|
    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
 | 
						|
                                                 X86::AddrIndexReg).getReg()))
 | 
						|
      VEX_X = 0x0;
 | 
						|
    if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
 | 
						|
                                          X86::AddrIndexReg).getReg()))
 | 
						|
      EVEX_V2 = 0x0;
 | 
						|
 | 
						|
    CurOp += X86::AddrNumOperands;
 | 
						|
 | 
						|
    if (HasEVEX_K)
 | 
						|
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
 | 
						|
 | 
						|
    if (HasVEX_4V) {
 | 
						|
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
 | 
						|
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
        EVEX_V2 = 0x0;
 | 
						|
      CurOp++;
 | 
						|
    }
 | 
						|
 | 
						|
    const MCOperand &MO = MI.getOperand(CurOp);
 | 
						|
    if (MO.isReg()) {
 | 
						|
      if (X86II::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
        VEX_R = 0x0;
 | 
						|
      if (X86II::is32ExtendedReg(MO.getReg()))
 | 
						|
        EVEX_R2 = 0x0;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::MRMSrcMem:
 | 
						|
    // MRMSrcMem instructions forms:
 | 
						|
    //  src1(ModR/M), MemAddr
 | 
						|
    //  src1(ModR/M), src2(VEX_4V), MemAddr
 | 
						|
    //  src1(ModR/M), MemAddr, imm8
 | 
						|
    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
 | 
						|
    //
 | 
						|
    //  FMA4:
 | 
						|
    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
 | 
						|
    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
 | 
						|
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      VEX_R = 0x0;
 | 
						|
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      EVEX_R2 = 0x0;
 | 
						|
    CurOp++;
 | 
						|
 | 
						|
    if (HasEVEX_K)
 | 
						|
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
 | 
						|
 | 
						|
    if (HasVEX_4V) {
 | 
						|
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
 | 
						|
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
        EVEX_V2 = 0x0;
 | 
						|
      CurOp++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (X86II::isX86_64ExtendedReg(
 | 
						|
               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
 | 
						|
      VEX_B = 0x0;
 | 
						|
    if (X86II::isX86_64ExtendedReg(
 | 
						|
               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
 | 
						|
      VEX_X = 0x0;
 | 
						|
    if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
 | 
						|
                               X86::AddrIndexReg).getReg()))
 | 
						|
      EVEX_V2 = 0x0;
 | 
						|
 | 
						|
    if (HasVEX_4VOp3)
 | 
						|
      // Instruction format for 4VOp3:
 | 
						|
      //   src1(ModR/M), MemAddr, src3(VEX_4V)
 | 
						|
      // CurOp points to start of the MemoryOperand,
 | 
						|
      //   it skips TIED_TO operands if exist, then increments past src1.
 | 
						|
      // CurOp + X86::AddrNumOperands will point to src3.
 | 
						|
      VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
 | 
						|
    break;
 | 
						|
  case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
  case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
  case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
  case X86II::MRM6m: case X86II::MRM7m: {
 | 
						|
    // MRM[0-9]m instructions forms:
 | 
						|
    //  MemAddr
 | 
						|
    //  src1(VEX_4V), MemAddr
 | 
						|
    if (HasVEX_4V) {
 | 
						|
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
 | 
						|
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
        EVEX_V2 = 0x0;
 | 
						|
      CurOp++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (HasEVEX_K)
 | 
						|
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
 | 
						|
 | 
						|
    if (X86II::isX86_64ExtendedReg(
 | 
						|
               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
 | 
						|
      VEX_B = 0x0;
 | 
						|
    if (X86II::isX86_64ExtendedReg(
 | 
						|
               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
 | 
						|
      VEX_X = 0x0;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::MRMSrcReg:
 | 
						|
    // MRMSrcReg instructions forms:
 | 
						|
    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
 | 
						|
    //  dst(ModR/M), src1(ModR/M)
 | 
						|
    //  dst(ModR/M), src1(ModR/M), imm8
 | 
						|
    //
 | 
						|
    //  FMA4:
 | 
						|
    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
 | 
						|
    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
 | 
						|
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      VEX_R = 0x0;
 | 
						|
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      EVEX_R2 = 0x0;
 | 
						|
    CurOp++;
 | 
						|
 | 
						|
    if (HasEVEX_K)
 | 
						|
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
 | 
						|
 | 
						|
    if (HasVEX_4V) {
 | 
						|
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
 | 
						|
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
        EVEX_V2 = 0x0;
 | 
						|
      CurOp++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
 | 
						|
      CurOp++;
 | 
						|
 | 
						|
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      VEX_B = 0x0;
 | 
						|
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      VEX_X = 0x0;
 | 
						|
    CurOp++;
 | 
						|
    if (HasVEX_4VOp3)
 | 
						|
      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
 | 
						|
    if (EVEX_b) {
 | 
						|
      if (HasEVEX_RC) {
 | 
						|
        unsigned RcOperand = NumOps-1;
 | 
						|
        assert(RcOperand >= CurOp);
 | 
						|
        EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
 | 
						|
      }
 | 
						|
      EncodeRC = true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case X86II::MRMDestReg:
 | 
						|
    // MRMDestReg instructions forms:
 | 
						|
    //  dst(ModR/M), src(ModR/M)
 | 
						|
    //  dst(ModR/M), src(ModR/M), imm8
 | 
						|
    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
 | 
						|
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      VEX_B = 0x0;
 | 
						|
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      VEX_X = 0x0;
 | 
						|
    CurOp++;
 | 
						|
 | 
						|
    if (HasEVEX_K)
 | 
						|
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
 | 
						|
 | 
						|
    if (HasVEX_4V) {
 | 
						|
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
 | 
						|
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
        EVEX_V2 = 0x0;
 | 
						|
      CurOp++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      VEX_R = 0x0;
 | 
						|
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      EVEX_R2 = 0x0;
 | 
						|
    if (EVEX_b)
 | 
						|
      EncodeRC = true;
 | 
						|
    break;
 | 
						|
  case X86II::MRM0r: case X86II::MRM1r:
 | 
						|
  case X86II::MRM2r: case X86II::MRM3r:
 | 
						|
  case X86II::MRM4r: case X86II::MRM5r:
 | 
						|
  case X86II::MRM6r: case X86II::MRM7r:
 | 
						|
    // MRM0r-MRM7r instructions forms:
 | 
						|
    //  dst(VEX_4V), src(ModR/M), imm8
 | 
						|
    if (HasVEX_4V) {
 | 
						|
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
 | 
						|
      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
          EVEX_V2 = 0x0;
 | 
						|
      CurOp++;
 | 
						|
    }
 | 
						|
    if (HasEVEX_K)
 | 
						|
      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
 | 
						|
 | 
						|
    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      VEX_B = 0x0;
 | 
						|
    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      VEX_X = 0x0;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
 | 
						|
    // VEX opcode prefix can have 2 or 3 bytes
 | 
						|
    //
 | 
						|
    //  3 bytes:
 | 
						|
    //    +-----+ +--------------+ +-------------------+
 | 
						|
    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
 | 
						|
    //    +-----+ +--------------+ +-------------------+
 | 
						|
    //  2 bytes:
 | 
						|
    //    +-----+ +-------------------+
 | 
						|
    //    | C5h | | R | vvvv | L | pp |
 | 
						|
    //    +-----+ +-------------------+
 | 
						|
    //
 | 
						|
    //  XOP uses a similar prefix:
 | 
						|
    //    +-----+ +--------------+ +-------------------+
 | 
						|
    //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
 | 
						|
    //    +-----+ +--------------+ +-------------------+
 | 
						|
    unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
 | 
						|
 | 
						|
    // Can we use the 2 byte VEX prefix?
 | 
						|
    if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
 | 
						|
      EmitByte(0xC5, CurByte, OS);
 | 
						|
      EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // 3 byte VEX prefix
 | 
						|
    EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
 | 
						|
    EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
 | 
						|
    EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
 | 
						|
  } else {
 | 
						|
    assert(Encoding == X86II::EVEX && "unknown encoding!");
 | 
						|
    // EVEX opcode prefix can have 4 bytes
 | 
						|
    //
 | 
						|
    // +-----+ +--------------+ +-------------------+ +------------------------+
 | 
						|
    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
 | 
						|
    // +-----+ +--------------+ +-------------------+ +------------------------+
 | 
						|
    assert((VEX_5M & 0x3) == VEX_5M
 | 
						|
           && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
 | 
						|
 | 
						|
    VEX_5M &= 0x3;
 | 
						|
 | 
						|
    EmitByte(0x62, CurByte, OS);
 | 
						|
    EmitByte((VEX_R   << 7) |
 | 
						|
             (VEX_X   << 6) |
 | 
						|
             (VEX_B   << 5) |
 | 
						|
             (EVEX_R2 << 4) |
 | 
						|
             VEX_5M, CurByte, OS);
 | 
						|
    EmitByte((VEX_W   << 7) |
 | 
						|
             (VEX_4V  << 3) |
 | 
						|
             (EVEX_U  << 2) |
 | 
						|
             VEX_PP, CurByte, OS);
 | 
						|
    if (EncodeRC)
 | 
						|
      EmitByte((EVEX_z  << 7) |
 | 
						|
              (EVEX_rc << 5) |
 | 
						|
              (EVEX_b  << 4) |
 | 
						|
              (EVEX_V2 << 3) |
 | 
						|
              EVEX_aaa, CurByte, OS);
 | 
						|
    else
 | 
						|
      EmitByte((EVEX_z  << 7) |
 | 
						|
              (EVEX_L2 << 6) |
 | 
						|
              (VEX_L   << 5) |
 | 
						|
              (EVEX_b  << 4) |
 | 
						|
              (EVEX_V2 << 3) |
 | 
						|
              EVEX_aaa, CurByte, OS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
 | 
						|
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
 | 
						|
/// size, and 3) use of X86-64 extended registers.
 | 
						|
static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
 | 
						|
                                   const MCInstrDesc &Desc) {
 | 
						|
  unsigned REX = 0;
 | 
						|
  bool UsesHighByteReg = false;
 | 
						|
 | 
						|
  if (TSFlags & X86II::REX_W)
 | 
						|
    REX |= 1 << 3; // set REX.W
 | 
						|
 | 
						|
  if (MI.getNumOperands() == 0) return REX;
 | 
						|
 | 
						|
  unsigned NumOps = MI.getNumOperands();
 | 
						|
  // FIXME: MCInst should explicitize the two-addrness.
 | 
						|
  bool isTwoAddr = NumOps > 1 &&
 | 
						|
                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
 | 
						|
 | 
						|
  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
 | 
						|
  unsigned i = isTwoAddr ? 1 : 0;
 | 
						|
  for (; i != NumOps; ++i) {
 | 
						|
    const MCOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isReg()) continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
 | 
						|
      UsesHighByteReg = true;
 | 
						|
    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
 | 
						|
    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
 | 
						|
    // that returns non-zero.
 | 
						|
    REX |= 0x40; // REX fixed encoding prefix
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (TSFlags & X86II::FormMask) {
 | 
						|
  case X86II::MRMSrcReg:
 | 
						|
    if (MI.getOperand(0).isReg() &&
 | 
						|
        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
 | 
						|
      REX |= 1 << 2; // set REX.R
 | 
						|
    i = isTwoAddr ? 2 : 1;
 | 
						|
    for (; i != NumOps; ++i) {
 | 
						|
      const MCOperand &MO = MI.getOperand(i);
 | 
						|
      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
        REX |= 1 << 0; // set REX.B
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case X86II::MRMSrcMem: {
 | 
						|
    if (MI.getOperand(0).isReg() &&
 | 
						|
        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
 | 
						|
      REX |= 1 << 2; // set REX.R
 | 
						|
    unsigned Bit = 0;
 | 
						|
    i = isTwoAddr ? 2 : 1;
 | 
						|
    for (; i != NumOps; ++i) {
 | 
						|
      const MCOperand &MO = MI.getOperand(i);
 | 
						|
      if (MO.isReg()) {
 | 
						|
        if (X86II::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
 | 
						|
        Bit++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::MRMXm:
 | 
						|
  case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
  case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
  case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
  case X86II::MRM6m: case X86II::MRM7m:
 | 
						|
  case X86II::MRMDestMem: {
 | 
						|
    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
 | 
						|
    i = isTwoAddr ? 1 : 0;
 | 
						|
    if (NumOps > e && MI.getOperand(e).isReg() &&
 | 
						|
        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
 | 
						|
      REX |= 1 << 2; // set REX.R
 | 
						|
    unsigned Bit = 0;
 | 
						|
    for (; i != e; ++i) {
 | 
						|
      const MCOperand &MO = MI.getOperand(i);
 | 
						|
      if (MO.isReg()) {
 | 
						|
        if (X86II::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
 | 
						|
        Bit++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    if (MI.getOperand(0).isReg() &&
 | 
						|
        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
 | 
						|
      REX |= 1 << 0; // set REX.B
 | 
						|
    i = isTwoAddr ? 2 : 1;
 | 
						|
    for (unsigned e = NumOps; i != e; ++i) {
 | 
						|
      const MCOperand &MO = MI.getOperand(i);
 | 
						|
      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
        REX |= 1 << 2; // set REX.R
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (REX && UsesHighByteReg)
 | 
						|
    report_fatal_error("Cannot encode high byte register in REX-prefixed instruction");
 | 
						|
 | 
						|
  return REX;
 | 
						|
}
 | 
						|
 | 
						|
/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
 | 
						|
void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
 | 
						|
                                                 unsigned SegOperand,
 | 
						|
                                                 const MCInst &MI,
 | 
						|
                                                 raw_ostream &OS) const {
 | 
						|
  // Check for explicit segment override on memory operand.
 | 
						|
  switch (MI.getOperand(SegOperand).getReg()) {
 | 
						|
  default: llvm_unreachable("Unknown segment register!");
 | 
						|
  case 0: break;
 | 
						|
  case X86::CS: EmitByte(0x2E, CurByte, OS); break;
 | 
						|
  case X86::SS: EmitByte(0x36, CurByte, OS); break;
 | 
						|
  case X86::DS: EmitByte(0x3E, CurByte, OS); break;
 | 
						|
  case X86::ES: EmitByte(0x26, CurByte, OS); break;
 | 
						|
  case X86::FS: EmitByte(0x64, CurByte, OS); break;
 | 
						|
  case X86::GS: EmitByte(0x65, CurByte, OS); break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
 | 
						|
///
 | 
						|
/// MemOperand is the operand # of the start of a memory operand if present.  If
 | 
						|
/// Not present, it is -1.
 | 
						|
void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
 | 
						|
                                        int MemOperand, const MCInst &MI,
 | 
						|
                                        const MCInstrDesc &Desc,
 | 
						|
                                        const MCSubtargetInfo &STI,
 | 
						|
                                        raw_ostream &OS) const {
 | 
						|
 | 
						|
  // Emit the operand size opcode prefix as needed.
 | 
						|
  if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
 | 
						|
                                                         : X86II::OpSize16))
 | 
						|
    EmitByte(0x66, CurByte, OS);
 | 
						|
 | 
						|
  // Emit the LOCK opcode prefix.
 | 
						|
  if (TSFlags & X86II::LOCK)
 | 
						|
    EmitByte(0xF0, CurByte, OS);
 | 
						|
 | 
						|
  switch (TSFlags & X86II::OpPrefixMask) {
 | 
						|
  case X86II::PD:   // 66
 | 
						|
    EmitByte(0x66, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::XS:   // F3
 | 
						|
    EmitByte(0xF3, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::XD:   // F2
 | 
						|
    EmitByte(0xF2, CurByte, OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle REX prefix.
 | 
						|
  // FIXME: Can this come before F2 etc to simplify emission?
 | 
						|
  if (is64BitMode(STI)) {
 | 
						|
    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
 | 
						|
      EmitByte(0x40 | REX, CurByte, OS);
 | 
						|
  }
 | 
						|
 | 
						|
  // 0x0F escape code must be emitted just before the opcode.
 | 
						|
  switch (TSFlags & X86II::OpMapMask) {
 | 
						|
  case X86II::TB:  // Two-byte opcode map
 | 
						|
  case X86II::T8:  // 0F 38
 | 
						|
  case X86II::TA:  // 0F 3A
 | 
						|
    EmitByte(0x0F, CurByte, OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (TSFlags & X86II::OpMapMask) {
 | 
						|
  case X86II::T8:    // 0F 38
 | 
						|
    EmitByte(0x38, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::TA:    // 0F 3A
 | 
						|
    EmitByte(0x3A, CurByte, OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void X86MCCodeEmitter::
 | 
						|
encodeInstruction(const MCInst &MI, raw_ostream &OS,
 | 
						|
                  SmallVectorImpl<MCFixup> &Fixups,
 | 
						|
                  const MCSubtargetInfo &STI) const {
 | 
						|
  unsigned Opcode = MI.getOpcode();
 | 
						|
  const MCInstrDesc &Desc = MCII.get(Opcode);
 | 
						|
  uint64_t TSFlags = Desc.TSFlags;
 | 
						|
 | 
						|
  // Pseudo instructions don't get encoded.
 | 
						|
  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned NumOps = Desc.getNumOperands();
 | 
						|
  unsigned CurOp = X86II::getOperandBias(Desc);
 | 
						|
 | 
						|
  // Keep track of the current byte being emitted.
 | 
						|
  unsigned CurByte = 0;
 | 
						|
 | 
						|
  // Encoding type for this instruction.
 | 
						|
  uint64_t Encoding = TSFlags & X86II::EncodingMask;
 | 
						|
 | 
						|
  // It uses the VEX.VVVV field?
 | 
						|
  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
 | 
						|
  bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
 | 
						|
  bool HasMemOp4 = TSFlags & X86II::MemOp4;
 | 
						|
  const unsigned MemOp4_I8IMMOperand = 2;
 | 
						|
 | 
						|
  // It uses the EVEX.aaa field?
 | 
						|
  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
 | 
						|
  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
 | 
						|
 | 
						|
  // Determine where the memory operand starts, if present.
 | 
						|
  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
 | 
						|
  if (MemoryOperand != -1) MemoryOperand += CurOp;
 | 
						|
 | 
						|
  // Emit segment override opcode prefix as needed.
 | 
						|
  if (MemoryOperand >= 0)
 | 
						|
    EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
 | 
						|
                              MI, OS);
 | 
						|
 | 
						|
  // Emit the repeat opcode prefix as needed.
 | 
						|
  if (TSFlags & X86II::REP)
 | 
						|
    EmitByte(0xF3, CurByte, OS);
 | 
						|
 | 
						|
  // Emit the address size opcode prefix as needed.
 | 
						|
  bool need_address_override;
 | 
						|
  uint64_t AdSize = TSFlags & X86II::AdSizeMask;
 | 
						|
  if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
 | 
						|
      (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
 | 
						|
      (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
 | 
						|
    need_address_override = true;
 | 
						|
  } else if (MemoryOperand < 0) {
 | 
						|
    need_address_override = false;
 | 
						|
  } else if (is64BitMode(STI)) {
 | 
						|
    assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
 | 
						|
    need_address_override = Is32BitMemOperand(MI, MemoryOperand);
 | 
						|
  } else if (is32BitMode(STI)) {
 | 
						|
    assert(!Is64BitMemOperand(MI, MemoryOperand));
 | 
						|
    need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
 | 
						|
  } else {
 | 
						|
    assert(is16BitMode(STI));
 | 
						|
    assert(!Is64BitMemOperand(MI, MemoryOperand));
 | 
						|
    need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
 | 
						|
  }
 | 
						|
 | 
						|
  if (need_address_override)
 | 
						|
    EmitByte(0x67, CurByte, OS);
 | 
						|
 | 
						|
  if (Encoding == 0)
 | 
						|
    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
 | 
						|
  else
 | 
						|
    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
 | 
						|
 | 
						|
  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
 | 
						|
 | 
						|
  if (TSFlags & X86II::Has3DNow0F0FOpcode)
 | 
						|
    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
 | 
						|
 | 
						|
  unsigned SrcRegNum = 0;
 | 
						|
  switch (TSFlags & X86II::FormMask) {
 | 
						|
  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
 | 
						|
    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
 | 
						|
  case X86II::Pseudo:
 | 
						|
    llvm_unreachable("Pseudo instruction shouldn't be emitted");
 | 
						|
  case X86II::RawFrmDstSrc: {
 | 
						|
    unsigned siReg = MI.getOperand(1).getReg();
 | 
						|
    assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
 | 
						|
            (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
 | 
						|
            (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
 | 
						|
           "SI and DI register sizes do not match");
 | 
						|
    // Emit segment override opcode prefix as needed (not for %ds).
 | 
						|
    if (MI.getOperand(2).getReg() != X86::DS)
 | 
						|
      EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
 | 
						|
    // Emit AdSize prefix as needed.
 | 
						|
    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
 | 
						|
        (is32BitMode(STI) && siReg == X86::SI))
 | 
						|
      EmitByte(0x67, CurByte, OS);
 | 
						|
    CurOp += 3; // Consume operands.
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::RawFrmSrc: {
 | 
						|
    unsigned siReg = MI.getOperand(0).getReg();
 | 
						|
    // Emit segment override opcode prefix as needed (not for %ds).
 | 
						|
    if (MI.getOperand(1).getReg() != X86::DS)
 | 
						|
      EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
 | 
						|
    // Emit AdSize prefix as needed.
 | 
						|
    if ((!is32BitMode(STI) && siReg == X86::ESI) ||
 | 
						|
        (is32BitMode(STI) && siReg == X86::SI))
 | 
						|
      EmitByte(0x67, CurByte, OS);
 | 
						|
    CurOp += 2; // Consume operands.
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::RawFrmDst: {
 | 
						|
    unsigned siReg = MI.getOperand(0).getReg();
 | 
						|
    // Emit AdSize prefix as needed.
 | 
						|
    if ((!is32BitMode(STI) && siReg == X86::EDI) ||
 | 
						|
        (is32BitMode(STI) && siReg == X86::DI))
 | 
						|
      EmitByte(0x67, CurByte, OS);
 | 
						|
    ++CurOp; // Consume operand.
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::RawFrm:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::RawFrmMemOffs:
 | 
						|
    // Emit segment override opcode prefix as needed.
 | 
						|
    EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
 | 
						|
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
 | 
						|
                  CurByte, OS, Fixups);
 | 
						|
    ++CurOp; // skip segment operand
 | 
						|
    break;
 | 
						|
  case X86II::RawFrmImm8:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
 | 
						|
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
 | 
						|
                  CurByte, OS, Fixups);
 | 
						|
    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
 | 
						|
                  OS, Fixups);
 | 
						|
    break;
 | 
						|
  case X86II::RawFrmImm16:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
 | 
						|
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
 | 
						|
                  CurByte, OS, Fixups);
 | 
						|
    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
 | 
						|
                  OS, Fixups);
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::AddRegFrm:
 | 
						|
    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMDestReg:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    SrcRegNum = CurOp + 1;
 | 
						|
 | 
						|
    if (HasEVEX_K) // Skip writemask
 | 
						|
      SrcRegNum++;
 | 
						|
 | 
						|
    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
 | 
						|
      ++SrcRegNum;
 | 
						|
 | 
						|
    EmitRegModRMByte(MI.getOperand(CurOp),
 | 
						|
                     GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
 | 
						|
    CurOp = SrcRegNum + 1;
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMDestMem:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    SrcRegNum = CurOp + X86::AddrNumOperands;
 | 
						|
 | 
						|
    if (HasEVEX_K) // Skip writemask
 | 
						|
      SrcRegNum++;
 | 
						|
 | 
						|
    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
 | 
						|
      ++SrcRegNum;
 | 
						|
 | 
						|
    EmitMemModRMByte(MI, CurOp,
 | 
						|
                     GetX86RegNum(MI.getOperand(SrcRegNum)),
 | 
						|
                     TSFlags, CurByte, OS, Fixups, STI);
 | 
						|
    CurOp = SrcRegNum + 1;
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMSrcReg:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    SrcRegNum = CurOp + 1;
 | 
						|
 | 
						|
    if (HasEVEX_K) // Skip writemask
 | 
						|
      SrcRegNum++;
 | 
						|
 | 
						|
    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
 | 
						|
      ++SrcRegNum;
 | 
						|
 | 
						|
    if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
 | 
						|
      ++SrcRegNum;
 | 
						|
 | 
						|
    EmitRegModRMByte(MI.getOperand(SrcRegNum),
 | 
						|
                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
 | 
						|
 | 
						|
    // 2 operands skipped with HasMemOp4, compensate accordingly
 | 
						|
    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
 | 
						|
    if (HasVEX_4VOp3)
 | 
						|
      ++CurOp;
 | 
						|
    // do not count the rounding control operand
 | 
						|
    if (HasEVEX_RC)
 | 
						|
      NumOps--;
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMSrcMem: {
 | 
						|
    int AddrOperands = X86::AddrNumOperands;
 | 
						|
    unsigned FirstMemOp = CurOp+1;
 | 
						|
 | 
						|
    if (HasEVEX_K) { // Skip writemask
 | 
						|
      ++AddrOperands;
 | 
						|
      ++FirstMemOp;
 | 
						|
    }
 | 
						|
 | 
						|
    if (HasVEX_4V) {
 | 
						|
      ++AddrOperands;
 | 
						|
      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
 | 
						|
    }
 | 
						|
    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
 | 
						|
      ++FirstMemOp;
 | 
						|
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
 | 
						|
    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
 | 
						|
                     TSFlags, CurByte, OS, Fixups, STI);
 | 
						|
    CurOp += AddrOperands + 1;
 | 
						|
    if (HasVEX_4VOp3)
 | 
						|
      ++CurOp;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMXr:
 | 
						|
  case X86II::MRM0r: case X86II::MRM1r:
 | 
						|
  case X86II::MRM2r: case X86II::MRM3r:
 | 
						|
  case X86II::MRM4r: case X86II::MRM5r:
 | 
						|
  case X86II::MRM6r: case X86II::MRM7r: {
 | 
						|
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
 | 
						|
      ++CurOp;
 | 
						|
    if (HasEVEX_K) // Skip writemask
 | 
						|
      ++CurOp;
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    uint64_t Form = TSFlags & X86II::FormMask;
 | 
						|
    EmitRegModRMByte(MI.getOperand(CurOp++),
 | 
						|
                     (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
 | 
						|
                     CurByte, OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMXm:
 | 
						|
  case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
  case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
  case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
  case X86II::MRM6m: case X86II::MRM7m: {
 | 
						|
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
 | 
						|
      ++CurOp;
 | 
						|
    if (HasEVEX_K) // Skip writemask
 | 
						|
      ++CurOp;
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    uint64_t Form = TSFlags & X86II::FormMask;
 | 
						|
    EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
 | 
						|
                     TSFlags, CurByte, OS, Fixups, STI);
 | 
						|
    CurOp += X86::AddrNumOperands;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
 | 
						|
  case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
 | 
						|
  case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
 | 
						|
  case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
 | 
						|
  case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
 | 
						|
  case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
 | 
						|
  case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
 | 
						|
  case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
 | 
						|
  case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
 | 
						|
  case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
 | 
						|
  case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
 | 
						|
  case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
 | 
						|
  case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
 | 
						|
  case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
 | 
						|
  case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
 | 
						|
  case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
 | 
						|
  case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
 | 
						|
  case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
 | 
						|
  case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
 | 
						|
  case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
 | 
						|
  case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
 | 
						|
  case X86II::MRM_FF:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
 | 
						|
    uint64_t Form = TSFlags & X86II::FormMask;
 | 
						|
    EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is a remaining operand, it must be a trailing immediate.  Emit it
 | 
						|
  // according to the right size for the instruction. Some instructions
 | 
						|
  // (SSE4a extrq and insertq) have two trailing immediates.
 | 
						|
  while (CurOp != NumOps && NumOps - CurOp <= 2) {
 | 
						|
    // The last source register of a 4 operand instruction in AVX is encoded
 | 
						|
    // in bits[7:4] of a immediate byte.
 | 
						|
    if (TSFlags & X86II::VEX_I8IMM) {
 | 
						|
      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
 | 
						|
                                                    : CurOp);
 | 
						|
      ++CurOp;
 | 
						|
      unsigned RegNum = GetX86RegNum(MO) << 4;
 | 
						|
      if (X86II::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
        RegNum |= 1 << 7;
 | 
						|
      // If there is an additional 5th operand it must be an immediate, which
 | 
						|
      // is encoded in bits[3:0]
 | 
						|
      if (CurOp != NumOps) {
 | 
						|
        const MCOperand &MIMM = MI.getOperand(CurOp++);
 | 
						|
        if (MIMM.isImm()) {
 | 
						|
          unsigned Val = MIMM.getImm();
 | 
						|
          assert(Val < 16 && "Immediate operand value out of range");
 | 
						|
          RegNum |= Val;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      EmitImmediate(MCOperand::createImm(RegNum), MI.getLoc(), 1, FK_Data_1,
 | 
						|
                    CurByte, OS, Fixups);
 | 
						|
    } else {
 | 
						|
      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
 | 
						|
                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
 | 
						|
                    CurByte, OS, Fixups);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (TSFlags & X86II::Has3DNow0F0FOpcode)
 | 
						|
    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // FIXME: Verify.
 | 
						|
  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
 | 
						|
    errs() << "Cannot encode all operands of: ";
 | 
						|
    MI.dump();
 | 
						|
    errs() << '\n';
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 |