416 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			416 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines the template classes ExplodedNode and ExplodedGraph,
 | 
						|
//  which represent a path-sensitive, intra-procedural "exploded graph."
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | 
						|
#include "clang/AST/Stmt.h"
 | 
						|
#include "clang/AST/ParentMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Node auditing.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// An out of line virtual method to provide a home for the class vtable.
 | 
						|
ExplodedNode::Auditor::~Auditor() {}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static ExplodedNode::Auditor* NodeAuditor = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  NodeAuditor = A;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Cleanup.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static const unsigned CounterTop = 1000;
 | 
						|
 | 
						|
ExplodedGraph::ExplodedGraph()
 | 
						|
  : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {}
 | 
						|
 | 
						|
ExplodedGraph::~ExplodedGraph() {}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Node reclamation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
 | 
						|
  // Reclaim all nodes that match *all* the following criteria:
 | 
						|
  //
 | 
						|
  // (1) 1 predecessor (that has one successor)
 | 
						|
  // (2) 1 successor (that has one predecessor)
 | 
						|
  // (3) The ProgramPoint is for a PostStmt.
 | 
						|
  // (4) There is no 'tag' for the ProgramPoint.
 | 
						|
  // (5) The 'store' is the same as the predecessor.
 | 
						|
  // (6) The 'GDM' is the same as the predecessor.
 | 
						|
  // (7) The LocationContext is the same as the predecessor.
 | 
						|
  // (8) The PostStmt is for a non-consumed Stmt or Expr.
 | 
						|
  // (9) The successor is not a CallExpr StmtPoint (so that we would be able to
 | 
						|
  //     find it when retrying a call with no inlining).
 | 
						|
  // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well.
 | 
						|
 | 
						|
  // Conditions 1 and 2.
 | 
						|
  if (node->pred_size() != 1 || node->succ_size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const ExplodedNode *pred = *(node->pred_begin());
 | 
						|
  if (pred->succ_size() != 1)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  const ExplodedNode *succ = *(node->succ_begin());
 | 
						|
  if (succ->pred_size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Condition 3.
 | 
						|
  ProgramPoint progPoint = node->getLocation();
 | 
						|
  if (!isa<PostStmt>(progPoint))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Condition 4.
 | 
						|
  PostStmt ps = cast<PostStmt>(progPoint);
 | 
						|
  if (ps.getTag())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  if (isa<BinaryOperator>(ps.getStmt()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Conditions 5, 6, and 7.
 | 
						|
  ProgramStateRef state = node->getState();
 | 
						|
  ProgramStateRef pred_state = pred->getState();    
 | 
						|
  if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
 | 
						|
      progPoint.getLocationContext() != pred->getLocationContext())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Condition 8.
 | 
						|
  if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) {
 | 
						|
    ParentMap &PM = progPoint.getLocationContext()->getParentMap();
 | 
						|
    if (!PM.isConsumedExpr(Ex))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Condition 9.
 | 
						|
  const ProgramPoint SuccLoc = succ->getLocation();
 | 
						|
  if (const StmtPoint *SP = dyn_cast<StmtPoint>(&SuccLoc))
 | 
						|
    if (CallEvent::mayBeInlined(SP->getStmt()))
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void ExplodedGraph::collectNode(ExplodedNode *node) {
 | 
						|
  // Removing a node means:
 | 
						|
  // (a) changing the predecessors successor to the successor of this node
 | 
						|
  // (b) changing the successors predecessor to the predecessor of this node
 | 
						|
  // (c) Putting 'node' onto freeNodes.
 | 
						|
  assert(node->pred_size() == 1 || node->succ_size() == 1);
 | 
						|
  ExplodedNode *pred = *(node->pred_begin());
 | 
						|
  ExplodedNode *succ = *(node->succ_begin());
 | 
						|
  pred->replaceSuccessor(succ);
 | 
						|
  succ->replacePredecessor(pred);
 | 
						|
  FreeNodes.push_back(node);
 | 
						|
  Nodes.RemoveNode(node);
 | 
						|
  --NumNodes;
 | 
						|
  node->~ExplodedNode();  
 | 
						|
}
 | 
						|
 | 
						|
void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
 | 
						|
  if (ChangedNodes.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Only periodically relcaim nodes so that we can build up a set of
 | 
						|
  // nodes that meet the reclamation criteria.  Freshly created nodes
 | 
						|
  // by definition have no successor, and thus cannot be reclaimed (see below).
 | 
						|
  assert(reclaimCounter > 0);
 | 
						|
  if (--reclaimCounter != 0)
 | 
						|
    return;
 | 
						|
  reclaimCounter = CounterTop;
 | 
						|
 | 
						|
  for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
 | 
						|
       it != et; ++it) {
 | 
						|
    ExplodedNode *node = *it;
 | 
						|
    if (shouldCollect(node))
 | 
						|
      collectNode(node);
 | 
						|
  }
 | 
						|
  ChangedNodes.clear();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ExplodedNode.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static inline BumpVector<ExplodedNode*>& getVector(void *P) {
 | 
						|
  return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P);
 | 
						|
}
 | 
						|
 | 
						|
void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
 | 
						|
  assert (!V->isSink());
 | 
						|
  Preds.addNode(V, G);
 | 
						|
  V->Succs.addNode(this, G);
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (NodeAuditor) NodeAuditor->AddEdge(V, this);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
 | 
						|
  assert(getKind() == Size1);
 | 
						|
  P = reinterpret_cast<uintptr_t>(node);
 | 
						|
  assert(getKind() == Size1);
 | 
						|
}
 | 
						|
 | 
						|
void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
 | 
						|
  assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
 | 
						|
  assert(!getFlag());
 | 
						|
 | 
						|
  if (getKind() == Size1) {
 | 
						|
    if (ExplodedNode *NOld = getNode()) {
 | 
						|
      BumpVectorContext &Ctx = G.getNodeAllocator();
 | 
						|
      BumpVector<ExplodedNode*> *V = 
 | 
						|
        G.getAllocator().Allocate<BumpVector<ExplodedNode*> >();
 | 
						|
      new (V) BumpVector<ExplodedNode*>(Ctx, 4);
 | 
						|
      
 | 
						|
      assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
 | 
						|
      V->push_back(NOld, Ctx);
 | 
						|
      V->push_back(N, Ctx);
 | 
						|
      P = reinterpret_cast<uintptr_t>(V) | SizeOther;
 | 
						|
      assert(getPtr() == (void*) V);
 | 
						|
      assert(getKind() == SizeOther);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      P = reinterpret_cast<uintptr_t>(N);
 | 
						|
      assert(getKind() == Size1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    assert(getKind() == SizeOther);
 | 
						|
    getVector(getPtr()).push_back(N, G.getNodeAllocator());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned ExplodedNode::NodeGroup::size() const {
 | 
						|
  if (getFlag())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (getKind() == Size1)
 | 
						|
    return getNode() ? 1 : 0;
 | 
						|
  else
 | 
						|
    return getVector(getPtr()).size();
 | 
						|
}
 | 
						|
 | 
						|
ExplodedNode **ExplodedNode::NodeGroup::begin() const {
 | 
						|
  if (getFlag())
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  if (getKind() == Size1)
 | 
						|
    return (ExplodedNode**) (getPtr() ? &P : NULL);
 | 
						|
  else
 | 
						|
    return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin()));
 | 
						|
}
 | 
						|
 | 
						|
ExplodedNode** ExplodedNode::NodeGroup::end() const {
 | 
						|
  if (getFlag())
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  if (getKind() == Size1)
 | 
						|
    return (ExplodedNode**) (getPtr() ? &P+1 : NULL);
 | 
						|
  else {
 | 
						|
    // Dereferencing end() is undefined behaviour. The vector is not empty, so
 | 
						|
    // we can dereference the last elem and then add 1 to the result.
 | 
						|
    return const_cast<ExplodedNode**>(getVector(getPtr()).end());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
 | 
						|
                                     ProgramStateRef State,
 | 
						|
                                     bool IsSink,
 | 
						|
                                     bool* IsNew) {
 | 
						|
  // Profile 'State' to determine if we already have an existing node.
 | 
						|
  llvm::FoldingSetNodeID profile;
 | 
						|
  void *InsertPos = 0;
 | 
						|
 | 
						|
  NodeTy::Profile(profile, L, State, IsSink);
 | 
						|
  NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
 | 
						|
 | 
						|
  if (!V) {
 | 
						|
    if (!FreeNodes.empty()) {
 | 
						|
      V = FreeNodes.back();
 | 
						|
      FreeNodes.pop_back();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // Allocate a new node.
 | 
						|
      V = (NodeTy*) getAllocator().Allocate<NodeTy>();
 | 
						|
    }
 | 
						|
 | 
						|
    new (V) NodeTy(L, State, IsSink);
 | 
						|
 | 
						|
    if (reclaimNodes)
 | 
						|
      ChangedNodes.push_back(V);
 | 
						|
 | 
						|
    // Insert the node into the node set and return it.
 | 
						|
    Nodes.InsertNode(V, InsertPos);
 | 
						|
    ++NumNodes;
 | 
						|
 | 
						|
    if (IsNew) *IsNew = true;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    if (IsNew) *IsNew = false;
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<ExplodedGraph*, InterExplodedGraphMap*>
 | 
						|
ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
 | 
						|
               llvm::DenseMap<const void*, const void*> *InverseMap) const {
 | 
						|
 | 
						|
  if (NBeg == NEnd)
 | 
						|
    return std::make_pair((ExplodedGraph*) 0,
 | 
						|
                          (InterExplodedGraphMap*) 0);
 | 
						|
 | 
						|
  assert (NBeg < NEnd);
 | 
						|
 | 
						|
  OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
 | 
						|
 | 
						|
  ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
 | 
						|
 | 
						|
  return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
 | 
						|
}
 | 
						|
 | 
						|
ExplodedGraph*
 | 
						|
ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
 | 
						|
                            const ExplodedNode* const* EndSources,
 | 
						|
                            InterExplodedGraphMap* M,
 | 
						|
                   llvm::DenseMap<const void*, const void*> *InverseMap) const {
 | 
						|
 | 
						|
  typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
 | 
						|
  Pass1Ty Pass1;
 | 
						|
 | 
						|
  typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
 | 
						|
  Pass2Ty& Pass2 = M->M;
 | 
						|
 | 
						|
  SmallVector<const ExplodedNode*, 10> WL1, WL2;
 | 
						|
 | 
						|
  // ===- Pass 1 (reverse DFS) -===
 | 
						|
  for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
 | 
						|
    assert(*I);
 | 
						|
    WL1.push_back(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Process the first worklist until it is empty.  Because it is a std::list
 | 
						|
  // it acts like a FIFO queue.
 | 
						|
  while (!WL1.empty()) {
 | 
						|
    const ExplodedNode *N = WL1.back();
 | 
						|
    WL1.pop_back();
 | 
						|
 | 
						|
    // Have we already visited this node?  If so, continue to the next one.
 | 
						|
    if (Pass1.count(N))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Otherwise, mark this node as visited.
 | 
						|
    Pass1.insert(N);
 | 
						|
 | 
						|
    // If this is a root enqueue it to the second worklist.
 | 
						|
    if (N->Preds.empty()) {
 | 
						|
      WL2.push_back(N);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Visit our predecessors and enqueue them.
 | 
						|
    for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
 | 
						|
      WL1.push_back(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  // We didn't hit a root? Return with a null pointer for the new graph.
 | 
						|
  if (WL2.empty())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Create an empty graph.
 | 
						|
  ExplodedGraph* G = MakeEmptyGraph();
 | 
						|
 | 
						|
  // ===- Pass 2 (forward DFS to construct the new graph) -===
 | 
						|
  while (!WL2.empty()) {
 | 
						|
    const ExplodedNode *N = WL2.back();
 | 
						|
    WL2.pop_back();
 | 
						|
 | 
						|
    // Skip this node if we have already processed it.
 | 
						|
    if (Pass2.find(N) != Pass2.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Create the corresponding node in the new graph and record the mapping
 | 
						|
    // from the old node to the new node.
 | 
						|
    ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
 | 
						|
    Pass2[N] = NewN;
 | 
						|
 | 
						|
    // Also record the reverse mapping from the new node to the old node.
 | 
						|
    if (InverseMap) (*InverseMap)[NewN] = N;
 | 
						|
 | 
						|
    // If this node is a root, designate it as such in the graph.
 | 
						|
    if (N->Preds.empty())
 | 
						|
      G->addRoot(NewN);
 | 
						|
 | 
						|
    // In the case that some of the intended predecessors of NewN have already
 | 
						|
    // been created, we should hook them up as predecessors.
 | 
						|
 | 
						|
    // Walk through the predecessors of 'N' and hook up their corresponding
 | 
						|
    // nodes in the new graph (if any) to the freshly created node.
 | 
						|
    for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
 | 
						|
      Pass2Ty::iterator PI = Pass2.find(*I);
 | 
						|
      if (PI == Pass2.end())
 | 
						|
        continue;
 | 
						|
 | 
						|
      NewN->addPredecessor(PI->second, *G);
 | 
						|
    }
 | 
						|
 | 
						|
    // In the case that some of the intended successors of NewN have already
 | 
						|
    // been created, we should hook them up as successors.  Otherwise, enqueue
 | 
						|
    // the new nodes from the original graph that should have nodes created
 | 
						|
    // in the new graph.
 | 
						|
    for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
 | 
						|
      Pass2Ty::iterator PI = Pass2.find(*I);
 | 
						|
      if (PI != Pass2.end()) {
 | 
						|
        PI->second->addPredecessor(NewN, *G);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Enqueue nodes to the worklist that were marked during pass 1.
 | 
						|
      if (Pass1.count(*I))
 | 
						|
        WL2.push_back(*I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return G;
 | 
						|
}
 | 
						|
 | 
						|
void InterExplodedGraphMap::anchor() { }
 | 
						|
 | 
						|
ExplodedNode*
 | 
						|
InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const {
 | 
						|
  llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I =
 | 
						|
    M.find(N);
 | 
						|
 | 
						|
  return I == M.end() ? 0 : I->second;
 | 
						|
}
 | 
						|
 |