954 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			954 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
namespace {
 | 
						|
class SimpleSValBuilder : public SValBuilder {
 | 
						|
protected:
 | 
						|
  virtual SVal dispatchCast(SVal val, QualType castTy);
 | 
						|
  virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
 | 
						|
  virtual SVal evalCastFromLoc(Loc val, QualType castTy);
 | 
						|
 | 
						|
public:
 | 
						|
  SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
 | 
						|
                    ProgramStateManager &stateMgr)
 | 
						|
                    : SValBuilder(alloc, context, stateMgr) {}
 | 
						|
  virtual ~SimpleSValBuilder() {}
 | 
						|
 | 
						|
  virtual SVal evalMinus(NonLoc val);
 | 
						|
  virtual SVal evalComplement(NonLoc val);
 | 
						|
  virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
 | 
						|
                           NonLoc lhs, NonLoc rhs, QualType resultTy);
 | 
						|
  virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
 | 
						|
                           Loc lhs, Loc rhs, QualType resultTy);
 | 
						|
  virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
 | 
						|
                           Loc lhs, NonLoc rhs, QualType resultTy);
 | 
						|
 | 
						|
  /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
 | 
						|
  ///  (integer) value, that value is returned. Otherwise, returns NULL.
 | 
						|
  virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V);
 | 
						|
  
 | 
						|
  SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
 | 
						|
                     const llvm::APSInt &RHS, QualType resultTy);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
 | 
						|
                                           ASTContext &context,
 | 
						|
                                           ProgramStateManager &stateMgr) {
 | 
						|
  return new SimpleSValBuilder(alloc, context, stateMgr);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function for Casts.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
 | 
						|
  assert(isa<Loc>(&Val) || isa<NonLoc>(&Val));
 | 
						|
  return isa<Loc>(Val) ? evalCastFromLoc(cast<Loc>(Val), CastTy)
 | 
						|
                       : evalCastFromNonLoc(cast<NonLoc>(Val), CastTy);
 | 
						|
}
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
 | 
						|
 | 
						|
  bool isLocType = Loc::isLocType(castTy);
 | 
						|
 | 
						|
  if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
 | 
						|
    if (isLocType)
 | 
						|
      return LI->getLoc();
 | 
						|
 | 
						|
    // FIXME: Correctly support promotions/truncations.
 | 
						|
    unsigned castSize = Context.getTypeSize(castTy);
 | 
						|
    if (castSize == LI->getNumBits())
 | 
						|
      return val;
 | 
						|
    return makeLocAsInteger(LI->getLoc(), castSize);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SymExpr *se = val.getAsSymbolicExpression()) {
 | 
						|
    QualType T = Context.getCanonicalType(se->getType(Context));
 | 
						|
    // If types are the same or both are integers, ignore the cast.
 | 
						|
    // FIXME: Remove this hack when we support symbolic truncation/extension.
 | 
						|
    // HACK: If both castTy and T are integers, ignore the cast.  This is
 | 
						|
    // not a permanent solution.  Eventually we want to precisely handle
 | 
						|
    // extension/truncation of symbolic integers.  This prevents us from losing
 | 
						|
    // precision when we assign 'x = y' and 'y' is symbolic and x and y are
 | 
						|
    // different integer types.
 | 
						|
   if (haveSameType(T, castTy))
 | 
						|
      return val;
 | 
						|
 | 
						|
    if (!isLocType)
 | 
						|
      return makeNonLoc(se, T, castTy);
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  // If value is a non integer constant, produce unknown.
 | 
						|
  if (!isa<nonloc::ConcreteInt>(val))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  // Only handle casts from integers to integers - if val is an integer constant
 | 
						|
  // being cast to a non integer type, produce unknown.
 | 
						|
  if (!isLocType && !castTy->isIntegerType())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
 | 
						|
  BasicVals.getAPSIntType(castTy).apply(i);
 | 
						|
 | 
						|
  if (isLocType)
 | 
						|
    return makeIntLocVal(i);
 | 
						|
  else
 | 
						|
    return makeIntVal(i);
 | 
						|
}
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
 | 
						|
 | 
						|
  // Casts from pointers -> pointers, just return the lval.
 | 
						|
  //
 | 
						|
  // Casts from pointers -> references, just return the lval.  These
 | 
						|
  //   can be introduced by the frontend for corner cases, e.g
 | 
						|
  //   casting from va_list* to __builtin_va_list&.
 | 
						|
  //
 | 
						|
  if (Loc::isLocType(castTy) || castTy->isReferenceType())
 | 
						|
    return val;
 | 
						|
 | 
						|
  // FIXME: Handle transparent unions where a value can be "transparently"
 | 
						|
  //  lifted into a union type.
 | 
						|
  if (castTy->isUnionType())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  if (castTy->isIntegerType()) {
 | 
						|
    unsigned BitWidth = Context.getTypeSize(castTy);
 | 
						|
 | 
						|
    if (!isa<loc::ConcreteInt>(val))
 | 
						|
      return makeLocAsInteger(val, BitWidth);
 | 
						|
 | 
						|
    llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
 | 
						|
    BasicVals.getAPSIntType(castTy).apply(i);
 | 
						|
    return makeIntVal(i);
 | 
						|
  }
 | 
						|
 | 
						|
  // All other cases: return 'UnknownVal'.  This includes casting pointers
 | 
						|
  // to floats, which is probably badness it itself, but this is a good
 | 
						|
  // intermediate solution until we do something better.
 | 
						|
  return UnknownVal();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function for unary operators.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalMinus(NonLoc val) {
 | 
						|
  switch (val.getSubKind()) {
 | 
						|
  case nonloc::ConcreteIntKind:
 | 
						|
    return cast<nonloc::ConcreteInt>(val).evalMinus(*this);
 | 
						|
  default:
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalComplement(NonLoc X) {
 | 
						|
  switch (X.getSubKind()) {
 | 
						|
  case nonloc::ConcreteIntKind:
 | 
						|
    return cast<nonloc::ConcreteInt>(X).evalComplement(*this);
 | 
						|
  default:
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function for binary operators.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
 | 
						|
  switch (op) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Invalid opcode.");
 | 
						|
  case BO_LT: return BO_GE;
 | 
						|
  case BO_GT: return BO_LE;
 | 
						|
  case BO_LE: return BO_GT;
 | 
						|
  case BO_GE: return BO_LT;
 | 
						|
  case BO_EQ: return BO_NE;
 | 
						|
  case BO_NE: return BO_EQ;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
 | 
						|
  switch (op) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Invalid opcode.");
 | 
						|
  case BO_LT: return BO_GT;
 | 
						|
  case BO_GT: return BO_LT;
 | 
						|
  case BO_LE: return BO_GE;
 | 
						|
  case BO_GE: return BO_LE;
 | 
						|
  case BO_EQ:
 | 
						|
  case BO_NE:
 | 
						|
    return op;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
 | 
						|
                                    BinaryOperator::Opcode op,
 | 
						|
                                    const llvm::APSInt &RHS,
 | 
						|
                                    QualType resultTy) {
 | 
						|
  bool isIdempotent = false;
 | 
						|
 | 
						|
  // Check for a few special cases with known reductions first.
 | 
						|
  switch (op) {
 | 
						|
  default:
 | 
						|
    // We can't reduce this case; just treat it normally.
 | 
						|
    break;
 | 
						|
  case BO_Mul:
 | 
						|
    // a*0 and a*1
 | 
						|
    if (RHS == 0)
 | 
						|
      return makeIntVal(0, resultTy);
 | 
						|
    else if (RHS == 1)
 | 
						|
      isIdempotent = true;
 | 
						|
    break;
 | 
						|
  case BO_Div:
 | 
						|
    // a/0 and a/1
 | 
						|
    if (RHS == 0)
 | 
						|
      // This is also handled elsewhere.
 | 
						|
      return UndefinedVal();
 | 
						|
    else if (RHS == 1)
 | 
						|
      isIdempotent = true;
 | 
						|
    break;
 | 
						|
  case BO_Rem:
 | 
						|
    // a%0 and a%1
 | 
						|
    if (RHS == 0)
 | 
						|
      // This is also handled elsewhere.
 | 
						|
      return UndefinedVal();
 | 
						|
    else if (RHS == 1)
 | 
						|
      return makeIntVal(0, resultTy);
 | 
						|
    break;
 | 
						|
  case BO_Add:
 | 
						|
  case BO_Sub:
 | 
						|
  case BO_Shl:
 | 
						|
  case BO_Shr:
 | 
						|
  case BO_Xor:
 | 
						|
    // a+0, a-0, a<<0, a>>0, a^0
 | 
						|
    if (RHS == 0)
 | 
						|
      isIdempotent = true;
 | 
						|
    break;
 | 
						|
  case BO_And:
 | 
						|
    // a&0 and a&(~0)
 | 
						|
    if (RHS == 0)
 | 
						|
      return makeIntVal(0, resultTy);
 | 
						|
    else if (RHS.isAllOnesValue())
 | 
						|
      isIdempotent = true;
 | 
						|
    break;
 | 
						|
  case BO_Or:
 | 
						|
    // a|0 and a|(~0)
 | 
						|
    if (RHS == 0)
 | 
						|
      isIdempotent = true;
 | 
						|
    else if (RHS.isAllOnesValue()) {
 | 
						|
      const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
 | 
						|
      return nonloc::ConcreteInt(Result);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Idempotent ops (like a*1) can still change the type of an expression.
 | 
						|
  // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
 | 
						|
  // dirty work.
 | 
						|
  if (isIdempotent)
 | 
						|
      return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
 | 
						|
 | 
						|
  // If we reach this point, the expression cannot be simplified.
 | 
						|
  // Make a SymbolVal for the entire expression, after converting the RHS.
 | 
						|
  const llvm::APSInt *ConvertedRHS = &RHS;
 | 
						|
  if (BinaryOperator::isComparisonOp(op)) {
 | 
						|
    // We're looking for a type big enough to compare the symbolic value
 | 
						|
    // with the given constant.
 | 
						|
    // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
 | 
						|
    ASTContext &Ctx = getContext();
 | 
						|
    QualType SymbolType = LHS->getType(Ctx);
 | 
						|
    uint64_t ValWidth = RHS.getBitWidth();
 | 
						|
    uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
 | 
						|
 | 
						|
    if (ValWidth < TypeWidth) {
 | 
						|
      // If the value is too small, extend it.
 | 
						|
      ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
 | 
						|
    } else if (ValWidth == TypeWidth) {
 | 
						|
      // If the value is signed but the symbol is unsigned, do the comparison
 | 
						|
      // in unsigned space. [C99 6.3.1.8]
 | 
						|
      // (For the opposite case, the value is already unsigned.)
 | 
						|
      if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
 | 
						|
        ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
 | 
						|
    }
 | 
						|
  } else
 | 
						|
    ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
 | 
						|
 | 
						|
  return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
 | 
						|
}
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
 | 
						|
                                  BinaryOperator::Opcode op,
 | 
						|
                                  NonLoc lhs, NonLoc rhs,
 | 
						|
                                  QualType resultTy)  {
 | 
						|
  NonLoc InputLHS = lhs;
 | 
						|
  NonLoc InputRHS = rhs;
 | 
						|
 | 
						|
  // Handle trivial case where left-side and right-side are the same.
 | 
						|
  if (lhs == rhs)
 | 
						|
    switch (op) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case BO_EQ:
 | 
						|
      case BO_LE:
 | 
						|
      case BO_GE:
 | 
						|
        return makeTruthVal(true, resultTy);
 | 
						|
      case BO_LT:
 | 
						|
      case BO_GT:
 | 
						|
      case BO_NE:
 | 
						|
        return makeTruthVal(false, resultTy);
 | 
						|
      case BO_Xor:
 | 
						|
      case BO_Sub:
 | 
						|
        return makeIntVal(0, resultTy);
 | 
						|
      case BO_Or:
 | 
						|
      case BO_And:
 | 
						|
        return evalCastFromNonLoc(lhs, resultTy);
 | 
						|
    }
 | 
						|
 | 
						|
  while (1) {
 | 
						|
    switch (lhs.getSubKind()) {
 | 
						|
    default:
 | 
						|
      return makeSymExprValNN(state, op, lhs, rhs, resultTy);
 | 
						|
    case nonloc::LocAsIntegerKind: {
 | 
						|
      Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
 | 
						|
      switch (rhs.getSubKind()) {
 | 
						|
        case nonloc::LocAsIntegerKind:
 | 
						|
          return evalBinOpLL(state, op, lhsL,
 | 
						|
                             cast<nonloc::LocAsInteger>(rhs).getLoc(),
 | 
						|
                             resultTy);
 | 
						|
        case nonloc::ConcreteIntKind: {
 | 
						|
          // Transform the integer into a location and compare.
 | 
						|
          llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
 | 
						|
          BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
 | 
						|
          return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
 | 
						|
        }
 | 
						|
        default:
 | 
						|
          switch (op) {
 | 
						|
            case BO_EQ:
 | 
						|
              return makeTruthVal(false, resultTy);
 | 
						|
            case BO_NE:
 | 
						|
              return makeTruthVal(true, resultTy);
 | 
						|
            default:
 | 
						|
              // This case also handles pointer arithmetic.
 | 
						|
              return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    case nonloc::ConcreteIntKind: {
 | 
						|
      llvm::APSInt LHSValue = cast<nonloc::ConcreteInt>(lhs).getValue();
 | 
						|
 | 
						|
      // If we're dealing with two known constants, just perform the operation.
 | 
						|
      if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
 | 
						|
        llvm::APSInt RHSValue = *KnownRHSValue;
 | 
						|
        if (BinaryOperator::isComparisonOp(op)) {
 | 
						|
          // We're looking for a type big enough to compare the two values.
 | 
						|
          // FIXME: This is not correct. char + short will result in a promotion
 | 
						|
          // to int. Unfortunately we have lost types by this point.
 | 
						|
          APSIntType CompareType = std::max(APSIntType(LHSValue),
 | 
						|
                                            APSIntType(RHSValue));
 | 
						|
          CompareType.apply(LHSValue);
 | 
						|
          CompareType.apply(RHSValue);
 | 
						|
        } else if (!BinaryOperator::isShiftOp(op)) {
 | 
						|
          APSIntType IntType = BasicVals.getAPSIntType(resultTy);
 | 
						|
          IntType.apply(LHSValue);
 | 
						|
          IntType.apply(RHSValue);
 | 
						|
        }
 | 
						|
 | 
						|
        const llvm::APSInt *Result =
 | 
						|
          BasicVals.evalAPSInt(op, LHSValue, RHSValue);
 | 
						|
        if (!Result)
 | 
						|
          return UndefinedVal();
 | 
						|
 | 
						|
        return nonloc::ConcreteInt(*Result);
 | 
						|
      }
 | 
						|
 | 
						|
      // Swap the left and right sides and flip the operator if doing so
 | 
						|
      // allows us to better reason about the expression (this is a form
 | 
						|
      // of expression canonicalization).
 | 
						|
      // While we're at it, catch some special cases for non-commutative ops.
 | 
						|
      switch (op) {
 | 
						|
      case BO_LT:
 | 
						|
      case BO_GT:
 | 
						|
      case BO_LE:
 | 
						|
      case BO_GE:
 | 
						|
        op = ReverseComparison(op);
 | 
						|
        // FALL-THROUGH
 | 
						|
      case BO_EQ:
 | 
						|
      case BO_NE:
 | 
						|
      case BO_Add:
 | 
						|
      case BO_Mul:
 | 
						|
      case BO_And:
 | 
						|
      case BO_Xor:
 | 
						|
      case BO_Or:
 | 
						|
        std::swap(lhs, rhs);
 | 
						|
        continue;
 | 
						|
      case BO_Shr:
 | 
						|
        // (~0)>>a
 | 
						|
        if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
 | 
						|
          return evalCastFromNonLoc(lhs, resultTy);
 | 
						|
        // FALL-THROUGH
 | 
						|
      case BO_Shl:
 | 
						|
        // 0<<a and 0>>a
 | 
						|
        if (LHSValue == 0)
 | 
						|
          return evalCastFromNonLoc(lhs, resultTy);
 | 
						|
        return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
 | 
						|
      default:
 | 
						|
        return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    case nonloc::SymbolValKind: {
 | 
						|
      // We only handle LHS as simple symbols or SymIntExprs.
 | 
						|
      SymbolRef Sym = cast<nonloc::SymbolVal>(lhs).getSymbol();
 | 
						|
 | 
						|
      // LHS is a symbolic expression.
 | 
						|
      if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
 | 
						|
 | 
						|
        // Is this a logical not? (!x is represented as x == 0.)
 | 
						|
        if (op == BO_EQ && rhs.isZeroConstant()) {
 | 
						|
          // We know how to negate certain expressions. Simplify them here.
 | 
						|
 | 
						|
          BinaryOperator::Opcode opc = symIntExpr->getOpcode();
 | 
						|
          switch (opc) {
 | 
						|
          default:
 | 
						|
            // We don't know how to negate this operation.
 | 
						|
            // Just handle it as if it were a normal comparison to 0.
 | 
						|
            break;
 | 
						|
          case BO_LAnd:
 | 
						|
          case BO_LOr:
 | 
						|
            llvm_unreachable("Logical operators handled by branching logic.");
 | 
						|
          case BO_Assign:
 | 
						|
          case BO_MulAssign:
 | 
						|
          case BO_DivAssign:
 | 
						|
          case BO_RemAssign:
 | 
						|
          case BO_AddAssign:
 | 
						|
          case BO_SubAssign:
 | 
						|
          case BO_ShlAssign:
 | 
						|
          case BO_ShrAssign:
 | 
						|
          case BO_AndAssign:
 | 
						|
          case BO_XorAssign:
 | 
						|
          case BO_OrAssign:
 | 
						|
          case BO_Comma:
 | 
						|
            llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
 | 
						|
          case BO_PtrMemD:
 | 
						|
          case BO_PtrMemI:
 | 
						|
            llvm_unreachable("Pointer arithmetic not handled here.");
 | 
						|
          case BO_LT:
 | 
						|
          case BO_GT:
 | 
						|
          case BO_LE:
 | 
						|
          case BO_GE:
 | 
						|
          case BO_EQ:
 | 
						|
          case BO_NE:
 | 
						|
            // Negate the comparison and make a value.
 | 
						|
            opc = NegateComparison(opc);
 | 
						|
            assert(symIntExpr->getType(Context) == resultTy);
 | 
						|
            return makeNonLoc(symIntExpr->getLHS(), opc,
 | 
						|
                symIntExpr->getRHS(), resultTy);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // For now, only handle expressions whose RHS is a constant.
 | 
						|
        if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
 | 
						|
          // If both the LHS and the current expression are additive,
 | 
						|
          // fold their constants and try again.
 | 
						|
          if (BinaryOperator::isAdditiveOp(op)) {
 | 
						|
            BinaryOperator::Opcode lop = symIntExpr->getOpcode();
 | 
						|
            if (BinaryOperator::isAdditiveOp(lop)) {
 | 
						|
              // Convert the two constants to a common type, then combine them.
 | 
						|
 | 
						|
              // resultTy may not be the best type to convert to, but it's
 | 
						|
              // probably the best choice in expressions with mixed type
 | 
						|
              // (such as x+1U+2LL). The rules for implicit conversions should
 | 
						|
              // choose a reasonable type to preserve the expression, and will
 | 
						|
              // at least match how the value is going to be used.
 | 
						|
              APSIntType IntType = BasicVals.getAPSIntType(resultTy);
 | 
						|
              const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
 | 
						|
              const llvm::APSInt &second = IntType.convert(*RHSValue);
 | 
						|
 | 
						|
              const llvm::APSInt *newRHS;
 | 
						|
              if (lop == op)
 | 
						|
                newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
 | 
						|
              else
 | 
						|
                newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
 | 
						|
 | 
						|
              assert(newRHS && "Invalid operation despite common type!");
 | 
						|
              rhs = nonloc::ConcreteInt(*newRHS);
 | 
						|
              lhs = nonloc::SymbolVal(symIntExpr->getLHS());
 | 
						|
              op = lop;
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          // Otherwise, make a SymIntExpr out of the expression.
 | 
						|
          return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
      } else if (isa<SymbolData>(Sym)) {
 | 
						|
        // Does the symbol simplify to a constant?  If so, "fold" the constant
 | 
						|
        // by setting 'lhs' to a ConcreteInt and try again.
 | 
						|
        if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
 | 
						|
          lhs = nonloc::ConcreteInt(*Constant);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Is the RHS a constant?
 | 
						|
        if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
 | 
						|
          return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
 | 
						|
      }
 | 
						|
 | 
						|
      // Give up -- this is not a symbolic expression we can handle.
 | 
						|
      return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: all this logic will change if/when we have MemRegion::getLocation().
 | 
						|
SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
 | 
						|
                                  BinaryOperator::Opcode op,
 | 
						|
                                  Loc lhs, Loc rhs,
 | 
						|
                                  QualType resultTy) {
 | 
						|
  // Only comparisons and subtractions are valid operations on two pointers.
 | 
						|
  // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
 | 
						|
  // However, if a pointer is casted to an integer, evalBinOpNN may end up
 | 
						|
  // calling this function with another operation (PR7527). We don't attempt to
 | 
						|
  // model this for now, but it could be useful, particularly when the
 | 
						|
  // "location" is actually an integer value that's been passed through a void*.
 | 
						|
  if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  // Special cases for when both sides are identical.
 | 
						|
  if (lhs == rhs) {
 | 
						|
    switch (op) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unimplemented operation for two identical values");
 | 
						|
    case BO_Sub:
 | 
						|
      return makeZeroVal(resultTy);
 | 
						|
    case BO_EQ:
 | 
						|
    case BO_LE:
 | 
						|
    case BO_GE:
 | 
						|
      return makeTruthVal(true, resultTy);
 | 
						|
    case BO_NE:
 | 
						|
    case BO_LT:
 | 
						|
    case BO_GT:
 | 
						|
      return makeTruthVal(false, resultTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  switch (lhs.getSubKind()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Ordering not implemented for this Loc.");
 | 
						|
 | 
						|
  case loc::GotoLabelKind:
 | 
						|
    // The only thing we know about labels is that they're non-null.
 | 
						|
    if (rhs.isZeroConstant()) {
 | 
						|
      switch (op) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case BO_Sub:
 | 
						|
        return evalCastFromLoc(lhs, resultTy);
 | 
						|
      case BO_EQ:
 | 
						|
      case BO_LE:
 | 
						|
      case BO_LT:
 | 
						|
        return makeTruthVal(false, resultTy);
 | 
						|
      case BO_NE:
 | 
						|
      case BO_GT:
 | 
						|
      case BO_GE:
 | 
						|
        return makeTruthVal(true, resultTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // There may be two labels for the same location, and a function region may
 | 
						|
    // have the same address as a label at the start of the function (depending
 | 
						|
    // on the ABI).
 | 
						|
    // FIXME: we can probably do a comparison against other MemRegions, though.
 | 
						|
    // FIXME: is there a way to tell if two labels refer to the same location?
 | 
						|
    return UnknownVal(); 
 | 
						|
 | 
						|
  case loc::ConcreteIntKind: {
 | 
						|
    // If one of the operands is a symbol and the other is a constant,
 | 
						|
    // build an expression for use by the constraint manager.
 | 
						|
    if (SymbolRef rSym = rhs.getAsLocSymbol()) {
 | 
						|
      // We can only build expressions with symbols on the left,
 | 
						|
      // so we need a reversible operator.
 | 
						|
      if (!BinaryOperator::isComparisonOp(op))
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
 | 
						|
      return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
 | 
						|
    }
 | 
						|
 | 
						|
    // If both operands are constants, just perform the operation.
 | 
						|
    if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
 | 
						|
      SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op,
 | 
						|
                                                             *rInt);
 | 
						|
      if (Loc *Result = dyn_cast<Loc>(&ResultVal))
 | 
						|
        return evalCastFromLoc(*Result, resultTy);
 | 
						|
      else
 | 
						|
        return UnknownVal();
 | 
						|
    }
 | 
						|
 | 
						|
    // Special case comparisons against NULL.
 | 
						|
    // This must come after the test if the RHS is a symbol, which is used to
 | 
						|
    // build constraints. The address of any non-symbolic region is guaranteed
 | 
						|
    // to be non-NULL, as is any label.
 | 
						|
    assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
 | 
						|
    if (lhs.isZeroConstant()) {
 | 
						|
      switch (op) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case BO_EQ:
 | 
						|
      case BO_GT:
 | 
						|
      case BO_GE:
 | 
						|
        return makeTruthVal(false, resultTy);
 | 
						|
      case BO_NE:
 | 
						|
      case BO_LT:
 | 
						|
      case BO_LE:
 | 
						|
        return makeTruthVal(true, resultTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Comparing an arbitrary integer to a region or label address is
 | 
						|
    // completely unknowable.
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
  case loc::MemRegionKind: {
 | 
						|
    if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
 | 
						|
      // If one of the operands is a symbol and the other is a constant,
 | 
						|
      // build an expression for use by the constraint manager.
 | 
						|
      if (SymbolRef lSym = lhs.getAsLocSymbol())
 | 
						|
        return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
 | 
						|
 | 
						|
      // Special case comparisons to NULL.
 | 
						|
      // This must come after the test if the LHS is a symbol, which is used to
 | 
						|
      // build constraints. The address of any non-symbolic region is guaranteed
 | 
						|
      // to be non-NULL.
 | 
						|
      if (rInt->isZeroConstant()) {
 | 
						|
        switch (op) {
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
        case BO_Sub:
 | 
						|
          return evalCastFromLoc(lhs, resultTy);
 | 
						|
        case BO_EQ:
 | 
						|
        case BO_LT:
 | 
						|
        case BO_LE:
 | 
						|
          return makeTruthVal(false, resultTy);
 | 
						|
        case BO_NE:
 | 
						|
        case BO_GT:
 | 
						|
        case BO_GE:
 | 
						|
          return makeTruthVal(true, resultTy);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Comparing a region to an arbitrary integer is completely unknowable.
 | 
						|
      return UnknownVal();
 | 
						|
    }
 | 
						|
 | 
						|
    // Get both values as regions, if possible.
 | 
						|
    const MemRegion *LeftMR = lhs.getAsRegion();
 | 
						|
    assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
 | 
						|
 | 
						|
    const MemRegion *RightMR = rhs.getAsRegion();
 | 
						|
    if (!RightMR)
 | 
						|
      // The RHS is probably a label, which in theory could address a region.
 | 
						|
      // FIXME: we can probably make a more useful statement about non-code
 | 
						|
      // regions, though.
 | 
						|
      return UnknownVal();
 | 
						|
 | 
						|
    const MemSpaceRegion *LeftMS = LeftMR->getMemorySpace();
 | 
						|
    const MemSpaceRegion *RightMS = RightMR->getMemorySpace();
 | 
						|
    const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
 | 
						|
    const MemRegion *LeftBase = LeftMR->getBaseRegion();
 | 
						|
    const MemRegion *RightBase = RightMR->getBaseRegion();
 | 
						|
 | 
						|
    // If the two regions are from different known memory spaces they cannot be
 | 
						|
    // equal. Also, assume that no symbolic region (whose memory space is
 | 
						|
    // unknown) is on the stack.
 | 
						|
    if (LeftMS != RightMS &&
 | 
						|
        ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
 | 
						|
         (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
 | 
						|
      switch (op) {
 | 
						|
      default:
 | 
						|
        return UnknownVal();
 | 
						|
      case BO_EQ:
 | 
						|
        return makeTruthVal(false, resultTy);
 | 
						|
      case BO_NE:
 | 
						|
        return makeTruthVal(true, resultTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If both values wrap regions, see if they're from different base regions.
 | 
						|
    // Note, heap base symbolic regions are assumed to not alias with
 | 
						|
    // each other; for example, we assume that malloc returns different address
 | 
						|
    // on each invocation.
 | 
						|
    if (LeftBase != RightBase &&
 | 
						|
        ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
 | 
						|
         (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
 | 
						|
      switch (op) {
 | 
						|
      default:
 | 
						|
        return UnknownVal();
 | 
						|
      case BO_EQ:
 | 
						|
        return makeTruthVal(false, resultTy);
 | 
						|
      case BO_NE:
 | 
						|
        return makeTruthVal(true, resultTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
 | 
						|
    // ElementRegion path and the FieldRegion path below should be unified.
 | 
						|
    if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
 | 
						|
      // First see if the right region is also an ElementRegion.
 | 
						|
      const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
 | 
						|
      if (!RightER)
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      // Next, see if the two ERs have the same super-region and matching types.
 | 
						|
      // FIXME: This should do something useful even if the types don't match,
 | 
						|
      // though if both indexes are constant the RegionRawOffset path will
 | 
						|
      // give the correct answer.
 | 
						|
      if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
 | 
						|
          LeftER->getElementType() == RightER->getElementType()) {
 | 
						|
        // Get the left index and cast it to the correct type.
 | 
						|
        // If the index is unknown or undefined, bail out here.
 | 
						|
        SVal LeftIndexVal = LeftER->getIndex();
 | 
						|
        NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
 | 
						|
        if (!LeftIndex)
 | 
						|
          return UnknownVal();
 | 
						|
        LeftIndexVal = evalCastFromNonLoc(*LeftIndex, resultTy);
 | 
						|
        LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
 | 
						|
        if (!LeftIndex)
 | 
						|
          return UnknownVal();
 | 
						|
 | 
						|
        // Do the same for the right index.
 | 
						|
        SVal RightIndexVal = RightER->getIndex();
 | 
						|
        NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
 | 
						|
        if (!RightIndex)
 | 
						|
          return UnknownVal();
 | 
						|
        RightIndexVal = evalCastFromNonLoc(*RightIndex, resultTy);
 | 
						|
        RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
 | 
						|
        if (!RightIndex)
 | 
						|
          return UnknownVal();
 | 
						|
 | 
						|
        // Actually perform the operation.
 | 
						|
        // evalBinOpNN expects the two indexes to already be the right type.
 | 
						|
        return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
 | 
						|
      }
 | 
						|
 | 
						|
      // If the element indexes aren't comparable, see if the raw offsets are.
 | 
						|
      RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
 | 
						|
      RegionRawOffset RightOffset = RightER->getAsArrayOffset();
 | 
						|
 | 
						|
      if (LeftOffset.getRegion() != NULL &&
 | 
						|
          LeftOffset.getRegion() == RightOffset.getRegion()) {
 | 
						|
        CharUnits left = LeftOffset.getOffset();
 | 
						|
        CharUnits right = RightOffset.getOffset();
 | 
						|
 | 
						|
        switch (op) {
 | 
						|
        default:
 | 
						|
          return UnknownVal();
 | 
						|
        case BO_LT:
 | 
						|
          return makeTruthVal(left < right, resultTy);
 | 
						|
        case BO_GT:
 | 
						|
          return makeTruthVal(left > right, resultTy);
 | 
						|
        case BO_LE:
 | 
						|
          return makeTruthVal(left <= right, resultTy);
 | 
						|
        case BO_GE:
 | 
						|
          return makeTruthVal(left >= right, resultTy);
 | 
						|
        case BO_EQ:
 | 
						|
          return makeTruthVal(left == right, resultTy);
 | 
						|
        case BO_NE:
 | 
						|
          return makeTruthVal(left != right, resultTy);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If we get here, we have no way of comparing the ElementRegions.
 | 
						|
      return UnknownVal();
 | 
						|
    }
 | 
						|
 | 
						|
    // See if both regions are fields of the same structure.
 | 
						|
    // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
 | 
						|
    if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
 | 
						|
      // Only comparisons are meaningful here!
 | 
						|
      if (!BinaryOperator::isComparisonOp(op))
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      // First see if the right region is also a FieldRegion.
 | 
						|
      const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
 | 
						|
      if (!RightFR)
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      // Next, see if the two FRs have the same super-region.
 | 
						|
      // FIXME: This doesn't handle casts yet, and simply stripping the casts
 | 
						|
      // doesn't help.
 | 
						|
      if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      const FieldDecl *LeftFD = LeftFR->getDecl();
 | 
						|
      const FieldDecl *RightFD = RightFR->getDecl();
 | 
						|
      const RecordDecl *RD = LeftFD->getParent();
 | 
						|
 | 
						|
      // Make sure the two FRs are from the same kind of record. Just in case!
 | 
						|
      // FIXME: This is probably where inheritance would be a problem.
 | 
						|
      if (RD != RightFD->getParent())
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      // We know for sure that the two fields are not the same, since that
 | 
						|
      // would have given us the same SVal.
 | 
						|
      if (op == BO_EQ)
 | 
						|
        return makeTruthVal(false, resultTy);
 | 
						|
      if (op == BO_NE)
 | 
						|
        return makeTruthVal(true, resultTy);
 | 
						|
 | 
						|
      // Iterate through the fields and see which one comes first.
 | 
						|
      // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
 | 
						|
      // members and the units in which bit-fields reside have addresses that
 | 
						|
      // increase in the order in which they are declared."
 | 
						|
      bool leftFirst = (op == BO_LT || op == BO_LE);
 | 
						|
      for (RecordDecl::field_iterator I = RD->field_begin(),
 | 
						|
           E = RD->field_end(); I!=E; ++I) {
 | 
						|
        if (*I == LeftFD)
 | 
						|
          return makeTruthVal(leftFirst, resultTy);
 | 
						|
        if (*I == RightFD)
 | 
						|
          return makeTruthVal(!leftFirst, resultTy);
 | 
						|
      }
 | 
						|
 | 
						|
      llvm_unreachable("Fields not found in parent record's definition");
 | 
						|
    }
 | 
						|
 | 
						|
    // If we get here, we have no way of comparing the regions.
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
 | 
						|
                                  BinaryOperator::Opcode op,
 | 
						|
                                  Loc lhs, NonLoc rhs, QualType resultTy) {
 | 
						|
  
 | 
						|
  // Special case: rhs is a zero constant.
 | 
						|
  if (rhs.isZeroConstant())
 | 
						|
    return lhs;
 | 
						|
  
 | 
						|
  // Special case: 'rhs' is an integer that has the same width as a pointer and
 | 
						|
  // we are using the integer location in a comparison.  Normally this cannot be
 | 
						|
  // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
 | 
						|
  // can generate comparisons that trigger this code.
 | 
						|
  // FIXME: Are all locations guaranteed to have pointer width?
 | 
						|
  if (BinaryOperator::isComparisonOp(op)) {
 | 
						|
    if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
 | 
						|
      const llvm::APSInt *x = &rhsInt->getValue();
 | 
						|
      ASTContext &ctx = Context;
 | 
						|
      if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
 | 
						|
        // Convert the signedness of the integer (if necessary).
 | 
						|
        if (x->isSigned())
 | 
						|
          x = &getBasicValueFactory().getValue(*x, true);
 | 
						|
 | 
						|
        return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We are dealing with pointer arithmetic.
 | 
						|
 | 
						|
  // Handle pointer arithmetic on constant values.
 | 
						|
  if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
 | 
						|
    if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
 | 
						|
      const llvm::APSInt &leftI = lhsInt->getValue();
 | 
						|
      assert(leftI.isUnsigned());
 | 
						|
      llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
 | 
						|
 | 
						|
      // Convert the bitwidth of rightI.  This should deal with overflow
 | 
						|
      // since we are dealing with concrete values.
 | 
						|
      rightI = rightI.extOrTrunc(leftI.getBitWidth());
 | 
						|
 | 
						|
      // Offset the increment by the pointer size.
 | 
						|
      llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
 | 
						|
      rightI *= Multiplicand;
 | 
						|
      
 | 
						|
      // Compute the adjusted pointer.
 | 
						|
      switch (op) {
 | 
						|
        case BO_Add:
 | 
						|
          rightI = leftI + rightI;
 | 
						|
          break;
 | 
						|
        case BO_Sub:
 | 
						|
          rightI = leftI - rightI;
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          llvm_unreachable("Invalid pointer arithmetic operation");
 | 
						|
      }
 | 
						|
      return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle cases where 'lhs' is a region.
 | 
						|
  if (const MemRegion *region = lhs.getAsRegion()) {
 | 
						|
    rhs = cast<NonLoc>(convertToArrayIndex(rhs));
 | 
						|
    SVal index = UnknownVal();
 | 
						|
    const MemRegion *superR = 0;
 | 
						|
    QualType elementType;
 | 
						|
 | 
						|
    if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
 | 
						|
      assert(op == BO_Add || op == BO_Sub);
 | 
						|
      index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
 | 
						|
                          getArrayIndexType());
 | 
						|
      superR = elemReg->getSuperRegion();
 | 
						|
      elementType = elemReg->getElementType();
 | 
						|
    }
 | 
						|
    else if (isa<SubRegion>(region)) {
 | 
						|
      superR = region;
 | 
						|
      index = rhs;
 | 
						|
      if (const PointerType *PT = resultTy->getAs<PointerType>()) {
 | 
						|
        elementType = PT->getPointeeType();
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        const ObjCObjectPointerType *OT =
 | 
						|
          resultTy->getAs<ObjCObjectPointerType>();
 | 
						|
        elementType = OT->getPointeeType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) {
 | 
						|
      return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
 | 
						|
                                                       superR, getContext()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return UnknownVal();  
 | 
						|
}
 | 
						|
 | 
						|
const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
 | 
						|
                                                   SVal V) {
 | 
						|
  if (V.isUnknownOrUndef())
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
 | 
						|
    return &X->getValue();
 | 
						|
 | 
						|
  if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
 | 
						|
    return &X->getValue();
 | 
						|
 | 
						|
  if (SymbolRef Sym = V.getAsSymbol())
 | 
						|
    return state->getSymVal(Sym);
 | 
						|
 | 
						|
  // FIXME: Add support for SymExprs.
 | 
						|
  return NULL;
 | 
						|
}
 |