419 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			419 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
// SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines SValBuilder, the base class for all (complete) SValBuilder
 | 
						|
//  implementations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Basic SVal creation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void SValBuilder::anchor() { }
 | 
						|
 | 
						|
DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
 | 
						|
  if (Loc::isLocType(type))
 | 
						|
    return makeNull();
 | 
						|
 | 
						|
  if (type->isIntegerType())
 | 
						|
    return makeIntVal(0, type);
 | 
						|
 | 
						|
  // FIXME: Handle floats.
 | 
						|
  // FIXME: Handle structs.
 | 
						|
  return UnknownVal();
 | 
						|
}
 | 
						|
 | 
						|
NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
 | 
						|
                                const llvm::APSInt& rhs, QualType type) {
 | 
						|
  // The Environment ensures we always get a persistent APSInt in
 | 
						|
  // BasicValueFactory, so we don't need to get the APSInt from
 | 
						|
  // BasicValueFactory again.
 | 
						|
  assert(lhs);
 | 
						|
  assert(!Loc::isLocType(type));
 | 
						|
  return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
 | 
						|
}
 | 
						|
 | 
						|
NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
 | 
						|
                               BinaryOperator::Opcode op, const SymExpr *rhs,
 | 
						|
                               QualType type) {
 | 
						|
  assert(rhs);
 | 
						|
  assert(!Loc::isLocType(type));
 | 
						|
  return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
 | 
						|
}
 | 
						|
 | 
						|
NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
 | 
						|
                               const SymExpr *rhs, QualType type) {
 | 
						|
  assert(lhs && rhs);
 | 
						|
  assert(!Loc::isLocType(type));
 | 
						|
  return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
 | 
						|
}
 | 
						|
 | 
						|
NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
 | 
						|
                               QualType fromTy, QualType toTy) {
 | 
						|
  assert(operand);
 | 
						|
  assert(!Loc::isLocType(toTy));
 | 
						|
  return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
 | 
						|
}
 | 
						|
 | 
						|
SVal SValBuilder::convertToArrayIndex(SVal val) {
 | 
						|
  if (val.isUnknownOrUndef())
 | 
						|
    return val;
 | 
						|
 | 
						|
  // Common case: we have an appropriately sized integer.
 | 
						|
  if (nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&val)) {
 | 
						|
    const llvm::APSInt& I = CI->getValue();
 | 
						|
    if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
 | 
						|
      return val;
 | 
						|
  }
 | 
						|
 | 
						|
  return evalCastFromNonLoc(cast<NonLoc>(val), ArrayIndexTy);
 | 
						|
}
 | 
						|
 | 
						|
nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
 | 
						|
  return makeTruthVal(boolean->getValue());
 | 
						|
}
 | 
						|
 | 
						|
DefinedOrUnknownSVal 
 | 
						|
SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
 | 
						|
  QualType T = region->getValueType();
 | 
						|
 | 
						|
  if (!SymbolManager::canSymbolicate(T))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  SymbolRef sym = SymMgr.getRegionValueSymbol(region);
 | 
						|
 | 
						|
  if (Loc::isLocType(T))
 | 
						|
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
 | 
						|
 | 
						|
  return nonloc::SymbolVal(sym);
 | 
						|
}
 | 
						|
 | 
						|
DefinedOrUnknownSVal
 | 
						|
SValBuilder::getConjuredSymbolVal(const void *symbolTag,
 | 
						|
                                  const Expr *expr,
 | 
						|
                                  const LocationContext *LCtx,
 | 
						|
                                  unsigned count) {
 | 
						|
  QualType T = expr->getType();
 | 
						|
  return getConjuredSymbolVal(symbolTag, expr, LCtx, T, count);
 | 
						|
}
 | 
						|
 | 
						|
DefinedOrUnknownSVal
 | 
						|
SValBuilder::getConjuredSymbolVal(const void *symbolTag,
 | 
						|
                                  const Expr *expr,
 | 
						|
                                  const LocationContext *LCtx,
 | 
						|
                                  QualType type,
 | 
						|
                                  unsigned count) {
 | 
						|
  if (!SymbolManager::canSymbolicate(type))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  SymbolRef sym = SymMgr.getConjuredSymbol(expr, LCtx, type, count, symbolTag);
 | 
						|
 | 
						|
  if (Loc::isLocType(type))
 | 
						|
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
 | 
						|
 | 
						|
  return nonloc::SymbolVal(sym);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
DefinedOrUnknownSVal
 | 
						|
SValBuilder::getConjuredSymbolVal(const Stmt *stmt,
 | 
						|
                                  const LocationContext *LCtx,
 | 
						|
                                  QualType type,
 | 
						|
                                  unsigned visitCount) {
 | 
						|
  if (!SymbolManager::canSymbolicate(type))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  SymbolRef sym = SymMgr.getConjuredSymbol(stmt, LCtx, type, visitCount);
 | 
						|
  
 | 
						|
  if (Loc::isLocType(type))
 | 
						|
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
 | 
						|
  
 | 
						|
  return nonloc::SymbolVal(sym);
 | 
						|
}
 | 
						|
 | 
						|
DefinedOrUnknownSVal
 | 
						|
SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
 | 
						|
                                      const LocationContext *LCtx,
 | 
						|
                                      unsigned VisitCount) {
 | 
						|
  QualType T = E->getType();
 | 
						|
  assert(Loc::isLocType(T));
 | 
						|
  assert(SymbolManager::canSymbolicate(T));
 | 
						|
 | 
						|
  SymbolRef sym = SymMgr.getConjuredSymbol(E, LCtx, T, VisitCount);
 | 
						|
  return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
 | 
						|
}
 | 
						|
 | 
						|
DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
 | 
						|
                                              const MemRegion *region,
 | 
						|
                                              const Expr *expr, QualType type,
 | 
						|
                                              unsigned count) {
 | 
						|
  assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
 | 
						|
 | 
						|
  SymbolRef sym =
 | 
						|
      SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
 | 
						|
 | 
						|
  if (Loc::isLocType(type))
 | 
						|
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
 | 
						|
 | 
						|
  return nonloc::SymbolVal(sym);
 | 
						|
}
 | 
						|
 | 
						|
DefinedOrUnknownSVal
 | 
						|
SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
 | 
						|
                                             const TypedValueRegion *region) {
 | 
						|
  QualType T = region->getValueType();
 | 
						|
 | 
						|
  if (!SymbolManager::canSymbolicate(T))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
 | 
						|
 | 
						|
  if (Loc::isLocType(T))
 | 
						|
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
 | 
						|
 | 
						|
  return nonloc::SymbolVal(sym);
 | 
						|
}
 | 
						|
 | 
						|
DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
 | 
						|
  return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
 | 
						|
}
 | 
						|
 | 
						|
DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
 | 
						|
                                         CanQualType locTy,
 | 
						|
                                         const LocationContext *locContext) {
 | 
						|
  const BlockTextRegion *BC =
 | 
						|
    MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
 | 
						|
  const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext);
 | 
						|
  return loc::MemRegionVal(BD);
 | 
						|
}
 | 
						|
 | 
						|
/// Return a memory region for the 'this' object reference.
 | 
						|
loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
 | 
						|
                                          const StackFrameContext *SFC) {
 | 
						|
  return loc::MemRegionVal(getRegionManager().
 | 
						|
                           getCXXThisRegion(D->getThisType(getContext()), SFC));
 | 
						|
}
 | 
						|
 | 
						|
/// Return a memory region for the 'this' object reference.
 | 
						|
loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
 | 
						|
                                          const StackFrameContext *SFC) {
 | 
						|
  const Type *T = D->getTypeForDecl();
 | 
						|
  QualType PT = getContext().getPointerType(QualType(T, 0));
 | 
						|
  return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
 | 
						|
                                   BinaryOperator::Opcode Op,
 | 
						|
                                   NonLoc LHS, NonLoc RHS,
 | 
						|
                                   QualType ResultTy) {
 | 
						|
  if (!State->isTainted(RHS) && !State->isTainted(LHS))
 | 
						|
    return UnknownVal();
 | 
						|
    
 | 
						|
  const SymExpr *symLHS = LHS.getAsSymExpr();
 | 
						|
  const SymExpr *symRHS = RHS.getAsSymExpr();
 | 
						|
  // TODO: When the Max Complexity is reached, we should conjure a symbol
 | 
						|
  // instead of generating an Unknown value and propagate the taint info to it.
 | 
						|
  const unsigned MaxComp = 10000; // 100000 28X
 | 
						|
 | 
						|
  if (symLHS && symRHS &&
 | 
						|
      (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
 | 
						|
    return makeNonLoc(symLHS, Op, symRHS, ResultTy);
 | 
						|
 | 
						|
  if (symLHS && symLHS->computeComplexity() < MaxComp)
 | 
						|
    if (const nonloc::ConcreteInt *rInt = dyn_cast<nonloc::ConcreteInt>(&RHS))
 | 
						|
      return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
 | 
						|
 | 
						|
  if (symRHS && symRHS->computeComplexity() < MaxComp)
 | 
						|
    if (const nonloc::ConcreteInt *lInt = dyn_cast<nonloc::ConcreteInt>(&LHS))
 | 
						|
      return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
 | 
						|
 | 
						|
  return UnknownVal();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
 | 
						|
                            SVal lhs, SVal rhs, QualType type) {
 | 
						|
 | 
						|
  if (lhs.isUndef() || rhs.isUndef())
 | 
						|
    return UndefinedVal();
 | 
						|
 | 
						|
  if (lhs.isUnknown() || rhs.isUnknown())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  if (isa<Loc>(lhs)) {
 | 
						|
    if (isa<Loc>(rhs))
 | 
						|
      return evalBinOpLL(state, op, cast<Loc>(lhs), cast<Loc>(rhs), type);
 | 
						|
 | 
						|
    return evalBinOpLN(state, op, cast<Loc>(lhs), cast<NonLoc>(rhs), type);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<Loc>(rhs)) {
 | 
						|
    // Support pointer arithmetic where the addend is on the left
 | 
						|
    // and the pointer on the right.
 | 
						|
    assert(op == BO_Add);
 | 
						|
 | 
						|
    // Commute the operands.
 | 
						|
    return evalBinOpLN(state, op, cast<Loc>(rhs), cast<NonLoc>(lhs), type);
 | 
						|
  }
 | 
						|
 | 
						|
  return evalBinOpNN(state, op, cast<NonLoc>(lhs), cast<NonLoc>(rhs), type);
 | 
						|
}
 | 
						|
 | 
						|
DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
 | 
						|
                                         DefinedOrUnknownSVal lhs,
 | 
						|
                                         DefinedOrUnknownSVal rhs) {
 | 
						|
  return cast<DefinedOrUnknownSVal>(evalBinOp(state, BO_EQ, lhs, rhs,
 | 
						|
                                              Context.IntTy));
 | 
						|
}
 | 
						|
 | 
						|
/// Recursively check if the pointer types are equal modulo const, volatile,
 | 
						|
/// and restrict qualifiers. Assumes the input types are canonical.
 | 
						|
/// TODO: This is based off of code in SemaCast; can we reuse it.
 | 
						|
static bool haveSimilarTypes(ASTContext &Context, QualType T1,
 | 
						|
                                                  QualType T2) {
 | 
						|
  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
 | 
						|
    Qualifiers Quals1, Quals2;
 | 
						|
    T1 = Context.getUnqualifiedArrayType(T1, Quals1);
 | 
						|
    T2 = Context.getUnqualifiedArrayType(T2, Quals2);
 | 
						|
 | 
						|
    // Make sure that non cvr-qualifiers the other qualifiers (e.g., address
 | 
						|
    // spaces) are identical.
 | 
						|
    Quals1.removeCVRQualifiers();
 | 
						|
    Quals2.removeCVRQualifiers();
 | 
						|
    if (Quals1 != Quals2)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (T1 != T2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: should rewrite according to the cast kind.
 | 
						|
SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
 | 
						|
  castTy = Context.getCanonicalType(castTy);
 | 
						|
  originalTy = Context.getCanonicalType(originalTy);
 | 
						|
  if (val.isUnknownOrUndef() || castTy == originalTy)
 | 
						|
    return val;
 | 
						|
 | 
						|
  // For const casts, just propagate the value.
 | 
						|
  if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
 | 
						|
    if (haveSimilarTypes(Context, Context.getPointerType(castTy),
 | 
						|
                                  Context.getPointerType(originalTy)))
 | 
						|
      return val;
 | 
						|
  
 | 
						|
  // Check for casts from pointers to integers.
 | 
						|
  if (castTy->isIntegerType() && Loc::isLocType(originalTy))
 | 
						|
    return evalCastFromLoc(cast<Loc>(val), castTy);
 | 
						|
 | 
						|
  // Check for casts from integers to pointers.
 | 
						|
  if (Loc::isLocType(castTy) && originalTy->isIntegerType()) {
 | 
						|
    if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&val)) {
 | 
						|
      if (const MemRegion *R = LV->getLoc().getAsRegion()) {
 | 
						|
        StoreManager &storeMgr = StateMgr.getStoreManager();
 | 
						|
        R = storeMgr.castRegion(R, castTy);
 | 
						|
        return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
 | 
						|
      }
 | 
						|
      return LV->getLoc();
 | 
						|
    }
 | 
						|
    return dispatchCast(val, castTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Just pass through function and block pointers.
 | 
						|
  if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
 | 
						|
    assert(Loc::isLocType(castTy));
 | 
						|
    return val;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for casts from array type to another type.
 | 
						|
  if (originalTy->isArrayType()) {
 | 
						|
    // We will always decay to a pointer.
 | 
						|
    val = StateMgr.ArrayToPointer(cast<Loc>(val));
 | 
						|
 | 
						|
    // Are we casting from an array to a pointer?  If so just pass on
 | 
						|
    // the decayed value.
 | 
						|
    if (castTy->isPointerType() || castTy->isReferenceType())
 | 
						|
      return val;
 | 
						|
 | 
						|
    // Are we casting from an array to an integer?  If so, cast the decayed
 | 
						|
    // pointer value to an integer.
 | 
						|
    assert(castTy->isIntegerType());
 | 
						|
 | 
						|
    // FIXME: Keep these here for now in case we decide soon that we
 | 
						|
    // need the original decayed type.
 | 
						|
    //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
 | 
						|
    //    QualType pointerTy = C.getPointerType(elemTy);
 | 
						|
    return evalCastFromLoc(cast<Loc>(val), castTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for casts from a region to a specific type.
 | 
						|
  if (const MemRegion *R = val.getAsRegion()) {
 | 
						|
    // Handle other casts of locations to integers.
 | 
						|
    if (castTy->isIntegerType())
 | 
						|
      return evalCastFromLoc(loc::MemRegionVal(R), castTy);
 | 
						|
 | 
						|
    // FIXME: We should handle the case where we strip off view layers to get
 | 
						|
    //  to a desugared type.
 | 
						|
    if (!Loc::isLocType(castTy)) {
 | 
						|
      // FIXME: There can be gross cases where one casts the result of a function
 | 
						|
      // (that returns a pointer) to some other value that happens to fit
 | 
						|
      // within that pointer value.  We currently have no good way to
 | 
						|
      // model such operations.  When this happens, the underlying operation
 | 
						|
      // is that the caller is reasoning about bits.  Conceptually we are
 | 
						|
      // layering a "view" of a location on top of those bits.  Perhaps
 | 
						|
      // we need to be more lazy about mutual possible views, even on an
 | 
						|
      // SVal?  This may be necessary for bit-level reasoning as well.
 | 
						|
      return UnknownVal();
 | 
						|
    }
 | 
						|
 | 
						|
    // We get a symbolic function pointer for a dereference of a function
 | 
						|
    // pointer, but it is of function type. Example:
 | 
						|
 | 
						|
    //  struct FPRec {
 | 
						|
    //    void (*my_func)(int * x);
 | 
						|
    //  };
 | 
						|
    //
 | 
						|
    //  int bar(int x);
 | 
						|
    //
 | 
						|
    //  int f1_a(struct FPRec* foo) {
 | 
						|
    //    int x;
 | 
						|
    //    (*foo->my_func)(&x);
 | 
						|
    //    return bar(x)+1; // no-warning
 | 
						|
    //  }
 | 
						|
 | 
						|
    assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
 | 
						|
           originalTy->isBlockPointerType() || castTy->isReferenceType());
 | 
						|
 | 
						|
    StoreManager &storeMgr = StateMgr.getStoreManager();
 | 
						|
 | 
						|
    // Delegate to store manager to get the result of casting a region to a
 | 
						|
    // different type.  If the MemRegion* returned is NULL, this expression
 | 
						|
    // Evaluates to UnknownVal.
 | 
						|
    R = storeMgr.castRegion(R, castTy);
 | 
						|
    return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  return dispatchCast(val, castTy);
 | 
						|
}
 |