447 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			447 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
//== BasicConstraintManager.cpp - Manage basic constraints.------*- C++ -*--==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines BasicConstraintManager, a class that tracks simple
 | 
						|
//  equality and inequality constraints on symbolic values of ProgramState.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SimpleConstraintManager.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
 | 
						|
namespace { class ConstNotEq {}; }
 | 
						|
namespace { class ConstEq {}; }
 | 
						|
 | 
						|
typedef llvm::ImmutableMap<SymbolRef,ProgramState::IntSetTy> ConstNotEqTy;
 | 
						|
typedef llvm::ImmutableMap<SymbolRef,const llvm::APSInt*> ConstEqTy;
 | 
						|
 | 
						|
static int ConstEqIndex = 0;
 | 
						|
static int ConstNotEqIndex = 0;
 | 
						|
 | 
						|
namespace clang {
 | 
						|
namespace ento {
 | 
						|
template<>
 | 
						|
struct ProgramStateTrait<ConstNotEq> :
 | 
						|
  public ProgramStatePartialTrait<ConstNotEqTy> {
 | 
						|
  static inline void *GDMIndex() { return &ConstNotEqIndex; }
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ProgramStateTrait<ConstEq> : public ProgramStatePartialTrait<ConstEqTy> {
 | 
						|
  static inline void *GDMIndex() { return &ConstEqIndex; }
 | 
						|
};
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
// BasicConstraintManager only tracks equality and inequality constraints of
 | 
						|
// constants and integer variables.
 | 
						|
class BasicConstraintManager
 | 
						|
  : public SimpleConstraintManager {
 | 
						|
  ProgramState::IntSetTy::Factory ISetFactory;
 | 
						|
public:
 | 
						|
  BasicConstraintManager(ProgramStateManager &statemgr, SubEngine &subengine)
 | 
						|
    : SimpleConstraintManager(subengine, statemgr.getBasicVals()),
 | 
						|
      ISetFactory(statemgr.getAllocator()) {}
 | 
						|
 | 
						|
  ProgramStateRef assumeSymEquality(ProgramStateRef State, SymbolRef Sym,
 | 
						|
                                    const llvm::APSInt &V,
 | 
						|
                                    const llvm::APSInt &Adjustment,
 | 
						|
                                    bool Assumption);
 | 
						|
 | 
						|
  ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
 | 
						|
                              const llvm::APSInt &V,
 | 
						|
                              const llvm::APSInt &Adjustment) {
 | 
						|
    return assumeSymEquality(State, Sym, V, Adjustment, false);
 | 
						|
  }
 | 
						|
 | 
						|
  ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
 | 
						|
                              const llvm::APSInt &V,
 | 
						|
                              const llvm::APSInt &Adjustment) {
 | 
						|
    return assumeSymEquality(State, Sym, V, Adjustment, true);
 | 
						|
  }
 | 
						|
 | 
						|
  ProgramStateRef assumeSymLT(ProgramStateRef state,
 | 
						|
                                  SymbolRef sym,
 | 
						|
                                  const llvm::APSInt& V,
 | 
						|
                                  const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  ProgramStateRef assumeSymGT(ProgramStateRef state,
 | 
						|
                                  SymbolRef sym,
 | 
						|
                                  const llvm::APSInt& V,
 | 
						|
                                  const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  ProgramStateRef assumeSymGE(ProgramStateRef state,
 | 
						|
                                  SymbolRef sym,
 | 
						|
                                  const llvm::APSInt& V,
 | 
						|
                                  const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  ProgramStateRef assumeSymLE(ProgramStateRef state,
 | 
						|
                                  SymbolRef sym,
 | 
						|
                                  const llvm::APSInt& V,
 | 
						|
                                  const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  ProgramStateRef AddEQ(ProgramStateRef state,
 | 
						|
                            SymbolRef sym,
 | 
						|
                            const llvm::APSInt& V);
 | 
						|
 | 
						|
  ProgramStateRef AddNE(ProgramStateRef state,
 | 
						|
                            SymbolRef sym,
 | 
						|
                            const llvm::APSInt& V);
 | 
						|
 | 
						|
  const llvm::APSInt* getSymVal(ProgramStateRef state,
 | 
						|
                                SymbolRef sym) const;
 | 
						|
 | 
						|
  bool isNotEqual(ProgramStateRef state,
 | 
						|
                  SymbolRef sym,
 | 
						|
                  const llvm::APSInt& V) const;
 | 
						|
 | 
						|
  bool isEqual(ProgramStateRef state,
 | 
						|
               SymbolRef sym,
 | 
						|
               const llvm::APSInt& V) const;
 | 
						|
 | 
						|
  ProgramStateRef removeDeadBindings(ProgramStateRef state,
 | 
						|
                                         SymbolReaper& SymReaper);
 | 
						|
 | 
						|
  bool performTest(llvm::APSInt SymVal, llvm::APSInt Adjustment,
 | 
						|
                   BinaryOperator::Opcode Op, llvm::APSInt ComparisonVal);
 | 
						|
 | 
						|
  void print(ProgramStateRef state,
 | 
						|
             raw_ostream &Out,
 | 
						|
             const char* nl,
 | 
						|
             const char *sep);
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
ConstraintManager*
 | 
						|
ento::CreateBasicConstraintManager(ProgramStateManager& statemgr,
 | 
						|
                                   SubEngine &subengine) {
 | 
						|
  return new BasicConstraintManager(statemgr, subengine);
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: This is a more general utility and should live somewhere else.
 | 
						|
bool BasicConstraintManager::performTest(llvm::APSInt SymVal,
 | 
						|
                                         llvm::APSInt Adjustment,
 | 
						|
                                         BinaryOperator::Opcode Op,
 | 
						|
                                         llvm::APSInt ComparisonVal) {
 | 
						|
  APSIntType Type(Adjustment);
 | 
						|
  Type.apply(SymVal);
 | 
						|
  Type.apply(ComparisonVal);
 | 
						|
  SymVal += Adjustment;
 | 
						|
 | 
						|
  assert(BinaryOperator::isComparisonOp(Op));
 | 
						|
  BasicValueFactory &BVF = getBasicVals();
 | 
						|
  const llvm::APSInt *Result = BVF.evalAPSInt(Op, SymVal, ComparisonVal);
 | 
						|
  assert(Result && "Comparisons should always have valid results.");
 | 
						|
 | 
						|
  return Result->getBoolValue();
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef
 | 
						|
BasicConstraintManager::assumeSymEquality(ProgramStateRef State, SymbolRef Sym,
 | 
						|
                                          const llvm::APSInt &V,
 | 
						|
                                          const llvm::APSInt &Adjustment,
 | 
						|
                                          bool Assumption) {
 | 
						|
  // Before we do any real work, see if the value can even show up.
 | 
						|
  APSIntType AdjustmentType(Adjustment);
 | 
						|
  if (AdjustmentType.testInRange(V) != APSIntType::RTR_Within)
 | 
						|
    return Assumption ? NULL : State;
 | 
						|
 | 
						|
  // Get the symbol type.
 | 
						|
  BasicValueFactory &BVF = getBasicVals();
 | 
						|
  ASTContext &Ctx = BVF.getContext();
 | 
						|
  APSIntType SymbolType = BVF.getAPSIntType(Sym->getType(Ctx));
 | 
						|
 | 
						|
  // First, see if the adjusted value is within range for the symbol.
 | 
						|
  llvm::APSInt Adjusted = AdjustmentType.convert(V) - Adjustment;
 | 
						|
  if (SymbolType.testInRange(Adjusted) != APSIntType::RTR_Within)
 | 
						|
    return Assumption ? NULL : State;
 | 
						|
 | 
						|
  // Now we can do things properly in the symbol space.
 | 
						|
  SymbolType.apply(Adjusted);
 | 
						|
 | 
						|
  // Second, determine if sym == X, where X+Adjustment != V.
 | 
						|
  if (const llvm::APSInt *X = getSymVal(State, Sym)) {
 | 
						|
    bool IsFeasible = (*X == Adjusted);
 | 
						|
    return (IsFeasible == Assumption) ? State : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Third, determine if we already know sym+Adjustment != V.
 | 
						|
  if (isNotEqual(State, Sym, Adjusted))
 | 
						|
    return Assumption ? NULL : State;
 | 
						|
 | 
						|
  // If we reach here, sym is not a constant and we don't know if it is != V.
 | 
						|
  // Make the correct assumption.
 | 
						|
  if (Assumption)
 | 
						|
    return AddEQ(State, Sym, Adjusted);
 | 
						|
  else
 | 
						|
    return AddNE(State, Sym, Adjusted);
 | 
						|
}
 | 
						|
 | 
						|
// The logic for these will be handled in another ConstraintManager.
 | 
						|
// Approximate it here anyway by handling some edge cases.
 | 
						|
ProgramStateRef 
 | 
						|
BasicConstraintManager::assumeSymLT(ProgramStateRef state,
 | 
						|
                                    SymbolRef sym,
 | 
						|
                                    const llvm::APSInt &V,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  APSIntType ComparisonType(V), AdjustmentType(Adjustment);
 | 
						|
 | 
						|
  // Is 'V' out of range above the type?
 | 
						|
  llvm::APSInt Max = AdjustmentType.getMaxValue();
 | 
						|
  if (V > ComparisonType.convert(Max)) {
 | 
						|
    // This path is trivially feasible.
 | 
						|
    return state;
 | 
						|
  }
 | 
						|
 | 
						|
  // Is 'V' the smallest possible value, or out of range below the type?
 | 
						|
  llvm::APSInt Min = AdjustmentType.getMinValue();
 | 
						|
  if (V <= ComparisonType.convert(Min)) {
 | 
						|
    // sym cannot be any value less than 'V'.  This path is infeasible.
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reject a path if the value of sym is a constant X and !(X+Adj < V).
 | 
						|
  if (const llvm::APSInt *X = getSymVal(state, sym)) {
 | 
						|
    bool isFeasible = performTest(*X, Adjustment, BO_LT, V);
 | 
						|
    return isFeasible ? state : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: For now have assuming x < y be the same as assuming sym != V;
 | 
						|
  return assumeSymNE(state, sym, V, Adjustment);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef 
 | 
						|
BasicConstraintManager::assumeSymGT(ProgramStateRef state,
 | 
						|
                                    SymbolRef sym,
 | 
						|
                                    const llvm::APSInt &V,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  APSIntType ComparisonType(V), AdjustmentType(Adjustment);
 | 
						|
 | 
						|
  // Is 'V' the largest possible value, or out of range above the type?
 | 
						|
  llvm::APSInt Max = AdjustmentType.getMaxValue();
 | 
						|
  if (V >= ComparisonType.convert(Max)) {
 | 
						|
    // sym cannot be any value greater than 'V'.  This path is infeasible.
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Is 'V' out of range below the type?
 | 
						|
  llvm::APSInt Min = AdjustmentType.getMinValue();
 | 
						|
  if (V < ComparisonType.convert(Min)) {
 | 
						|
    // This path is trivially feasible.
 | 
						|
    return state;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reject a path if the value of sym is a constant X and !(X+Adj > V).
 | 
						|
  if (const llvm::APSInt *X = getSymVal(state, sym)) {
 | 
						|
    bool isFeasible = performTest(*X, Adjustment, BO_GT, V);
 | 
						|
    return isFeasible ? state : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: For now have assuming x > y be the same as assuming sym != V;
 | 
						|
  return assumeSymNE(state, sym, V, Adjustment);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef 
 | 
						|
BasicConstraintManager::assumeSymGE(ProgramStateRef state,
 | 
						|
                                    SymbolRef sym,
 | 
						|
                                    const llvm::APSInt &V,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  APSIntType ComparisonType(V), AdjustmentType(Adjustment);
 | 
						|
 | 
						|
  // Is 'V' the largest possible value, or out of range above the type?
 | 
						|
  llvm::APSInt Max = AdjustmentType.getMaxValue();
 | 
						|
  ComparisonType.apply(Max);
 | 
						|
 | 
						|
  if (V > Max) {
 | 
						|
    // sym cannot be any value greater than 'V'.  This path is infeasible.
 | 
						|
    return NULL;
 | 
						|
  } else if (V == Max) {
 | 
						|
    // If the path is feasible then as a consequence we know that
 | 
						|
    // 'sym+Adjustment == V' because there are no larger values.
 | 
						|
    // Add this constraint.
 | 
						|
    return assumeSymEQ(state, sym, V, Adjustment);
 | 
						|
  }
 | 
						|
 | 
						|
  // Is 'V' out of range below the type?
 | 
						|
  llvm::APSInt Min = AdjustmentType.getMinValue();
 | 
						|
  if (V < ComparisonType.convert(Min)) {
 | 
						|
    // This path is trivially feasible.
 | 
						|
    return state;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
 | 
						|
  if (const llvm::APSInt *X = getSymVal(state, sym)) {
 | 
						|
    bool isFeasible = performTest(*X, Adjustment, BO_GE, V);
 | 
						|
    return isFeasible ? state : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  return state;
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef 
 | 
						|
BasicConstraintManager::assumeSymLE(ProgramStateRef state,
 | 
						|
                                    SymbolRef sym,
 | 
						|
                                    const llvm::APSInt &V,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  APSIntType ComparisonType(V), AdjustmentType(Adjustment);
 | 
						|
 | 
						|
  // Is 'V' out of range above the type?
 | 
						|
  llvm::APSInt Max = AdjustmentType.getMaxValue();
 | 
						|
  if (V > ComparisonType.convert(Max)) {
 | 
						|
    // This path is trivially feasible.
 | 
						|
    return state;
 | 
						|
  }
 | 
						|
 | 
						|
  // Is 'V' the smallest possible value, or out of range below the type?
 | 
						|
  llvm::APSInt Min = AdjustmentType.getMinValue();
 | 
						|
  ComparisonType.apply(Min);
 | 
						|
 | 
						|
  if (V < Min) {
 | 
						|
    // sym cannot be any value less than 'V'.  This path is infeasible.
 | 
						|
    return NULL;
 | 
						|
  } else if (V == Min) {
 | 
						|
    // If the path is feasible then as a consequence we know that
 | 
						|
    // 'sym+Adjustment == V' because there are no smaller values.
 | 
						|
    // Add this constraint.
 | 
						|
    return assumeSymEQ(state, sym, V, Adjustment);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
 | 
						|
  if (const llvm::APSInt *X = getSymVal(state, sym)) {
 | 
						|
    bool isFeasible = performTest(*X, Adjustment, BO_LE, V);
 | 
						|
    return isFeasible ? state : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  return state;
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef BasicConstraintManager::AddEQ(ProgramStateRef state,
 | 
						|
                                                  SymbolRef sym,
 | 
						|
                                             const llvm::APSInt& V) {
 | 
						|
  // Now that we have an actual value, we can throw out the NE-set.
 | 
						|
  // Create a new state with the old bindings replaced.
 | 
						|
  state = state->remove<ConstNotEq>(sym);
 | 
						|
  return state->set<ConstEq>(sym, &getBasicVals().getValue(V));
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef BasicConstraintManager::AddNE(ProgramStateRef state,
 | 
						|
                                                  SymbolRef sym,
 | 
						|
                                                  const llvm::APSInt& V) {
 | 
						|
 | 
						|
  // First, retrieve the NE-set associated with the given symbol.
 | 
						|
  ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
 | 
						|
  ProgramState::IntSetTy S = T ? *T : ISetFactory.getEmptySet();
 | 
						|
 | 
						|
  // Now add V to the NE set.
 | 
						|
  S = ISetFactory.add(S, &getBasicVals().getValue(V));
 | 
						|
 | 
						|
  // Create a new state with the old binding replaced.
 | 
						|
  return state->set<ConstNotEq>(sym, S);
 | 
						|
}
 | 
						|
 | 
						|
const llvm::APSInt* BasicConstraintManager::getSymVal(ProgramStateRef state,
 | 
						|
                                                      SymbolRef sym) const {
 | 
						|
  const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
 | 
						|
  return T ? *T : NULL;
 | 
						|
}
 | 
						|
 | 
						|
bool BasicConstraintManager::isNotEqual(ProgramStateRef state,
 | 
						|
                                        SymbolRef sym,
 | 
						|
                                        const llvm::APSInt& V) const {
 | 
						|
 | 
						|
  // Retrieve the NE-set associated with the given symbol.
 | 
						|
  const ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
 | 
						|
 | 
						|
  // See if V is present in the NE-set.
 | 
						|
  return T ? T->contains(&getBasicVals().getValue(V)) : false;
 | 
						|
}
 | 
						|
 | 
						|
bool BasicConstraintManager::isEqual(ProgramStateRef state,
 | 
						|
                                     SymbolRef sym,
 | 
						|
                                     const llvm::APSInt& V) const {
 | 
						|
  // Retrieve the EQ-set associated with the given symbol.
 | 
						|
  const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
 | 
						|
  // See if V is present in the EQ-set.
 | 
						|
  return T ? **T == V : false;
 | 
						|
}
 | 
						|
 | 
						|
/// Scan all symbols referenced by the constraints. If the symbol is not alive
 | 
						|
/// as marked in LSymbols, mark it as dead in DSymbols.
 | 
						|
ProgramStateRef 
 | 
						|
BasicConstraintManager::removeDeadBindings(ProgramStateRef state,
 | 
						|
                                           SymbolReaper& SymReaper) {
 | 
						|
 | 
						|
  ConstEqTy CE = state->get<ConstEq>();
 | 
						|
  ConstEqTy::Factory& CEFactory = state->get_context<ConstEq>();
 | 
						|
 | 
						|
  for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
 | 
						|
    SymbolRef sym = I.getKey();
 | 
						|
    if (SymReaper.maybeDead(sym))
 | 
						|
      CE = CEFactory.remove(CE, sym);
 | 
						|
  }
 | 
						|
  state = state->set<ConstEq>(CE);
 | 
						|
 | 
						|
  ConstNotEqTy CNE = state->get<ConstNotEq>();
 | 
						|
  ConstNotEqTy::Factory& CNEFactory = state->get_context<ConstNotEq>();
 | 
						|
 | 
						|
  for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) {
 | 
						|
    SymbolRef sym = I.getKey();
 | 
						|
    if (SymReaper.maybeDead(sym))
 | 
						|
      CNE = CNEFactory.remove(CNE, sym);
 | 
						|
  }
 | 
						|
 | 
						|
  return state->set<ConstNotEq>(CNE);
 | 
						|
}
 | 
						|
 | 
						|
void BasicConstraintManager::print(ProgramStateRef state,
 | 
						|
                                   raw_ostream &Out,
 | 
						|
                                   const char* nl, const char *sep) {
 | 
						|
  // Print equality constraints.
 | 
						|
 | 
						|
  ConstEqTy CE = state->get<ConstEq>();
 | 
						|
 | 
						|
  if (!CE.isEmpty()) {
 | 
						|
    Out << nl << sep << "'==' constraints:";
 | 
						|
    for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I)
 | 
						|
      Out << nl << " $" << I.getKey() << " : " << *I.getData();
 | 
						|
  }
 | 
						|
 | 
						|
  // Print != constraints.
 | 
						|
 | 
						|
  ConstNotEqTy CNE = state->get<ConstNotEq>();
 | 
						|
 | 
						|
  if (!CNE.isEmpty()) {
 | 
						|
    Out << nl << sep << "'!=' constraints:";
 | 
						|
 | 
						|
    for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
 | 
						|
      Out << nl << " $" << I.getKey() << " : ";
 | 
						|
      bool isFirst = true;
 | 
						|
 | 
						|
      ProgramState::IntSetTy::iterator J = I.getData().begin(),
 | 
						|
                                  EJ = I.getData().end();
 | 
						|
 | 
						|
      for ( ; J != EJ; ++J) {
 | 
						|
        if (isFirst) isFirst = false;
 | 
						|
        else Out << ", ";
 | 
						|
 | 
						|
        Out << (*J)->getSExtValue(); // Hack: should print to raw_ostream.
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |