![]() On some architectures such as Arm and X86 the encoding for a nop may change depending on the subtarget in operation at the time of encoding. This change replaces the per module MCSubtargetInfo retained by the targets AsmBackend in favour of passing through the local MCSubtargetInfo in operation at the time. On Arm using the architectural NOP instruction can have a performance benefit on some implementations. For Arm I've deleted the copy of the AsmBackend's MCSubtargetInfo to limit the chances of this causing problems in the future. I've not done this for other targets such as X86 as there is more frequent use of the MCSubtargetInfo and it looks to be for stable properties that we would not expect to vary per function. This change required threading STI through MCNopsFragment and MCBoundaryAlignFragment. I've attempted to take into account the in tree experimental backends. Differential Revision: https://reviews.llvm.org/D45962 |
||
---|---|---|
.. | ||
AsmParser | ||
Disassembler | ||
MCTargetDesc | ||
TargetInfo | ||
CMakeLists.txt | ||
DelaySlotFiller.cpp | ||
LeonFeatures.td | ||
LeonPasses.cpp | ||
LeonPasses.h | ||
README.txt | ||
Sparc.h | ||
Sparc.td | ||
SparcAsmPrinter.cpp | ||
SparcCallingConv.td | ||
SparcFrameLowering.cpp | ||
SparcFrameLowering.h | ||
SparcISelDAGToDAG.cpp | ||
SparcISelLowering.cpp | ||
SparcISelLowering.h | ||
SparcInstr64Bit.td | ||
SparcInstrAliases.td | ||
SparcInstrFormats.td | ||
SparcInstrInfo.cpp | ||
SparcInstrInfo.h | ||
SparcInstrInfo.td | ||
SparcInstrVIS.td | ||
SparcMCInstLower.cpp | ||
SparcMachineFunctionInfo.cpp | ||
SparcMachineFunctionInfo.h | ||
SparcRegisterInfo.cpp | ||
SparcRegisterInfo.h | ||
SparcRegisterInfo.td | ||
SparcSchedule.td | ||
SparcSubtarget.cpp | ||
SparcSubtarget.h | ||
SparcTargetMachine.cpp | ||
SparcTargetMachine.h | ||
SparcTargetObjectFile.cpp | ||
SparcTargetObjectFile.h |
README.txt
To-do ----- * Keep the address of the constant pool in a register instead of forming its address all of the time. * We can fold small constant offsets into the %hi/%lo references to constant pool addresses as well. * When in V9 mode, register allocate %icc[0-3]. * Add support for isel'ing UMUL_LOHI instead of marking it as Expand. * Emit the 'Branch on Integer Register with Prediction' instructions. It's not clear how to write a pattern for this though: float %t1(int %a, int* %p) { %C = seteq int %a, 0 br bool %C, label %T, label %F T: store int 123, int* %p br label %F F: ret float undef } codegens to this: t1: save -96, %o6, %o6 1) subcc %i0, 0, %l0 1) bne .LBBt1_2 ! F nop .LBBt1_1: ! T or %g0, 123, %l0 st %l0, [%i1] .LBBt1_2: ! F restore %g0, %g0, %g0 retl nop 1) should be replaced with a brz in V9 mode. * Same as above, but emit conditional move on register zero (p192) in V9 mode. Testcase: int %t1(int %a, int %b) { %C = seteq int %a, 0 %D = select bool %C, int %a, int %b ret int %D } * Emit MULX/[SU]DIVX instructions in V9 mode instead of fiddling with the Y register, if they are faster. * Codegen bswap(load)/store(bswap) -> load/store ASI * Implement frame pointer elimination, e.g. eliminate save/restore for leaf fns. * Fill delay slots * Use %g0 directly to materialize 0. No instruction is required.