931 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			931 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Loops should be simplified before this analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <deque>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "block-freq"
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// UnsignedFloat implementation.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#ifndef _MSC_VER
 | 
						|
const int32_t UnsignedFloatBase::MaxExponent;
 | 
						|
const int32_t UnsignedFloatBase::MinExponent;
 | 
						|
#endif
 | 
						|
 | 
						|
static void appendDigit(std::string &Str, unsigned D) {
 | 
						|
  assert(D < 10);
 | 
						|
  Str += '0' + D % 10;
 | 
						|
}
 | 
						|
 | 
						|
static void appendNumber(std::string &Str, uint64_t N) {
 | 
						|
  while (N) {
 | 
						|
    appendDigit(Str, N % 10);
 | 
						|
    N /= 10;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool doesRoundUp(char Digit) {
 | 
						|
  switch (Digit) {
 | 
						|
  case '5':
 | 
						|
  case '6':
 | 
						|
  case '7':
 | 
						|
  case '8':
 | 
						|
  case '9':
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
 | 
						|
  assert(E >= UnsignedFloatBase::MinExponent);
 | 
						|
  assert(E <= UnsignedFloatBase::MaxExponent);
 | 
						|
 | 
						|
  // Find a new E, but don't let it increase past MaxExponent.
 | 
						|
  int LeadingZeros = UnsignedFloatBase::countLeadingZeros64(D);
 | 
						|
  int NewE = std::min(UnsignedFloatBase::MaxExponent, E + 63 - LeadingZeros);
 | 
						|
  int Shift = 63 - (NewE - E);
 | 
						|
  assert(Shift <= LeadingZeros);
 | 
						|
  assert(Shift == LeadingZeros || NewE == UnsignedFloatBase::MaxExponent);
 | 
						|
  D <<= Shift;
 | 
						|
  E = NewE;
 | 
						|
 | 
						|
  // Check for a denormal.
 | 
						|
  unsigned AdjustedE = E + 16383;
 | 
						|
  if (!(D >> 63)) {
 | 
						|
    assert(E == UnsignedFloatBase::MaxExponent);
 | 
						|
    AdjustedE = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the float and print it.
 | 
						|
  uint64_t RawBits[2] = {D, AdjustedE};
 | 
						|
  APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
 | 
						|
  SmallVector<char, 24> Chars;
 | 
						|
  Float.toString(Chars, Precision, 0);
 | 
						|
  return std::string(Chars.begin(), Chars.end());
 | 
						|
}
 | 
						|
 | 
						|
static std::string stripTrailingZeros(const std::string &Float) {
 | 
						|
  size_t NonZero = Float.find_last_not_of('0');
 | 
						|
  assert(NonZero != std::string::npos && "no . in floating point string");
 | 
						|
 | 
						|
  if (Float[NonZero] == '.')
 | 
						|
    ++NonZero;
 | 
						|
 | 
						|
  return Float.substr(0, NonZero + 1);
 | 
						|
}
 | 
						|
 | 
						|
std::string UnsignedFloatBase::toString(uint64_t D, int16_t E, int Width,
 | 
						|
                                        unsigned Precision) {
 | 
						|
  if (!D)
 | 
						|
    return "0.0";
 | 
						|
 | 
						|
  // Canonicalize exponent and digits.
 | 
						|
  uint64_t Above0 = 0;
 | 
						|
  uint64_t Below0 = 0;
 | 
						|
  uint64_t Extra = 0;
 | 
						|
  int ExtraShift = 0;
 | 
						|
  if (E == 0) {
 | 
						|
    Above0 = D;
 | 
						|
  } else if (E > 0) {
 | 
						|
    if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
 | 
						|
      D <<= Shift;
 | 
						|
      E -= Shift;
 | 
						|
 | 
						|
      if (!E)
 | 
						|
        Above0 = D;
 | 
						|
    }
 | 
						|
  } else if (E > -64) {
 | 
						|
    Above0 = D >> -E;
 | 
						|
    Below0 = D << (64 + E);
 | 
						|
  } else if (E > -120) {
 | 
						|
    Below0 = D >> (-E - 64);
 | 
						|
    Extra = D << (128 + E);
 | 
						|
    ExtraShift = -64 - E;
 | 
						|
  }
 | 
						|
 | 
						|
  // Fall back on APFloat for very small and very large numbers.
 | 
						|
  if (!Above0 && !Below0)
 | 
						|
    return toStringAPFloat(D, E, Precision);
 | 
						|
 | 
						|
  // Append the digits before the decimal.
 | 
						|
  std::string Str;
 | 
						|
  size_t DigitsOut = 0;
 | 
						|
  if (Above0) {
 | 
						|
    appendNumber(Str, Above0);
 | 
						|
    DigitsOut = Str.size();
 | 
						|
  } else
 | 
						|
    appendDigit(Str, 0);
 | 
						|
  std::reverse(Str.begin(), Str.end());
 | 
						|
 | 
						|
  // Return early if there's nothing after the decimal.
 | 
						|
  if (!Below0)
 | 
						|
    return Str + ".0";
 | 
						|
 | 
						|
  // Append the decimal and beyond.
 | 
						|
  Str += '.';
 | 
						|
  uint64_t Error = UINT64_C(1) << (64 - Width);
 | 
						|
 | 
						|
  // We need to shift Below0 to the right to make space for calculating
 | 
						|
  // digits.  Save the precision we're losing in Extra.
 | 
						|
  Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
 | 
						|
  Below0 >>= 4;
 | 
						|
  size_t SinceDot = 0;
 | 
						|
  size_t AfterDot = Str.size();
 | 
						|
  do {
 | 
						|
    if (ExtraShift) {
 | 
						|
      --ExtraShift;
 | 
						|
      Error *= 5;
 | 
						|
    } else
 | 
						|
      Error *= 10;
 | 
						|
 | 
						|
    Below0 *= 10;
 | 
						|
    Extra *= 10;
 | 
						|
    Below0 += (Extra >> 60);
 | 
						|
    Extra = Extra & (UINT64_MAX >> 4);
 | 
						|
    appendDigit(Str, Below0 >> 60);
 | 
						|
    Below0 = Below0 & (UINT64_MAX >> 4);
 | 
						|
    if (DigitsOut || Str.back() != '0')
 | 
						|
      ++DigitsOut;
 | 
						|
    ++SinceDot;
 | 
						|
  } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
 | 
						|
           (!Precision || DigitsOut <= Precision || SinceDot < 2));
 | 
						|
 | 
						|
  // Return early for maximum precision.
 | 
						|
  if (!Precision || DigitsOut <= Precision)
 | 
						|
    return stripTrailingZeros(Str);
 | 
						|
 | 
						|
  // Find where to truncate.
 | 
						|
  size_t Truncate =
 | 
						|
      std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
 | 
						|
 | 
						|
  // Check if there's anything to truncate.
 | 
						|
  if (Truncate >= Str.size())
 | 
						|
    return stripTrailingZeros(Str);
 | 
						|
 | 
						|
  bool Carry = doesRoundUp(Str[Truncate]);
 | 
						|
  if (!Carry)
 | 
						|
    return stripTrailingZeros(Str.substr(0, Truncate));
 | 
						|
 | 
						|
  // Round with the first truncated digit.
 | 
						|
  for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (*I == '.')
 | 
						|
      continue;
 | 
						|
    if (*I == '9') {
 | 
						|
      *I = '0';
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ++*I;
 | 
						|
    Carry = false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add "1" in front if we still need to carry.
 | 
						|
  return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &UnsignedFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E,
 | 
						|
                                      int Width, unsigned Precision) {
 | 
						|
  return OS << toString(D, E, Width, Precision);
 | 
						|
}
 | 
						|
 | 
						|
void UnsignedFloatBase::dump(uint64_t D, int16_t E, int Width) {
 | 
						|
  print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
 | 
						|
                                << "]";
 | 
						|
}
 | 
						|
 | 
						|
static std::pair<uint64_t, int16_t>
 | 
						|
getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
 | 
						|
  if (ShouldRound)
 | 
						|
    if (!++N)
 | 
						|
      // Rounding caused an overflow.
 | 
						|
      return std::make_pair(UINT64_C(1), Shift + 64);
 | 
						|
  return std::make_pair(N, Shift);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<uint64_t, int16_t> UnsignedFloatBase::divide64(uint64_t Dividend,
 | 
						|
                                                         uint64_t Divisor) {
 | 
						|
  // Input should be sanitized.
 | 
						|
  assert(Divisor);
 | 
						|
  assert(Dividend);
 | 
						|
 | 
						|
  // Minimize size of divisor.
 | 
						|
  int16_t Shift = 0;
 | 
						|
  if (int Zeros = countTrailingZeros(Divisor)) {
 | 
						|
    Shift -= Zeros;
 | 
						|
    Divisor >>= Zeros;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for powers of two.
 | 
						|
  if (Divisor == 1)
 | 
						|
    return std::make_pair(Dividend, Shift);
 | 
						|
 | 
						|
  // Maximize size of dividend.
 | 
						|
  if (int Zeros = countLeadingZeros64(Dividend)) {
 | 
						|
    Shift -= Zeros;
 | 
						|
    Dividend <<= Zeros;
 | 
						|
  }
 | 
						|
 | 
						|
  // Start with the result of a divide.
 | 
						|
  uint64_t Quotient = Dividend / Divisor;
 | 
						|
  Dividend %= Divisor;
 | 
						|
 | 
						|
  // Continue building the quotient with long division.
 | 
						|
  //
 | 
						|
  // TODO: continue with largers digits.
 | 
						|
  while (!(Quotient >> 63) && Dividend) {
 | 
						|
    // Shift Dividend, and check for overflow.
 | 
						|
    bool IsOverflow = Dividend >> 63;
 | 
						|
    Dividend <<= 1;
 | 
						|
    --Shift;
 | 
						|
 | 
						|
    // Divide.
 | 
						|
    bool DoesDivide = IsOverflow || Divisor <= Dividend;
 | 
						|
    Quotient = (Quotient << 1) | uint64_t(DoesDivide);
 | 
						|
    Dividend -= DoesDivide ? Divisor : 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Round.
 | 
						|
  if (Dividend >= getHalf(Divisor))
 | 
						|
    if (!++Quotient)
 | 
						|
      // Rounding caused an overflow in Quotient.
 | 
						|
      return std::make_pair(UINT64_C(1), Shift + 64);
 | 
						|
 | 
						|
  return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<uint64_t, int16_t> UnsignedFloatBase::multiply64(uint64_t L,
 | 
						|
                                                           uint64_t R) {
 | 
						|
  // Separate into two 32-bit digits (U.L).
 | 
						|
  uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;
 | 
						|
 | 
						|
  // Compute cross products.
 | 
						|
  uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
 | 
						|
 | 
						|
  // Sum into two 64-bit digits.
 | 
						|
  uint64_t Upper = P1, Lower = P4;
 | 
						|
  auto addWithCarry = [&](uint64_t N) {
 | 
						|
    uint64_t NewLower = Lower + (N << 32);
 | 
						|
    Upper += (N >> 32) + (NewLower < Lower);
 | 
						|
    Lower = NewLower;
 | 
						|
  };
 | 
						|
  addWithCarry(P2);
 | 
						|
  addWithCarry(P3);
 | 
						|
 | 
						|
  // Check whether the upper digit is empty.
 | 
						|
  if (!Upper)
 | 
						|
    return std::make_pair(Lower, 0);
 | 
						|
 | 
						|
  // Shift as little as possible to maximize precision.
 | 
						|
  unsigned LeadingZeros = countLeadingZeros64(Upper);
 | 
						|
  int16_t Shift = 64 - LeadingZeros;
 | 
						|
  if (LeadingZeros)
 | 
						|
    Upper = Upper << LeadingZeros | Lower >> Shift;
 | 
						|
  bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
 | 
						|
  return getRoundedFloat(Upper, ShouldRound, Shift);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// BlockMass implementation.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
BlockMass &BlockMass::operator*=(const BranchProbability &P) {
 | 
						|
  uint32_t N = P.getNumerator(), D = P.getDenominator();
 | 
						|
  assert(D && "divide by 0");
 | 
						|
  assert(N <= D && "fraction greater than 1");
 | 
						|
 | 
						|
  // Fast path for multiplying by 1.0.
 | 
						|
  if (!Mass || N == D)
 | 
						|
    return *this;
 | 
						|
 | 
						|
  // Get as much precision as we can.
 | 
						|
  int Shift = countLeadingZeros(Mass);
 | 
						|
  uint64_t ShiftedQuotient = (Mass << Shift) / D;
 | 
						|
  uint64_t Product = ShiftedQuotient * N >> Shift;
 | 
						|
 | 
						|
  // Now check for what's lost.
 | 
						|
  uint64_t Left = ShiftedQuotient * (D - N) >> Shift;
 | 
						|
  uint64_t Lost = Mass - Product - Left;
 | 
						|
 | 
						|
  // TODO: prove this assertion.
 | 
						|
  assert(Lost <= UINT32_MAX);
 | 
						|
 | 
						|
  // Take the product plus a portion of the spoils.
 | 
						|
  Mass = Product + Lost * N / D;
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
UnsignedFloat<uint64_t> BlockMass::toFloat() const {
 | 
						|
  if (isFull())
 | 
						|
    return UnsignedFloat<uint64_t>(1, 0);
 | 
						|
  return UnsignedFloat<uint64_t>(getMass() + 1, -64);
 | 
						|
}
 | 
						|
 | 
						|
void BlockMass::dump() const { print(dbgs()); }
 | 
						|
 | 
						|
static char getHexDigit(int N) {
 | 
						|
  assert(N < 16);
 | 
						|
  if (N < 10)
 | 
						|
    return '0' + N;
 | 
						|
  return 'a' + N - 10;
 | 
						|
}
 | 
						|
raw_ostream &BlockMass::print(raw_ostream &OS) const {
 | 
						|
  for (int Digits = 0; Digits < 16; ++Digits)
 | 
						|
    OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// BlockFrequencyInfoImpl implementation.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
namespace {
 | 
						|
 | 
						|
typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
 | 
						|
typedef BlockFrequencyInfoImplBase::Distribution Distribution;
 | 
						|
typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
 | 
						|
typedef BlockFrequencyInfoImplBase::Float Float;
 | 
						|
typedef BlockFrequencyInfoImplBase::PackagedLoopData PackagedLoopData;
 | 
						|
typedef BlockFrequencyInfoImplBase::Weight Weight;
 | 
						|
typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
 | 
						|
 | 
						|
/// \brief Dithering mass distributer.
 | 
						|
///
 | 
						|
/// This class splits up a single mass into portions by weight, dithering to
 | 
						|
/// spread out error.  No mass is lost.  The dithering precision depends on the
 | 
						|
/// precision of the product of \a BlockMass and \a BranchProbability.
 | 
						|
///
 | 
						|
/// The distribution algorithm follows.
 | 
						|
///
 | 
						|
///  1. Initialize by saving the sum of the weights in \a RemWeight and the
 | 
						|
///     mass to distribute in \a RemMass.
 | 
						|
///
 | 
						|
///  2. For each portion:
 | 
						|
///
 | 
						|
///      1. Construct a branch probability, P, as the portion's weight divided
 | 
						|
///         by the current value of \a RemWeight.
 | 
						|
///      2. Calculate the portion's mass as \a RemMass times P.
 | 
						|
///      3. Update \a RemWeight and \a RemMass at each portion by subtracting
 | 
						|
///         the current portion's weight and mass.
 | 
						|
///
 | 
						|
/// Mass is distributed in two ways: full distribution and forward
 | 
						|
/// distribution.  The latter ignores backedges, and uses the parallel fields
 | 
						|
/// \a RemForwardWeight and \a RemForwardMass.
 | 
						|
struct DitheringDistributer {
 | 
						|
  uint32_t RemWeight;
 | 
						|
  uint32_t RemForwardWeight;
 | 
						|
 | 
						|
  BlockMass RemMass;
 | 
						|
  BlockMass RemForwardMass;
 | 
						|
 | 
						|
  DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
 | 
						|
 | 
						|
  BlockMass takeLocalMass(uint32_t Weight) {
 | 
						|
    (void)takeMass(Weight);
 | 
						|
    return takeForwardMass(Weight);
 | 
						|
  }
 | 
						|
  BlockMass takeExitMass(uint32_t Weight) {
 | 
						|
    (void)takeForwardMass(Weight);
 | 
						|
    return takeMass(Weight);
 | 
						|
  }
 | 
						|
  BlockMass takeBackedgeMass(uint32_t Weight) { return takeMass(Weight); }
 | 
						|
 | 
						|
private:
 | 
						|
  BlockMass takeForwardMass(uint32_t Weight);
 | 
						|
  BlockMass takeMass(uint32_t Weight);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
DitheringDistributer::DitheringDistributer(Distribution &Dist,
 | 
						|
                                           const BlockMass &Mass) {
 | 
						|
  Dist.normalize();
 | 
						|
  RemWeight = Dist.Total;
 | 
						|
  RemForwardWeight = Dist.ForwardTotal;
 | 
						|
  RemMass = Mass;
 | 
						|
  RemForwardMass = Dist.ForwardTotal ? Mass : BlockMass();
 | 
						|
}
 | 
						|
 | 
						|
BlockMass DitheringDistributer::takeForwardMass(uint32_t Weight) {
 | 
						|
  // Compute the amount of mass to take.
 | 
						|
  assert(Weight && "invalid weight");
 | 
						|
  assert(Weight <= RemForwardWeight);
 | 
						|
  BlockMass Mass = RemForwardMass * BranchProbability(Weight, RemForwardWeight);
 | 
						|
 | 
						|
  // Decrement totals (dither).
 | 
						|
  RemForwardWeight -= Weight;
 | 
						|
  RemForwardMass -= Mass;
 | 
						|
  return Mass;
 | 
						|
}
 | 
						|
BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
 | 
						|
  assert(Weight && "invalid weight");
 | 
						|
  assert(Weight <= RemWeight);
 | 
						|
  BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
 | 
						|
 | 
						|
  // Decrement totals (dither).
 | 
						|
  RemWeight -= Weight;
 | 
						|
  RemMass -= Mass;
 | 
						|
  return Mass;
 | 
						|
}
 | 
						|
 | 
						|
void Distribution::add(const BlockNode &Node, uint64_t Amount,
 | 
						|
                       Weight::DistType Type) {
 | 
						|
  assert(Amount && "invalid weight of 0");
 | 
						|
  uint64_t NewTotal = Total + Amount;
 | 
						|
 | 
						|
  // Check for overflow.  It should be impossible to overflow twice.
 | 
						|
  bool IsOverflow = NewTotal < Total;
 | 
						|
  assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
 | 
						|
  DidOverflow |= IsOverflow;
 | 
						|
 | 
						|
  // Update the total.
 | 
						|
  Total = NewTotal;
 | 
						|
 | 
						|
  // Save the weight.
 | 
						|
  Weight W;
 | 
						|
  W.TargetNode = Node;
 | 
						|
  W.Amount = Amount;
 | 
						|
  W.Type = Type;
 | 
						|
  Weights.push_back(W);
 | 
						|
 | 
						|
  if (Type == Weight::Backedge)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Update forward total.  Don't worry about overflow here, since then Total
 | 
						|
  // will exceed 32-bits and they'll both be recomputed in normalize().
 | 
						|
  ForwardTotal += Amount;
 | 
						|
}
 | 
						|
 | 
						|
static void combineWeight(Weight &W, const Weight &OtherW) {
 | 
						|
  assert(OtherW.TargetNode.isValid());
 | 
						|
  if (!W.Amount) {
 | 
						|
    W = OtherW;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  assert(W.Type == OtherW.Type);
 | 
						|
  assert(W.TargetNode == OtherW.TargetNode);
 | 
						|
  assert(W.Amount < W.Amount + OtherW.Amount);
 | 
						|
  W.Amount += OtherW.Amount;
 | 
						|
}
 | 
						|
static void combineWeightsBySorting(WeightList &Weights) {
 | 
						|
  // Sort so edges to the same node are adjacent.
 | 
						|
  std::sort(Weights.begin(), Weights.end(),
 | 
						|
            [](const Weight &L,
 | 
						|
               const Weight &R) { return L.TargetNode < R.TargetNode; });
 | 
						|
 | 
						|
  // Combine adjacent edges.
 | 
						|
  WeightList::iterator O = Weights.begin();
 | 
						|
  for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
 | 
						|
       ++O, (I = L)) {
 | 
						|
    *O = *I;
 | 
						|
 | 
						|
    // Find the adjacent weights to the same node.
 | 
						|
    for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
 | 
						|
      combineWeight(*O, *L);
 | 
						|
  }
 | 
						|
 | 
						|
  // Erase extra entries.
 | 
						|
  Weights.erase(O, Weights.end());
 | 
						|
  return;
 | 
						|
}
 | 
						|
static void combineWeightsByHashing(WeightList &Weights) {
 | 
						|
  // Collect weights into a DenseMap.
 | 
						|
  typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
 | 
						|
  HashTable Combined(NextPowerOf2(2 * Weights.size()));
 | 
						|
  for (const Weight &W : Weights)
 | 
						|
    combineWeight(Combined[W.TargetNode.Index], W);
 | 
						|
 | 
						|
  // Check whether anything changed.
 | 
						|
  if (Weights.size() == Combined.size())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Fill in the new weights.
 | 
						|
  Weights.clear();
 | 
						|
  Weights.reserve(Combined.size());
 | 
						|
  for (const auto &I : Combined)
 | 
						|
    Weights.push_back(I.second);
 | 
						|
}
 | 
						|
static void combineWeights(WeightList &Weights) {
 | 
						|
  // Use a hash table for many successors to keep this linear.
 | 
						|
  if (Weights.size() > 128) {
 | 
						|
    combineWeightsByHashing(Weights);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  combineWeightsBySorting(Weights);
 | 
						|
}
 | 
						|
static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
 | 
						|
  assert(Shift >= 0);
 | 
						|
  assert(Shift < 64);
 | 
						|
  if (!Shift)
 | 
						|
    return N;
 | 
						|
  return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
 | 
						|
}
 | 
						|
void Distribution::normalize() {
 | 
						|
  // Early exit for termination nodes.
 | 
						|
  if (Weights.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Only bother if there are multiple successors.
 | 
						|
  if (Weights.size() > 1)
 | 
						|
    combineWeights(Weights);
 | 
						|
 | 
						|
  // Early exit when combined into a single successor.
 | 
						|
  if (Weights.size() == 1) {
 | 
						|
    Total = 1;
 | 
						|
    ForwardTotal = Weights.front().Type != Weight::Backedge;
 | 
						|
    Weights.front().Amount = 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine how much to shift right so that the total fits into 32-bits.
 | 
						|
  //
 | 
						|
  // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1
 | 
						|
  // for each weight can cause a 32-bit overflow.
 | 
						|
  int Shift = 0;
 | 
						|
  if (DidOverflow)
 | 
						|
    Shift = 33;
 | 
						|
  else if (Total > UINT32_MAX)
 | 
						|
    Shift = 33 - countLeadingZeros(Total);
 | 
						|
 | 
						|
  // Early exit if nothing needs to be scaled.
 | 
						|
  if (!Shift)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Recompute the total through accumulation (rather than shifting it) so that
 | 
						|
  // it's accurate after shifting.  ForwardTotal is dirty here anyway.
 | 
						|
  Total = 0;
 | 
						|
  ForwardTotal = 0;
 | 
						|
 | 
						|
  // Sum the weights to each node and shift right if necessary.
 | 
						|
  for (Weight &W : Weights) {
 | 
						|
    // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we
 | 
						|
    // can round here without concern about overflow.
 | 
						|
    assert(W.TargetNode.isValid());
 | 
						|
    W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
 | 
						|
    assert(W.Amount <= UINT32_MAX);
 | 
						|
 | 
						|
    // Update the total.
 | 
						|
    Total += W.Amount;
 | 
						|
    if (W.Type == Weight::Backedge)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Update the forward total.
 | 
						|
    ForwardTotal += W.Amount;
 | 
						|
  }
 | 
						|
  assert(Total <= UINT32_MAX);
 | 
						|
}
 | 
						|
 | 
						|
void BlockFrequencyInfoImplBase::clear() {
 | 
						|
  *this = BlockFrequencyInfoImplBase();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Clear all memory not needed downstream.
 | 
						|
///
 | 
						|
/// Releases all memory not used downstream.  In particular, saves Freqs.
 | 
						|
static void cleanup(BlockFrequencyInfoImplBase &BFI) {
 | 
						|
  std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
 | 
						|
  BFI.clear();
 | 
						|
  BFI.Freqs = std::move(SavedFreqs);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get a possibly packaged node.
 | 
						|
///
 | 
						|
/// Get the node currently representing Node, which could be a containing
 | 
						|
/// loop.
 | 
						|
///
 | 
						|
/// This function should only be called when distributing mass.  As long as
 | 
						|
/// there are no irreducilbe edges to Node, then it will have complexity O(1)
 | 
						|
/// in this context.
 | 
						|
///
 | 
						|
/// In general, the complexity is O(L), where L is the number of loop headers
 | 
						|
/// Node has been packaged into.  Since this method is called in the context
 | 
						|
/// of distributing mass, L will be the number of loop headers an early exit
 | 
						|
/// edge jumps out of.
 | 
						|
static BlockNode getPackagedNode(const BlockFrequencyInfoImplBase &BFI,
 | 
						|
                                 const BlockNode &Node) {
 | 
						|
  assert(Node.isValid());
 | 
						|
  if (!BFI.Working[Node.Index].IsPackaged)
 | 
						|
    return Node;
 | 
						|
  if (!BFI.Working[Node.Index].ContainingLoop.isValid())
 | 
						|
    return Node;
 | 
						|
  return getPackagedNode(BFI, BFI.Working[Node.Index].ContainingLoop);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get the appropriate mass for a possible pseudo-node loop package.
 | 
						|
///
 | 
						|
/// Get appropriate mass for Node.  If Node is a loop-header (whose loop has
 | 
						|
/// been packaged), returns the mass of its pseudo-node.  If it's a node inside
 | 
						|
/// a packaged loop, it returns the loop's pseudo-node.
 | 
						|
static BlockMass &getPackageMass(BlockFrequencyInfoImplBase &BFI,
 | 
						|
                                 const BlockNode &Node) {
 | 
						|
  assert(Node.isValid());
 | 
						|
  assert(!BFI.Working[Node.Index].IsPackaged);
 | 
						|
  if (!BFI.Working[Node.Index].IsAPackage)
 | 
						|
    return BFI.Working[Node.Index].Mass;
 | 
						|
 | 
						|
  return BFI.getLoopPackage(Node).Mass;
 | 
						|
}
 | 
						|
 | 
						|
void BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
 | 
						|
                                           const BlockNode &LoopHead,
 | 
						|
                                           const BlockNode &Pred,
 | 
						|
                                           const BlockNode &Succ,
 | 
						|
                                           uint64_t Weight) {
 | 
						|
  if (!Weight)
 | 
						|
    Weight = 1;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  auto debugSuccessor = [&](const char *Type, const BlockNode &Resolved) {
 | 
						|
    dbgs() << "  =>"
 | 
						|
           << " [" << Type << "] weight = " << Weight;
 | 
						|
    if (Succ != LoopHead)
 | 
						|
      dbgs() << ", succ = " << getBlockName(Succ);
 | 
						|
    if (Resolved != Succ)
 | 
						|
      dbgs() << ", resolved = " << getBlockName(Resolved);
 | 
						|
    dbgs() << "\n";
 | 
						|
  };
 | 
						|
  (void)debugSuccessor;
 | 
						|
#endif
 | 
						|
 | 
						|
  if (Succ == LoopHead) {
 | 
						|
    DEBUG(debugSuccessor("backedge", Succ));
 | 
						|
    Dist.addBackedge(LoopHead, Weight);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  BlockNode Resolved = getPackagedNode(*this, Succ);
 | 
						|
  assert(Resolved != LoopHead);
 | 
						|
 | 
						|
  if (Working[Resolved.Index].ContainingLoop != LoopHead) {
 | 
						|
    DEBUG(debugSuccessor("  exit  ", Resolved));
 | 
						|
    Dist.addExit(Resolved, Weight);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!LoopHead.isValid() && Resolved < Pred) {
 | 
						|
    // Irreducible backedge.  Skip this edge in the distribution.
 | 
						|
    DEBUG(debugSuccessor("skipped ", Resolved));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(debugSuccessor(" local  ", Resolved));
 | 
						|
  Dist.addLocal(Resolved, Weight);
 | 
						|
}
 | 
						|
 | 
						|
void BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
 | 
						|
    const BlockNode &LoopHead, const BlockNode &LocalLoopHead,
 | 
						|
    Distribution &Dist) {
 | 
						|
  PackagedLoopData &LoopPackage = getLoopPackage(LocalLoopHead);
 | 
						|
  const PackagedLoopData::ExitMap &Exits = LoopPackage.Exits;
 | 
						|
 | 
						|
  // Copy the exit map into Dist.
 | 
						|
  for (const auto &I : Exits)
 | 
						|
    addToDist(Dist, LoopHead, LocalLoopHead, I.first, I.second.getMass());
 | 
						|
 | 
						|
  // We don't need this map any more.  Clear it to prevent quadratic memory
 | 
						|
  // usage in deeply nested loops with irreducible control flow.
 | 
						|
  LoopPackage.Exits.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get the maximum allowed loop scale.
 | 
						|
///
 | 
						|
/// Gives the maximum number of estimated iterations allowed for a loop.  Very
 | 
						|
/// large numbers cause problems downstream (even within 64-bits).
 | 
						|
static Float getMaxLoopScale() { return Float(1, 12); }
 | 
						|
 | 
						|
/// \brief Compute the loop scale for a loop.
 | 
						|
void BlockFrequencyInfoImplBase::computeLoopScale(const BlockNode &LoopHead) {
 | 
						|
  // Compute loop scale.
 | 
						|
  DEBUG(dbgs() << "compute-loop-scale: " << getBlockName(LoopHead) << "\n");
 | 
						|
 | 
						|
  // LoopScale == 1 / ExitMass
 | 
						|
  // ExitMass == HeadMass - BackedgeMass
 | 
						|
  PackagedLoopData &LoopPackage = getLoopPackage(LoopHead);
 | 
						|
  BlockMass ExitMass = BlockMass::getFull() - LoopPackage.BackedgeMass;
 | 
						|
 | 
						|
  // Block scale stores the inverse of the scale.
 | 
						|
  LoopPackage.Scale = ExitMass.toFloat().inverse();
 | 
						|
 | 
						|
  DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
 | 
						|
               << " - " << LoopPackage.BackedgeMass << ")\n"
 | 
						|
               << " - scale = " << LoopPackage.Scale << "\n");
 | 
						|
 | 
						|
  if (LoopPackage.Scale > getMaxLoopScale()) {
 | 
						|
    LoopPackage.Scale = getMaxLoopScale();
 | 
						|
    DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Package up a loop.
 | 
						|
void BlockFrequencyInfoImplBase::packageLoop(const BlockNode &LoopHead) {
 | 
						|
  DEBUG(dbgs() << "packaging-loop: " << getBlockName(LoopHead) << "\n");
 | 
						|
  Working[LoopHead.Index].IsAPackage = true;
 | 
						|
  for (const BlockNode &M : getLoopPackage(LoopHead).Members) {
 | 
						|
    DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
 | 
						|
    Working[M.Index].IsPackaged = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
 | 
						|
                                                const BlockNode &LoopHead,
 | 
						|
                                                Distribution &Dist) {
 | 
						|
  BlockMass Mass = getPackageMass(*this, Source);
 | 
						|
  DEBUG(dbgs() << "  => mass:  " << Mass
 | 
						|
               << " (    general     |    forward     )\n");
 | 
						|
 | 
						|
  // Distribute mass to successors as laid out in Dist.
 | 
						|
  DitheringDistributer D(Dist, Mass);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  auto debugAssign = [&](const BlockNode &T, const BlockMass &M,
 | 
						|
                         const char *Desc) {
 | 
						|
    dbgs() << "  => assign " << M << " (" << D.RemMass << "|"
 | 
						|
           << D.RemForwardMass << ")";
 | 
						|
    if (Desc)
 | 
						|
      dbgs() << " [" << Desc << "]";
 | 
						|
    if (T.isValid())
 | 
						|
      dbgs() << " to " << getBlockName(T);
 | 
						|
    dbgs() << "\n";
 | 
						|
  };
 | 
						|
  (void)debugAssign;
 | 
						|
#endif
 | 
						|
 | 
						|
  PackagedLoopData *LoopPackage = 0;
 | 
						|
  if (LoopHead.isValid())
 | 
						|
    LoopPackage = &getLoopPackage(LoopHead);
 | 
						|
  for (const Weight &W : Dist.Weights) {
 | 
						|
    // Check for a local edge (forward and non-exit).
 | 
						|
    if (W.Type == Weight::Local) {
 | 
						|
      BlockMass Local = D.takeLocalMass(W.Amount);
 | 
						|
      getPackageMass(*this, W.TargetNode) += Local;
 | 
						|
      DEBUG(debugAssign(W.TargetNode, Local, nullptr));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Backedges and exits only make sense if we're processing a loop.
 | 
						|
    assert(LoopPackage && "backedge or exit outside of loop");
 | 
						|
 | 
						|
    // Check for a backedge.
 | 
						|
    if (W.Type == Weight::Backedge) {
 | 
						|
      BlockMass Back = D.takeBackedgeMass(W.Amount);
 | 
						|
      LoopPackage->BackedgeMass += Back;
 | 
						|
      DEBUG(debugAssign(BlockNode(), Back, "back"));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // This must be an exit.
 | 
						|
    assert(W.Type == Weight::Exit);
 | 
						|
    BlockMass Exit = D.takeExitMass(W.Amount);
 | 
						|
    LoopPackage->Exits.push_back(std::make_pair(W.TargetNode, Exit));
 | 
						|
    DEBUG(debugAssign(W.TargetNode, Exit, "exit"));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
 | 
						|
                                     const Float &Min, const Float &Max) {
 | 
						|
  // Scale the Factor to a size that creates integers.  Ideally, integers would
 | 
						|
  // be scaled so that Max == UINT64_MAX so that they can be best
 | 
						|
  // differentiated.  However, the register allocator currently deals poorly
 | 
						|
  // with large numbers.  Instead, push Min up a little from 1 to give some
 | 
						|
  // room to differentiate small, unequal numbers.
 | 
						|
  //
 | 
						|
  // TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max.
 | 
						|
  Float ScalingFactor = Min.inverse();
 | 
						|
  if ((Max / Min).lg() < 60)
 | 
						|
    ScalingFactor <<= 3;
 | 
						|
 | 
						|
  // Translate the floats to integers.
 | 
						|
  DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
 | 
						|
               << ", factor = " << ScalingFactor << "\n");
 | 
						|
  for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
 | 
						|
    Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor;
 | 
						|
    BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
 | 
						|
    DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
 | 
						|
                 << BFI.Freqs[Index].Floating << ", scaled = " << Scaled
 | 
						|
                 << ", int = " << BFI.Freqs[Index].Integer << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void scaleBlockData(BlockFrequencyInfoImplBase &BFI,
 | 
						|
                           const BlockNode &Node,
 | 
						|
                           const PackagedLoopData &Loop) {
 | 
						|
  Float F = Loop.Mass.toFloat() * Loop.Scale;
 | 
						|
 | 
						|
  Float &Current = BFI.Freqs[Node.Index].Floating;
 | 
						|
  Float Updated = Current * F;
 | 
						|
 | 
						|
  DEBUG(dbgs() << " - " << BFI.getBlockName(Node) << ": " << Current << " => "
 | 
						|
               << Updated << "\n");
 | 
						|
 | 
						|
  Current = Updated;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Unwrap a loop package.
 | 
						|
///
 | 
						|
/// Visits all the members of a loop, adjusting their BlockData according to
 | 
						|
/// the loop's pseudo-node.
 | 
						|
static void unwrapLoopPackage(BlockFrequencyInfoImplBase &BFI,
 | 
						|
                              const BlockNode &Head) {
 | 
						|
  assert(Head.isValid());
 | 
						|
 | 
						|
  PackagedLoopData &LoopPackage = BFI.getLoopPackage(Head);
 | 
						|
  DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getBlockName(Head)
 | 
						|
               << ": mass = " << LoopPackage.Mass
 | 
						|
               << ", scale = " << LoopPackage.Scale << "\n");
 | 
						|
  scaleBlockData(BFI, Head, LoopPackage);
 | 
						|
 | 
						|
  // Propagate the head scale through the loop.  Since members are visited in
 | 
						|
  // RPO, the head scale will be updated by the loop scale first, and then the
 | 
						|
  // final head scale will be used for updated the rest of the members.
 | 
						|
  for (const BlockNode &M : LoopPackage.Members) {
 | 
						|
    const FrequencyData &HeadData = BFI.Freqs[Head.Index];
 | 
						|
    FrequencyData &Freqs = BFI.Freqs[M.Index];
 | 
						|
    Float NewFreq = Freqs.Floating * HeadData.Floating;
 | 
						|
    DEBUG(dbgs() << " - " << BFI.getBlockName(M) << ": " << Freqs.Floating
 | 
						|
                 << " => " << NewFreq << "\n");
 | 
						|
    Freqs.Floating = NewFreq;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BlockFrequencyInfoImplBase::finalizeMetrics() {
 | 
						|
  // Set initial frequencies from loop-local masses.
 | 
						|
  for (size_t Index = 0; Index < Working.size(); ++Index)
 | 
						|
    Freqs[Index].Floating = Working[Index].Mass.toFloat();
 | 
						|
 | 
						|
  // Unwrap loop packages in reverse post-order, tracking min and max
 | 
						|
  // frequencies.
 | 
						|
  auto Min = Float::getLargest();
 | 
						|
  auto Max = Float::getZero();
 | 
						|
  for (size_t Index = 0; Index < Working.size(); ++Index) {
 | 
						|
    if (Working[Index].isLoopHeader())
 | 
						|
      unwrapLoopPackage(*this, BlockNode(Index));
 | 
						|
 | 
						|
    // Update max scale.
 | 
						|
    Min = std::min(Min, Freqs[Index].Floating);
 | 
						|
    Max = std::max(Max, Freqs[Index].Floating);
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert to integers.
 | 
						|
  convertFloatingToInteger(*this, Min, Max);
 | 
						|
 | 
						|
  // Clean up data structures.
 | 
						|
  cleanup(*this);
 | 
						|
 | 
						|
  // Print out the final stats.
 | 
						|
  DEBUG(dump());
 | 
						|
}
 | 
						|
 | 
						|
BlockFrequency
 | 
						|
BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
 | 
						|
  if (!Node.isValid())
 | 
						|
    return 0;
 | 
						|
  return Freqs[Node.Index].Integer;
 | 
						|
}
 | 
						|
Float
 | 
						|
BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
 | 
						|
  if (!Node.isValid())
 | 
						|
    return Float::getZero();
 | 
						|
  return Freqs[Node.Index].Floating;
 | 
						|
}
 | 
						|
 | 
						|
std::string
 | 
						|
BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
 | 
						|
  return std::string();
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &
 | 
						|
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
 | 
						|
                                           const BlockNode &Node) const {
 | 
						|
  return OS << getFloatingBlockFreq(Node);
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &
 | 
						|
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
 | 
						|
                                           const BlockFrequency &Freq) const {
 | 
						|
  Float Block(Freq.getFrequency(), 0);
 | 
						|
  Float Entry(getEntryFreq(), 0);
 | 
						|
 | 
						|
  return OS << Block / Entry;
 | 
						|
}
 |