1383 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1383 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The inline spiller modifies the machine function directly instead of
 | 
						|
// inserting spills and restores in VirtRegMap.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Spiller.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/TinyPtrVector.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveRangeEdit.h"
 | 
						|
#include "llvm/CodeGen/LiveStackAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBundle.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/VirtRegMap.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
 | 
						|
STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
 | 
						|
STATISTIC(NumSnippets,        "Number of spilled snippets");
 | 
						|
STATISTIC(NumSpills,          "Number of spills inserted");
 | 
						|
STATISTIC(NumSpillsRemoved,   "Number of spills removed");
 | 
						|
STATISTIC(NumReloads,         "Number of reloads inserted");
 | 
						|
STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
 | 
						|
STATISTIC(NumFolded,          "Number of folded stack accesses");
 | 
						|
STATISTIC(NumFoldedLoads,     "Number of folded loads");
 | 
						|
STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
 | 
						|
STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
 | 
						|
STATISTIC(NumHoists,          "Number of hoisted spills");
 | 
						|
 | 
						|
static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
 | 
						|
                                     cl::desc("Disable inline spill hoisting"));
 | 
						|
 | 
						|
namespace {
 | 
						|
class InlineSpiller : public Spiller {
 | 
						|
  MachineFunction &MF;
 | 
						|
  LiveIntervals &LIS;
 | 
						|
  LiveStacks &LSS;
 | 
						|
  AliasAnalysis *AA;
 | 
						|
  MachineDominatorTree &MDT;
 | 
						|
  MachineLoopInfo &Loops;
 | 
						|
  VirtRegMap &VRM;
 | 
						|
  MachineFrameInfo &MFI;
 | 
						|
  MachineRegisterInfo &MRI;
 | 
						|
  const TargetInstrInfo &TII;
 | 
						|
  const TargetRegisterInfo &TRI;
 | 
						|
  const MachineBlockFrequencyInfo &MBFI;
 | 
						|
 | 
						|
  // Variables that are valid during spill(), but used by multiple methods.
 | 
						|
  LiveRangeEdit *Edit;
 | 
						|
  LiveInterval *StackInt;
 | 
						|
  int StackSlot;
 | 
						|
  unsigned Original;
 | 
						|
 | 
						|
  // All registers to spill to StackSlot, including the main register.
 | 
						|
  SmallVector<unsigned, 8> RegsToSpill;
 | 
						|
 | 
						|
  // All COPY instructions to/from snippets.
 | 
						|
  // They are ignored since both operands refer to the same stack slot.
 | 
						|
  SmallPtrSet<MachineInstr*, 8> SnippetCopies;
 | 
						|
 | 
						|
  // Values that failed to remat at some point.
 | 
						|
  SmallPtrSet<VNInfo*, 8> UsedValues;
 | 
						|
 | 
						|
public:
 | 
						|
  // Information about a value that was defined by a copy from a sibling
 | 
						|
  // register.
 | 
						|
  struct SibValueInfo {
 | 
						|
    // True when all reaching defs were reloads: No spill is necessary.
 | 
						|
    bool AllDefsAreReloads;
 | 
						|
 | 
						|
    // True when value is defined by an original PHI not from splitting.
 | 
						|
    bool DefByOrigPHI;
 | 
						|
 | 
						|
    // True when the COPY defining this value killed its source.
 | 
						|
    bool KillsSource;
 | 
						|
 | 
						|
    // The preferred register to spill.
 | 
						|
    unsigned SpillReg;
 | 
						|
 | 
						|
    // The value of SpillReg that should be spilled.
 | 
						|
    VNInfo *SpillVNI;
 | 
						|
 | 
						|
    // The block where SpillVNI should be spilled. Currently, this must be the
 | 
						|
    // block containing SpillVNI->def.
 | 
						|
    MachineBasicBlock *SpillMBB;
 | 
						|
 | 
						|
    // A defining instruction that is not a sibling copy or a reload, or NULL.
 | 
						|
    // This can be used as a template for rematerialization.
 | 
						|
    MachineInstr *DefMI;
 | 
						|
 | 
						|
    // List of values that depend on this one.  These values are actually the
 | 
						|
    // same, but live range splitting has placed them in different registers,
 | 
						|
    // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
 | 
						|
    // copies of the current value and phi-kills.  Usually only phi-kills cause
 | 
						|
    // more than one dependent value.
 | 
						|
    TinyPtrVector<VNInfo*> Deps;
 | 
						|
 | 
						|
    SibValueInfo(unsigned Reg, VNInfo *VNI)
 | 
						|
      : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
 | 
						|
        SpillReg(Reg), SpillVNI(VNI), SpillMBB(nullptr), DefMI(nullptr) {}
 | 
						|
 | 
						|
    // Returns true when a def has been found.
 | 
						|
    bool hasDef() const { return DefByOrigPHI || DefMI; }
 | 
						|
  };
 | 
						|
 | 
						|
private:
 | 
						|
  // Values in RegsToSpill defined by sibling copies.
 | 
						|
  typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
 | 
						|
  SibValueMap SibValues;
 | 
						|
 | 
						|
  // Dead defs generated during spilling.
 | 
						|
  SmallVector<MachineInstr*, 8> DeadDefs;
 | 
						|
 | 
						|
  ~InlineSpiller() {}
 | 
						|
 | 
						|
public:
 | 
						|
  InlineSpiller(MachineFunctionPass &pass,
 | 
						|
                MachineFunction &mf,
 | 
						|
                VirtRegMap &vrm)
 | 
						|
    : MF(mf),
 | 
						|
      LIS(pass.getAnalysis<LiveIntervals>()),
 | 
						|
      LSS(pass.getAnalysis<LiveStacks>()),
 | 
						|
      AA(&pass.getAnalysis<AliasAnalysis>()),
 | 
						|
      MDT(pass.getAnalysis<MachineDominatorTree>()),
 | 
						|
      Loops(pass.getAnalysis<MachineLoopInfo>()),
 | 
						|
      VRM(vrm),
 | 
						|
      MFI(*mf.getFrameInfo()),
 | 
						|
      MRI(mf.getRegInfo()),
 | 
						|
      TII(*mf.getTarget().getInstrInfo()),
 | 
						|
      TRI(*mf.getTarget().getRegisterInfo()),
 | 
						|
      MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
 | 
						|
 | 
						|
  void spill(LiveRangeEdit &) override;
 | 
						|
 | 
						|
private:
 | 
						|
  bool isSnippet(const LiveInterval &SnipLI);
 | 
						|
  void collectRegsToSpill();
 | 
						|
 | 
						|
  bool isRegToSpill(unsigned Reg) {
 | 
						|
    return std::find(RegsToSpill.begin(),
 | 
						|
                     RegsToSpill.end(), Reg) != RegsToSpill.end();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isSibling(unsigned Reg);
 | 
						|
  MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
 | 
						|
  void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = nullptr);
 | 
						|
  void analyzeSiblingValues();
 | 
						|
 | 
						|
  bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
 | 
						|
  void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
 | 
						|
 | 
						|
  void markValueUsed(LiveInterval*, VNInfo*);
 | 
						|
  bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
 | 
						|
  void reMaterializeAll();
 | 
						|
 | 
						|
  bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
 | 
						|
  bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
 | 
						|
                         MachineInstr *LoadMI = nullptr);
 | 
						|
  void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
 | 
						|
  void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
 | 
						|
 | 
						|
  void spillAroundUses(unsigned Reg);
 | 
						|
  void spillAll();
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
Spiller *createInlineSpiller(MachineFunctionPass &pass,
 | 
						|
                             MachineFunction &mf,
 | 
						|
                             VirtRegMap &vrm) {
 | 
						|
  return new InlineSpiller(pass, mf, vrm);
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                Snippets
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// When spilling a virtual register, we also spill any snippets it is connected
 | 
						|
// to. The snippets are small live ranges that only have a single real use,
 | 
						|
// leftovers from live range splitting. Spilling them enables memory operand
 | 
						|
// folding or tightens the live range around the single use.
 | 
						|
//
 | 
						|
// This minimizes register pressure and maximizes the store-to-load distance for
 | 
						|
// spill slots which can be important in tight loops.
 | 
						|
 | 
						|
/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
 | 
						|
/// otherwise return 0.
 | 
						|
static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
 | 
						|
  if (!MI->isFullCopy())
 | 
						|
    return 0;
 | 
						|
  if (MI->getOperand(0).getReg() == Reg)
 | 
						|
      return MI->getOperand(1).getReg();
 | 
						|
  if (MI->getOperand(1).getReg() == Reg)
 | 
						|
      return MI->getOperand(0).getReg();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isSnippet - Identify if a live interval is a snippet that should be spilled.
 | 
						|
/// It is assumed that SnipLI is a virtual register with the same original as
 | 
						|
/// Edit->getReg().
 | 
						|
bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
 | 
						|
  unsigned Reg = Edit->getReg();
 | 
						|
 | 
						|
  // A snippet is a tiny live range with only a single instruction using it
 | 
						|
  // besides copies to/from Reg or spills/fills. We accept:
 | 
						|
  //
 | 
						|
  //   %snip = COPY %Reg / FILL fi#
 | 
						|
  //   %snip = USE %snip
 | 
						|
  //   %Reg = COPY %snip / SPILL %snip, fi#
 | 
						|
  //
 | 
						|
  if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineInstr *UseMI = nullptr;
 | 
						|
 | 
						|
  // Check that all uses satisfy our criteria.
 | 
						|
  for (MachineRegisterInfo::reg_instr_nodbg_iterator
 | 
						|
       RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
 | 
						|
       E = MRI.reg_instr_nodbg_end(); RI != E; ) {
 | 
						|
    MachineInstr *MI = &*(RI++);
 | 
						|
 | 
						|
    // Allow copies to/from Reg.
 | 
						|
    if (isFullCopyOf(MI, Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Allow stack slot loads.
 | 
						|
    int FI;
 | 
						|
    if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Allow stack slot stores.
 | 
						|
    if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Allow a single additional instruction.
 | 
						|
    if (UseMI && MI != UseMI)
 | 
						|
      return false;
 | 
						|
    UseMI = MI;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// collectRegsToSpill - Collect live range snippets that only have a single
 | 
						|
/// real use.
 | 
						|
void InlineSpiller::collectRegsToSpill() {
 | 
						|
  unsigned Reg = Edit->getReg();
 | 
						|
 | 
						|
  // Main register always spills.
 | 
						|
  RegsToSpill.assign(1, Reg);
 | 
						|
  SnippetCopies.clear();
 | 
						|
 | 
						|
  // Snippets all have the same original, so there can't be any for an original
 | 
						|
  // register.
 | 
						|
  if (Original == Reg)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (MachineRegisterInfo::reg_instr_iterator
 | 
						|
       RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
 | 
						|
    MachineInstr *MI = &*(RI++);
 | 
						|
    unsigned SnipReg = isFullCopyOf(MI, Reg);
 | 
						|
    if (!isSibling(SnipReg))
 | 
						|
      continue;
 | 
						|
    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
 | 
						|
    if (!isSnippet(SnipLI))
 | 
						|
      continue;
 | 
						|
    SnippetCopies.insert(MI);
 | 
						|
    if (isRegToSpill(SnipReg))
 | 
						|
      continue;
 | 
						|
    RegsToSpill.push_back(SnipReg);
 | 
						|
    DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
 | 
						|
    ++NumSnippets;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            Sibling Values
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// After live range splitting, some values to be spilled may be defined by
 | 
						|
// copies from sibling registers. We trace the sibling copies back to the
 | 
						|
// original value if it still exists. We need it for rematerialization.
 | 
						|
//
 | 
						|
// Even when the value can't be rematerialized, we still want to determine if
 | 
						|
// the value has already been spilled, or we may want to hoist the spill from a
 | 
						|
// loop.
 | 
						|
 | 
						|
bool InlineSpiller::isSibling(unsigned Reg) {
 | 
						|
  return TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
           VRM.getOriginal(Reg) == Original;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static raw_ostream &operator<<(raw_ostream &OS,
 | 
						|
                               const InlineSpiller::SibValueInfo &SVI) {
 | 
						|
  OS << "spill " << PrintReg(SVI.SpillReg) << ':'
 | 
						|
     << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
 | 
						|
  if (SVI.SpillMBB)
 | 
						|
    OS << " in BB#" << SVI.SpillMBB->getNumber();
 | 
						|
  if (SVI.AllDefsAreReloads)
 | 
						|
    OS << " all-reloads";
 | 
						|
  if (SVI.DefByOrigPHI)
 | 
						|
    OS << " orig-phi";
 | 
						|
  if (SVI.KillsSource)
 | 
						|
    OS << " kill";
 | 
						|
  OS << " deps[";
 | 
						|
  for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
 | 
						|
    OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
 | 
						|
  OS << " ]";
 | 
						|
  if (SVI.DefMI)
 | 
						|
    OS << " def: " << *SVI.DefMI;
 | 
						|
  else
 | 
						|
    OS << '\n';
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// propagateSiblingValue - Propagate the value in SVI to dependents if it is
 | 
						|
/// known.  Otherwise remember the dependency for later.
 | 
						|
///
 | 
						|
/// @param SVIIter SibValues entry to propagate.
 | 
						|
/// @param VNI Dependent value, or NULL to propagate to all saved dependents.
 | 
						|
void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter,
 | 
						|
                                          VNInfo *VNI) {
 | 
						|
  SibValueMap::value_type *SVI = &*SVIIter;
 | 
						|
 | 
						|
  // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
 | 
						|
  TinyPtrVector<VNInfo*> FirstDeps;
 | 
						|
  if (VNI) {
 | 
						|
    FirstDeps.push_back(VNI);
 | 
						|
    SVI->second.Deps.push_back(VNI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Has the value been completely determined yet?  If not, defer propagation.
 | 
						|
  if (!SVI->second.hasDef())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Work list of values to propagate.
 | 
						|
  SmallSetVector<SibValueMap::value_type *, 8> WorkList;
 | 
						|
  WorkList.insert(SVI);
 | 
						|
 | 
						|
  do {
 | 
						|
    SVI = WorkList.pop_back_val();
 | 
						|
    TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
 | 
						|
    VNI = nullptr;
 | 
						|
 | 
						|
    SibValueInfo &SV = SVI->second;
 | 
						|
    if (!SV.SpillMBB)
 | 
						|
      SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
 | 
						|
                 << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
 | 
						|
 | 
						|
    assert(SV.hasDef() && "Propagating undefined value");
 | 
						|
 | 
						|
    // Should this value be propagated as a preferred spill candidate?  We don't
 | 
						|
    // propagate values of registers that are about to spill.
 | 
						|
    bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
 | 
						|
    unsigned SpillDepth = ~0u;
 | 
						|
 | 
						|
    for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
 | 
						|
         DepE = Deps->end(); DepI != DepE; ++DepI) {
 | 
						|
      SibValueMap::iterator DepSVI = SibValues.find(*DepI);
 | 
						|
      assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
 | 
						|
      SibValueInfo &DepSV = DepSVI->second;
 | 
						|
      if (!DepSV.SpillMBB)
 | 
						|
        DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
 | 
						|
 | 
						|
      bool Changed = false;
 | 
						|
 | 
						|
      // Propagate defining instruction.
 | 
						|
      if (!DepSV.hasDef()) {
 | 
						|
        Changed = true;
 | 
						|
        DepSV.DefMI = SV.DefMI;
 | 
						|
        DepSV.DefByOrigPHI = SV.DefByOrigPHI;
 | 
						|
      }
 | 
						|
 | 
						|
      // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
 | 
						|
      // all predecessors.
 | 
						|
      if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
 | 
						|
        Changed = true;
 | 
						|
        DepSV.AllDefsAreReloads = false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Propagate best spill value.
 | 
						|
      if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
 | 
						|
        if (SV.SpillMBB == DepSV.SpillMBB) {
 | 
						|
          // DepSV is in the same block.  Hoist when dominated.
 | 
						|
          if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
 | 
						|
            // This is an alternative def earlier in the same MBB.
 | 
						|
            // Hoist the spill as far as possible in SpillMBB. This can ease
 | 
						|
            // register pressure:
 | 
						|
            //
 | 
						|
            //   x = def
 | 
						|
            //   y = use x
 | 
						|
            //   s = copy x
 | 
						|
            //
 | 
						|
            // Hoisting the spill of s to immediately after the def removes the
 | 
						|
            // interference between x and y:
 | 
						|
            //
 | 
						|
            //   x = def
 | 
						|
            //   spill x
 | 
						|
            //   y = use x<kill>
 | 
						|
            //
 | 
						|
            // This hoist only helps when the DepSV copy kills its source.
 | 
						|
            Changed = true;
 | 
						|
            DepSV.SpillReg = SV.SpillReg;
 | 
						|
            DepSV.SpillVNI = SV.SpillVNI;
 | 
						|
            DepSV.SpillMBB = SV.SpillMBB;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // DepSV is in a different block.
 | 
						|
          if (SpillDepth == ~0u)
 | 
						|
            SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
 | 
						|
 | 
						|
          // Also hoist spills to blocks with smaller loop depth, but make sure
 | 
						|
          // that the new value dominates.  Non-phi dependents are always
 | 
						|
          // dominated, phis need checking.
 | 
						|
 | 
						|
          const BranchProbability MarginProb(4, 5); // 80%
 | 
						|
          // Hoist a spill to outer loop if there are multiple dependents (it
 | 
						|
          // can be beneficial if more than one dependents are hoisted) or
 | 
						|
          // if DepSV (the hoisting source) is hotter than SV (the hoisting
 | 
						|
          // destination) (we add a 80% margin to bias a little towards
 | 
						|
          // loop depth).
 | 
						|
          bool HoistCondition =
 | 
						|
            (MBFI.getBlockFreq(DepSV.SpillMBB) >=
 | 
						|
             (MBFI.getBlockFreq(SV.SpillMBB) * MarginProb)) ||
 | 
						|
            Deps->size() > 1;
 | 
						|
 | 
						|
          if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
 | 
						|
              HoistCondition &&
 | 
						|
              (!DepSVI->first->isPHIDef() ||
 | 
						|
               MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
 | 
						|
            Changed = true;
 | 
						|
            DepSV.SpillReg = SV.SpillReg;
 | 
						|
            DepSV.SpillVNI = SV.SpillVNI;
 | 
						|
            DepSV.SpillMBB = SV.SpillMBB;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Changed)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Something changed in DepSVI. Propagate to dependents.
 | 
						|
      WorkList.insert(&*DepSVI);
 | 
						|
 | 
						|
      DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
 | 
						|
            << DepSVI->first->def << " to:\t" << DepSV);
 | 
						|
    }
 | 
						|
  } while (!WorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
/// traceSiblingValue - Trace a value that is about to be spilled back to the
 | 
						|
/// real defining instructions by looking through sibling copies. Always stay
 | 
						|
/// within the range of OrigVNI so the registers are known to carry the same
 | 
						|
/// value.
 | 
						|
///
 | 
						|
/// Determine if the value is defined by all reloads, so spilling isn't
 | 
						|
/// necessary - the value is already in the stack slot.
 | 
						|
///
 | 
						|
/// Return a defining instruction that may be a candidate for rematerialization.
 | 
						|
///
 | 
						|
MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
 | 
						|
                                               VNInfo *OrigVNI) {
 | 
						|
  // Check if a cached value already exists.
 | 
						|
  SibValueMap::iterator SVI;
 | 
						|
  bool Inserted;
 | 
						|
  std::tie(SVI, Inserted) =
 | 
						|
    SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
 | 
						|
  if (!Inserted) {
 | 
						|
    DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
 | 
						|
                 << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
 | 
						|
    return SVI->second.DefMI;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
 | 
						|
               << UseVNI->id << '@' << UseVNI->def << '\n');
 | 
						|
 | 
						|
  // List of (Reg, VNI) that have been inserted into SibValues, but need to be
 | 
						|
  // processed.
 | 
						|
  SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
 | 
						|
  WorkList.push_back(std::make_pair(UseReg, UseVNI));
 | 
						|
 | 
						|
  do {
 | 
						|
    unsigned Reg;
 | 
						|
    VNInfo *VNI;
 | 
						|
    std::tie(Reg, VNI) = WorkList.pop_back_val();
 | 
						|
    DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
 | 
						|
                 << ":\t");
 | 
						|
 | 
						|
    // First check if this value has already been computed.
 | 
						|
    SVI = SibValues.find(VNI);
 | 
						|
    assert(SVI != SibValues.end() && "Missing SibValues entry");
 | 
						|
 | 
						|
    // Trace through PHI-defs created by live range splitting.
 | 
						|
    if (VNI->isPHIDef()) {
 | 
						|
      // Stop at original PHIs.  We don't know the value at the predecessors.
 | 
						|
      if (VNI->def == OrigVNI->def) {
 | 
						|
        DEBUG(dbgs() << "orig phi value\n");
 | 
						|
        SVI->second.DefByOrigPHI = true;
 | 
						|
        SVI->second.AllDefsAreReloads = false;
 | 
						|
        propagateSiblingValue(SVI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // This is a PHI inserted by live range splitting.  We could trace the
 | 
						|
      // live-out value from predecessor blocks, but that search can be very
 | 
						|
      // expensive if there are many predecessors and many more PHIs as
 | 
						|
      // generated by tail-dup when it sees an indirectbr.  Instead, look at
 | 
						|
      // all the non-PHI defs that have the same value as OrigVNI.  They must
 | 
						|
      // jointly dominate VNI->def.  This is not optimal since VNI may actually
 | 
						|
      // be jointly dominated by a smaller subset of defs, so there is a change
 | 
						|
      // we will miss a AllDefsAreReloads optimization.
 | 
						|
 | 
						|
      // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
 | 
						|
      SmallVector<VNInfo*, 8> PHIs, NonPHIs;
 | 
						|
      LiveInterval &LI = LIS.getInterval(Reg);
 | 
						|
      LiveInterval &OrigLI = LIS.getInterval(Original);
 | 
						|
 | 
						|
      for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
 | 
						|
           VI != VE; ++VI) {
 | 
						|
        VNInfo *VNI2 = *VI;
 | 
						|
        if (VNI2->isUnused())
 | 
						|
          continue;
 | 
						|
        if (!OrigLI.containsOneValue() &&
 | 
						|
            OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
 | 
						|
          continue;
 | 
						|
        if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
 | 
						|
          PHIs.push_back(VNI2);
 | 
						|
        else
 | 
						|
          NonPHIs.push_back(VNI2);
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
 | 
						|
                   << " phi-defs, and " << NonPHIs.size()
 | 
						|
                   << " non-phi/orig defs\n");
 | 
						|
 | 
						|
      // Create entries for all the PHIs.  Don't add them to the worklist, we
 | 
						|
      // are processing all of them in one go here.
 | 
						|
      for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | 
						|
        SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
 | 
						|
 | 
						|
      // Add every PHI as a dependent of all the non-PHIs.
 | 
						|
      for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
 | 
						|
        VNInfo *NonPHI = NonPHIs[i];
 | 
						|
        // Known value? Try an insertion.
 | 
						|
        std::tie(SVI, Inserted) =
 | 
						|
          SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
 | 
						|
        // Add all the PHIs as dependents of NonPHI.
 | 
						|
        for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
 | 
						|
          SVI->second.Deps.push_back(PHIs[pi]);
 | 
						|
        // This is the first time we see NonPHI, add it to the worklist.
 | 
						|
        if (Inserted)
 | 
						|
          WorkList.push_back(std::make_pair(Reg, NonPHI));
 | 
						|
        else
 | 
						|
          // Propagate to all inserted PHIs, not just VNI.
 | 
						|
          propagateSiblingValue(SVI);
 | 
						|
      }
 | 
						|
 | 
						|
      // Next work list item.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
 | 
						|
    assert(MI && "Missing def");
 | 
						|
 | 
						|
    // Trace through sibling copies.
 | 
						|
    if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
 | 
						|
      if (isSibling(SrcReg)) {
 | 
						|
        LiveInterval &SrcLI = LIS.getInterval(SrcReg);
 | 
						|
        LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
 | 
						|
        assert(SrcQ.valueIn() && "Copy from non-existing value");
 | 
						|
        // Check if this COPY kills its source.
 | 
						|
        SVI->second.KillsSource = SrcQ.isKill();
 | 
						|
        VNInfo *SrcVNI = SrcQ.valueIn();
 | 
						|
        DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
 | 
						|
                     << SrcVNI->id << '@' << SrcVNI->def
 | 
						|
                     << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
 | 
						|
        // Known sibling source value? Try an insertion.
 | 
						|
        std::tie(SVI, Inserted) = SibValues.insert(
 | 
						|
            std::make_pair(SrcVNI, SibValueInfo(SrcReg, SrcVNI)));
 | 
						|
        // This is the first time we see Src, add it to the worklist.
 | 
						|
        if (Inserted)
 | 
						|
          WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
 | 
						|
        propagateSiblingValue(SVI, VNI);
 | 
						|
        // Next work list item.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Track reachable reloads.
 | 
						|
    SVI->second.DefMI = MI;
 | 
						|
    SVI->second.SpillMBB = MI->getParent();
 | 
						|
    int FI;
 | 
						|
    if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
 | 
						|
      DEBUG(dbgs() << "reload\n");
 | 
						|
      propagateSiblingValue(SVI);
 | 
						|
      // Next work list item.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Potential remat candidate.
 | 
						|
    DEBUG(dbgs() << "def " << *MI);
 | 
						|
    SVI->second.AllDefsAreReloads = false;
 | 
						|
    propagateSiblingValue(SVI);
 | 
						|
  } while (!WorkList.empty());
 | 
						|
 | 
						|
  // Look up the value we were looking for.  We already did this lookup at the
 | 
						|
  // top of the function, but SibValues may have been invalidated.
 | 
						|
  SVI = SibValues.find(UseVNI);
 | 
						|
  assert(SVI != SibValues.end() && "Didn't compute requested info");
 | 
						|
  DEBUG(dbgs() << "  traced to:\t" << SVI->second);
 | 
						|
  return SVI->second.DefMI;
 | 
						|
}
 | 
						|
 | 
						|
/// analyzeSiblingValues - Trace values defined by sibling copies back to
 | 
						|
/// something that isn't a sibling copy.
 | 
						|
///
 | 
						|
/// Keep track of values that may be rematerializable.
 | 
						|
void InlineSpiller::analyzeSiblingValues() {
 | 
						|
  SibValues.clear();
 | 
						|
 | 
						|
  // No siblings at all?
 | 
						|
  if (Edit->getReg() == Original)
 | 
						|
    return;
 | 
						|
 | 
						|
  LiveInterval &OrigLI = LIS.getInterval(Original);
 | 
						|
  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = RegsToSpill[i];
 | 
						|
    LiveInterval &LI = LIS.getInterval(Reg);
 | 
						|
    for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
 | 
						|
         VE = LI.vni_end(); VI != VE; ++VI) {
 | 
						|
      VNInfo *VNI = *VI;
 | 
						|
      if (VNI->isUnused())
 | 
						|
        continue;
 | 
						|
      MachineInstr *DefMI = nullptr;
 | 
						|
      if (!VNI->isPHIDef()) {
 | 
						|
       DefMI = LIS.getInstructionFromIndex(VNI->def);
 | 
						|
       assert(DefMI && "No defining instruction");
 | 
						|
      }
 | 
						|
      // Check possible sibling copies.
 | 
						|
      if (VNI->isPHIDef() || DefMI->isCopy()) {
 | 
						|
        VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
 | 
						|
        assert(OrigVNI && "Def outside original live range");
 | 
						|
        if (OrigVNI->def != VNI->def)
 | 
						|
          DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
 | 
						|
      }
 | 
						|
      if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
 | 
						|
        DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
 | 
						|
                     << VNI->def << " may remat from " << *DefMI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
 | 
						|
/// a spill at a better location.
 | 
						|
bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
 | 
						|
  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
 | 
						|
  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
 | 
						|
  assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
 | 
						|
  SibValueMap::iterator I = SibValues.find(VNI);
 | 
						|
  if (I == SibValues.end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const SibValueInfo &SVI = I->second;
 | 
						|
 | 
						|
  // Let the normal folding code deal with the boring case.
 | 
						|
  if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // SpillReg may have been deleted by remat and DCE.
 | 
						|
  if (!LIS.hasInterval(SVI.SpillReg)) {
 | 
						|
    DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
 | 
						|
    SibValues.erase(I);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
 | 
						|
  if (!SibLI.containsValue(SVI.SpillVNI)) {
 | 
						|
    DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
 | 
						|
    SibValues.erase(I);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Conservatively extend the stack slot range to the range of the original
 | 
						|
  // value. We may be able to do better with stack slot coloring by being more
 | 
						|
  // careful here.
 | 
						|
  assert(StackInt && "No stack slot assigned yet.");
 | 
						|
  LiveInterval &OrigLI = LIS.getInterval(Original);
 | 
						|
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
 | 
						|
  StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
 | 
						|
  DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
 | 
						|
               << *StackInt << '\n');
 | 
						|
 | 
						|
  // Already spilled everywhere.
 | 
						|
  if (SVI.AllDefsAreReloads) {
 | 
						|
    DEBUG(dbgs() << "\tno spill needed: " << SVI);
 | 
						|
    ++NumOmitReloadSpill;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // We are going to spill SVI.SpillVNI immediately after its def, so clear out
 | 
						|
  // any later spills of the same value.
 | 
						|
  eliminateRedundantSpills(SibLI, SVI.SpillVNI);
 | 
						|
 | 
						|
  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
 | 
						|
  MachineBasicBlock::iterator MII;
 | 
						|
  if (SVI.SpillVNI->isPHIDef())
 | 
						|
    MII = MBB->SkipPHIsAndLabels(MBB->begin());
 | 
						|
  else {
 | 
						|
    MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
 | 
						|
    assert(DefMI && "Defining instruction disappeared");
 | 
						|
    MII = DefMI;
 | 
						|
    ++MII;
 | 
						|
  }
 | 
						|
  // Insert spill without kill flag immediately after def.
 | 
						|
  TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
 | 
						|
                          MRI.getRegClass(SVI.SpillReg), &TRI);
 | 
						|
  --MII; // Point to store instruction.
 | 
						|
  LIS.InsertMachineInstrInMaps(MII);
 | 
						|
  DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
 | 
						|
 | 
						|
  ++NumSpills;
 | 
						|
  ++NumHoists;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
 | 
						|
/// redundant spills of this value in SLI.reg and sibling copies.
 | 
						|
void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
 | 
						|
  assert(VNI && "Missing value");
 | 
						|
  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
 | 
						|
  WorkList.push_back(std::make_pair(&SLI, VNI));
 | 
						|
  assert(StackInt && "No stack slot assigned yet.");
 | 
						|
 | 
						|
  do {
 | 
						|
    LiveInterval *LI;
 | 
						|
    std::tie(LI, VNI) = WorkList.pop_back_val();
 | 
						|
    unsigned Reg = LI->reg;
 | 
						|
    DEBUG(dbgs() << "Checking redundant spills for "
 | 
						|
                 << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
 | 
						|
 | 
						|
    // Regs to spill are taken care of.
 | 
						|
    if (isRegToSpill(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Add all of VNI's live range to StackInt.
 | 
						|
    StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
 | 
						|
    DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
 | 
						|
 | 
						|
    // Find all spills and copies of VNI.
 | 
						|
    for (MachineRegisterInfo::use_instr_nodbg_iterator
 | 
						|
         UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
 | 
						|
         UI != E; ) {
 | 
						|
      MachineInstr *MI = &*(UI++);
 | 
						|
      if (!MI->isCopy() && !MI->mayStore())
 | 
						|
        continue;
 | 
						|
      SlotIndex Idx = LIS.getInstructionIndex(MI);
 | 
						|
      if (LI->getVNInfoAt(Idx) != VNI)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Follow sibling copies down the dominator tree.
 | 
						|
      if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
 | 
						|
        if (isSibling(DstReg)) {
 | 
						|
           LiveInterval &DstLI = LIS.getInterval(DstReg);
 | 
						|
           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
 | 
						|
           assert(DstVNI && "Missing defined value");
 | 
						|
           assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
 | 
						|
           WorkList.push_back(std::make_pair(&DstLI, DstVNI));
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Erase spills.
 | 
						|
      int FI;
 | 
						|
      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
 | 
						|
        DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
 | 
						|
        // eliminateDeadDefs won't normally remove stores, so switch opcode.
 | 
						|
        MI->setDesc(TII.get(TargetOpcode::KILL));
 | 
						|
        DeadDefs.push_back(MI);
 | 
						|
        ++NumSpillsRemoved;
 | 
						|
        --NumSpills;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (!WorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            Rematerialization
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
 | 
						|
/// instruction cannot be eliminated. See through snippet copies
 | 
						|
void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
 | 
						|
  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
 | 
						|
  WorkList.push_back(std::make_pair(LI, VNI));
 | 
						|
  do {
 | 
						|
    std::tie(LI, VNI) = WorkList.pop_back_val();
 | 
						|
    if (!UsedValues.insert(VNI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (VNI->isPHIDef()) {
 | 
						|
      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
 | 
						|
      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | 
						|
             PE = MBB->pred_end(); PI != PE; ++PI) {
 | 
						|
        VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
 | 
						|
        if (PVNI)
 | 
						|
          WorkList.push_back(std::make_pair(LI, PVNI));
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Follow snippet copies.
 | 
						|
    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
 | 
						|
    if (!SnippetCopies.count(MI))
 | 
						|
      continue;
 | 
						|
    LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
 | 
						|
    assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
 | 
						|
    VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
 | 
						|
    assert(SnipVNI && "Snippet undefined before copy");
 | 
						|
    WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
 | 
						|
  } while (!WorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
 | 
						|
bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
 | 
						|
                                     MachineBasicBlock::iterator MI) {
 | 
						|
  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
 | 
						|
  VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
 | 
						|
 | 
						|
  if (!ParentVNI) {
 | 
						|
    DEBUG(dbgs() << "\tadding <undef> flags: ");
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
 | 
						|
        MO.setIsUndef();
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << UseIdx << '\t' << *MI);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SnippetCopies.count(MI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
 | 
						|
  LiveRangeEdit::Remat RM(ParentVNI);
 | 
						|
  SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
 | 
						|
  if (SibI != SibValues.end())
 | 
						|
    RM.OrigMI = SibI->second.DefMI;
 | 
						|
  if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
 | 
						|
    markValueUsed(&VirtReg, ParentVNI);
 | 
						|
    DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the instruction also writes VirtReg.reg, it had better not require the
 | 
						|
  // same register for uses and defs.
 | 
						|
  SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
 | 
						|
  MIBundleOperands::VirtRegInfo RI =
 | 
						|
    MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
 | 
						|
  if (RI.Tied) {
 | 
						|
    markValueUsed(&VirtReg, ParentVNI);
 | 
						|
    DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Before rematerializing into a register for a single instruction, try to
 | 
						|
  // fold a load into the instruction. That avoids allocating a new register.
 | 
						|
  if (RM.OrigMI->canFoldAsLoad() &&
 | 
						|
      foldMemoryOperand(Ops, RM.OrigMI)) {
 | 
						|
    Edit->markRematerialized(RM.ParentVNI);
 | 
						|
    ++NumFoldedLoads;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Alocate a new register for the remat.
 | 
						|
  unsigned NewVReg = Edit->createFrom(Original);
 | 
						|
 | 
						|
  // Finally we can rematerialize OrigMI before MI.
 | 
						|
  SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewVReg, RM,
 | 
						|
                                           TRI);
 | 
						|
  (void)DefIdx;
 | 
						|
  DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
 | 
						|
               << *LIS.getInstructionFromIndex(DefIdx));
 | 
						|
 | 
						|
  // Replace operands
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(Ops[i].second);
 | 
						|
    if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
 | 
						|
      MO.setReg(NewVReg);
 | 
						|
      MO.setIsKill();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI << '\n');
 | 
						|
 | 
						|
  ++NumRemats;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// reMaterializeAll - Try to rematerialize as many uses as possible,
 | 
						|
/// and trim the live ranges after.
 | 
						|
void InlineSpiller::reMaterializeAll() {
 | 
						|
  // analyzeSiblingValues has already tested all relevant defining instructions.
 | 
						|
  if (!Edit->anyRematerializable(AA))
 | 
						|
    return;
 | 
						|
 | 
						|
  UsedValues.clear();
 | 
						|
 | 
						|
  // Try to remat before all uses of snippets.
 | 
						|
  bool anyRemat = false;
 | 
						|
  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = RegsToSpill[i];
 | 
						|
    LiveInterval &LI = LIS.getInterval(Reg);
 | 
						|
    for (MachineRegisterInfo::use_bundle_nodbg_iterator
 | 
						|
         RI = MRI.use_bundle_nodbg_begin(Reg), E = MRI.use_bundle_nodbg_end();
 | 
						|
         RI != E; ) {
 | 
						|
      MachineInstr *MI = &*(RI++);
 | 
						|
      anyRemat |= reMaterializeFor(LI, MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!anyRemat)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Remove any values that were completely rematted.
 | 
						|
  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = RegsToSpill[i];
 | 
						|
    LiveInterval &LI = LIS.getInterval(Reg);
 | 
						|
    for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      VNInfo *VNI = *I;
 | 
						|
      if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
 | 
						|
        continue;
 | 
						|
      MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
 | 
						|
      MI->addRegisterDead(Reg, &TRI);
 | 
						|
      if (!MI->allDefsAreDead())
 | 
						|
        continue;
 | 
						|
      DEBUG(dbgs() << "All defs dead: " << *MI);
 | 
						|
      DeadDefs.push_back(MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Eliminate dead code after remat. Note that some snippet copies may be
 | 
						|
  // deleted here.
 | 
						|
  if (DeadDefs.empty())
 | 
						|
    return;
 | 
						|
  DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
 | 
						|
  Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
 | 
						|
 | 
						|
  // Get rid of deleted and empty intervals.
 | 
						|
  unsigned ResultPos = 0;
 | 
						|
  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = RegsToSpill[i];
 | 
						|
    if (!LIS.hasInterval(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    LiveInterval &LI = LIS.getInterval(Reg);
 | 
						|
    if (LI.empty()) {
 | 
						|
      Edit->eraseVirtReg(Reg);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    RegsToSpill[ResultPos++] = Reg;
 | 
						|
  }
 | 
						|
  RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
 | 
						|
  DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                 Spilling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// If MI is a load or store of StackSlot, it can be removed.
 | 
						|
bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
 | 
						|
  int FI = 0;
 | 
						|
  unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
 | 
						|
  bool IsLoad = InstrReg;
 | 
						|
  if (!IsLoad)
 | 
						|
    InstrReg = TII.isStoreToStackSlot(MI, FI);
 | 
						|
 | 
						|
  // We have a stack access. Is it the right register and slot?
 | 
						|
  if (InstrReg != Reg || FI != StackSlot)
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Coalescing stack access: " << *MI);
 | 
						|
  LIS.RemoveMachineInstrFromMaps(MI);
 | 
						|
  MI->eraseFromParent();
 | 
						|
 | 
						|
  if (IsLoad) {
 | 
						|
    ++NumReloadsRemoved;
 | 
						|
    --NumReloads;
 | 
						|
  } else {
 | 
						|
    ++NumSpillsRemoved;
 | 
						|
    --NumSpills;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG)
 | 
						|
// Dump the range of instructions from B to E with their slot indexes.
 | 
						|
static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
 | 
						|
                                               MachineBasicBlock::iterator E,
 | 
						|
                                               LiveIntervals const &LIS,
 | 
						|
                                               const char *const header,
 | 
						|
                                               unsigned VReg =0) {
 | 
						|
  char NextLine = '\n';
 | 
						|
  char SlotIndent = '\t';
 | 
						|
 | 
						|
  if (std::next(B) == E) {
 | 
						|
    NextLine = ' ';
 | 
						|
    SlotIndent = ' ';
 | 
						|
  }
 | 
						|
 | 
						|
  dbgs() << '\t' << header << ": " << NextLine;
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator I = B; I != E; ++I) {
 | 
						|
    SlotIndex Idx = LIS.getInstructionIndex(I).getRegSlot();
 | 
						|
 | 
						|
    // If a register was passed in and this instruction has it as a
 | 
						|
    // destination that is marked as an early clobber, print the
 | 
						|
    // early-clobber slot index.
 | 
						|
    if (VReg) {
 | 
						|
      MachineOperand *MO = I->findRegisterDefOperand(VReg);
 | 
						|
      if (MO && MO->isEarlyClobber())
 | 
						|
        Idx = Idx.getRegSlot(true);
 | 
						|
    }
 | 
						|
 | 
						|
    dbgs() << SlotIndent << Idx << '\t' << *I;
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// foldMemoryOperand - Try folding stack slot references in Ops into their
 | 
						|
/// instructions.
 | 
						|
///
 | 
						|
/// @param Ops    Operand indices from analyzeVirtReg().
 | 
						|
/// @param LoadMI Load instruction to use instead of stack slot when non-null.
 | 
						|
/// @return       True on success.
 | 
						|
bool InlineSpiller::
 | 
						|
foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
 | 
						|
                  MachineInstr *LoadMI) {
 | 
						|
  if (Ops.empty())
 | 
						|
    return false;
 | 
						|
  // Don't attempt folding in bundles.
 | 
						|
  MachineInstr *MI = Ops.front().first;
 | 
						|
  if (Ops.back().first != MI || MI->isBundled())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool WasCopy = MI->isCopy();
 | 
						|
  unsigned ImpReg = 0;
 | 
						|
 | 
						|
  bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::PATCHPOINT ||
 | 
						|
                       MI->getOpcode() == TargetOpcode::STACKMAP);
 | 
						|
 | 
						|
  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
 | 
						|
  // operands.
 | 
						|
  SmallVector<unsigned, 8> FoldOps;
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    unsigned Idx = Ops[i].second;
 | 
						|
    MachineOperand &MO = MI->getOperand(Idx);
 | 
						|
    if (MO.isImplicit()) {
 | 
						|
      ImpReg = MO.getReg();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // FIXME: Teach targets to deal with subregs.
 | 
						|
    if (!SpillSubRegs && MO.getSubReg())
 | 
						|
      return false;
 | 
						|
    // We cannot fold a load instruction into a def.
 | 
						|
    if (LoadMI && MO.isDef())
 | 
						|
      return false;
 | 
						|
    // Tied use operands should not be passed to foldMemoryOperand.
 | 
						|
    if (!MI->isRegTiedToDefOperand(Idx))
 | 
						|
      FoldOps.push_back(Idx);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineInstrSpan MIS(MI);
 | 
						|
 | 
						|
  MachineInstr *FoldMI =
 | 
						|
                LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
 | 
						|
                       : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
 | 
						|
  if (!FoldMI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Remove LIS for any dead defs in the original MI not in FoldMI.
 | 
						|
  for (MIBundleOperands MO(MI); MO.isValid(); ++MO) {
 | 
						|
    if (!MO->isReg())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MO->getReg();
 | 
						|
    if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
 | 
						|
        MRI.isReserved(Reg)) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Skip non-Defs, including undef uses and internal reads.
 | 
						|
    if (MO->isUse())
 | 
						|
      continue;
 | 
						|
    MIBundleOperands::PhysRegInfo RI =
 | 
						|
      MIBundleOperands(FoldMI).analyzePhysReg(Reg, &TRI);
 | 
						|
    if (RI.Defines)
 | 
						|
      continue;
 | 
						|
    // FoldMI does not define this physreg. Remove the LI segment.
 | 
						|
    assert(MO->isDead() && "Cannot fold physreg def");
 | 
						|
    for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) {
 | 
						|
      if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) {
 | 
						|
        SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
 | 
						|
        if (VNInfo *VNI = LR->getVNInfoAt(Idx))
 | 
						|
          LR->removeValNo(VNI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
 | 
						|
  MI->eraseFromParent();
 | 
						|
 | 
						|
  // Insert any new instructions other than FoldMI into the LIS maps.
 | 
						|
  assert(!MIS.empty() && "Unexpected empty span of instructions!");
 | 
						|
  for (MachineBasicBlock::iterator MII = MIS.begin(), End = MIS.end();
 | 
						|
       MII != End; ++MII)
 | 
						|
    if (&*MII != FoldMI)
 | 
						|
      LIS.InsertMachineInstrInMaps(&*MII);
 | 
						|
 | 
						|
  // TII.foldMemoryOperand may have left some implicit operands on the
 | 
						|
  // instruction.  Strip them.
 | 
						|
  if (ImpReg)
 | 
						|
    for (unsigned i = FoldMI->getNumOperands(); i; --i) {
 | 
						|
      MachineOperand &MO = FoldMI->getOperand(i - 1);
 | 
						|
      if (!MO.isReg() || !MO.isImplicit())
 | 
						|
        break;
 | 
						|
      if (MO.getReg() == ImpReg)
 | 
						|
        FoldMI->RemoveOperand(i - 1);
 | 
						|
    }
 | 
						|
 | 
						|
  DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
 | 
						|
                                           "folded"));
 | 
						|
 | 
						|
  if (!WasCopy)
 | 
						|
    ++NumFolded;
 | 
						|
  else if (Ops.front().second == 0)
 | 
						|
    ++NumSpills;
 | 
						|
  else
 | 
						|
    ++NumReloads;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void InlineSpiller::insertReload(unsigned NewVReg,
 | 
						|
                                 SlotIndex Idx,
 | 
						|
                                 MachineBasicBlock::iterator MI) {
 | 
						|
  MachineBasicBlock &MBB = *MI->getParent();
 | 
						|
 | 
						|
  MachineInstrSpan MIS(MI);
 | 
						|
  TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
 | 
						|
                           MRI.getRegClass(NewVReg), &TRI);
 | 
						|
 | 
						|
  LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
 | 
						|
 | 
						|
  DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
 | 
						|
                                           NewVReg));
 | 
						|
  ++NumReloads;
 | 
						|
}
 | 
						|
 | 
						|
/// insertSpill - Insert a spill of NewVReg after MI.
 | 
						|
void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
 | 
						|
                                 MachineBasicBlock::iterator MI) {
 | 
						|
  MachineBasicBlock &MBB = *MI->getParent();
 | 
						|
 | 
						|
  MachineInstrSpan MIS(MI);
 | 
						|
  TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
 | 
						|
                          MRI.getRegClass(NewVReg), &TRI);
 | 
						|
 | 
						|
  LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
 | 
						|
 | 
						|
  DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
 | 
						|
                                           "spill"));
 | 
						|
  ++NumSpills;
 | 
						|
}
 | 
						|
 | 
						|
/// spillAroundUses - insert spill code around each use of Reg.
 | 
						|
void InlineSpiller::spillAroundUses(unsigned Reg) {
 | 
						|
  DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
 | 
						|
  LiveInterval &OldLI = LIS.getInterval(Reg);
 | 
						|
 | 
						|
  // Iterate over instructions using Reg.
 | 
						|
  for (MachineRegisterInfo::reg_bundle_iterator
 | 
						|
       RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
 | 
						|
       RegI != E; ) {
 | 
						|
    MachineInstr *MI = &*(RegI++);
 | 
						|
 | 
						|
    // Debug values are not allowed to affect codegen.
 | 
						|
    if (MI->isDebugValue()) {
 | 
						|
      // Modify DBG_VALUE now that the value is in a spill slot.
 | 
						|
      bool IsIndirect = MI->isIndirectDebugValue();
 | 
						|
      uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
 | 
						|
      const MDNode *MDPtr = MI->getOperand(2).getMetadata();
 | 
						|
      DebugLoc DL = MI->getDebugLoc();
 | 
						|
      DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
 | 
						|
      MachineBasicBlock *MBB = MI->getParent();
 | 
						|
      BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
 | 
						|
          .addFrameIndex(StackSlot).addImm(Offset).addMetadata(MDPtr);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Ignore copies to/from snippets. We'll delete them.
 | 
						|
    if (SnippetCopies.count(MI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Stack slot accesses may coalesce away.
 | 
						|
    if (coalesceStackAccess(MI, Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Analyze instruction.
 | 
						|
    SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
 | 
						|
    MIBundleOperands::VirtRegInfo RI =
 | 
						|
      MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
 | 
						|
 | 
						|
    // Find the slot index where this instruction reads and writes OldLI.
 | 
						|
    // This is usually the def slot, except for tied early clobbers.
 | 
						|
    SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
 | 
						|
    if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
 | 
						|
      if (SlotIndex::isSameInstr(Idx, VNI->def))
 | 
						|
        Idx = VNI->def;
 | 
						|
 | 
						|
    // Check for a sibling copy.
 | 
						|
    unsigned SibReg = isFullCopyOf(MI, Reg);
 | 
						|
    if (SibReg && isSibling(SibReg)) {
 | 
						|
      // This may actually be a copy between snippets.
 | 
						|
      if (isRegToSpill(SibReg)) {
 | 
						|
        DEBUG(dbgs() << "Found new snippet copy: " << *MI);
 | 
						|
        SnippetCopies.insert(MI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (RI.Writes) {
 | 
						|
        // Hoist the spill of a sib-reg copy.
 | 
						|
        if (hoistSpill(OldLI, MI)) {
 | 
						|
          // This COPY is now dead, the value is already in the stack slot.
 | 
						|
          MI->getOperand(0).setIsDead();
 | 
						|
          DeadDefs.push_back(MI);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // This is a reload for a sib-reg copy. Drop spills downstream.
 | 
						|
        LiveInterval &SibLI = LIS.getInterval(SibReg);
 | 
						|
        eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
 | 
						|
        // The COPY will fold to a reload below.
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Attempt to fold memory ops.
 | 
						|
    if (foldMemoryOperand(Ops))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Create a new virtual register for spill/fill.
 | 
						|
    // FIXME: Infer regclass from instruction alone.
 | 
						|
    unsigned NewVReg = Edit->createFrom(Reg);
 | 
						|
 | 
						|
    if (RI.Reads)
 | 
						|
      insertReload(NewVReg, Idx, MI);
 | 
						|
 | 
						|
    // Rewrite instruction operands.
 | 
						|
    bool hasLiveDef = false;
 | 
						|
    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
 | 
						|
      MO.setReg(NewVReg);
 | 
						|
      if (MO.isUse()) {
 | 
						|
        if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
 | 
						|
          MO.setIsKill();
 | 
						|
      } else {
 | 
						|
        if (!MO.isDead())
 | 
						|
          hasLiveDef = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
 | 
						|
 | 
						|
    // FIXME: Use a second vreg if instruction has no tied ops.
 | 
						|
    if (RI.Writes)
 | 
						|
      if (hasLiveDef)
 | 
						|
        insertSpill(NewVReg, true, MI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// spillAll - Spill all registers remaining after rematerialization.
 | 
						|
void InlineSpiller::spillAll() {
 | 
						|
  // Update LiveStacks now that we are committed to spilling.
 | 
						|
  if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
 | 
						|
    StackSlot = VRM.assignVirt2StackSlot(Original);
 | 
						|
    StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
 | 
						|
    StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
 | 
						|
  } else
 | 
						|
    StackInt = &LSS.getInterval(StackSlot);
 | 
						|
 | 
						|
  if (Original != Edit->getReg())
 | 
						|
    VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
 | 
						|
 | 
						|
  assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
 | 
						|
  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
 | 
						|
    StackInt->MergeSegmentsInAsValue(LIS.getInterval(RegsToSpill[i]),
 | 
						|
                                     StackInt->getValNumInfo(0));
 | 
						|
  DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
 | 
						|
 | 
						|
  // Spill around uses of all RegsToSpill.
 | 
						|
  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
 | 
						|
    spillAroundUses(RegsToSpill[i]);
 | 
						|
 | 
						|
  // Hoisted spills may cause dead code.
 | 
						|
  if (!DeadDefs.empty()) {
 | 
						|
    DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
 | 
						|
    Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally delete the SnippetCopies.
 | 
						|
  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
 | 
						|
    for (MachineRegisterInfo::reg_instr_iterator
 | 
						|
         RI = MRI.reg_instr_begin(RegsToSpill[i]), E = MRI.reg_instr_end();
 | 
						|
         RI != E; ) {
 | 
						|
      MachineInstr *MI = &*(RI++);
 | 
						|
      assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
 | 
						|
      // FIXME: Do this with a LiveRangeEdit callback.
 | 
						|
      LIS.RemoveMachineInstrFromMaps(MI);
 | 
						|
      MI->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Delete all spilled registers.
 | 
						|
  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
 | 
						|
    Edit->eraseVirtReg(RegsToSpill[i]);
 | 
						|
}
 | 
						|
 | 
						|
void InlineSpiller::spill(LiveRangeEdit &edit) {
 | 
						|
  ++NumSpilledRanges;
 | 
						|
  Edit = &edit;
 | 
						|
  assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
 | 
						|
         && "Trying to spill a stack slot.");
 | 
						|
  // Share a stack slot among all descendants of Original.
 | 
						|
  Original = VRM.getOriginal(edit.getReg());
 | 
						|
  StackSlot = VRM.getStackSlot(Original);
 | 
						|
  StackInt = nullptr;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Inline spilling "
 | 
						|
               << MRI.getRegClass(edit.getReg())->getName()
 | 
						|
               << ':' << edit.getParent()
 | 
						|
               << "\nFrom original " << PrintReg(Original) << '\n');
 | 
						|
  assert(edit.getParent().isSpillable() &&
 | 
						|
         "Attempting to spill already spilled value.");
 | 
						|
  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
 | 
						|
 | 
						|
  collectRegsToSpill();
 | 
						|
  analyzeSiblingValues();
 | 
						|
  reMaterializeAll();
 | 
						|
 | 
						|
  // Remat may handle everything.
 | 
						|
  if (!RegsToSpill.empty())
 | 
						|
    spillAll();
 | 
						|
 | 
						|
  Edit->calculateRegClassAndHint(MF, Loops, MBFI);
 | 
						|
}
 |