3980 lines
		
	
	
		
			153 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3980 lines
		
	
	
		
			153 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This contains code to emit Expr nodes as LLVM code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CGCXXABI.h"
 | 
						|
#include "CGCall.h"
 | 
						|
#include "CGDebugInfo.h"
 | 
						|
#include "CGObjCRuntime.h"
 | 
						|
#include "CGOpenMPRuntime.h"
 | 
						|
#include "CGRecordLayout.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "TargetInfo.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Attr.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/Frontend/CodeGenOptions.h"
 | 
						|
#include "llvm/ADT/Hashing.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/Support/ConvertUTF.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
//                        Miscellaneous Helper Methods
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
 | 
						|
  unsigned addressSpace =
 | 
						|
    cast<llvm::PointerType>(value->getType())->getAddressSpace();
 | 
						|
 | 
						|
  llvm::PointerType *destType = Int8PtrTy;
 | 
						|
  if (addressSpace)
 | 
						|
    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
 | 
						|
 | 
						|
  if (value->getType() == destType) return value;
 | 
						|
  return Builder.CreateBitCast(value, destType);
 | 
						|
}
 | 
						|
 | 
						|
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
 | 
						|
/// block.
 | 
						|
Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
 | 
						|
                                          const Twine &Name) {
 | 
						|
  auto Alloca = CreateTempAlloca(Ty, Name);
 | 
						|
  Alloca->setAlignment(Align.getQuantity());
 | 
						|
  return Address(Alloca, Align);
 | 
						|
}
 | 
						|
 | 
						|
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
 | 
						|
/// block.
 | 
						|
llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
 | 
						|
                                                    const Twine &Name) {
 | 
						|
  if (!Builder.isNamePreserving())
 | 
						|
    return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
 | 
						|
  return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
 | 
						|
}
 | 
						|
 | 
						|
/// CreateDefaultAlignTempAlloca - This creates an alloca with the
 | 
						|
/// default alignment of the corresponding LLVM type, which is *not*
 | 
						|
/// guaranteed to be related in any way to the expected alignment of
 | 
						|
/// an AST type that might have been lowered to Ty.
 | 
						|
Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
 | 
						|
                                                      const Twine &Name) {
 | 
						|
  CharUnits Align =
 | 
						|
    CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
 | 
						|
  return CreateTempAlloca(Ty, Align, Name);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
 | 
						|
  assert(isa<llvm::AllocaInst>(Var.getPointer()));
 | 
						|
  auto *Store = new llvm::StoreInst(Init, Var.getPointer());
 | 
						|
  Store->setAlignment(Var.getAlignment().getQuantity());
 | 
						|
  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
 | 
						|
  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
 | 
						|
}
 | 
						|
 | 
						|
Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
 | 
						|
  CharUnits Align = getContext().getTypeAlignInChars(Ty);
 | 
						|
  return CreateTempAlloca(ConvertType(Ty), Align, Name);
 | 
						|
}
 | 
						|
 | 
						|
Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
 | 
						|
  // FIXME: Should we prefer the preferred type alignment here?
 | 
						|
  return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
 | 
						|
}
 | 
						|
 | 
						|
Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
 | 
						|
                                       const Twine &Name) {
 | 
						|
  return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
 | 
						|
/// expression and compare the result against zero, returning an Int1Ty value.
 | 
						|
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
 | 
						|
  PGO.setCurrentStmt(E);
 | 
						|
  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
 | 
						|
    llvm::Value *MemPtr = EmitScalarExpr(E);
 | 
						|
    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
 | 
						|
  }
 | 
						|
 | 
						|
  QualType BoolTy = getContext().BoolTy;
 | 
						|
  SourceLocation Loc = E->getExprLoc();
 | 
						|
  if (!E->getType()->isAnyComplexType())
 | 
						|
    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
 | 
						|
 | 
						|
  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
 | 
						|
                                       Loc);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitIgnoredExpr - Emit code to compute the specified expression,
 | 
						|
/// ignoring the result.
 | 
						|
void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
 | 
						|
  if (E->isRValue())
 | 
						|
    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
 | 
						|
 | 
						|
  // Just emit it as an l-value and drop the result.
 | 
						|
  EmitLValue(E);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitAnyExpr - Emit code to compute the specified expression which
 | 
						|
/// can have any type.  The result is returned as an RValue struct.
 | 
						|
/// If this is an aggregate expression, AggSlot indicates where the
 | 
						|
/// result should be returned.
 | 
						|
RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
 | 
						|
                                    AggValueSlot aggSlot,
 | 
						|
                                    bool ignoreResult) {
 | 
						|
  switch (getEvaluationKind(E->getType())) {
 | 
						|
  case TEK_Scalar:
 | 
						|
    return RValue::get(EmitScalarExpr(E, ignoreResult));
 | 
						|
  case TEK_Complex:
 | 
						|
    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
 | 
						|
  case TEK_Aggregate:
 | 
						|
    if (!ignoreResult && aggSlot.isIgnored())
 | 
						|
      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
 | 
						|
    EmitAggExpr(E, aggSlot);
 | 
						|
    return aggSlot.asRValue();
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad evaluation kind");
 | 
						|
}
 | 
						|
 | 
						|
/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
 | 
						|
/// always be accessible even if no aggregate location is provided.
 | 
						|
RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
 | 
						|
  AggValueSlot AggSlot = AggValueSlot::ignored();
 | 
						|
 | 
						|
  if (hasAggregateEvaluationKind(E->getType()))
 | 
						|
    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
 | 
						|
  return EmitAnyExpr(E, AggSlot);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitAnyExprToMem - Evaluate an expression into a given memory
 | 
						|
/// location.
 | 
						|
void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
 | 
						|
                                       Address Location,
 | 
						|
                                       Qualifiers Quals,
 | 
						|
                                       bool IsInit) {
 | 
						|
  // FIXME: This function should take an LValue as an argument.
 | 
						|
  switch (getEvaluationKind(E->getType())) {
 | 
						|
  case TEK_Complex:
 | 
						|
    EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
 | 
						|
                              /*isInit*/ false);
 | 
						|
    return;
 | 
						|
 | 
						|
  case TEK_Aggregate: {
 | 
						|
    EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
 | 
						|
                                         AggValueSlot::IsDestructed_t(IsInit),
 | 
						|
                                         AggValueSlot::DoesNotNeedGCBarriers,
 | 
						|
                                         AggValueSlot::IsAliased_t(!IsInit)));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case TEK_Scalar: {
 | 
						|
    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
 | 
						|
    LValue LV = MakeAddrLValue(Location, E->getType());
 | 
						|
    EmitStoreThroughLValue(RV, LV);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad evaluation kind");
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
 | 
						|
                     const Expr *E, Address ReferenceTemporary) {
 | 
						|
  // Objective-C++ ARC:
 | 
						|
  //   If we are binding a reference to a temporary that has ownership, we
 | 
						|
  //   need to perform retain/release operations on the temporary.
 | 
						|
  //
 | 
						|
  // FIXME: This should be looking at E, not M.
 | 
						|
  if (CGF.getLangOpts().ObjCAutoRefCount &&
 | 
						|
      M->getType()->isObjCLifetimeType()) {
 | 
						|
    QualType ObjCARCReferenceLifetimeType = M->getType();
 | 
						|
    switch (Qualifiers::ObjCLifetime Lifetime =
 | 
						|
                ObjCARCReferenceLifetimeType.getObjCLifetime()) {
 | 
						|
    case Qualifiers::OCL_None:
 | 
						|
    case Qualifiers::OCL_ExplicitNone:
 | 
						|
      // Carry on to normal cleanup handling.
 | 
						|
      break;
 | 
						|
 | 
						|
    case Qualifiers::OCL_Autoreleasing:
 | 
						|
      // Nothing to do; cleaned up by an autorelease pool.
 | 
						|
      return;
 | 
						|
 | 
						|
    case Qualifiers::OCL_Strong:
 | 
						|
    case Qualifiers::OCL_Weak:
 | 
						|
      switch (StorageDuration Duration = M->getStorageDuration()) {
 | 
						|
      case SD_Static:
 | 
						|
        // Note: we intentionally do not register a cleanup to release
 | 
						|
        // the object on program termination.
 | 
						|
        return;
 | 
						|
 | 
						|
      case SD_Thread:
 | 
						|
        // FIXME: We should probably register a cleanup in this case.
 | 
						|
        return;
 | 
						|
 | 
						|
      case SD_Automatic:
 | 
						|
      case SD_FullExpression:
 | 
						|
        CodeGenFunction::Destroyer *Destroy;
 | 
						|
        CleanupKind CleanupKind;
 | 
						|
        if (Lifetime == Qualifiers::OCL_Strong) {
 | 
						|
          const ValueDecl *VD = M->getExtendingDecl();
 | 
						|
          bool Precise =
 | 
						|
              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
 | 
						|
          CleanupKind = CGF.getARCCleanupKind();
 | 
						|
          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
 | 
						|
                            : &CodeGenFunction::destroyARCStrongImprecise;
 | 
						|
        } else {
 | 
						|
          // __weak objects always get EH cleanups; otherwise, exceptions
 | 
						|
          // could cause really nasty crashes instead of mere leaks.
 | 
						|
          CleanupKind = NormalAndEHCleanup;
 | 
						|
          Destroy = &CodeGenFunction::destroyARCWeak;
 | 
						|
        }
 | 
						|
        if (Duration == SD_FullExpression)
 | 
						|
          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
 | 
						|
                          ObjCARCReferenceLifetimeType, *Destroy,
 | 
						|
                          CleanupKind & EHCleanup);
 | 
						|
        else
 | 
						|
          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
 | 
						|
                                          ObjCARCReferenceLifetimeType,
 | 
						|
                                          *Destroy, CleanupKind & EHCleanup);
 | 
						|
        return;
 | 
						|
 | 
						|
      case SD_Dynamic:
 | 
						|
        llvm_unreachable("temporary cannot have dynamic storage duration");
 | 
						|
      }
 | 
						|
      llvm_unreachable("unknown storage duration");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
 | 
						|
  if (const RecordType *RT =
 | 
						|
          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
 | 
						|
    // Get the destructor for the reference temporary.
 | 
						|
    auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
    if (!ClassDecl->hasTrivialDestructor())
 | 
						|
      ReferenceTemporaryDtor = ClassDecl->getDestructor();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ReferenceTemporaryDtor)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Call the destructor for the temporary.
 | 
						|
  switch (M->getStorageDuration()) {
 | 
						|
  case SD_Static:
 | 
						|
  case SD_Thread: {
 | 
						|
    llvm::Constant *CleanupFn;
 | 
						|
    llvm::Constant *CleanupArg;
 | 
						|
    if (E->getType()->isArrayType()) {
 | 
						|
      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
 | 
						|
          ReferenceTemporary, E->getType(),
 | 
						|
          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
 | 
						|
          dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
 | 
						|
      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
 | 
						|
    } else {
 | 
						|
      CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
 | 
						|
                                               StructorType::Complete);
 | 
						|
      CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
 | 
						|
    }
 | 
						|
    CGF.CGM.getCXXABI().registerGlobalDtor(
 | 
						|
        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case SD_FullExpression:
 | 
						|
    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
 | 
						|
                    CodeGenFunction::destroyCXXObject,
 | 
						|
                    CGF.getLangOpts().Exceptions);
 | 
						|
    break;
 | 
						|
 | 
						|
  case SD_Automatic:
 | 
						|
    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
 | 
						|
                                    ReferenceTemporary, E->getType(),
 | 
						|
                                    CodeGenFunction::destroyCXXObject,
 | 
						|
                                    CGF.getLangOpts().Exceptions);
 | 
						|
    break;
 | 
						|
 | 
						|
  case SD_Dynamic:
 | 
						|
    llvm_unreachable("temporary cannot have dynamic storage duration");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static Address
 | 
						|
createReferenceTemporary(CodeGenFunction &CGF,
 | 
						|
                         const MaterializeTemporaryExpr *M, const Expr *Inner) {
 | 
						|
  switch (M->getStorageDuration()) {
 | 
						|
  case SD_FullExpression:
 | 
						|
  case SD_Automatic: {
 | 
						|
    // If we have a constant temporary array or record try to promote it into a
 | 
						|
    // constant global under the same rules a normal constant would've been
 | 
						|
    // promoted. This is easier on the optimizer and generally emits fewer
 | 
						|
    // instructions.
 | 
						|
    QualType Ty = Inner->getType();
 | 
						|
    if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
 | 
						|
        (Ty->isArrayType() || Ty->isRecordType()) &&
 | 
						|
        CGF.CGM.isTypeConstant(Ty, true))
 | 
						|
      if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
 | 
						|
        auto *GV = new llvm::GlobalVariable(
 | 
						|
            CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
 | 
						|
            llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
 | 
						|
        CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
 | 
						|
        GV->setAlignment(alignment.getQuantity());
 | 
						|
        // FIXME: Should we put the new global into a COMDAT?
 | 
						|
        return Address(GV, alignment);
 | 
						|
      }
 | 
						|
    return CGF.CreateMemTemp(Ty, "ref.tmp");
 | 
						|
  }
 | 
						|
  case SD_Thread:
 | 
						|
  case SD_Static:
 | 
						|
    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
 | 
						|
 | 
						|
  case SD_Dynamic:
 | 
						|
    llvm_unreachable("temporary can't have dynamic storage duration");
 | 
						|
  }
 | 
						|
  llvm_unreachable("unknown storage duration");
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::
 | 
						|
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
 | 
						|
  const Expr *E = M->GetTemporaryExpr();
 | 
						|
 | 
						|
    // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
 | 
						|
    // as that will cause the lifetime adjustment to be lost for ARC
 | 
						|
  if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
      M->getType()->isObjCLifetimeType() &&
 | 
						|
      M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
 | 
						|
      M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
 | 
						|
    Address Object = createReferenceTemporary(*this, M, E);
 | 
						|
    if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
 | 
						|
      Object = Address(llvm::ConstantExpr::getBitCast(Var,
 | 
						|
                           ConvertTypeForMem(E->getType())
 | 
						|
                             ->getPointerTo(Object.getAddressSpace())),
 | 
						|
                       Object.getAlignment());
 | 
						|
      // We should not have emitted the initializer for this temporary as a
 | 
						|
      // constant.
 | 
						|
      assert(!Var->hasInitializer());
 | 
						|
      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
 | 
						|
    }
 | 
						|
    LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
 | 
						|
                                       AlignmentSource::Decl);
 | 
						|
 | 
						|
    switch (getEvaluationKind(E->getType())) {
 | 
						|
    default: llvm_unreachable("expected scalar or aggregate expression");
 | 
						|
    case TEK_Scalar:
 | 
						|
      EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
 | 
						|
      break;
 | 
						|
    case TEK_Aggregate: {
 | 
						|
      EmitAggExpr(E, AggValueSlot::forAddr(Object,
 | 
						|
                                           E->getType().getQualifiers(),
 | 
						|
                                           AggValueSlot::IsDestructed,
 | 
						|
                                           AggValueSlot::DoesNotNeedGCBarriers,
 | 
						|
                                           AggValueSlot::IsNotAliased));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    pushTemporaryCleanup(*this, M, E, Object);
 | 
						|
    return RefTempDst;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<const Expr *, 2> CommaLHSs;
 | 
						|
  SmallVector<SubobjectAdjustment, 2> Adjustments;
 | 
						|
  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
 | 
						|
 | 
						|
  for (const auto &Ignored : CommaLHSs)
 | 
						|
    EmitIgnoredExpr(Ignored);
 | 
						|
 | 
						|
  if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
 | 
						|
    if (opaque->getType()->isRecordType()) {
 | 
						|
      assert(Adjustments.empty());
 | 
						|
      return EmitOpaqueValueLValue(opaque);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create and initialize the reference temporary.
 | 
						|
  Address Object = createReferenceTemporary(*this, M, E);
 | 
						|
  if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
 | 
						|
    Object = Address(llvm::ConstantExpr::getBitCast(
 | 
						|
        Var, ConvertTypeForMem(E->getType())->getPointerTo()),
 | 
						|
                     Object.getAlignment());
 | 
						|
    // If the temporary is a global and has a constant initializer or is a
 | 
						|
    // constant temporary that we promoted to a global, we may have already
 | 
						|
    // initialized it.
 | 
						|
    if (!Var->hasInitializer()) {
 | 
						|
      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
 | 
						|
      EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
 | 
						|
  }
 | 
						|
  pushTemporaryCleanup(*this, M, E, Object);
 | 
						|
 | 
						|
  // Perform derived-to-base casts and/or field accesses, to get from the
 | 
						|
  // temporary object we created (and, potentially, for which we extended
 | 
						|
  // the lifetime) to the subobject we're binding the reference to.
 | 
						|
  for (unsigned I = Adjustments.size(); I != 0; --I) {
 | 
						|
    SubobjectAdjustment &Adjustment = Adjustments[I-1];
 | 
						|
    switch (Adjustment.Kind) {
 | 
						|
    case SubobjectAdjustment::DerivedToBaseAdjustment:
 | 
						|
      Object =
 | 
						|
          GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
 | 
						|
                                Adjustment.DerivedToBase.BasePath->path_begin(),
 | 
						|
                                Adjustment.DerivedToBase.BasePath->path_end(),
 | 
						|
                                /*NullCheckValue=*/ false, E->getExprLoc());
 | 
						|
      break;
 | 
						|
 | 
						|
    case SubobjectAdjustment::FieldAdjustment: {
 | 
						|
      LValue LV = MakeAddrLValue(Object, E->getType(),
 | 
						|
                                 AlignmentSource::Decl);
 | 
						|
      LV = EmitLValueForField(LV, Adjustment.Field);
 | 
						|
      assert(LV.isSimple() &&
 | 
						|
             "materialized temporary field is not a simple lvalue");
 | 
						|
      Object = LV.getAddress();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SubobjectAdjustment::MemberPointerAdjustment: {
 | 
						|
      llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
 | 
						|
      Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
 | 
						|
                                               Adjustment.Ptr.MPT);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
RValue
 | 
						|
CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
 | 
						|
  // Emit the expression as an lvalue.
 | 
						|
  LValue LV = EmitLValue(E);
 | 
						|
  assert(LV.isSimple());
 | 
						|
  llvm::Value *Value = LV.getPointer();
 | 
						|
 | 
						|
  if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
 | 
						|
    // C++11 [dcl.ref]p5 (as amended by core issue 453):
 | 
						|
    //   If a glvalue to which a reference is directly bound designates neither
 | 
						|
    //   an existing object or function of an appropriate type nor a region of
 | 
						|
    //   storage of suitable size and alignment to contain an object of the
 | 
						|
    //   reference's type, the behavior is undefined.
 | 
						|
    QualType Ty = E->getType();
 | 
						|
    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  return RValue::get(Value);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getAccessedFieldNo - Given an encoded value and a result number, return the
 | 
						|
/// input field number being accessed.
 | 
						|
unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
 | 
						|
                                             const llvm::Constant *Elts) {
 | 
						|
  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
 | 
						|
      ->getZExtValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
 | 
						|
static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
 | 
						|
                                    llvm::Value *High) {
 | 
						|
  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
 | 
						|
  llvm::Value *K47 = Builder.getInt64(47);
 | 
						|
  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
 | 
						|
  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
 | 
						|
  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
 | 
						|
  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
 | 
						|
  return Builder.CreateMul(B1, KMul);
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenFunction::sanitizePerformTypeCheck() const {
 | 
						|
  return SanOpts.has(SanitizerKind::Null) |
 | 
						|
         SanOpts.has(SanitizerKind::Alignment) |
 | 
						|
         SanOpts.has(SanitizerKind::ObjectSize) |
 | 
						|
         SanOpts.has(SanitizerKind::Vptr);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
 | 
						|
                                    llvm::Value *Ptr, QualType Ty,
 | 
						|
                                    CharUnits Alignment, bool SkipNullCheck) {
 | 
						|
  if (!sanitizePerformTypeCheck())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Don't check pointers outside the default address space. The null check
 | 
						|
  // isn't correct, the object-size check isn't supported by LLVM, and we can't
 | 
						|
  // communicate the addresses to the runtime handler for the vptr check.
 | 
						|
  if (Ptr->getType()->getPointerAddressSpace())
 | 
						|
    return;
 | 
						|
 | 
						|
  SanitizerScope SanScope(this);
 | 
						|
 | 
						|
  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
 | 
						|
  llvm::BasicBlock *Done = nullptr;
 | 
						|
 | 
						|
  bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
 | 
						|
                           TCK == TCK_UpcastToVirtualBase;
 | 
						|
  if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
 | 
						|
      !SkipNullCheck) {
 | 
						|
    // The glvalue must not be an empty glvalue.
 | 
						|
    llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
 | 
						|
 | 
						|
    if (AllowNullPointers) {
 | 
						|
      // When performing pointer casts, it's OK if the value is null.
 | 
						|
      // Skip the remaining checks in that case.
 | 
						|
      Done = createBasicBlock("null");
 | 
						|
      llvm::BasicBlock *Rest = createBasicBlock("not.null");
 | 
						|
      Builder.CreateCondBr(IsNonNull, Rest, Done);
 | 
						|
      EmitBlock(Rest);
 | 
						|
    } else {
 | 
						|
      Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
 | 
						|
    uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
 | 
						|
 | 
						|
    // The glvalue must refer to a large enough storage region.
 | 
						|
    // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
 | 
						|
    //        to check this.
 | 
						|
    // FIXME: Get object address space
 | 
						|
    llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
 | 
						|
    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
 | 
						|
    llvm::Value *Min = Builder.getFalse();
 | 
						|
    llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
 | 
						|
    llvm::Value *LargeEnough =
 | 
						|
        Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
 | 
						|
                              llvm::ConstantInt::get(IntPtrTy, Size));
 | 
						|
    Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t AlignVal = 0;
 | 
						|
 | 
						|
  if (SanOpts.has(SanitizerKind::Alignment)) {
 | 
						|
    AlignVal = Alignment.getQuantity();
 | 
						|
    if (!Ty->isIncompleteType() && !AlignVal)
 | 
						|
      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
 | 
						|
 | 
						|
    // The glvalue must be suitably aligned.
 | 
						|
    if (AlignVal) {
 | 
						|
      llvm::Value *Align =
 | 
						|
          Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
 | 
						|
                            llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
 | 
						|
      llvm::Value *Aligned =
 | 
						|
        Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
 | 
						|
      Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Checks.size() > 0) {
 | 
						|
    llvm::Constant *StaticData[] = {
 | 
						|
      EmitCheckSourceLocation(Loc),
 | 
						|
      EmitCheckTypeDescriptor(Ty),
 | 
						|
      llvm::ConstantInt::get(SizeTy, AlignVal),
 | 
						|
      llvm::ConstantInt::get(Int8Ty, TCK)
 | 
						|
    };
 | 
						|
    EmitCheck(Checks, "type_mismatch", StaticData, Ptr);
 | 
						|
  }
 | 
						|
 | 
						|
  // If possible, check that the vptr indicates that there is a subobject of
 | 
						|
  // type Ty at offset zero within this object.
 | 
						|
  //
 | 
						|
  // C++11 [basic.life]p5,6:
 | 
						|
  //   [For storage which does not refer to an object within its lifetime]
 | 
						|
  //   The program has undefined behavior if:
 | 
						|
  //    -- the [pointer or glvalue] is used to access a non-static data member
 | 
						|
  //       or call a non-static member function
 | 
						|
  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
 | 
						|
  if (SanOpts.has(SanitizerKind::Vptr) &&
 | 
						|
      (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
 | 
						|
       TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
 | 
						|
       TCK == TCK_UpcastToVirtualBase) &&
 | 
						|
      RD && RD->hasDefinition() && RD->isDynamicClass()) {
 | 
						|
    // Compute a hash of the mangled name of the type.
 | 
						|
    //
 | 
						|
    // FIXME: This is not guaranteed to be deterministic! Move to a
 | 
						|
    //        fingerprinting mechanism once LLVM provides one. For the time
 | 
						|
    //        being the implementation happens to be deterministic.
 | 
						|
    SmallString<64> MangledName;
 | 
						|
    llvm::raw_svector_ostream Out(MangledName);
 | 
						|
    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
 | 
						|
                                                     Out);
 | 
						|
 | 
						|
    // Blacklist based on the mangled type.
 | 
						|
    if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
 | 
						|
            Out.str())) {
 | 
						|
      llvm::hash_code TypeHash = hash_value(Out.str());
 | 
						|
 | 
						|
      // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
 | 
						|
      llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
 | 
						|
      llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
 | 
						|
      Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
 | 
						|
      llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
 | 
						|
      llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
 | 
						|
 | 
						|
      llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
 | 
						|
      Hash = Builder.CreateTrunc(Hash, IntPtrTy);
 | 
						|
 | 
						|
      // Look the hash up in our cache.
 | 
						|
      const int CacheSize = 128;
 | 
						|
      llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
 | 
						|
      llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
 | 
						|
                                                     "__ubsan_vptr_type_cache");
 | 
						|
      llvm::Value *Slot = Builder.CreateAnd(Hash,
 | 
						|
                                            llvm::ConstantInt::get(IntPtrTy,
 | 
						|
                                                                   CacheSize-1));
 | 
						|
      llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
 | 
						|
      llvm::Value *CacheVal =
 | 
						|
        Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
 | 
						|
                                  getPointerAlign());
 | 
						|
 | 
						|
      // If the hash isn't in the cache, call a runtime handler to perform the
 | 
						|
      // hard work of checking whether the vptr is for an object of the right
 | 
						|
      // type. This will either fill in the cache and return, or produce a
 | 
						|
      // diagnostic.
 | 
						|
      llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
 | 
						|
      llvm::Constant *StaticData[] = {
 | 
						|
        EmitCheckSourceLocation(Loc),
 | 
						|
        EmitCheckTypeDescriptor(Ty),
 | 
						|
        CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
 | 
						|
        llvm::ConstantInt::get(Int8Ty, TCK)
 | 
						|
      };
 | 
						|
      llvm::Value *DynamicData[] = { Ptr, Hash };
 | 
						|
      EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
 | 
						|
                "dynamic_type_cache_miss", StaticData, DynamicData);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Done) {
 | 
						|
    Builder.CreateBr(Done);
 | 
						|
    EmitBlock(Done);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether this expression refers to a flexible array member in a
 | 
						|
/// struct. We disable array bounds checks for such members.
 | 
						|
static bool isFlexibleArrayMemberExpr(const Expr *E) {
 | 
						|
  // For compatibility with existing code, we treat arrays of length 0 or
 | 
						|
  // 1 as flexible array members.
 | 
						|
  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
 | 
						|
  if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
 | 
						|
    if (CAT->getSize().ugt(1))
 | 
						|
      return false;
 | 
						|
  } else if (!isa<IncompleteArrayType>(AT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  E = E->IgnoreParens();
 | 
						|
 | 
						|
  // A flexible array member must be the last member in the class.
 | 
						|
  if (const auto *ME = dyn_cast<MemberExpr>(E)) {
 | 
						|
    // FIXME: If the base type of the member expr is not FD->getParent(),
 | 
						|
    // this should not be treated as a flexible array member access.
 | 
						|
    if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
 | 
						|
      RecordDecl::field_iterator FI(
 | 
						|
          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
 | 
						|
      return ++FI == FD->getParent()->field_end();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// If Base is known to point to the start of an array, return the length of
 | 
						|
/// that array. Return 0 if the length cannot be determined.
 | 
						|
static llvm::Value *getArrayIndexingBound(
 | 
						|
    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
 | 
						|
  // For the vector indexing extension, the bound is the number of elements.
 | 
						|
  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
 | 
						|
    IndexedType = Base->getType();
 | 
						|
    return CGF.Builder.getInt32(VT->getNumElements());
 | 
						|
  }
 | 
						|
 | 
						|
  Base = Base->IgnoreParens();
 | 
						|
 | 
						|
  if (const auto *CE = dyn_cast<CastExpr>(Base)) {
 | 
						|
    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
 | 
						|
        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
 | 
						|
      IndexedType = CE->getSubExpr()->getType();
 | 
						|
      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
 | 
						|
      if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
 | 
						|
        return CGF.Builder.getInt(CAT->getSize());
 | 
						|
      else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
 | 
						|
        return CGF.getVLASize(VAT).first;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
 | 
						|
                                      llvm::Value *Index, QualType IndexType,
 | 
						|
                                      bool Accessed) {
 | 
						|
  assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
 | 
						|
         "should not be called unless adding bounds checks");
 | 
						|
  SanitizerScope SanScope(this);
 | 
						|
 | 
						|
  QualType IndexedType;
 | 
						|
  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
 | 
						|
  if (!Bound)
 | 
						|
    return;
 | 
						|
 | 
						|
  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
 | 
						|
  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
 | 
						|
  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
 | 
						|
 | 
						|
  llvm::Constant *StaticData[] = {
 | 
						|
    EmitCheckSourceLocation(E->getExprLoc()),
 | 
						|
    EmitCheckTypeDescriptor(IndexedType),
 | 
						|
    EmitCheckTypeDescriptor(IndexType)
 | 
						|
  };
 | 
						|
  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
 | 
						|
                                : Builder.CreateICmpULE(IndexVal, BoundVal);
 | 
						|
  EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
 | 
						|
            StaticData, Index);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
CodeGenFunction::ComplexPairTy CodeGenFunction::
 | 
						|
EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
 | 
						|
                         bool isInc, bool isPre) {
 | 
						|
  ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
 | 
						|
 | 
						|
  llvm::Value *NextVal;
 | 
						|
  if (isa<llvm::IntegerType>(InVal.first->getType())) {
 | 
						|
    uint64_t AmountVal = isInc ? 1 : -1;
 | 
						|
    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
 | 
						|
 | 
						|
    // Add the inc/dec to the real part.
 | 
						|
    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
 | 
						|
  } else {
 | 
						|
    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
 | 
						|
    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
 | 
						|
    if (!isInc)
 | 
						|
      FVal.changeSign();
 | 
						|
    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
 | 
						|
 | 
						|
    // Add the inc/dec to the real part.
 | 
						|
    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
 | 
						|
  }
 | 
						|
 | 
						|
  ComplexPairTy IncVal(NextVal, InVal.second);
 | 
						|
 | 
						|
  // Store the updated result through the lvalue.
 | 
						|
  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
 | 
						|
 | 
						|
  // If this is a postinc, return the value read from memory, otherwise use the
 | 
						|
  // updated value.
 | 
						|
  return isPre ? IncVal : InVal;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         LValue Expression Emission
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// EmitPointerWithAlignment - Given an expression of pointer type, try to
 | 
						|
/// derive a more accurate bound on the alignment of the pointer.
 | 
						|
Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
 | 
						|
                                                  AlignmentSource  *Source) {
 | 
						|
  // We allow this with ObjC object pointers because of fragile ABIs.
 | 
						|
  assert(E->getType()->isPointerType() ||
 | 
						|
         E->getType()->isObjCObjectPointerType());
 | 
						|
  E = E->IgnoreParens();
 | 
						|
 | 
						|
  // Casts:
 | 
						|
  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
 | 
						|
    // Bind VLAs in the cast type.
 | 
						|
    if (E->getType()->isVariablyModifiedType())
 | 
						|
      EmitVariablyModifiedType(E->getType());
 | 
						|
 | 
						|
    switch (CE->getCastKind()) {
 | 
						|
    // Non-converting casts (but not C's implicit conversion from void*).
 | 
						|
    case CK_BitCast:
 | 
						|
    case CK_NoOp:
 | 
						|
      if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
 | 
						|
        if (PtrTy->getPointeeType()->isVoidType())
 | 
						|
          break;
 | 
						|
 | 
						|
        AlignmentSource InnerSource;
 | 
						|
        Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
 | 
						|
        if (Source) *Source = InnerSource;
 | 
						|
 | 
						|
        // If this is an explicit bitcast, and the source l-value is
 | 
						|
        // opaque, honor the alignment of the casted-to type.
 | 
						|
        if (isa<ExplicitCastExpr>(CE) &&
 | 
						|
            CE->getCastKind() == CK_BitCast &&
 | 
						|
            InnerSource != AlignmentSource::Decl) {
 | 
						|
          Addr = Address(Addr.getPointer(),
 | 
						|
                         getNaturalPointeeTypeAlignment(E->getType(), Source));
 | 
						|
        }
 | 
						|
 | 
						|
        if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
 | 
						|
          if (auto PT = E->getType()->getAs<PointerType>())
 | 
						|
            EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
 | 
						|
                                      /*MayBeNull=*/true,
 | 
						|
                                      CodeGenFunction::CFITCK_UnrelatedCast,
 | 
						|
                                      CE->getLocStart());
 | 
						|
        }
 | 
						|
 | 
						|
        return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    // Array-to-pointer decay.
 | 
						|
    case CK_ArrayToPointerDecay:
 | 
						|
      return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
 | 
						|
 | 
						|
    // Derived-to-base conversions.
 | 
						|
    case CK_UncheckedDerivedToBase:
 | 
						|
    case CK_DerivedToBase: {
 | 
						|
      Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
 | 
						|
      auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
 | 
						|
      return GetAddressOfBaseClass(Addr, Derived,
 | 
						|
                                   CE->path_begin(), CE->path_end(),
 | 
						|
                                   ShouldNullCheckClassCastValue(CE),
 | 
						|
                                   CE->getExprLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: Is there any reason to treat base-to-derived conversions
 | 
						|
    // specially?
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Unary &.
 | 
						|
  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | 
						|
    if (UO->getOpcode() == UO_AddrOf) {
 | 
						|
      LValue LV = EmitLValue(UO->getSubExpr());
 | 
						|
      if (Source) *Source = LV.getAlignmentSource();
 | 
						|
      return LV.getAddress();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: conditional operators, comma.
 | 
						|
 | 
						|
  // Otherwise, use the alignment of the type.
 | 
						|
  CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
 | 
						|
  return Address(EmitScalarExpr(E), Align);
 | 
						|
}
 | 
						|
 | 
						|
RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
 | 
						|
  if (Ty->isVoidType())
 | 
						|
    return RValue::get(nullptr);
 | 
						|
 | 
						|
  switch (getEvaluationKind(Ty)) {
 | 
						|
  case TEK_Complex: {
 | 
						|
    llvm::Type *EltTy =
 | 
						|
      ConvertType(Ty->castAs<ComplexType>()->getElementType());
 | 
						|
    llvm::Value *U = llvm::UndefValue::get(EltTy);
 | 
						|
    return RValue::getComplex(std::make_pair(U, U));
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a use of an undefined aggregate type, the aggregate must have an
 | 
						|
  // identifiable address.  Just because the contents of the value are undefined
 | 
						|
  // doesn't mean that the address can't be taken and compared.
 | 
						|
  case TEK_Aggregate: {
 | 
						|
    Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
 | 
						|
    return RValue::getAggregate(DestPtr);
 | 
						|
  }
 | 
						|
 | 
						|
  case TEK_Scalar:
 | 
						|
    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad evaluation kind");
 | 
						|
}
 | 
						|
 | 
						|
RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
 | 
						|
                                              const char *Name) {
 | 
						|
  ErrorUnsupported(E, Name);
 | 
						|
  return GetUndefRValue(E->getType());
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
 | 
						|
                                              const char *Name) {
 | 
						|
  ErrorUnsupported(E, Name);
 | 
						|
  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
 | 
						|
  return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
 | 
						|
                        E->getType());
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
 | 
						|
  LValue LV;
 | 
						|
  if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
 | 
						|
    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
 | 
						|
  else
 | 
						|
    LV = EmitLValue(E);
 | 
						|
  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
 | 
						|
    EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
 | 
						|
                  E->getType(), LV.getAlignment());
 | 
						|
  return LV;
 | 
						|
}
 | 
						|
 | 
						|
/// EmitLValue - Emit code to compute a designator that specifies the location
 | 
						|
/// of the expression.
 | 
						|
///
 | 
						|
/// This can return one of two things: a simple address or a bitfield reference.
 | 
						|
/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
 | 
						|
/// an LLVM pointer type.
 | 
						|
///
 | 
						|
/// If this returns a bitfield reference, nothing about the pointee type of the
 | 
						|
/// LLVM value is known: For example, it may not be a pointer to an integer.
 | 
						|
///
 | 
						|
/// If this returns a normal address, and if the lvalue's C type is fixed size,
 | 
						|
/// this method guarantees that the returned pointer type will point to an LLVM
 | 
						|
/// type of the same size of the lvalue's type.  If the lvalue has a variable
 | 
						|
/// length type, this is not possible.
 | 
						|
///
 | 
						|
LValue CodeGenFunction::EmitLValue(const Expr *E) {
 | 
						|
  ApplyDebugLocation DL(*this, E);
 | 
						|
  switch (E->getStmtClass()) {
 | 
						|
  default: return EmitUnsupportedLValue(E, "l-value expression");
 | 
						|
 | 
						|
  case Expr::ObjCPropertyRefExprClass:
 | 
						|
    llvm_unreachable("cannot emit a property reference directly");
 | 
						|
 | 
						|
  case Expr::ObjCSelectorExprClass:
 | 
						|
    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
 | 
						|
  case Expr::ObjCIsaExprClass:
 | 
						|
    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
 | 
						|
  case Expr::BinaryOperatorClass:
 | 
						|
    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
 | 
						|
  case Expr::CompoundAssignOperatorClass: {
 | 
						|
    QualType Ty = E->getType();
 | 
						|
    if (const AtomicType *AT = Ty->getAs<AtomicType>())
 | 
						|
      Ty = AT->getValueType();
 | 
						|
    if (!Ty->isAnyComplexType())
 | 
						|
      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
 | 
						|
    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
 | 
						|
  }
 | 
						|
  case Expr::CallExprClass:
 | 
						|
  case Expr::CXXMemberCallExprClass:
 | 
						|
  case Expr::CXXOperatorCallExprClass:
 | 
						|
  case Expr::UserDefinedLiteralClass:
 | 
						|
    return EmitCallExprLValue(cast<CallExpr>(E));
 | 
						|
  case Expr::VAArgExprClass:
 | 
						|
    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
 | 
						|
  case Expr::DeclRefExprClass:
 | 
						|
    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
 | 
						|
  case Expr::ParenExprClass:
 | 
						|
    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
 | 
						|
  case Expr::GenericSelectionExprClass:
 | 
						|
    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
 | 
						|
  case Expr::PredefinedExprClass:
 | 
						|
    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
 | 
						|
  case Expr::StringLiteralClass:
 | 
						|
    return EmitStringLiteralLValue(cast<StringLiteral>(E));
 | 
						|
  case Expr::ObjCEncodeExprClass:
 | 
						|
    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
 | 
						|
  case Expr::PseudoObjectExprClass:
 | 
						|
    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
 | 
						|
  case Expr::InitListExprClass:
 | 
						|
    return EmitInitListLValue(cast<InitListExpr>(E));
 | 
						|
  case Expr::CXXTemporaryObjectExprClass:
 | 
						|
  case Expr::CXXConstructExprClass:
 | 
						|
    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
 | 
						|
  case Expr::CXXBindTemporaryExprClass:
 | 
						|
    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
 | 
						|
  case Expr::CXXUuidofExprClass:
 | 
						|
    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
 | 
						|
  case Expr::LambdaExprClass:
 | 
						|
    return EmitLambdaLValue(cast<LambdaExpr>(E));
 | 
						|
 | 
						|
  case Expr::ExprWithCleanupsClass: {
 | 
						|
    const auto *cleanups = cast<ExprWithCleanups>(E);
 | 
						|
    enterFullExpression(cleanups);
 | 
						|
    RunCleanupsScope Scope(*this);
 | 
						|
    return EmitLValue(cleanups->getSubExpr());
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXDefaultArgExprClass:
 | 
						|
    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
 | 
						|
  case Expr::CXXDefaultInitExprClass: {
 | 
						|
    CXXDefaultInitExprScope Scope(*this);
 | 
						|
    return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
 | 
						|
  }
 | 
						|
  case Expr::CXXTypeidExprClass:
 | 
						|
    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
 | 
						|
 | 
						|
  case Expr::ObjCMessageExprClass:
 | 
						|
    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
 | 
						|
  case Expr::ObjCIvarRefExprClass:
 | 
						|
    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
 | 
						|
  case Expr::StmtExprClass:
 | 
						|
    return EmitStmtExprLValue(cast<StmtExpr>(E));
 | 
						|
  case Expr::UnaryOperatorClass:
 | 
						|
    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
 | 
						|
  case Expr::ArraySubscriptExprClass:
 | 
						|
    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
 | 
						|
  case Expr::OMPArraySectionExprClass:
 | 
						|
    return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
 | 
						|
  case Expr::ExtVectorElementExprClass:
 | 
						|
    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
 | 
						|
  case Expr::MemberExprClass:
 | 
						|
    return EmitMemberExpr(cast<MemberExpr>(E));
 | 
						|
  case Expr::CompoundLiteralExprClass:
 | 
						|
    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
 | 
						|
  case Expr::ConditionalOperatorClass:
 | 
						|
    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
 | 
						|
  case Expr::BinaryConditionalOperatorClass:
 | 
						|
    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
 | 
						|
  case Expr::ChooseExprClass:
 | 
						|
    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
 | 
						|
  case Expr::OpaqueValueExprClass:
 | 
						|
    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
 | 
						|
  case Expr::SubstNonTypeTemplateParmExprClass:
 | 
						|
    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
 | 
						|
  case Expr::ImplicitCastExprClass:
 | 
						|
  case Expr::CStyleCastExprClass:
 | 
						|
  case Expr::CXXFunctionalCastExprClass:
 | 
						|
  case Expr::CXXStaticCastExprClass:
 | 
						|
  case Expr::CXXDynamicCastExprClass:
 | 
						|
  case Expr::CXXReinterpretCastExprClass:
 | 
						|
  case Expr::CXXConstCastExprClass:
 | 
						|
  case Expr::ObjCBridgedCastExprClass:
 | 
						|
    return EmitCastLValue(cast<CastExpr>(E));
 | 
						|
 | 
						|
  case Expr::MaterializeTemporaryExprClass:
 | 
						|
    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Given an object of the given canonical type, can we safely copy a
 | 
						|
/// value out of it based on its initializer?
 | 
						|
static bool isConstantEmittableObjectType(QualType type) {
 | 
						|
  assert(type.isCanonical());
 | 
						|
  assert(!type->isReferenceType());
 | 
						|
 | 
						|
  // Must be const-qualified but non-volatile.
 | 
						|
  Qualifiers qs = type.getLocalQualifiers();
 | 
						|
  if (!qs.hasConst() || qs.hasVolatile()) return false;
 | 
						|
 | 
						|
  // Otherwise, all object types satisfy this except C++ classes with
 | 
						|
  // mutable subobjects or non-trivial copy/destroy behavior.
 | 
						|
  if (const auto *RT = dyn_cast<RecordType>(type))
 | 
						|
    if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
 | 
						|
      if (RD->hasMutableFields() || !RD->isTrivial())
 | 
						|
        return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Can we constant-emit a load of a reference to a variable of the
 | 
						|
/// given type?  This is different from predicates like
 | 
						|
/// Decl::isUsableInConstantExpressions because we do want it to apply
 | 
						|
/// in situations that don't necessarily satisfy the language's rules
 | 
						|
/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
 | 
						|
/// to do this with const float variables even if those variables
 | 
						|
/// aren't marked 'constexpr'.
 | 
						|
enum ConstantEmissionKind {
 | 
						|
  CEK_None,
 | 
						|
  CEK_AsReferenceOnly,
 | 
						|
  CEK_AsValueOrReference,
 | 
						|
  CEK_AsValueOnly
 | 
						|
};
 | 
						|
static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
 | 
						|
  type = type.getCanonicalType();
 | 
						|
  if (const auto *ref = dyn_cast<ReferenceType>(type)) {
 | 
						|
    if (isConstantEmittableObjectType(ref->getPointeeType()))
 | 
						|
      return CEK_AsValueOrReference;
 | 
						|
    return CEK_AsReferenceOnly;
 | 
						|
  }
 | 
						|
  if (isConstantEmittableObjectType(type))
 | 
						|
    return CEK_AsValueOnly;
 | 
						|
  return CEK_None;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to emit a reference to the given value without producing it as
 | 
						|
/// an l-value.  This is actually more than an optimization: we can't
 | 
						|
/// produce an l-value for variables that we never actually captured
 | 
						|
/// in a block or lambda, which means const int variables or constexpr
 | 
						|
/// literals or similar.
 | 
						|
CodeGenFunction::ConstantEmission
 | 
						|
CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
 | 
						|
  ValueDecl *value = refExpr->getDecl();
 | 
						|
 | 
						|
  // The value needs to be an enum constant or a constant variable.
 | 
						|
  ConstantEmissionKind CEK;
 | 
						|
  if (isa<ParmVarDecl>(value)) {
 | 
						|
    CEK = CEK_None;
 | 
						|
  } else if (auto *var = dyn_cast<VarDecl>(value)) {
 | 
						|
    CEK = checkVarTypeForConstantEmission(var->getType());
 | 
						|
  } else if (isa<EnumConstantDecl>(value)) {
 | 
						|
    CEK = CEK_AsValueOnly;
 | 
						|
  } else {
 | 
						|
    CEK = CEK_None;
 | 
						|
  }
 | 
						|
  if (CEK == CEK_None) return ConstantEmission();
 | 
						|
 | 
						|
  Expr::EvalResult result;
 | 
						|
  bool resultIsReference;
 | 
						|
  QualType resultType;
 | 
						|
 | 
						|
  // It's best to evaluate all the way as an r-value if that's permitted.
 | 
						|
  if (CEK != CEK_AsReferenceOnly &&
 | 
						|
      refExpr->EvaluateAsRValue(result, getContext())) {
 | 
						|
    resultIsReference = false;
 | 
						|
    resultType = refExpr->getType();
 | 
						|
 | 
						|
  // Otherwise, try to evaluate as an l-value.
 | 
						|
  } else if (CEK != CEK_AsValueOnly &&
 | 
						|
             refExpr->EvaluateAsLValue(result, getContext())) {
 | 
						|
    resultIsReference = true;
 | 
						|
    resultType = value->getType();
 | 
						|
 | 
						|
  // Failure.
 | 
						|
  } else {
 | 
						|
    return ConstantEmission();
 | 
						|
  }
 | 
						|
 | 
						|
  // In any case, if the initializer has side-effects, abandon ship.
 | 
						|
  if (result.HasSideEffects)
 | 
						|
    return ConstantEmission();
 | 
						|
 | 
						|
  // Emit as a constant.
 | 
						|
  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
 | 
						|
 | 
						|
  // Make sure we emit a debug reference to the global variable.
 | 
						|
  // This should probably fire even for
 | 
						|
  if (isa<VarDecl>(value)) {
 | 
						|
    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
 | 
						|
      EmitDeclRefExprDbgValue(refExpr, C);
 | 
						|
  } else {
 | 
						|
    assert(isa<EnumConstantDecl>(value));
 | 
						|
    EmitDeclRefExprDbgValue(refExpr, C);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we emitted a reference constant, we need to dereference that.
 | 
						|
  if (resultIsReference)
 | 
						|
    return ConstantEmission::forReference(C);
 | 
						|
 | 
						|
  return ConstantEmission::forValue(C);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
 | 
						|
                                               SourceLocation Loc) {
 | 
						|
  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
 | 
						|
                          lvalue.getType(), Loc, lvalue.getAlignmentSource(),
 | 
						|
                          lvalue.getTBAAInfo(),
 | 
						|
                          lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
 | 
						|
                          lvalue.isNontemporal());
 | 
						|
}
 | 
						|
 | 
						|
static bool hasBooleanRepresentation(QualType Ty) {
 | 
						|
  if (Ty->isBooleanType())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const EnumType *ET = Ty->getAs<EnumType>())
 | 
						|
    return ET->getDecl()->getIntegerType()->isBooleanType();
 | 
						|
 | 
						|
  if (const AtomicType *AT = Ty->getAs<AtomicType>())
 | 
						|
    return hasBooleanRepresentation(AT->getValueType());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
 | 
						|
                            llvm::APInt &Min, llvm::APInt &End,
 | 
						|
                            bool StrictEnums) {
 | 
						|
  const EnumType *ET = Ty->getAs<EnumType>();
 | 
						|
  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
 | 
						|
                                ET && !ET->getDecl()->isFixed();
 | 
						|
  bool IsBool = hasBooleanRepresentation(Ty);
 | 
						|
  if (!IsBool && !IsRegularCPlusPlusEnum)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (IsBool) {
 | 
						|
    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
 | 
						|
    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
 | 
						|
  } else {
 | 
						|
    const EnumDecl *ED = ET->getDecl();
 | 
						|
    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
 | 
						|
    unsigned Bitwidth = LTy->getScalarSizeInBits();
 | 
						|
    unsigned NumNegativeBits = ED->getNumNegativeBits();
 | 
						|
    unsigned NumPositiveBits = ED->getNumPositiveBits();
 | 
						|
 | 
						|
    if (NumNegativeBits) {
 | 
						|
      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
 | 
						|
      assert(NumBits <= Bitwidth);
 | 
						|
      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
 | 
						|
      Min = -End;
 | 
						|
    } else {
 | 
						|
      assert(NumPositiveBits <= Bitwidth);
 | 
						|
      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
 | 
						|
      Min = llvm::APInt(Bitwidth, 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
 | 
						|
  llvm::APInt Min, End;
 | 
						|
  if (!getRangeForType(*this, Ty, Min, End,
 | 
						|
                       CGM.getCodeGenOpts().StrictEnums))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  llvm::MDBuilder MDHelper(getLLVMContext());
 | 
						|
  return MDHelper.createRange(Min, End);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
 | 
						|
                                               QualType Ty,
 | 
						|
                                               SourceLocation Loc,
 | 
						|
                                               AlignmentSource AlignSource,
 | 
						|
                                               llvm::MDNode *TBAAInfo,
 | 
						|
                                               QualType TBAABaseType,
 | 
						|
                                               uint64_t TBAAOffset,
 | 
						|
                                               bool isNontemporal) {
 | 
						|
  // For better performance, handle vector loads differently.
 | 
						|
  if (Ty->isVectorType()) {
 | 
						|
    const llvm::Type *EltTy = Addr.getElementType();
 | 
						|
 | 
						|
    const auto *VTy = cast<llvm::VectorType>(EltTy);
 | 
						|
 | 
						|
    // Handle vectors of size 3 like size 4 for better performance.
 | 
						|
    if (VTy->getNumElements() == 3) {
 | 
						|
 | 
						|
      // Bitcast to vec4 type.
 | 
						|
      llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
 | 
						|
                                                         4);
 | 
						|
      Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
 | 
						|
      // Now load value.
 | 
						|
      llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
 | 
						|
 | 
						|
      // Shuffle vector to get vec3.
 | 
						|
      V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
 | 
						|
                                      {0, 1, 2}, "extractVec");
 | 
						|
      return EmitFromMemory(V, Ty);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Atomic operations have to be done on integral types.
 | 
						|
  if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) {
 | 
						|
    LValue lvalue =
 | 
						|
      LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
 | 
						|
    return EmitAtomicLoad(lvalue, Loc).getScalarVal();
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
 | 
						|
  if (isNontemporal) {
 | 
						|
    llvm::MDNode *Node = llvm::MDNode::get(
 | 
						|
        Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
 | 
						|
    Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
 | 
						|
  }
 | 
						|
  if (TBAAInfo) {
 | 
						|
    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
 | 
						|
                                                      TBAAOffset);
 | 
						|
    if (TBAAPath)
 | 
						|
      CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
 | 
						|
  }
 | 
						|
 | 
						|
  bool NeedsBoolCheck =
 | 
						|
      SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
 | 
						|
  bool NeedsEnumCheck =
 | 
						|
      SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
 | 
						|
  if (NeedsBoolCheck || NeedsEnumCheck) {
 | 
						|
    SanitizerScope SanScope(this);
 | 
						|
    llvm::APInt Min, End;
 | 
						|
    if (getRangeForType(*this, Ty, Min, End, true)) {
 | 
						|
      --End;
 | 
						|
      llvm::Value *Check;
 | 
						|
      if (!Min)
 | 
						|
        Check = Builder.CreateICmpULE(
 | 
						|
          Load, llvm::ConstantInt::get(getLLVMContext(), End));
 | 
						|
      else {
 | 
						|
        llvm::Value *Upper = Builder.CreateICmpSLE(
 | 
						|
          Load, llvm::ConstantInt::get(getLLVMContext(), End));
 | 
						|
        llvm::Value *Lower = Builder.CreateICmpSGE(
 | 
						|
          Load, llvm::ConstantInt::get(getLLVMContext(), Min));
 | 
						|
        Check = Builder.CreateAnd(Upper, Lower);
 | 
						|
      }
 | 
						|
      llvm::Constant *StaticArgs[] = {
 | 
						|
        EmitCheckSourceLocation(Loc),
 | 
						|
        EmitCheckTypeDescriptor(Ty)
 | 
						|
      };
 | 
						|
      SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
 | 
						|
      EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
 | 
						|
                EmitCheckValue(Load));
 | 
						|
    }
 | 
						|
  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
 | 
						|
    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
 | 
						|
      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
 | 
						|
 | 
						|
  return EmitFromMemory(Load, Ty);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
 | 
						|
  // Bool has a different representation in memory than in registers.
 | 
						|
  if (hasBooleanRepresentation(Ty)) {
 | 
						|
    // This should really always be an i1, but sometimes it's already
 | 
						|
    // an i8, and it's awkward to track those cases down.
 | 
						|
    if (Value->getType()->isIntegerTy(1))
 | 
						|
      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
 | 
						|
    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
 | 
						|
           "wrong value rep of bool");
 | 
						|
  }
 | 
						|
 | 
						|
  return Value;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
 | 
						|
  // Bool has a different representation in memory than in registers.
 | 
						|
  if (hasBooleanRepresentation(Ty)) {
 | 
						|
    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
 | 
						|
           "wrong value rep of bool");
 | 
						|
    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
 | 
						|
  }
 | 
						|
 | 
						|
  return Value;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
 | 
						|
                                        bool Volatile, QualType Ty,
 | 
						|
                                        AlignmentSource AlignSource,
 | 
						|
                                        llvm::MDNode *TBAAInfo,
 | 
						|
                                        bool isInit, QualType TBAABaseType,
 | 
						|
                                        uint64_t TBAAOffset,
 | 
						|
                                        bool isNontemporal) {
 | 
						|
 | 
						|
  // Handle vectors differently to get better performance.
 | 
						|
  if (Ty->isVectorType()) {
 | 
						|
    llvm::Type *SrcTy = Value->getType();
 | 
						|
    auto *VecTy = cast<llvm::VectorType>(SrcTy);
 | 
						|
    // Handle vec3 special.
 | 
						|
    if (VecTy->getNumElements() == 3) {
 | 
						|
      // Our source is a vec3, do a shuffle vector to make it a vec4.
 | 
						|
      llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
 | 
						|
                                Builder.getInt32(2),
 | 
						|
                                llvm::UndefValue::get(Builder.getInt32Ty())};
 | 
						|
      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
 | 
						|
      Value = Builder.CreateShuffleVector(Value,
 | 
						|
                                          llvm::UndefValue::get(VecTy),
 | 
						|
                                          MaskV, "extractVec");
 | 
						|
      SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
 | 
						|
    }
 | 
						|
    if (Addr.getElementType() != SrcTy) {
 | 
						|
      Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Value = EmitToMemory(Value, Ty);
 | 
						|
 | 
						|
  if (Ty->isAtomicType() ||
 | 
						|
      (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) {
 | 
						|
    EmitAtomicStore(RValue::get(Value),
 | 
						|
                    LValue::MakeAddr(Addr, Ty, getContext(),
 | 
						|
                                     AlignSource, TBAAInfo),
 | 
						|
                    isInit);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
 | 
						|
  if (isNontemporal) {
 | 
						|
    llvm::MDNode *Node =
 | 
						|
        llvm::MDNode::get(Store->getContext(),
 | 
						|
                          llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
 | 
						|
    Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
 | 
						|
  }
 | 
						|
  if (TBAAInfo) {
 | 
						|
    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
 | 
						|
                                                      TBAAOffset);
 | 
						|
    if (TBAAPath)
 | 
						|
      CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
 | 
						|
                                        bool isInit) {
 | 
						|
  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
 | 
						|
                    lvalue.getType(), lvalue.getAlignmentSource(),
 | 
						|
                    lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
 | 
						|
                    lvalue.getTBAAOffset(), lvalue.isNontemporal());
 | 
						|
}
 | 
						|
 | 
						|
/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
 | 
						|
/// method emits the address of the lvalue, then loads the result as an rvalue,
 | 
						|
/// returning the rvalue.
 | 
						|
RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
 | 
						|
  if (LV.isObjCWeak()) {
 | 
						|
    // load of a __weak object.
 | 
						|
    Address AddrWeakObj = LV.getAddress();
 | 
						|
    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
 | 
						|
                                                             AddrWeakObj));
 | 
						|
  }
 | 
						|
  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
 | 
						|
    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
 | 
						|
    Object = EmitObjCConsumeObject(LV.getType(), Object);
 | 
						|
    return RValue::get(Object);
 | 
						|
  }
 | 
						|
 | 
						|
  if (LV.isSimple()) {
 | 
						|
    assert(!LV.getType()->isFunctionType());
 | 
						|
 | 
						|
    // Everything needs a load.
 | 
						|
    return RValue::get(EmitLoadOfScalar(LV, Loc));
 | 
						|
  }
 | 
						|
 | 
						|
  if (LV.isVectorElt()) {
 | 
						|
    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
 | 
						|
                                              LV.isVolatileQualified());
 | 
						|
    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
 | 
						|
                                                    "vecext"));
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a reference to a subset of the elements of a vector, either
 | 
						|
  // shuffle the input or extract/insert them as appropriate.
 | 
						|
  if (LV.isExtVectorElt())
 | 
						|
    return EmitLoadOfExtVectorElementLValue(LV);
 | 
						|
 | 
						|
  // Global Register variables always invoke intrinsics
 | 
						|
  if (LV.isGlobalReg())
 | 
						|
    return EmitLoadOfGlobalRegLValue(LV);
 | 
						|
 | 
						|
  assert(LV.isBitField() && "Unknown LValue type!");
 | 
						|
  return EmitLoadOfBitfieldLValue(LV);
 | 
						|
}
 | 
						|
 | 
						|
RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
 | 
						|
  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
 | 
						|
 | 
						|
  // Get the output type.
 | 
						|
  llvm::Type *ResLTy = ConvertType(LV.getType());
 | 
						|
 | 
						|
  Address Ptr = LV.getBitFieldAddress();
 | 
						|
  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
 | 
						|
 | 
						|
  if (Info.IsSigned) {
 | 
						|
    assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
 | 
						|
    unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
 | 
						|
    if (HighBits)
 | 
						|
      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
 | 
						|
    if (Info.Offset + HighBits)
 | 
						|
      Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
 | 
						|
  } else {
 | 
						|
    if (Info.Offset)
 | 
						|
      Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
 | 
						|
    if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
 | 
						|
      Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
 | 
						|
                                                              Info.Size),
 | 
						|
                              "bf.clear");
 | 
						|
  }
 | 
						|
  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
 | 
						|
 | 
						|
  return RValue::get(Val);
 | 
						|
}
 | 
						|
 | 
						|
// If this is a reference to a subset of the elements of a vector, create an
 | 
						|
// appropriate shufflevector.
 | 
						|
RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
 | 
						|
  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
 | 
						|
                                        LV.isVolatileQualified());
 | 
						|
 | 
						|
  const llvm::Constant *Elts = LV.getExtVectorElts();
 | 
						|
 | 
						|
  // If the result of the expression is a non-vector type, we must be extracting
 | 
						|
  // a single element.  Just codegen as an extractelement.
 | 
						|
  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
 | 
						|
  if (!ExprVT) {
 | 
						|
    unsigned InIdx = getAccessedFieldNo(0, Elts);
 | 
						|
    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
 | 
						|
    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
 | 
						|
  }
 | 
						|
 | 
						|
  // Always use shuffle vector to try to retain the original program structure
 | 
						|
  unsigned NumResultElts = ExprVT->getNumElements();
 | 
						|
 | 
						|
  SmallVector<llvm::Constant*, 4> Mask;
 | 
						|
  for (unsigned i = 0; i != NumResultElts; ++i)
 | 
						|
    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
 | 
						|
 | 
						|
  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
 | 
						|
  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
 | 
						|
                                    MaskV);
 | 
						|
  return RValue::get(Vec);
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Generates lvalue for partial ext_vector access.
 | 
						|
Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
 | 
						|
  Address VectorAddress = LV.getExtVectorAddress();
 | 
						|
  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
 | 
						|
  QualType EQT = ExprVT->getElementType();
 | 
						|
  llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
 | 
						|
  
 | 
						|
  Address CastToPointerElement =
 | 
						|
    Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
 | 
						|
                                 "conv.ptr.element");
 | 
						|
  
 | 
						|
  const llvm::Constant *Elts = LV.getExtVectorElts();
 | 
						|
  unsigned ix = getAccessedFieldNo(0, Elts);
 | 
						|
  
 | 
						|
  Address VectorBasePtrPlusIx =
 | 
						|
    Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
 | 
						|
                                   getContext().getTypeSizeInChars(EQT),
 | 
						|
                                   "vector.elt");
 | 
						|
 | 
						|
  return VectorBasePtrPlusIx;
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Load of global gamed gegisters are always calls to intrinsics.
 | 
						|
RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
 | 
						|
  assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
 | 
						|
         "Bad type for register variable");
 | 
						|
  llvm::MDNode *RegName = cast<llvm::MDNode>(
 | 
						|
      cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
 | 
						|
 | 
						|
  // We accept integer and pointer types only
 | 
						|
  llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
 | 
						|
  llvm::Type *Ty = OrigTy;
 | 
						|
  if (OrigTy->isPointerTy())
 | 
						|
    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
 | 
						|
  llvm::Type *Types[] = { Ty };
 | 
						|
 | 
						|
  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
 | 
						|
  llvm::Value *Call = Builder.CreateCall(
 | 
						|
      F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
 | 
						|
  if (OrigTy->isPointerTy())
 | 
						|
    Call = Builder.CreateIntToPtr(Call, OrigTy);
 | 
						|
  return RValue::get(Call);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
 | 
						|
/// lvalue, where both are guaranteed to the have the same type, and that type
 | 
						|
/// is 'Ty'.
 | 
						|
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
 | 
						|
                                             bool isInit) {
 | 
						|
  if (!Dst.isSimple()) {
 | 
						|
    if (Dst.isVectorElt()) {
 | 
						|
      // Read/modify/write the vector, inserting the new element.
 | 
						|
      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
 | 
						|
                                            Dst.isVolatileQualified());
 | 
						|
      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
 | 
						|
                                        Dst.getVectorIdx(), "vecins");
 | 
						|
      Builder.CreateStore(Vec, Dst.getVectorAddress(),
 | 
						|
                          Dst.isVolatileQualified());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is an update of extended vector elements, insert them as
 | 
						|
    // appropriate.
 | 
						|
    if (Dst.isExtVectorElt())
 | 
						|
      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
 | 
						|
 | 
						|
    if (Dst.isGlobalReg())
 | 
						|
      return EmitStoreThroughGlobalRegLValue(Src, Dst);
 | 
						|
 | 
						|
    assert(Dst.isBitField() && "Unknown LValue type");
 | 
						|
    return EmitStoreThroughBitfieldLValue(Src, Dst);
 | 
						|
  }
 | 
						|
 | 
						|
  // There's special magic for assigning into an ARC-qualified l-value.
 | 
						|
  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
 | 
						|
    switch (Lifetime) {
 | 
						|
    case Qualifiers::OCL_None:
 | 
						|
      llvm_unreachable("present but none");
 | 
						|
 | 
						|
    case Qualifiers::OCL_ExplicitNone:
 | 
						|
      // nothing special
 | 
						|
      break;
 | 
						|
 | 
						|
    case Qualifiers::OCL_Strong:
 | 
						|
      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Qualifiers::OCL_Weak:
 | 
						|
      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Qualifiers::OCL_Autoreleasing:
 | 
						|
      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
 | 
						|
                                                     Src.getScalarVal()));
 | 
						|
      // fall into the normal path
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
 | 
						|
    // load of a __weak object.
 | 
						|
    Address LvalueDst = Dst.getAddress();
 | 
						|
    llvm::Value *src = Src.getScalarVal();
 | 
						|
     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
 | 
						|
    // load of a __strong object.
 | 
						|
    Address LvalueDst = Dst.getAddress();
 | 
						|
    llvm::Value *src = Src.getScalarVal();
 | 
						|
    if (Dst.isObjCIvar()) {
 | 
						|
      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
 | 
						|
      llvm::Type *ResultType = IntPtrTy;
 | 
						|
      Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
 | 
						|
      llvm::Value *RHS = dst.getPointer();
 | 
						|
      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
 | 
						|
      llvm::Value *LHS =
 | 
						|
        Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
 | 
						|
                               "sub.ptr.lhs.cast");
 | 
						|
      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
 | 
						|
      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
 | 
						|
                                              BytesBetween);
 | 
						|
    } else if (Dst.isGlobalObjCRef()) {
 | 
						|
      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
 | 
						|
                                                Dst.isThreadLocalRef());
 | 
						|
    }
 | 
						|
    else
 | 
						|
      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Src.isScalar() && "Can't emit an agg store with this method");
 | 
						|
  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
 | 
						|
                                                     llvm::Value **Result) {
 | 
						|
  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
 | 
						|
  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
 | 
						|
  Address Ptr = Dst.getBitFieldAddress();
 | 
						|
 | 
						|
  // Get the source value, truncated to the width of the bit-field.
 | 
						|
  llvm::Value *SrcVal = Src.getScalarVal();
 | 
						|
 | 
						|
  // Cast the source to the storage type and shift it into place.
 | 
						|
  SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
 | 
						|
                                 /*IsSigned=*/false);
 | 
						|
  llvm::Value *MaskedVal = SrcVal;
 | 
						|
 | 
						|
  // See if there are other bits in the bitfield's storage we'll need to load
 | 
						|
  // and mask together with source before storing.
 | 
						|
  if (Info.StorageSize != Info.Size) {
 | 
						|
    assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
 | 
						|
    llvm::Value *Val =
 | 
						|
      Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
 | 
						|
 | 
						|
    // Mask the source value as needed.
 | 
						|
    if (!hasBooleanRepresentation(Dst.getType()))
 | 
						|
      SrcVal = Builder.CreateAnd(SrcVal,
 | 
						|
                                 llvm::APInt::getLowBitsSet(Info.StorageSize,
 | 
						|
                                                            Info.Size),
 | 
						|
                                 "bf.value");
 | 
						|
    MaskedVal = SrcVal;
 | 
						|
    if (Info.Offset)
 | 
						|
      SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
 | 
						|
 | 
						|
    // Mask out the original value.
 | 
						|
    Val = Builder.CreateAnd(Val,
 | 
						|
                            ~llvm::APInt::getBitsSet(Info.StorageSize,
 | 
						|
                                                     Info.Offset,
 | 
						|
                                                     Info.Offset + Info.Size),
 | 
						|
                            "bf.clear");
 | 
						|
 | 
						|
    // Or together the unchanged values and the source value.
 | 
						|
    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
 | 
						|
  } else {
 | 
						|
    assert(Info.Offset == 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Write the new value back out.
 | 
						|
  Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
 | 
						|
 | 
						|
  // Return the new value of the bit-field, if requested.
 | 
						|
  if (Result) {
 | 
						|
    llvm::Value *ResultVal = MaskedVal;
 | 
						|
 | 
						|
    // Sign extend the value if needed.
 | 
						|
    if (Info.IsSigned) {
 | 
						|
      assert(Info.Size <= Info.StorageSize);
 | 
						|
      unsigned HighBits = Info.StorageSize - Info.Size;
 | 
						|
      if (HighBits) {
 | 
						|
        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
 | 
						|
        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
 | 
						|
                                      "bf.result.cast");
 | 
						|
    *Result = EmitFromMemory(ResultVal, Dst.getType());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
 | 
						|
                                                               LValue Dst) {
 | 
						|
  // This access turns into a read/modify/write of the vector.  Load the input
 | 
						|
  // value now.
 | 
						|
  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
 | 
						|
                                        Dst.isVolatileQualified());
 | 
						|
  const llvm::Constant *Elts = Dst.getExtVectorElts();
 | 
						|
 | 
						|
  llvm::Value *SrcVal = Src.getScalarVal();
 | 
						|
 | 
						|
  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
 | 
						|
    unsigned NumSrcElts = VTy->getNumElements();
 | 
						|
    unsigned NumDstElts =
 | 
						|
       cast<llvm::VectorType>(Vec->getType())->getNumElements();
 | 
						|
    if (NumDstElts == NumSrcElts) {
 | 
						|
      // Use shuffle vector is the src and destination are the same number of
 | 
						|
      // elements and restore the vector mask since it is on the side it will be
 | 
						|
      // stored.
 | 
						|
      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
 | 
						|
      for (unsigned i = 0; i != NumSrcElts; ++i)
 | 
						|
        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
 | 
						|
 | 
						|
      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
 | 
						|
      Vec = Builder.CreateShuffleVector(SrcVal,
 | 
						|
                                        llvm::UndefValue::get(Vec->getType()),
 | 
						|
                                        MaskV);
 | 
						|
    } else if (NumDstElts > NumSrcElts) {
 | 
						|
      // Extended the source vector to the same length and then shuffle it
 | 
						|
      // into the destination.
 | 
						|
      // FIXME: since we're shuffling with undef, can we just use the indices
 | 
						|
      //        into that?  This could be simpler.
 | 
						|
      SmallVector<llvm::Constant*, 4> ExtMask;
 | 
						|
      for (unsigned i = 0; i != NumSrcElts; ++i)
 | 
						|
        ExtMask.push_back(Builder.getInt32(i));
 | 
						|
      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
 | 
						|
      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
 | 
						|
      llvm::Value *ExtSrcVal =
 | 
						|
        Builder.CreateShuffleVector(SrcVal,
 | 
						|
                                    llvm::UndefValue::get(SrcVal->getType()),
 | 
						|
                                    ExtMaskV);
 | 
						|
      // build identity
 | 
						|
      SmallVector<llvm::Constant*, 4> Mask;
 | 
						|
      for (unsigned i = 0; i != NumDstElts; ++i)
 | 
						|
        Mask.push_back(Builder.getInt32(i));
 | 
						|
 | 
						|
      // When the vector size is odd and .odd or .hi is used, the last element
 | 
						|
      // of the Elts constant array will be one past the size of the vector.
 | 
						|
      // Ignore the last element here, if it is greater than the mask size.
 | 
						|
      if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
 | 
						|
        NumSrcElts--;
 | 
						|
 | 
						|
      // modify when what gets shuffled in
 | 
						|
      for (unsigned i = 0; i != NumSrcElts; ++i)
 | 
						|
        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
 | 
						|
      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
 | 
						|
      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
 | 
						|
    } else {
 | 
						|
      // We should never shorten the vector
 | 
						|
      llvm_unreachable("unexpected shorten vector length");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // If the Src is a scalar (not a vector) it must be updating one element.
 | 
						|
    unsigned InIdx = getAccessedFieldNo(0, Elts);
 | 
						|
    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
 | 
						|
    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
 | 
						|
                      Dst.isVolatileQualified());
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Store of global named registers are always calls to intrinsics.
 | 
						|
void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
 | 
						|
  assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
 | 
						|
         "Bad type for register variable");
 | 
						|
  llvm::MDNode *RegName = cast<llvm::MDNode>(
 | 
						|
      cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
 | 
						|
  assert(RegName && "Register LValue is not metadata");
 | 
						|
 | 
						|
  // We accept integer and pointer types only
 | 
						|
  llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
 | 
						|
  llvm::Type *Ty = OrigTy;
 | 
						|
  if (OrigTy->isPointerTy())
 | 
						|
    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
 | 
						|
  llvm::Type *Types[] = { Ty };
 | 
						|
 | 
						|
  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
 | 
						|
  llvm::Value *Value = Src.getScalarVal();
 | 
						|
  if (OrigTy->isPointerTy())
 | 
						|
    Value = Builder.CreatePtrToInt(Value, Ty);
 | 
						|
  Builder.CreateCall(
 | 
						|
      F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
 | 
						|
}
 | 
						|
 | 
						|
// setObjCGCLValueClass - sets class of the lvalue for the purpose of
 | 
						|
// generating write-barries API. It is currently a global, ivar,
 | 
						|
// or neither.
 | 
						|
static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
 | 
						|
                                 LValue &LV,
 | 
						|
                                 bool IsMemberAccess=false) {
 | 
						|
  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (isa<ObjCIvarRefExpr>(E)) {
 | 
						|
    QualType ExpTy = E->getType();
 | 
						|
    if (IsMemberAccess && ExpTy->isPointerType()) {
 | 
						|
      // If ivar is a structure pointer, assigning to field of
 | 
						|
      // this struct follows gcc's behavior and makes it a non-ivar
 | 
						|
      // writer-barrier conservatively.
 | 
						|
      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
 | 
						|
      if (ExpTy->isRecordType()) {
 | 
						|
        LV.setObjCIvar(false);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    LV.setObjCIvar(true);
 | 
						|
    auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
 | 
						|
    LV.setBaseIvarExp(Exp->getBase());
 | 
						|
    LV.setObjCArray(E->getType()->isArrayType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
 | 
						|
    if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
 | 
						|
      if (VD->hasGlobalStorage()) {
 | 
						|
        LV.setGlobalObjCRef(true);
 | 
						|
        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    LV.setObjCArray(E->getType()->isArrayType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
 | 
						|
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
 | 
						|
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | 
						|
    if (LV.isObjCIvar()) {
 | 
						|
      // If cast is to a structure pointer, follow gcc's behavior and make it
 | 
						|
      // a non-ivar write-barrier.
 | 
						|
      QualType ExpTy = E->getType();
 | 
						|
      if (ExpTy->isPointerType())
 | 
						|
        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
 | 
						|
      if (ExpTy->isRecordType())
 | 
						|
        LV.setObjCIvar(false);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
 | 
						|
    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
 | 
						|
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
 | 
						|
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
 | 
						|
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
 | 
						|
    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
 | 
						|
    if (LV.isObjCIvar() && !LV.isObjCArray())
 | 
						|
      // Using array syntax to assigning to what an ivar points to is not
 | 
						|
      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
 | 
						|
      LV.setObjCIvar(false);
 | 
						|
    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
 | 
						|
      // Using array syntax to assigning to what global points to is not
 | 
						|
      // same as assigning to the global itself. {id *G;} G[i] = 0;
 | 
						|
      LV.setGlobalObjCRef(false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
 | 
						|
    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
 | 
						|
    // We don't know if member is an 'ivar', but this flag is looked at
 | 
						|
    // only in the context of LV.isObjCIvar().
 | 
						|
    LV.setObjCArray(E->getType()->isArrayType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Value *
 | 
						|
EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
 | 
						|
                                llvm::Value *V, llvm::Type *IRType,
 | 
						|
                                StringRef Name = StringRef()) {
 | 
						|
  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
 | 
						|
  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
 | 
						|
}
 | 
						|
 | 
						|
static LValue EmitThreadPrivateVarDeclLValue(
 | 
						|
    CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
 | 
						|
    llvm::Type *RealVarTy, SourceLocation Loc) {
 | 
						|
  Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
 | 
						|
  Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
 | 
						|
  return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
Address CodeGenFunction::EmitLoadOfReference(Address Addr,
 | 
						|
                                             const ReferenceType *RefTy,
 | 
						|
                                             AlignmentSource *Source) {
 | 
						|
  llvm::Value *Ptr = Builder.CreateLoad(Addr);
 | 
						|
  return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
 | 
						|
                                              Source, /*forPointee*/ true));
 | 
						|
  
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
 | 
						|
                                                  const ReferenceType *RefTy) {
 | 
						|
  AlignmentSource Source;
 | 
						|
  Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
 | 
						|
  return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
 | 
						|
}
 | 
						|
 | 
						|
static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
 | 
						|
                                      const Expr *E, const VarDecl *VD) {
 | 
						|
  QualType T = E->getType();
 | 
						|
 | 
						|
  // If it's thread_local, emit a call to its wrapper function instead.
 | 
						|
  if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
 | 
						|
      CGF.CGM.getCXXABI().usesThreadWrapperFunction())
 | 
						|
    return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
 | 
						|
 | 
						|
  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
 | 
						|
  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
 | 
						|
  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
 | 
						|
  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
 | 
						|
  Address Addr(V, Alignment);
 | 
						|
  LValue LV;
 | 
						|
  // Emit reference to the private copy of the variable if it is an OpenMP
 | 
						|
  // threadprivate variable.
 | 
						|
  if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
 | 
						|
    return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
 | 
						|
                                          E->getExprLoc());
 | 
						|
  if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
 | 
						|
    LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
 | 
						|
  } else {
 | 
						|
    LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
 | 
						|
  }
 | 
						|
  setObjCGCLValueClass(CGF.getContext(), E, LV);
 | 
						|
  return LV;
 | 
						|
}
 | 
						|
 | 
						|
static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
 | 
						|
                                     const Expr *E, const FunctionDecl *FD) {
 | 
						|
  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
 | 
						|
  if (!FD->hasPrototype()) {
 | 
						|
    if (const FunctionProtoType *Proto =
 | 
						|
            FD->getType()->getAs<FunctionProtoType>()) {
 | 
						|
      // Ugly case: for a K&R-style definition, the type of the definition
 | 
						|
      // isn't the same as the type of a use.  Correct for this with a
 | 
						|
      // bitcast.
 | 
						|
      QualType NoProtoType =
 | 
						|
          CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
 | 
						|
      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
 | 
						|
      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
 | 
						|
  return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
 | 
						|
                                      llvm::Value *ThisValue) {
 | 
						|
  QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
 | 
						|
  LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
 | 
						|
  return CGF.EmitLValueForField(LV, FD);
 | 
						|
}
 | 
						|
 | 
						|
/// Named Registers are named metadata pointing to the register name
 | 
						|
/// which will be read from/written to as an argument to the intrinsic
 | 
						|
/// @llvm.read/write_register.
 | 
						|
/// So far, only the name is being passed down, but other options such as
 | 
						|
/// register type, allocation type or even optimization options could be
 | 
						|
/// passed down via the metadata node.
 | 
						|
static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
 | 
						|
  SmallString<64> Name("llvm.named.register.");
 | 
						|
  AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
 | 
						|
  assert(Asm->getLabel().size() < 64-Name.size() &&
 | 
						|
      "Register name too big");
 | 
						|
  Name.append(Asm->getLabel());
 | 
						|
  llvm::NamedMDNode *M =
 | 
						|
    CGM.getModule().getOrInsertNamedMetadata(Name);
 | 
						|
  if (M->getNumOperands() == 0) {
 | 
						|
    llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
 | 
						|
                                              Asm->getLabel());
 | 
						|
    llvm::Metadata *Ops[] = {Str};
 | 
						|
    M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
 | 
						|
  }
 | 
						|
 | 
						|
  CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
 | 
						|
 | 
						|
  llvm::Value *Ptr =
 | 
						|
    llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
 | 
						|
  return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
 | 
						|
  const NamedDecl *ND = E->getDecl();
 | 
						|
  QualType T = E->getType();
 | 
						|
 | 
						|
  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
 | 
						|
    // Global Named registers access via intrinsics only
 | 
						|
    if (VD->getStorageClass() == SC_Register &&
 | 
						|
        VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
 | 
						|
      return EmitGlobalNamedRegister(VD, CGM);
 | 
						|
 | 
						|
    // A DeclRefExpr for a reference initialized by a constant expression can
 | 
						|
    // appear without being odr-used. Directly emit the constant initializer.
 | 
						|
    const Expr *Init = VD->getAnyInitializer(VD);
 | 
						|
    if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
 | 
						|
        VD->isUsableInConstantExpressions(getContext()) &&
 | 
						|
        VD->checkInitIsICE() &&
 | 
						|
        // Do not emit if it is private OpenMP variable.
 | 
						|
        !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
 | 
						|
          LocalDeclMap.count(VD))) {
 | 
						|
      llvm::Constant *Val =
 | 
						|
        CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
 | 
						|
      assert(Val && "failed to emit reference constant expression");
 | 
						|
      // FIXME: Eventually we will want to emit vector element references.
 | 
						|
 | 
						|
      // Should we be using the alignment of the constant pointer we emitted?
 | 
						|
      CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
 | 
						|
                                                    /*pointee*/ true);
 | 
						|
 | 
						|
      return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for captured variables.
 | 
						|
    if (E->refersToEnclosingVariableOrCapture()) {
 | 
						|
      if (auto *FD = LambdaCaptureFields.lookup(VD))
 | 
						|
        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
 | 
						|
      else if (CapturedStmtInfo) {
 | 
						|
        auto it = LocalDeclMap.find(VD);
 | 
						|
        if (it != LocalDeclMap.end()) {
 | 
						|
          if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
 | 
						|
            return EmitLoadOfReferenceLValue(it->second, RefTy);
 | 
						|
          }
 | 
						|
          return MakeAddrLValue(it->second, T);
 | 
						|
        }
 | 
						|
        return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
 | 
						|
                                       CapturedStmtInfo->getContextValue());
 | 
						|
      }
 | 
						|
 | 
						|
      assert(isa<BlockDecl>(CurCodeDecl));
 | 
						|
      Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
 | 
						|
      return MakeAddrLValue(addr, T, AlignmentSource::Decl);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We should be able to assert this for FunctionDecls as well!
 | 
						|
  // FIXME: We should be able to assert this for all DeclRefExprs, not just
 | 
						|
  // those with a valid source location.
 | 
						|
  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
 | 
						|
          !E->getLocation().isValid()) &&
 | 
						|
         "Should not use decl without marking it used!");
 | 
						|
 | 
						|
  if (ND->hasAttr<WeakRefAttr>()) {
 | 
						|
    const auto *VD = cast<ValueDecl>(ND);
 | 
						|
    ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
 | 
						|
    return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
 | 
						|
    // Check if this is a global variable.
 | 
						|
    if (VD->hasLinkage() || VD->isStaticDataMember())
 | 
						|
      return EmitGlobalVarDeclLValue(*this, E, VD);
 | 
						|
 | 
						|
    Address addr = Address::invalid();
 | 
						|
 | 
						|
    // The variable should generally be present in the local decl map.
 | 
						|
    auto iter = LocalDeclMap.find(VD);
 | 
						|
    if (iter != LocalDeclMap.end()) {
 | 
						|
      addr = iter->second;
 | 
						|
 | 
						|
    // Otherwise, it might be static local we haven't emitted yet for
 | 
						|
    // some reason; most likely, because it's in an outer function.
 | 
						|
    } else if (VD->isStaticLocal()) {
 | 
						|
      addr = Address(CGM.getOrCreateStaticVarDecl(
 | 
						|
          *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
 | 
						|
                     getContext().getDeclAlign(VD));
 | 
						|
 | 
						|
    // No other cases for now.
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // Check for OpenMP threadprivate variables.
 | 
						|
    if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
 | 
						|
      return EmitThreadPrivateVarDeclLValue(
 | 
						|
          *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
 | 
						|
          E->getExprLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // Drill into block byref variables.
 | 
						|
    bool isBlockByref = VD->hasAttr<BlocksAttr>();
 | 
						|
    if (isBlockByref) {
 | 
						|
      addr = emitBlockByrefAddress(addr, VD);
 | 
						|
    }
 | 
						|
 | 
						|
    // Drill into reference types.
 | 
						|
    LValue LV;
 | 
						|
    if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
 | 
						|
      LV = EmitLoadOfReferenceLValue(addr, RefTy);
 | 
						|
    } else {
 | 
						|
      LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
 | 
						|
    }
 | 
						|
 | 
						|
    bool isLocalStorage = VD->hasLocalStorage();
 | 
						|
 | 
						|
    bool NonGCable = isLocalStorage &&
 | 
						|
                     !VD->getType()->isReferenceType() &&
 | 
						|
                     !isBlockByref;
 | 
						|
    if (NonGCable) {
 | 
						|
      LV.getQuals().removeObjCGCAttr();
 | 
						|
      LV.setNonGC(true);
 | 
						|
    }
 | 
						|
 | 
						|
    bool isImpreciseLifetime =
 | 
						|
      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
 | 
						|
    if (isImpreciseLifetime)
 | 
						|
      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
 | 
						|
    setObjCGCLValueClass(getContext(), E, LV);
 | 
						|
    return LV;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
 | 
						|
    return EmitFunctionDeclLValue(*this, E, FD);
 | 
						|
 | 
						|
  llvm_unreachable("Unhandled DeclRefExpr");
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
 | 
						|
  // __extension__ doesn't affect lvalue-ness.
 | 
						|
  if (E->getOpcode() == UO_Extension)
 | 
						|
    return EmitLValue(E->getSubExpr());
 | 
						|
 | 
						|
  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
 | 
						|
  switch (E->getOpcode()) {
 | 
						|
  default: llvm_unreachable("Unknown unary operator lvalue!");
 | 
						|
  case UO_Deref: {
 | 
						|
    QualType T = E->getSubExpr()->getType()->getPointeeType();
 | 
						|
    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
 | 
						|
 | 
						|
    AlignmentSource AlignSource;
 | 
						|
    Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
 | 
						|
    LValue LV = MakeAddrLValue(Addr, T, AlignSource);
 | 
						|
    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
 | 
						|
 | 
						|
    // We should not generate __weak write barrier on indirect reference
 | 
						|
    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
 | 
						|
    // But, we continue to generate __strong write barrier on indirect write
 | 
						|
    // into a pointer to object.
 | 
						|
    if (getLangOpts().ObjC1 &&
 | 
						|
        getLangOpts().getGC() != LangOptions::NonGC &&
 | 
						|
        LV.isObjCWeak())
 | 
						|
      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
 | 
						|
    return LV;
 | 
						|
  }
 | 
						|
  case UO_Real:
 | 
						|
  case UO_Imag: {
 | 
						|
    LValue LV = EmitLValue(E->getSubExpr());
 | 
						|
    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
 | 
						|
 | 
						|
    // __real is valid on scalars.  This is a faster way of testing that.
 | 
						|
    // __imag can only produce an rvalue on scalars.
 | 
						|
    if (E->getOpcode() == UO_Real &&
 | 
						|
        !LV.getAddress().getElementType()->isStructTy()) {
 | 
						|
      assert(E->getSubExpr()->getType()->isArithmeticType());
 | 
						|
      return LV;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(E->getSubExpr()->getType()->isAnyComplexType());
 | 
						|
 | 
						|
    Address Component =
 | 
						|
      (E->getOpcode() == UO_Real
 | 
						|
         ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
 | 
						|
         : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
 | 
						|
    return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource());
 | 
						|
  }
 | 
						|
  case UO_PreInc:
 | 
						|
  case UO_PreDec: {
 | 
						|
    LValue LV = EmitLValue(E->getSubExpr());
 | 
						|
    bool isInc = E->getOpcode() == UO_PreInc;
 | 
						|
 | 
						|
    if (E->getType()->isAnyComplexType())
 | 
						|
      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
 | 
						|
    else
 | 
						|
      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
 | 
						|
    return LV;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
 | 
						|
  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
 | 
						|
                        E->getType(), AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
 | 
						|
  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
 | 
						|
                        E->getType(), AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
 | 
						|
  auto SL = E->getFunctionName();
 | 
						|
  assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
 | 
						|
  StringRef FnName = CurFn->getName();
 | 
						|
  if (FnName.startswith("\01"))
 | 
						|
    FnName = FnName.substr(1);
 | 
						|
  StringRef NameItems[] = {
 | 
						|
      PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
 | 
						|
  std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
 | 
						|
  if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
 | 
						|
    auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
 | 
						|
    return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
 | 
						|
  }
 | 
						|
  auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
 | 
						|
  return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit a type description suitable for use by a runtime sanitizer library. The
 | 
						|
/// format of a type descriptor is
 | 
						|
///
 | 
						|
/// \code
 | 
						|
///   { i16 TypeKind, i16 TypeInfo }
 | 
						|
/// \endcode
 | 
						|
///
 | 
						|
/// followed by an array of i8 containing the type name. TypeKind is 0 for an
 | 
						|
/// integer, 1 for a floating point value, and -1 for anything else.
 | 
						|
llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
 | 
						|
  // Only emit each type's descriptor once.
 | 
						|
  if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
 | 
						|
    return C;
 | 
						|
 | 
						|
  uint16_t TypeKind = -1;
 | 
						|
  uint16_t TypeInfo = 0;
 | 
						|
 | 
						|
  if (T->isIntegerType()) {
 | 
						|
    TypeKind = 0;
 | 
						|
    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
 | 
						|
               (T->isSignedIntegerType() ? 1 : 0);
 | 
						|
  } else if (T->isFloatingType()) {
 | 
						|
    TypeKind = 1;
 | 
						|
    TypeInfo = getContext().getTypeSize(T);
 | 
						|
  }
 | 
						|
 | 
						|
  // Format the type name as if for a diagnostic, including quotes and
 | 
						|
  // optionally an 'aka'.
 | 
						|
  SmallString<32> Buffer;
 | 
						|
  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
 | 
						|
                                    (intptr_t)T.getAsOpaquePtr(),
 | 
						|
                                    StringRef(), StringRef(), None, Buffer,
 | 
						|
                                    None);
 | 
						|
 | 
						|
  llvm::Constant *Components[] = {
 | 
						|
    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
 | 
						|
    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
 | 
						|
  };
 | 
						|
  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
 | 
						|
 | 
						|
  auto *GV = new llvm::GlobalVariable(
 | 
						|
      CGM.getModule(), Descriptor->getType(),
 | 
						|
      /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
 | 
						|
  GV->setUnnamedAddr(true);
 | 
						|
  CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
 | 
						|
 | 
						|
  // Remember the descriptor for this type.
 | 
						|
  CGM.setTypeDescriptorInMap(T, GV);
 | 
						|
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
 | 
						|
  llvm::Type *TargetTy = IntPtrTy;
 | 
						|
 | 
						|
  // Floating-point types which fit into intptr_t are bitcast to integers
 | 
						|
  // and then passed directly (after zero-extension, if necessary).
 | 
						|
  if (V->getType()->isFloatingPointTy()) {
 | 
						|
    unsigned Bits = V->getType()->getPrimitiveSizeInBits();
 | 
						|
    if (Bits <= TargetTy->getIntegerBitWidth())
 | 
						|
      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
 | 
						|
                                                         Bits));
 | 
						|
  }
 | 
						|
 | 
						|
  // Integers which fit in intptr_t are zero-extended and passed directly.
 | 
						|
  if (V->getType()->isIntegerTy() &&
 | 
						|
      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
 | 
						|
    return Builder.CreateZExt(V, TargetTy);
 | 
						|
 | 
						|
  // Pointers are passed directly, everything else is passed by address.
 | 
						|
  if (!V->getType()->isPointerTy()) {
 | 
						|
    Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
 | 
						|
    Builder.CreateStore(V, Ptr);
 | 
						|
    V = Ptr.getPointer();
 | 
						|
  }
 | 
						|
  return Builder.CreatePtrToInt(V, TargetTy);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Emit a representation of a SourceLocation for passing to a handler
 | 
						|
/// in a sanitizer runtime library. The format for this data is:
 | 
						|
/// \code
 | 
						|
///   struct SourceLocation {
 | 
						|
///     const char *Filename;
 | 
						|
///     int32_t Line, Column;
 | 
						|
///   };
 | 
						|
/// \endcode
 | 
						|
/// For an invalid SourceLocation, the Filename pointer is null.
 | 
						|
llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
 | 
						|
  llvm::Constant *Filename;
 | 
						|
  int Line, Column;
 | 
						|
 | 
						|
  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
 | 
						|
  if (PLoc.isValid()) {
 | 
						|
    auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
 | 
						|
    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
 | 
						|
                          cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
 | 
						|
    Filename = FilenameGV.getPointer();
 | 
						|
    Line = PLoc.getLine();
 | 
						|
    Column = PLoc.getColumn();
 | 
						|
  } else {
 | 
						|
    Filename = llvm::Constant::getNullValue(Int8PtrTy);
 | 
						|
    Line = Column = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
 | 
						|
                            Builder.getInt32(Column)};
 | 
						|
 | 
						|
  return llvm::ConstantStruct::getAnon(Data);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Specify under what conditions this check can be recovered
 | 
						|
enum class CheckRecoverableKind {
 | 
						|
  /// Always terminate program execution if this check fails.
 | 
						|
  Unrecoverable,
 | 
						|
  /// Check supports recovering, runtime has both fatal (noreturn) and
 | 
						|
  /// non-fatal handlers for this check.
 | 
						|
  Recoverable,
 | 
						|
  /// Runtime conditionally aborts, always need to support recovery.
 | 
						|
  AlwaysRecoverable
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
 | 
						|
  assert(llvm::countPopulation(Kind) == 1);
 | 
						|
  switch (Kind) {
 | 
						|
  case SanitizerKind::Vptr:
 | 
						|
    return CheckRecoverableKind::AlwaysRecoverable;
 | 
						|
  case SanitizerKind::Return:
 | 
						|
  case SanitizerKind::Unreachable:
 | 
						|
    return CheckRecoverableKind::Unrecoverable;
 | 
						|
  default:
 | 
						|
    return CheckRecoverableKind::Recoverable;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void emitCheckHandlerCall(CodeGenFunction &CGF,
 | 
						|
                                 llvm::FunctionType *FnType,
 | 
						|
                                 ArrayRef<llvm::Value *> FnArgs,
 | 
						|
                                 StringRef CheckName,
 | 
						|
                                 CheckRecoverableKind RecoverKind, bool IsFatal,
 | 
						|
                                 llvm::BasicBlock *ContBB) {
 | 
						|
  assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
 | 
						|
  bool NeedsAbortSuffix =
 | 
						|
      IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
 | 
						|
  std::string FnName = ("__ubsan_handle_" + CheckName +
 | 
						|
                        (NeedsAbortSuffix ? "_abort" : "")).str();
 | 
						|
  bool MayReturn =
 | 
						|
      !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
 | 
						|
 | 
						|
  llvm::AttrBuilder B;
 | 
						|
  if (!MayReturn) {
 | 
						|
    B.addAttribute(llvm::Attribute::NoReturn)
 | 
						|
        .addAttribute(llvm::Attribute::NoUnwind);
 | 
						|
  }
 | 
						|
  B.addAttribute(llvm::Attribute::UWTable);
 | 
						|
 | 
						|
  llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
 | 
						|
      FnType, FnName,
 | 
						|
      llvm::AttributeSet::get(CGF.getLLVMContext(),
 | 
						|
                              llvm::AttributeSet::FunctionIndex, B));
 | 
						|
  llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
 | 
						|
  if (!MayReturn) {
 | 
						|
    HandlerCall->setDoesNotReturn();
 | 
						|
    CGF.Builder.CreateUnreachable();
 | 
						|
  } else {
 | 
						|
    CGF.Builder.CreateBr(ContBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitCheck(
 | 
						|
    ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
 | 
						|
    StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
 | 
						|
    ArrayRef<llvm::Value *> DynamicArgs) {
 | 
						|
  assert(IsSanitizerScope);
 | 
						|
  assert(Checked.size() > 0);
 | 
						|
 | 
						|
  llvm::Value *FatalCond = nullptr;
 | 
						|
  llvm::Value *RecoverableCond = nullptr;
 | 
						|
  llvm::Value *TrapCond = nullptr;
 | 
						|
  for (int i = 0, n = Checked.size(); i < n; ++i) {
 | 
						|
    llvm::Value *Check = Checked[i].first;
 | 
						|
    // -fsanitize-trap= overrides -fsanitize-recover=.
 | 
						|
    llvm::Value *&Cond =
 | 
						|
        CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
 | 
						|
            ? TrapCond
 | 
						|
            : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
 | 
						|
                  ? RecoverableCond
 | 
						|
                  : FatalCond;
 | 
						|
    Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TrapCond)
 | 
						|
    EmitTrapCheck(TrapCond);
 | 
						|
  if (!FatalCond && !RecoverableCond)
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::Value *JointCond;
 | 
						|
  if (FatalCond && RecoverableCond)
 | 
						|
    JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
 | 
						|
  else
 | 
						|
    JointCond = FatalCond ? FatalCond : RecoverableCond;
 | 
						|
  assert(JointCond);
 | 
						|
 | 
						|
  CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
 | 
						|
  assert(SanOpts.has(Checked[0].second));
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (int i = 1, n = Checked.size(); i < n; ++i) {
 | 
						|
    assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
 | 
						|
           "All recoverable kinds in a single check must be same!");
 | 
						|
    assert(SanOpts.has(Checked[i].second));
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  llvm::BasicBlock *Cont = createBasicBlock("cont");
 | 
						|
  llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
 | 
						|
  llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
 | 
						|
  // Give hint that we very much don't expect to execute the handler
 | 
						|
  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
 | 
						|
  llvm::MDBuilder MDHelper(getLLVMContext());
 | 
						|
  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
 | 
						|
  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
 | 
						|
  EmitBlock(Handlers);
 | 
						|
 | 
						|
  // Emit handler arguments and create handler function type.
 | 
						|
  llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
 | 
						|
  auto *InfoPtr =
 | 
						|
      new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
 | 
						|
                               llvm::GlobalVariable::PrivateLinkage, Info);
 | 
						|
  InfoPtr->setUnnamedAddr(true);
 | 
						|
  CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
 | 
						|
 | 
						|
  SmallVector<llvm::Value *, 4> Args;
 | 
						|
  SmallVector<llvm::Type *, 4> ArgTypes;
 | 
						|
  Args.reserve(DynamicArgs.size() + 1);
 | 
						|
  ArgTypes.reserve(DynamicArgs.size() + 1);
 | 
						|
 | 
						|
  // Handler functions take an i8* pointing to the (handler-specific) static
 | 
						|
  // information block, followed by a sequence of intptr_t arguments
 | 
						|
  // representing operand values.
 | 
						|
  Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
 | 
						|
  ArgTypes.push_back(Int8PtrTy);
 | 
						|
  for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
 | 
						|
    Args.push_back(EmitCheckValue(DynamicArgs[i]));
 | 
						|
    ArgTypes.push_back(IntPtrTy);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::FunctionType *FnType =
 | 
						|
    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
 | 
						|
 | 
						|
  if (!FatalCond || !RecoverableCond) {
 | 
						|
    // Simple case: we need to generate a single handler call, either
 | 
						|
    // fatal, or non-fatal.
 | 
						|
    emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
 | 
						|
                         (FatalCond != nullptr), Cont);
 | 
						|
  } else {
 | 
						|
    // Emit two handler calls: first one for set of unrecoverable checks,
 | 
						|
    // another one for recoverable.
 | 
						|
    llvm::BasicBlock *NonFatalHandlerBB =
 | 
						|
        createBasicBlock("non_fatal." + CheckName);
 | 
						|
    llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
 | 
						|
    Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
 | 
						|
    EmitBlock(FatalHandlerBB);
 | 
						|
    emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
 | 
						|
                         NonFatalHandlerBB);
 | 
						|
    EmitBlock(NonFatalHandlerBB);
 | 
						|
    emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
 | 
						|
                         Cont);
 | 
						|
  }
 | 
						|
 | 
						|
  EmitBlock(Cont);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
 | 
						|
  llvm::BasicBlock *Cont = createBasicBlock("cont");
 | 
						|
 | 
						|
  // If we're optimizing, collapse all calls to trap down to just one per
 | 
						|
  // function to save on code size.
 | 
						|
  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
 | 
						|
    TrapBB = createBasicBlock("trap");
 | 
						|
    Builder.CreateCondBr(Checked, Cont, TrapBB);
 | 
						|
    EmitBlock(TrapBB);
 | 
						|
    llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
 | 
						|
    TrapCall->setDoesNotReturn();
 | 
						|
    TrapCall->setDoesNotThrow();
 | 
						|
    Builder.CreateUnreachable();
 | 
						|
  } else {
 | 
						|
    Builder.CreateCondBr(Checked, Cont, TrapBB);
 | 
						|
  }
 | 
						|
 | 
						|
  EmitBlock(Cont);
 | 
						|
}
 | 
						|
 | 
						|
llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
 | 
						|
  llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
 | 
						|
 | 
						|
  if (!CGM.getCodeGenOpts().TrapFuncName.empty())
 | 
						|
    TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex,
 | 
						|
                           "trap-func-name",
 | 
						|
                           CGM.getCodeGenOpts().TrapFuncName);
 | 
						|
 | 
						|
  return TrapCall;
 | 
						|
}
 | 
						|
 | 
						|
Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
 | 
						|
                                                 AlignmentSource *AlignSource) {
 | 
						|
  assert(E->getType()->isArrayType() &&
 | 
						|
         "Array to pointer decay must have array source type!");
 | 
						|
 | 
						|
  // Expressions of array type can't be bitfields or vector elements.
 | 
						|
  LValue LV = EmitLValue(E);
 | 
						|
  Address Addr = LV.getAddress();
 | 
						|
  if (AlignSource) *AlignSource = LV.getAlignmentSource();
 | 
						|
 | 
						|
  // If the array type was an incomplete type, we need to make sure
 | 
						|
  // the decay ends up being the right type.
 | 
						|
  llvm::Type *NewTy = ConvertType(E->getType());
 | 
						|
  Addr = Builder.CreateElementBitCast(Addr, NewTy);
 | 
						|
 | 
						|
  // Note that VLA pointers are always decayed, so we don't need to do
 | 
						|
  // anything here.
 | 
						|
  if (!E->getType()->isVariableArrayType()) {
 | 
						|
    assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
 | 
						|
           "Expected pointer to array");
 | 
						|
    Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
 | 
						|
  }
 | 
						|
 | 
						|
  QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
 | 
						|
  return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
 | 
						|
}
 | 
						|
 | 
						|
/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
 | 
						|
/// array to pointer, return the array subexpression.
 | 
						|
static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
 | 
						|
  // If this isn't just an array->pointer decay, bail out.
 | 
						|
  const auto *CE = dyn_cast<CastExpr>(E);
 | 
						|
  if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If this is a decay from variable width array, bail out.
 | 
						|
  const Expr *SubExpr = CE->getSubExpr();
 | 
						|
  if (SubExpr->getType()->isVariableArrayType())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return SubExpr;
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
 | 
						|
                                          llvm::Value *ptr,
 | 
						|
                                          ArrayRef<llvm::Value*> indices,
 | 
						|
                                          bool inbounds,
 | 
						|
                                    const llvm::Twine &name = "arrayidx") {
 | 
						|
  if (inbounds) {
 | 
						|
    return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
 | 
						|
  } else {
 | 
						|
    return CGF.Builder.CreateGEP(ptr, indices, name);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static CharUnits getArrayElementAlign(CharUnits arrayAlign,
 | 
						|
                                      llvm::Value *idx,
 | 
						|
                                      CharUnits eltSize) {
 | 
						|
  // If we have a constant index, we can use the exact offset of the
 | 
						|
  // element we're accessing.
 | 
						|
  if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
 | 
						|
    CharUnits offset = constantIdx->getZExtValue() * eltSize;
 | 
						|
    return arrayAlign.alignmentAtOffset(offset);
 | 
						|
 | 
						|
  // Otherwise, use the worst-case alignment for any element.
 | 
						|
  } else {
 | 
						|
    return arrayAlign.alignmentOfArrayElement(eltSize);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static QualType getFixedSizeElementType(const ASTContext &ctx,
 | 
						|
                                        const VariableArrayType *vla) {
 | 
						|
  QualType eltType;
 | 
						|
  do {
 | 
						|
    eltType = vla->getElementType();
 | 
						|
  } while ((vla = ctx.getAsVariableArrayType(eltType)));
 | 
						|
  return eltType;
 | 
						|
}
 | 
						|
 | 
						|
static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
 | 
						|
                                     ArrayRef<llvm::Value*> indices,
 | 
						|
                                     QualType eltType, bool inbounds,
 | 
						|
                                     const llvm::Twine &name = "arrayidx") {
 | 
						|
  // All the indices except that last must be zero.
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (auto idx : indices.drop_back())
 | 
						|
    assert(isa<llvm::ConstantInt>(idx) &&
 | 
						|
           cast<llvm::ConstantInt>(idx)->isZero());
 | 
						|
#endif  
 | 
						|
 | 
						|
  // Determine the element size of the statically-sized base.  This is
 | 
						|
  // the thing that the indices are expressed in terms of.
 | 
						|
  if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
 | 
						|
    eltType = getFixedSizeElementType(CGF.getContext(), vla);
 | 
						|
  }
 | 
						|
 | 
						|
  // We can use that to compute the best alignment of the element.
 | 
						|
  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
 | 
						|
  CharUnits eltAlign =
 | 
						|
    getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
 | 
						|
 | 
						|
  llvm::Value *eltPtr =
 | 
						|
    emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
 | 
						|
  return Address(eltPtr, eltAlign);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
 | 
						|
                                               bool Accessed) {
 | 
						|
  // The index must always be an integer, which is not an aggregate.  Emit it.
 | 
						|
  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
 | 
						|
  QualType IdxTy  = E->getIdx()->getType();
 | 
						|
  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
 | 
						|
 | 
						|
  if (SanOpts.has(SanitizerKind::ArrayBounds))
 | 
						|
    EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
 | 
						|
 | 
						|
  // If the base is a vector type, then we are forming a vector element lvalue
 | 
						|
  // with this subscript.
 | 
						|
  if (E->getBase()->getType()->isVectorType() &&
 | 
						|
      !isa<ExtVectorElementExpr>(E->getBase())) {
 | 
						|
    // Emit the vector as an lvalue to get its address.
 | 
						|
    LValue LHS = EmitLValue(E->getBase());
 | 
						|
    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
 | 
						|
    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
 | 
						|
                                 E->getBase()->getType(),
 | 
						|
                                 LHS.getAlignmentSource());
 | 
						|
  }
 | 
						|
 | 
						|
  // All the other cases basically behave like simple offsetting.
 | 
						|
 | 
						|
  // Extend or truncate the index type to 32 or 64-bits.
 | 
						|
  if (Idx->getType() != IntPtrTy)
 | 
						|
    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
 | 
						|
 | 
						|
  // Handle the extvector case we ignored above.
 | 
						|
  if (isa<ExtVectorElementExpr>(E->getBase())) {
 | 
						|
    LValue LV = EmitLValue(E->getBase());
 | 
						|
    Address Addr = EmitExtVectorElementLValue(LV);
 | 
						|
 | 
						|
    QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
 | 
						|
    Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
 | 
						|
    return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
 | 
						|
  }
 | 
						|
 | 
						|
  AlignmentSource AlignSource;
 | 
						|
  Address Addr = Address::invalid();
 | 
						|
  if (const VariableArrayType *vla =
 | 
						|
           getContext().getAsVariableArrayType(E->getType())) {
 | 
						|
    // The base must be a pointer, which is not an aggregate.  Emit
 | 
						|
    // it.  It needs to be emitted first in case it's what captures
 | 
						|
    // the VLA bounds.
 | 
						|
    Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
 | 
						|
 | 
						|
    // The element count here is the total number of non-VLA elements.
 | 
						|
    llvm::Value *numElements = getVLASize(vla).first;
 | 
						|
 | 
						|
    // Effectively, the multiply by the VLA size is part of the GEP.
 | 
						|
    // GEP indexes are signed, and scaling an index isn't permitted to
 | 
						|
    // signed-overflow, so we use the same semantics for our explicit
 | 
						|
    // multiply.  We suppress this if overflow is not undefined behavior.
 | 
						|
    if (getLangOpts().isSignedOverflowDefined()) {
 | 
						|
      Idx = Builder.CreateMul(Idx, numElements);
 | 
						|
    } else {
 | 
						|
      Idx = Builder.CreateNSWMul(Idx, numElements);
 | 
						|
    }
 | 
						|
 | 
						|
    Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
 | 
						|
                                 !getLangOpts().isSignedOverflowDefined());
 | 
						|
 | 
						|
  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
 | 
						|
    // Indexing over an interface, as in "NSString *P; P[4];"
 | 
						|
    CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
 | 
						|
    llvm::Value *InterfaceSizeVal = 
 | 
						|
      llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());;
 | 
						|
 | 
						|
    llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
 | 
						|
 | 
						|
    // Emit the base pointer.
 | 
						|
    Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
 | 
						|
 | 
						|
    // We don't necessarily build correct LLVM struct types for ObjC
 | 
						|
    // interfaces, so we can't rely on GEP to do this scaling
 | 
						|
    // correctly, so we need to cast to i8*.  FIXME: is this actually
 | 
						|
    // true?  A lot of other things in the fragile ABI would break...
 | 
						|
    llvm::Type *OrigBaseTy = Addr.getType();
 | 
						|
    Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
 | 
						|
 | 
						|
    // Do the GEP.
 | 
						|
    CharUnits EltAlign =
 | 
						|
      getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
 | 
						|
    llvm::Value *EltPtr =
 | 
						|
      emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
 | 
						|
    Addr = Address(EltPtr, EltAlign);
 | 
						|
 | 
						|
    // Cast back.
 | 
						|
    Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
 | 
						|
  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
 | 
						|
    // If this is A[i] where A is an array, the frontend will have decayed the
 | 
						|
    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
 | 
						|
    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
 | 
						|
    // "gep x, i" here.  Emit one "gep A, 0, i".
 | 
						|
    assert(Array->getType()->isArrayType() &&
 | 
						|
           "Array to pointer decay must have array source type!");
 | 
						|
    LValue ArrayLV;
 | 
						|
    // For simple multidimensional array indexing, set the 'accessed' flag for
 | 
						|
    // better bounds-checking of the base expression.
 | 
						|
    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
 | 
						|
      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
 | 
						|
    else
 | 
						|
      ArrayLV = EmitLValue(Array);
 | 
						|
 | 
						|
    // Propagate the alignment from the array itself to the result.
 | 
						|
    Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
 | 
						|
                                 {CGM.getSize(CharUnits::Zero()), Idx},
 | 
						|
                                 E->getType(),
 | 
						|
                                 !getLangOpts().isSignedOverflowDefined());
 | 
						|
    AlignSource = ArrayLV.getAlignmentSource();
 | 
						|
  } else {
 | 
						|
    // The base must be a pointer; emit it with an estimate of its alignment.
 | 
						|
    Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
 | 
						|
    Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
 | 
						|
                                 !getLangOpts().isSignedOverflowDefined());
 | 
						|
  }
 | 
						|
 | 
						|
  LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
 | 
						|
 | 
						|
  // TODO: Preserve/extend path TBAA metadata?
 | 
						|
 | 
						|
  if (getLangOpts().ObjC1 &&
 | 
						|
      getLangOpts().getGC() != LangOptions::NonGC) {
 | 
						|
    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
 | 
						|
    setObjCGCLValueClass(getContext(), E, LV);
 | 
						|
  }
 | 
						|
  return LV;
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
 | 
						|
                                                bool IsLowerBound) {
 | 
						|
  LValue Base;
 | 
						|
  if (auto *ASE =
 | 
						|
          dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
 | 
						|
    Base = EmitOMPArraySectionExpr(ASE, IsLowerBound);
 | 
						|
  else
 | 
						|
    Base = EmitLValue(E->getBase());
 | 
						|
  QualType BaseTy = Base.getType();
 | 
						|
  llvm::Value *Idx = nullptr;
 | 
						|
  QualType ResultExprTy;
 | 
						|
  if (auto *AT = getContext().getAsArrayType(BaseTy))
 | 
						|
    ResultExprTy = AT->getElementType();
 | 
						|
  else
 | 
						|
    ResultExprTy = BaseTy->getPointeeType();
 | 
						|
  if (IsLowerBound || (!IsLowerBound && E->getColonLoc().isInvalid())) {
 | 
						|
    // Requesting lower bound or upper bound, but without provided length and
 | 
						|
    // without ':' symbol for the default length -> length = 1.
 | 
						|
    // Idx = LowerBound ?: 0;
 | 
						|
    if (auto *LowerBound = E->getLowerBound()) {
 | 
						|
      Idx = Builder.CreateIntCast(
 | 
						|
          EmitScalarExpr(LowerBound), IntPtrTy,
 | 
						|
          LowerBound->getType()->hasSignedIntegerRepresentation());
 | 
						|
    } else
 | 
						|
      Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
 | 
						|
  } else {
 | 
						|
    // Try to emit length or lower bound as constant. If this is possible, 1 is
 | 
						|
    // subtracted from constant length or lower bound. Otherwise, emit LLVM IR
 | 
						|
    // (LB + Len) - 1.
 | 
						|
    auto &C = CGM.getContext();
 | 
						|
    auto *Length = E->getLength();
 | 
						|
    llvm::APSInt ConstLength;
 | 
						|
    if (Length) {
 | 
						|
      // Idx = LowerBound + Length - 1;
 | 
						|
      if (Length->isIntegerConstantExpr(ConstLength, C)) {
 | 
						|
        ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
 | 
						|
        Length = nullptr;
 | 
						|
      }
 | 
						|
      auto *LowerBound = E->getLowerBound();
 | 
						|
      llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
 | 
						|
      if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
 | 
						|
        ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
 | 
						|
        LowerBound = nullptr;
 | 
						|
      }
 | 
						|
      if (!Length)
 | 
						|
        --ConstLength;
 | 
						|
      else if (!LowerBound)
 | 
						|
        --ConstLowerBound;
 | 
						|
 | 
						|
      if (Length || LowerBound) {
 | 
						|
        auto *LowerBoundVal =
 | 
						|
            LowerBound
 | 
						|
                ? Builder.CreateIntCast(
 | 
						|
                      EmitScalarExpr(LowerBound), IntPtrTy,
 | 
						|
                      LowerBound->getType()->hasSignedIntegerRepresentation())
 | 
						|
                : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
 | 
						|
        auto *LengthVal =
 | 
						|
            Length
 | 
						|
                ? Builder.CreateIntCast(
 | 
						|
                      EmitScalarExpr(Length), IntPtrTy,
 | 
						|
                      Length->getType()->hasSignedIntegerRepresentation())
 | 
						|
                : llvm::ConstantInt::get(IntPtrTy, ConstLength);
 | 
						|
        Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
 | 
						|
                                /*HasNUW=*/false,
 | 
						|
                                !getLangOpts().isSignedOverflowDefined());
 | 
						|
        if (Length && LowerBound) {
 | 
						|
          Idx = Builder.CreateSub(
 | 
						|
              Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
 | 
						|
              /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
 | 
						|
    } else {
 | 
						|
      // Idx = ArraySize - 1;
 | 
						|
      if (auto *VAT = C.getAsVariableArrayType(BaseTy)) {
 | 
						|
        Length = VAT->getSizeExpr();
 | 
						|
        if (Length->isIntegerConstantExpr(ConstLength, C))
 | 
						|
          Length = nullptr;
 | 
						|
      } else {
 | 
						|
        auto *CAT = C.getAsConstantArrayType(BaseTy);
 | 
						|
        ConstLength = CAT->getSize();
 | 
						|
      }
 | 
						|
      if (Length) {
 | 
						|
        auto *LengthVal = Builder.CreateIntCast(
 | 
						|
            EmitScalarExpr(Length), IntPtrTy,
 | 
						|
            Length->getType()->hasSignedIntegerRepresentation());
 | 
						|
        Idx = Builder.CreateSub(
 | 
						|
            LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
 | 
						|
            /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
 | 
						|
      } else {
 | 
						|
        ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
 | 
						|
        --ConstLength;
 | 
						|
        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(Idx);
 | 
						|
 | 
						|
  llvm::Value *EltPtr;
 | 
						|
  QualType FixedSizeEltType = ResultExprTy;
 | 
						|
  if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
 | 
						|
    // The element count here is the total number of non-VLA elements.
 | 
						|
    llvm::Value *numElements = getVLASize(VLA).first;
 | 
						|
    FixedSizeEltType = getFixedSizeElementType(getContext(), VLA);
 | 
						|
 | 
						|
    // Effectively, the multiply by the VLA size is part of the GEP.
 | 
						|
    // GEP indexes are signed, and scaling an index isn't permitted to
 | 
						|
    // signed-overflow, so we use the same semantics for our explicit
 | 
						|
    // multiply.  We suppress this if overflow is not undefined behavior.
 | 
						|
    if (getLangOpts().isSignedOverflowDefined()) {
 | 
						|
      Idx = Builder.CreateMul(Idx, numElements);
 | 
						|
      EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
 | 
						|
    } else {
 | 
						|
      Idx = Builder.CreateNSWMul(Idx, numElements);
 | 
						|
      EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
 | 
						|
    }
 | 
						|
  } else if (BaseTy->isConstantArrayType()) {
 | 
						|
    llvm::Value *ArrayPtr = Base.getPointer();
 | 
						|
    llvm::Value *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
 | 
						|
    llvm::Value *Args[] = {Zero, Idx};
 | 
						|
 | 
						|
    if (getLangOpts().isSignedOverflowDefined())
 | 
						|
      EltPtr = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
 | 
						|
    else
 | 
						|
      EltPtr = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
 | 
						|
  } else {
 | 
						|
    // The base must be a pointer, which is not an aggregate.  Emit it.
 | 
						|
    if (getLangOpts().isSignedOverflowDefined())
 | 
						|
      EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
 | 
						|
    else
 | 
						|
      EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
 | 
						|
  }
 | 
						|
 | 
						|
  CharUnits EltAlign =
 | 
						|
    Base.getAlignment().alignmentOfArrayElement(
 | 
						|
                          getContext().getTypeSizeInChars(FixedSizeEltType));
 | 
						|
 | 
						|
  // Limit the alignment to that of the result type.
 | 
						|
  LValue LV = MakeAddrLValue(Address(EltPtr, EltAlign), ResultExprTy,
 | 
						|
                             Base.getAlignmentSource());
 | 
						|
 | 
						|
  LV.getQuals().setAddressSpace(BaseTy.getAddressSpace());
 | 
						|
 | 
						|
  return LV;
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::
 | 
						|
EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
 | 
						|
  // Emit the base vector as an l-value.
 | 
						|
  LValue Base;
 | 
						|
 | 
						|
  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
 | 
						|
  if (E->isArrow()) {
 | 
						|
    // If it is a pointer to a vector, emit the address and form an lvalue with
 | 
						|
    // it.
 | 
						|
    AlignmentSource AlignSource;
 | 
						|
    Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
 | 
						|
    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
 | 
						|
    Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
 | 
						|
    Base.getQuals().removeObjCGCAttr();
 | 
						|
  } else if (E->getBase()->isGLValue()) {
 | 
						|
    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
 | 
						|
    // emit the base as an lvalue.
 | 
						|
    assert(E->getBase()->getType()->isVectorType());
 | 
						|
    Base = EmitLValue(E->getBase());
 | 
						|
  } else {
 | 
						|
    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
 | 
						|
    assert(E->getBase()->getType()->isVectorType() &&
 | 
						|
           "Result must be a vector");
 | 
						|
    llvm::Value *Vec = EmitScalarExpr(E->getBase());
 | 
						|
 | 
						|
    // Store the vector to memory (because LValue wants an address).
 | 
						|
    Address VecMem = CreateMemTemp(E->getBase()->getType());
 | 
						|
    Builder.CreateStore(Vec, VecMem);
 | 
						|
    Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
 | 
						|
                          AlignmentSource::Decl);
 | 
						|
  }
 | 
						|
 | 
						|
  QualType type =
 | 
						|
    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
 | 
						|
 | 
						|
  // Encode the element access list into a vector of unsigned indices.
 | 
						|
  SmallVector<uint32_t, 4> Indices;
 | 
						|
  E->getEncodedElementAccess(Indices);
 | 
						|
 | 
						|
  if (Base.isSimple()) {
 | 
						|
    llvm::Constant *CV =
 | 
						|
        llvm::ConstantDataVector::get(getLLVMContext(), Indices);
 | 
						|
    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
 | 
						|
                                    Base.getAlignmentSource());
 | 
						|
  }
 | 
						|
  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
 | 
						|
 | 
						|
  llvm::Constant *BaseElts = Base.getExtVectorElts();
 | 
						|
  SmallVector<llvm::Constant *, 4> CElts;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
 | 
						|
    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
 | 
						|
  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
 | 
						|
  return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
 | 
						|
                                  Base.getAlignmentSource());
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
 | 
						|
  Expr *BaseExpr = E->getBase();
 | 
						|
 | 
						|
  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
 | 
						|
  LValue BaseLV;
 | 
						|
  if (E->isArrow()) {
 | 
						|
    AlignmentSource AlignSource;
 | 
						|
    Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
 | 
						|
    QualType PtrTy = BaseExpr->getType()->getPointeeType();
 | 
						|
    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy);
 | 
						|
    BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
 | 
						|
  } else
 | 
						|
    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
 | 
						|
 | 
						|
  NamedDecl *ND = E->getMemberDecl();
 | 
						|
  if (auto *Field = dyn_cast<FieldDecl>(ND)) {
 | 
						|
    LValue LV = EmitLValueForField(BaseLV, Field);
 | 
						|
    setObjCGCLValueClass(getContext(), E, LV);
 | 
						|
    return LV;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *VD = dyn_cast<VarDecl>(ND))
 | 
						|
    return EmitGlobalVarDeclLValue(*this, E, VD);
 | 
						|
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
 | 
						|
    return EmitFunctionDeclLValue(*this, E, FD);
 | 
						|
 | 
						|
  llvm_unreachable("Unhandled member declaration!");
 | 
						|
}
 | 
						|
 | 
						|
/// Given that we are currently emitting a lambda, emit an l-value for
 | 
						|
/// one of its members.
 | 
						|
LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
 | 
						|
  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
 | 
						|
  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
 | 
						|
  QualType LambdaTagType =
 | 
						|
    getContext().getTagDeclType(Field->getParent());
 | 
						|
  LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
 | 
						|
  return EmitLValueForField(LambdaLV, Field);
 | 
						|
}
 | 
						|
 | 
						|
/// Drill down to the storage of a field without walking into
 | 
						|
/// reference types.
 | 
						|
///
 | 
						|
/// The resulting address doesn't necessarily have the right type.
 | 
						|
static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
 | 
						|
                                      const FieldDecl *field) {
 | 
						|
  const RecordDecl *rec = field->getParent();
 | 
						|
  
 | 
						|
  unsigned idx =
 | 
						|
    CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
 | 
						|
 | 
						|
  CharUnits offset;
 | 
						|
  // Adjust the alignment down to the given offset.
 | 
						|
  // As a special case, if the LLVM field index is 0, we know that this
 | 
						|
  // is zero.
 | 
						|
  assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
 | 
						|
                         .getFieldOffset(field->getFieldIndex()) == 0) &&
 | 
						|
         "LLVM field at index zero had non-zero offset?");
 | 
						|
  if (idx != 0) {
 | 
						|
    auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
 | 
						|
    auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
 | 
						|
    offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
 | 
						|
  }
 | 
						|
 | 
						|
  return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitLValueForField(LValue base,
 | 
						|
                                           const FieldDecl *field) {
 | 
						|
  AlignmentSource fieldAlignSource =
 | 
						|
    getFieldAlignmentSource(base.getAlignmentSource());
 | 
						|
 | 
						|
  if (field->isBitField()) {
 | 
						|
    const CGRecordLayout &RL =
 | 
						|
      CGM.getTypes().getCGRecordLayout(field->getParent());
 | 
						|
    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
 | 
						|
    Address Addr = base.getAddress();
 | 
						|
    unsigned Idx = RL.getLLVMFieldNo(field);
 | 
						|
    if (Idx != 0)
 | 
						|
      // For structs, we GEP to the field that the record layout suggests.
 | 
						|
      Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
 | 
						|
                                     field->getName());
 | 
						|
    // Get the access type.
 | 
						|
    llvm::Type *FieldIntTy =
 | 
						|
      llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
 | 
						|
    if (Addr.getElementType() != FieldIntTy)
 | 
						|
      Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
 | 
						|
 | 
						|
    QualType fieldType =
 | 
						|
      field->getType().withCVRQualifiers(base.getVRQualifiers());
 | 
						|
    return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
 | 
						|
  }
 | 
						|
 | 
						|
  const RecordDecl *rec = field->getParent();
 | 
						|
  QualType type = field->getType();
 | 
						|
 | 
						|
  bool mayAlias = rec->hasAttr<MayAliasAttr>();
 | 
						|
 | 
						|
  Address addr = base.getAddress();
 | 
						|
  unsigned cvr = base.getVRQualifiers();
 | 
						|
  bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
 | 
						|
  if (rec->isUnion()) {
 | 
						|
    // For unions, there is no pointer adjustment.
 | 
						|
    assert(!type->isReferenceType() && "union has reference member");
 | 
						|
    // TODO: handle path-aware TBAA for union.
 | 
						|
    TBAAPath = false;
 | 
						|
  } else {
 | 
						|
    // For structs, we GEP to the field that the record layout suggests.
 | 
						|
    addr = emitAddrOfFieldStorage(*this, addr, field);
 | 
						|
 | 
						|
    // If this is a reference field, load the reference right now.
 | 
						|
    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
 | 
						|
      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
 | 
						|
      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
 | 
						|
 | 
						|
      // Loading the reference will disable path-aware TBAA.
 | 
						|
      TBAAPath = false;
 | 
						|
      if (CGM.shouldUseTBAA()) {
 | 
						|
        llvm::MDNode *tbaa;
 | 
						|
        if (mayAlias)
 | 
						|
          tbaa = CGM.getTBAAInfo(getContext().CharTy);
 | 
						|
        else
 | 
						|
          tbaa = CGM.getTBAAInfo(type);
 | 
						|
        if (tbaa)
 | 
						|
          CGM.DecorateInstruction(load, tbaa);
 | 
						|
      }
 | 
						|
 | 
						|
      mayAlias = false;
 | 
						|
      type = refType->getPointeeType();
 | 
						|
 | 
						|
      CharUnits alignment =
 | 
						|
        getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
 | 
						|
      addr = Address(load, alignment);
 | 
						|
 | 
						|
      // Qualifiers on the struct don't apply to the referencee, and
 | 
						|
      // we'll pick up CVR from the actual type later, so reset these
 | 
						|
      // additional qualifiers now.
 | 
						|
      cvr = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that the address is pointing to the right type.  This is critical
 | 
						|
  // for both unions and structs.  A union needs a bitcast, a struct element
 | 
						|
  // will need a bitcast if the LLVM type laid out doesn't match the desired
 | 
						|
  // type.
 | 
						|
  addr = Builder.CreateElementBitCast(addr,
 | 
						|
                                      CGM.getTypes().ConvertTypeForMem(type),
 | 
						|
                                      field->getName());
 | 
						|
 | 
						|
  if (field->hasAttr<AnnotateAttr>())
 | 
						|
    addr = EmitFieldAnnotations(field, addr);
 | 
						|
 | 
						|
  LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
 | 
						|
  LV.getQuals().addCVRQualifiers(cvr);
 | 
						|
  if (TBAAPath) {
 | 
						|
    const ASTRecordLayout &Layout =
 | 
						|
        getContext().getASTRecordLayout(field->getParent());
 | 
						|
    // Set the base type to be the base type of the base LValue and
 | 
						|
    // update offset to be relative to the base type.
 | 
						|
    LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
 | 
						|
    LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
 | 
						|
                     Layout.getFieldOffset(field->getFieldIndex()) /
 | 
						|
                                           getContext().getCharWidth());
 | 
						|
  }
 | 
						|
 | 
						|
  // __weak attribute on a field is ignored.
 | 
						|
  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
 | 
						|
    LV.getQuals().removeObjCGCAttr();
 | 
						|
 | 
						|
  // Fields of may_alias structs act like 'char' for TBAA purposes.
 | 
						|
  // FIXME: this should get propagated down through anonymous structs
 | 
						|
  // and unions.
 | 
						|
  if (mayAlias && LV.getTBAAInfo())
 | 
						|
    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
 | 
						|
 | 
						|
  return LV;
 | 
						|
}
 | 
						|
 | 
						|
LValue
 | 
						|
CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
 | 
						|
                                                  const FieldDecl *Field) {
 | 
						|
  QualType FieldType = Field->getType();
 | 
						|
 | 
						|
  if (!FieldType->isReferenceType())
 | 
						|
    return EmitLValueForField(Base, Field);
 | 
						|
 | 
						|
  Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
 | 
						|
 | 
						|
  // Make sure that the address is pointing to the right type.
 | 
						|
  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
 | 
						|
  V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
 | 
						|
 | 
						|
  // TODO: access-path TBAA?
 | 
						|
  auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
 | 
						|
  return MakeAddrLValue(V, FieldType, FieldAlignSource);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
 | 
						|
  if (E->isFileScope()) {
 | 
						|
    ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
 | 
						|
    return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
 | 
						|
  }
 | 
						|
  if (E->getType()->isVariablyModifiedType())
 | 
						|
    // make sure to emit the VLA size.
 | 
						|
    EmitVariablyModifiedType(E->getType());
 | 
						|
 | 
						|
  Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
 | 
						|
  const Expr *InitExpr = E->getInitializer();
 | 
						|
  LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
 | 
						|
 | 
						|
  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
 | 
						|
                   /*Init*/ true);
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
 | 
						|
  if (!E->isGLValue())
 | 
						|
    // Initializing an aggregate temporary in C++11: T{...}.
 | 
						|
    return EmitAggExprToLValue(E);
 | 
						|
 | 
						|
  // An lvalue initializer list must be initializing a reference.
 | 
						|
  assert(E->getNumInits() == 1 && "reference init with multiple values");
 | 
						|
  return EmitLValue(E->getInit(0));
 | 
						|
}
 | 
						|
 | 
						|
/// Emit the operand of a glvalue conditional operator. This is either a glvalue
 | 
						|
/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
 | 
						|
/// LValue is returned and the current block has been terminated.
 | 
						|
static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
 | 
						|
                                                    const Expr *Operand) {
 | 
						|
  if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
 | 
						|
    CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  return CGF.EmitLValue(Operand);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::
 | 
						|
EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
 | 
						|
  if (!expr->isGLValue()) {
 | 
						|
    // ?: here should be an aggregate.
 | 
						|
    assert(hasAggregateEvaluationKind(expr->getType()) &&
 | 
						|
           "Unexpected conditional operator!");
 | 
						|
    return EmitAggExprToLValue(expr);
 | 
						|
  }
 | 
						|
 | 
						|
  OpaqueValueMapping binding(*this, expr);
 | 
						|
 | 
						|
  const Expr *condExpr = expr->getCond();
 | 
						|
  bool CondExprBool;
 | 
						|
  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
 | 
						|
    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
 | 
						|
    if (!CondExprBool) std::swap(live, dead);
 | 
						|
 | 
						|
    if (!ContainsLabel(dead)) {
 | 
						|
      // If the true case is live, we need to track its region.
 | 
						|
      if (CondExprBool)
 | 
						|
        incrementProfileCounter(expr);
 | 
						|
      return EmitLValue(live);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
 | 
						|
  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
 | 
						|
  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
 | 
						|
 | 
						|
  ConditionalEvaluation eval(*this);
 | 
						|
  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
 | 
						|
 | 
						|
  // Any temporaries created here are conditional.
 | 
						|
  EmitBlock(lhsBlock);
 | 
						|
  incrementProfileCounter(expr);
 | 
						|
  eval.begin(*this);
 | 
						|
  Optional<LValue> lhs =
 | 
						|
      EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
 | 
						|
  eval.end(*this);
 | 
						|
 | 
						|
  if (lhs && !lhs->isSimple())
 | 
						|
    return EmitUnsupportedLValue(expr, "conditional operator");
 | 
						|
 | 
						|
  lhsBlock = Builder.GetInsertBlock();
 | 
						|
  if (lhs)
 | 
						|
    Builder.CreateBr(contBlock);
 | 
						|
 | 
						|
  // Any temporaries created here are conditional.
 | 
						|
  EmitBlock(rhsBlock);
 | 
						|
  eval.begin(*this);
 | 
						|
  Optional<LValue> rhs =
 | 
						|
      EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
 | 
						|
  eval.end(*this);
 | 
						|
  if (rhs && !rhs->isSimple())
 | 
						|
    return EmitUnsupportedLValue(expr, "conditional operator");
 | 
						|
  rhsBlock = Builder.GetInsertBlock();
 | 
						|
 | 
						|
  EmitBlock(contBlock);
 | 
						|
 | 
						|
  if (lhs && rhs) {
 | 
						|
    llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
 | 
						|
                                           2, "cond-lvalue");
 | 
						|
    phi->addIncoming(lhs->getPointer(), lhsBlock);
 | 
						|
    phi->addIncoming(rhs->getPointer(), rhsBlock);
 | 
						|
    Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
 | 
						|
    AlignmentSource alignSource =
 | 
						|
      std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
 | 
						|
    return MakeAddrLValue(result, expr->getType(), alignSource);
 | 
						|
  } else {
 | 
						|
    assert((lhs || rhs) &&
 | 
						|
           "both operands of glvalue conditional are throw-expressions?");
 | 
						|
    return lhs ? *lhs : *rhs;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
 | 
						|
/// type. If the cast is to a reference, we can have the usual lvalue result,
 | 
						|
/// otherwise if a cast is needed by the code generator in an lvalue context,
 | 
						|
/// then it must mean that we need the address of an aggregate in order to
 | 
						|
/// access one of its members.  This can happen for all the reasons that casts
 | 
						|
/// are permitted with aggregate result, including noop aggregate casts, and
 | 
						|
/// cast from scalar to union.
 | 
						|
LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
 | 
						|
  switch (E->getCastKind()) {
 | 
						|
  case CK_ToVoid:
 | 
						|
  case CK_BitCast:
 | 
						|
  case CK_ArrayToPointerDecay:
 | 
						|
  case CK_FunctionToPointerDecay:
 | 
						|
  case CK_NullToMemberPointer:
 | 
						|
  case CK_NullToPointer:
 | 
						|
  case CK_IntegralToPointer:
 | 
						|
  case CK_PointerToIntegral:
 | 
						|
  case CK_PointerToBoolean:
 | 
						|
  case CK_VectorSplat:
 | 
						|
  case CK_IntegralCast:
 | 
						|
  case CK_IntegralToBoolean:
 | 
						|
  case CK_IntegralToFloating:
 | 
						|
  case CK_FloatingToIntegral:
 | 
						|
  case CK_FloatingToBoolean:
 | 
						|
  case CK_FloatingCast:
 | 
						|
  case CK_FloatingRealToComplex:
 | 
						|
  case CK_FloatingComplexToReal:
 | 
						|
  case CK_FloatingComplexToBoolean:
 | 
						|
  case CK_FloatingComplexCast:
 | 
						|
  case CK_FloatingComplexToIntegralComplex:
 | 
						|
  case CK_IntegralRealToComplex:
 | 
						|
  case CK_IntegralComplexToReal:
 | 
						|
  case CK_IntegralComplexToBoolean:
 | 
						|
  case CK_IntegralComplexCast:
 | 
						|
  case CK_IntegralComplexToFloatingComplex:
 | 
						|
  case CK_DerivedToBaseMemberPointer:
 | 
						|
  case CK_BaseToDerivedMemberPointer:
 | 
						|
  case CK_MemberPointerToBoolean:
 | 
						|
  case CK_ReinterpretMemberPointer:
 | 
						|
  case CK_AnyPointerToBlockPointerCast:
 | 
						|
  case CK_ARCProduceObject:
 | 
						|
  case CK_ARCConsumeObject:
 | 
						|
  case CK_ARCReclaimReturnedObject:
 | 
						|
  case CK_ARCExtendBlockObject:
 | 
						|
  case CK_CopyAndAutoreleaseBlockObject:
 | 
						|
  case CK_AddressSpaceConversion:
 | 
						|
    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
 | 
						|
 | 
						|
  case CK_Dependent:
 | 
						|
    llvm_unreachable("dependent cast kind in IR gen!");
 | 
						|
 | 
						|
  case CK_BuiltinFnToFnPtr:
 | 
						|
    llvm_unreachable("builtin functions are handled elsewhere");
 | 
						|
 | 
						|
  // These are never l-values; just use the aggregate emission code.
 | 
						|
  case CK_NonAtomicToAtomic:
 | 
						|
  case CK_AtomicToNonAtomic:
 | 
						|
    return EmitAggExprToLValue(E);
 | 
						|
 | 
						|
  case CK_Dynamic: {
 | 
						|
    LValue LV = EmitLValue(E->getSubExpr());
 | 
						|
    Address V = LV.getAddress();
 | 
						|
    const auto *DCE = cast<CXXDynamicCastExpr>(E);
 | 
						|
    return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_ConstructorConversion:
 | 
						|
  case CK_UserDefinedConversion:
 | 
						|
  case CK_CPointerToObjCPointerCast:
 | 
						|
  case CK_BlockPointerToObjCPointerCast:
 | 
						|
  case CK_NoOp:
 | 
						|
  case CK_LValueToRValue:
 | 
						|
    return EmitLValue(E->getSubExpr());
 | 
						|
 | 
						|
  case CK_UncheckedDerivedToBase:
 | 
						|
  case CK_DerivedToBase: {
 | 
						|
    const RecordType *DerivedClassTy =
 | 
						|
      E->getSubExpr()->getType()->getAs<RecordType>();
 | 
						|
    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
 | 
						|
 | 
						|
    LValue LV = EmitLValue(E->getSubExpr());
 | 
						|
    Address This = LV.getAddress();
 | 
						|
 | 
						|
    // Perform the derived-to-base conversion
 | 
						|
    Address Base = GetAddressOfBaseClass(
 | 
						|
        This, DerivedClassDecl, E->path_begin(), E->path_end(),
 | 
						|
        /*NullCheckValue=*/false, E->getExprLoc());
 | 
						|
 | 
						|
    return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
 | 
						|
  }
 | 
						|
  case CK_ToUnion:
 | 
						|
    return EmitAggExprToLValue(E);
 | 
						|
  case CK_BaseToDerived: {
 | 
						|
    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
 | 
						|
    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
 | 
						|
 | 
						|
    LValue LV = EmitLValue(E->getSubExpr());
 | 
						|
 | 
						|
    // Perform the base-to-derived conversion
 | 
						|
    Address Derived =
 | 
						|
      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
 | 
						|
                               E->path_begin(), E->path_end(),
 | 
						|
                               /*NullCheckValue=*/false);
 | 
						|
 | 
						|
    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
 | 
						|
    // performed and the object is not of the derived type.
 | 
						|
    if (sanitizePerformTypeCheck())
 | 
						|
      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
 | 
						|
                    Derived.getPointer(), E->getType());
 | 
						|
 | 
						|
    if (SanOpts.has(SanitizerKind::CFIDerivedCast))
 | 
						|
      EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
 | 
						|
                                /*MayBeNull=*/false,
 | 
						|
                                CFITCK_DerivedCast, E->getLocStart());
 | 
						|
 | 
						|
    return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
 | 
						|
  }
 | 
						|
  case CK_LValueBitCast: {
 | 
						|
    // This must be a reinterpret_cast (or c-style equivalent).
 | 
						|
    const auto *CE = cast<ExplicitCastExpr>(E);
 | 
						|
 | 
						|
    LValue LV = EmitLValue(E->getSubExpr());
 | 
						|
    Address V = Builder.CreateBitCast(LV.getAddress(),
 | 
						|
                                      ConvertType(CE->getTypeAsWritten()));
 | 
						|
 | 
						|
    if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
 | 
						|
      EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
 | 
						|
                                /*MayBeNull=*/false,
 | 
						|
                                CFITCK_UnrelatedCast, E->getLocStart());
 | 
						|
 | 
						|
    return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
 | 
						|
  }
 | 
						|
  case CK_ObjCObjectLValueCast: {
 | 
						|
    LValue LV = EmitLValue(E->getSubExpr());
 | 
						|
    Address V = Builder.CreateElementBitCast(LV.getAddress(),
 | 
						|
                                             ConvertType(E->getType()));
 | 
						|
    return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
 | 
						|
  }
 | 
						|
  case CK_ZeroToOCLEvent:
 | 
						|
    llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Unhandled lvalue cast kind?");
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
 | 
						|
  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
 | 
						|
  return getOpaqueLValueMapping(e);
 | 
						|
}
 | 
						|
 | 
						|
RValue CodeGenFunction::EmitRValueForField(LValue LV,
 | 
						|
                                           const FieldDecl *FD,
 | 
						|
                                           SourceLocation Loc) {
 | 
						|
  QualType FT = FD->getType();
 | 
						|
  LValue FieldLV = EmitLValueForField(LV, FD);
 | 
						|
  switch (getEvaluationKind(FT)) {
 | 
						|
  case TEK_Complex:
 | 
						|
    return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
 | 
						|
  case TEK_Aggregate:
 | 
						|
    return FieldLV.asAggregateRValue();
 | 
						|
  case TEK_Scalar:
 | 
						|
    return EmitLoadOfLValue(FieldLV, Loc);
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad evaluation kind");
 | 
						|
}
 | 
						|
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
//                             Expression Emission
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
 | 
						|
                                     ReturnValueSlot ReturnValue) {
 | 
						|
  // Builtins never have block type.
 | 
						|
  if (E->getCallee()->getType()->isBlockPointerType())
 | 
						|
    return EmitBlockCallExpr(E, ReturnValue);
 | 
						|
 | 
						|
  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
 | 
						|
    return EmitCXXMemberCallExpr(CE, ReturnValue);
 | 
						|
 | 
						|
  if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
 | 
						|
    return EmitCUDAKernelCallExpr(CE, ReturnValue);
 | 
						|
 | 
						|
  const Decl *TargetDecl = E->getCalleeDecl();
 | 
						|
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
 | 
						|
    if (unsigned builtinID = FD->getBuiltinID())
 | 
						|
      return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
 | 
						|
    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
 | 
						|
      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
 | 
						|
 | 
						|
  if (const auto *PseudoDtor =
 | 
						|
          dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
 | 
						|
    QualType DestroyedType = PseudoDtor->getDestroyedType();
 | 
						|
    if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
        DestroyedType->isObjCLifetimeType() &&
 | 
						|
        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
 | 
						|
         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
 | 
						|
      // Automatic Reference Counting:
 | 
						|
      //   If the pseudo-expression names a retainable object with weak or
 | 
						|
      //   strong lifetime, the object shall be released.
 | 
						|
      Expr *BaseExpr = PseudoDtor->getBase();
 | 
						|
      Address BaseValue = Address::invalid();
 | 
						|
      Qualifiers BaseQuals;
 | 
						|
 | 
						|
      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
 | 
						|
      if (PseudoDtor->isArrow()) {
 | 
						|
        BaseValue = EmitPointerWithAlignment(BaseExpr);
 | 
						|
        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
 | 
						|
        BaseQuals = PTy->getPointeeType().getQualifiers();
 | 
						|
      } else {
 | 
						|
        LValue BaseLV = EmitLValue(BaseExpr);
 | 
						|
        BaseValue = BaseLV.getAddress();
 | 
						|
        QualType BaseTy = BaseExpr->getType();
 | 
						|
        BaseQuals = BaseTy.getQualifiers();
 | 
						|
      }
 | 
						|
 | 
						|
      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
 | 
						|
      case Qualifiers::OCL_None:
 | 
						|
      case Qualifiers::OCL_ExplicitNone:
 | 
						|
      case Qualifiers::OCL_Autoreleasing:
 | 
						|
        break;
 | 
						|
 | 
						|
      case Qualifiers::OCL_Strong:
 | 
						|
        EmitARCRelease(Builder.CreateLoad(BaseValue,
 | 
						|
                          PseudoDtor->getDestroyedType().isVolatileQualified()),
 | 
						|
                       ARCPreciseLifetime);
 | 
						|
        break;
 | 
						|
 | 
						|
      case Qualifiers::OCL_Weak:
 | 
						|
        EmitARCDestroyWeak(BaseValue);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // C++ [expr.pseudo]p1:
 | 
						|
      //   The result shall only be used as the operand for the function call
 | 
						|
      //   operator (), and the result of such a call has type void. The only
 | 
						|
      //   effect is the evaluation of the postfix-expression before the dot or
 | 
						|
      //   arrow.
 | 
						|
      EmitScalarExpr(E->getCallee());
 | 
						|
    }
 | 
						|
 | 
						|
    return RValue::get(nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
 | 
						|
  return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
 | 
						|
                  TargetDecl);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
 | 
						|
  // Comma expressions just emit their LHS then their RHS as an l-value.
 | 
						|
  if (E->getOpcode() == BO_Comma) {
 | 
						|
    EmitIgnoredExpr(E->getLHS());
 | 
						|
    EnsureInsertPoint();
 | 
						|
    return EmitLValue(E->getRHS());
 | 
						|
  }
 | 
						|
 | 
						|
  if (E->getOpcode() == BO_PtrMemD ||
 | 
						|
      E->getOpcode() == BO_PtrMemI)
 | 
						|
    return EmitPointerToDataMemberBinaryExpr(E);
 | 
						|
 | 
						|
  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
 | 
						|
 | 
						|
  // Note that in all of these cases, __block variables need the RHS
 | 
						|
  // evaluated first just in case the variable gets moved by the RHS.
 | 
						|
 | 
						|
  switch (getEvaluationKind(E->getType())) {
 | 
						|
  case TEK_Scalar: {
 | 
						|
    switch (E->getLHS()->getType().getObjCLifetime()) {
 | 
						|
    case Qualifiers::OCL_Strong:
 | 
						|
      return EmitARCStoreStrong(E, /*ignored*/ false).first;
 | 
						|
 | 
						|
    case Qualifiers::OCL_Autoreleasing:
 | 
						|
      return EmitARCStoreAutoreleasing(E).first;
 | 
						|
 | 
						|
    // No reason to do any of these differently.
 | 
						|
    case Qualifiers::OCL_None:
 | 
						|
    case Qualifiers::OCL_ExplicitNone:
 | 
						|
    case Qualifiers::OCL_Weak:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    RValue RV = EmitAnyExpr(E->getRHS());
 | 
						|
    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
 | 
						|
    EmitStoreThroughLValue(RV, LV);
 | 
						|
    return LV;
 | 
						|
  }
 | 
						|
 | 
						|
  case TEK_Complex:
 | 
						|
    return EmitComplexAssignmentLValue(E);
 | 
						|
 | 
						|
  case TEK_Aggregate:
 | 
						|
    return EmitAggExprToLValue(E);
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad evaluation kind");
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
 | 
						|
  RValue RV = EmitCallExpr(E);
 | 
						|
 | 
						|
  if (!RV.isScalar())
 | 
						|
    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
 | 
						|
                          AlignmentSource::Decl);
 | 
						|
 | 
						|
  assert(E->getCallReturnType(getContext())->isReferenceType() &&
 | 
						|
         "Can't have a scalar return unless the return type is a "
 | 
						|
         "reference type!");
 | 
						|
 | 
						|
  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
 | 
						|
  // FIXME: This shouldn't require another copy.
 | 
						|
  return EmitAggExprToLValue(E);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
 | 
						|
  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
 | 
						|
         && "binding l-value to type which needs a temporary");
 | 
						|
  AggValueSlot Slot = CreateAggTemp(E->getType());
 | 
						|
  EmitCXXConstructExpr(E, Slot);
 | 
						|
  return MakeAddrLValue(Slot.getAddress(), E->getType(),
 | 
						|
                        AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
LValue
 | 
						|
CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
 | 
						|
  return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
 | 
						|
}
 | 
						|
 | 
						|
Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
 | 
						|
  return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
 | 
						|
                                      ConvertType(E->getType()));
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
 | 
						|
  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
 | 
						|
                        AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
LValue
 | 
						|
CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
 | 
						|
  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
 | 
						|
  Slot.setExternallyDestructed();
 | 
						|
  EmitAggExpr(E->getSubExpr(), Slot);
 | 
						|
  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
 | 
						|
  return MakeAddrLValue(Slot.getAddress(), E->getType(),
 | 
						|
                        AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
LValue
 | 
						|
CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
 | 
						|
  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
 | 
						|
  EmitLambdaExpr(E, Slot);
 | 
						|
  return MakeAddrLValue(Slot.getAddress(), E->getType(),
 | 
						|
                        AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
 | 
						|
  RValue RV = EmitObjCMessageExpr(E);
 | 
						|
 | 
						|
  if (!RV.isScalar())
 | 
						|
    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
 | 
						|
                          AlignmentSource::Decl);
 | 
						|
 | 
						|
  assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
 | 
						|
         "Can't have a scalar return unless the return type is a "
 | 
						|
         "reference type!");
 | 
						|
 | 
						|
  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
 | 
						|
  Address V =
 | 
						|
    CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
 | 
						|
  return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
 | 
						|
                                             const ObjCIvarDecl *Ivar) {
 | 
						|
  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
 | 
						|
                                          llvm::Value *BaseValue,
 | 
						|
                                          const ObjCIvarDecl *Ivar,
 | 
						|
                                          unsigned CVRQualifiers) {
 | 
						|
  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
 | 
						|
                                                   Ivar, CVRQualifiers);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
 | 
						|
  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
 | 
						|
  llvm::Value *BaseValue = nullptr;
 | 
						|
  const Expr *BaseExpr = E->getBase();
 | 
						|
  Qualifiers BaseQuals;
 | 
						|
  QualType ObjectTy;
 | 
						|
  if (E->isArrow()) {
 | 
						|
    BaseValue = EmitScalarExpr(BaseExpr);
 | 
						|
    ObjectTy = BaseExpr->getType()->getPointeeType();
 | 
						|
    BaseQuals = ObjectTy.getQualifiers();
 | 
						|
  } else {
 | 
						|
    LValue BaseLV = EmitLValue(BaseExpr);
 | 
						|
    BaseValue = BaseLV.getPointer();
 | 
						|
    ObjectTy = BaseExpr->getType();
 | 
						|
    BaseQuals = ObjectTy.getQualifiers();
 | 
						|
  }
 | 
						|
 | 
						|
  LValue LV =
 | 
						|
    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
 | 
						|
                      BaseQuals.getCVRQualifiers());
 | 
						|
  setObjCGCLValueClass(getContext(), E, LV);
 | 
						|
  return LV;
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
 | 
						|
  // Can only get l-value for message expression returning aggregate type
 | 
						|
  RValue RV = EmitAnyExprToTemp(E);
 | 
						|
  return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
 | 
						|
                        AlignmentSource::Decl);
 | 
						|
}
 | 
						|
 | 
						|
RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
 | 
						|
                                 const CallExpr *E, ReturnValueSlot ReturnValue,
 | 
						|
                                 const Decl *TargetDecl, llvm::Value *Chain) {
 | 
						|
  // Get the actual function type. The callee type will always be a pointer to
 | 
						|
  // function type or a block pointer type.
 | 
						|
  assert(CalleeType->isFunctionPointerType() &&
 | 
						|
         "Call must have function pointer type!");
 | 
						|
 | 
						|
  CalleeType = getContext().getCanonicalType(CalleeType);
 | 
						|
 | 
						|
  const auto *FnType =
 | 
						|
      cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
 | 
						|
      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
 | 
						|
    if (llvm::Constant *PrefixSig =
 | 
						|
            CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
 | 
						|
      SanitizerScope SanScope(this);
 | 
						|
      llvm::Constant *FTRTTIConst =
 | 
						|
          CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
 | 
						|
      llvm::Type *PrefixStructTyElems[] = {
 | 
						|
        PrefixSig->getType(),
 | 
						|
        FTRTTIConst->getType()
 | 
						|
      };
 | 
						|
      llvm::StructType *PrefixStructTy = llvm::StructType::get(
 | 
						|
          CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
 | 
						|
 | 
						|
      llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
 | 
						|
          Callee, llvm::PointerType::getUnqual(PrefixStructTy));
 | 
						|
      llvm::Value *CalleeSigPtr =
 | 
						|
          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
 | 
						|
      llvm::Value *CalleeSig =
 | 
						|
          Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
 | 
						|
      llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
 | 
						|
 | 
						|
      llvm::BasicBlock *Cont = createBasicBlock("cont");
 | 
						|
      llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
 | 
						|
      Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
 | 
						|
 | 
						|
      EmitBlock(TypeCheck);
 | 
						|
      llvm::Value *CalleeRTTIPtr =
 | 
						|
          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
 | 
						|
      llvm::Value *CalleeRTTI =
 | 
						|
          Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
 | 
						|
      llvm::Value *CalleeRTTIMatch =
 | 
						|
          Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
 | 
						|
      llvm::Constant *StaticData[] = {
 | 
						|
        EmitCheckSourceLocation(E->getLocStart()),
 | 
						|
        EmitCheckTypeDescriptor(CalleeType)
 | 
						|
      };
 | 
						|
      EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
 | 
						|
                "function_type_mismatch", StaticData, Callee);
 | 
						|
 | 
						|
      Builder.CreateBr(Cont);
 | 
						|
      EmitBlock(Cont);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are checking indirect calls and this call is indirect, check that the
 | 
						|
  // function pointer is a member of the bit set for the function type.
 | 
						|
  if (SanOpts.has(SanitizerKind::CFIICall) &&
 | 
						|
      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
 | 
						|
    SanitizerScope SanScope(this);
 | 
						|
 | 
						|
    llvm::Value *BitSetName = llvm::MetadataAsValue::get(
 | 
						|
        getLLVMContext(),
 | 
						|
        CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)));
 | 
						|
 | 
						|
    llvm::Value *CastedCallee = Builder.CreateBitCast(Callee, Int8PtrTy);
 | 
						|
    llvm::Value *BitSetTest =
 | 
						|
        Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
 | 
						|
                           {CastedCallee, BitSetName});
 | 
						|
 | 
						|
    llvm::Constant *StaticData[] = {
 | 
						|
      EmitCheckSourceLocation(E->getLocStart()),
 | 
						|
      EmitCheckTypeDescriptor(QualType(FnType, 0)),
 | 
						|
    };
 | 
						|
    EmitCheck(std::make_pair(BitSetTest, SanitizerKind::CFIICall),
 | 
						|
              "cfi_bad_icall", StaticData, CastedCallee);
 | 
						|
  }
 | 
						|
 | 
						|
  CallArgList Args;
 | 
						|
  if (Chain)
 | 
						|
    Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
 | 
						|
             CGM.getContext().VoidPtrTy);
 | 
						|
  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
 | 
						|
               E->getDirectCallee(), /*ParamsToSkip*/ 0);
 | 
						|
 | 
						|
  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
 | 
						|
      Args, FnType, /*isChainCall=*/Chain);
 | 
						|
 | 
						|
  // C99 6.5.2.2p6:
 | 
						|
  //   If the expression that denotes the called function has a type
 | 
						|
  //   that does not include a prototype, [the default argument
 | 
						|
  //   promotions are performed]. If the number of arguments does not
 | 
						|
  //   equal the number of parameters, the behavior is undefined. If
 | 
						|
  //   the function is defined with a type that includes a prototype,
 | 
						|
  //   and either the prototype ends with an ellipsis (, ...) or the
 | 
						|
  //   types of the arguments after promotion are not compatible with
 | 
						|
  //   the types of the parameters, the behavior is undefined. If the
 | 
						|
  //   function is defined with a type that does not include a
 | 
						|
  //   prototype, and the types of the arguments after promotion are
 | 
						|
  //   not compatible with those of the parameters after promotion,
 | 
						|
  //   the behavior is undefined [except in some trivial cases].
 | 
						|
  // That is, in the general case, we should assume that a call
 | 
						|
  // through an unprototyped function type works like a *non-variadic*
 | 
						|
  // call.  The way we make this work is to cast to the exact type
 | 
						|
  // of the promoted arguments.
 | 
						|
  //
 | 
						|
  // Chain calls use this same code path to add the invisible chain parameter
 | 
						|
  // to the function type.
 | 
						|
  if (isa<FunctionNoProtoType>(FnType) || Chain) {
 | 
						|
    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
 | 
						|
    CalleeTy = CalleeTy->getPointerTo();
 | 
						|
    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
 | 
						|
  }
 | 
						|
 | 
						|
  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::
 | 
						|
EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
 | 
						|
  Address BaseAddr = Address::invalid();
 | 
						|
  if (E->getOpcode() == BO_PtrMemI) {
 | 
						|
    BaseAddr = EmitPointerWithAlignment(E->getLHS());
 | 
						|
  } else {
 | 
						|
    BaseAddr = EmitLValue(E->getLHS()).getAddress();
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
 | 
						|
 | 
						|
  const MemberPointerType *MPT
 | 
						|
    = E->getRHS()->getType()->getAs<MemberPointerType>();
 | 
						|
 | 
						|
  AlignmentSource AlignSource;
 | 
						|
  Address MemberAddr =
 | 
						|
    EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
 | 
						|
                                    &AlignSource);
 | 
						|
 | 
						|
  return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
 | 
						|
}
 | 
						|
 | 
						|
/// Given the address of a temporary variable, produce an r-value of
 | 
						|
/// its type.
 | 
						|
RValue CodeGenFunction::convertTempToRValue(Address addr,
 | 
						|
                                            QualType type,
 | 
						|
                                            SourceLocation loc) {
 | 
						|
  LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
 | 
						|
  switch (getEvaluationKind(type)) {
 | 
						|
  case TEK_Complex:
 | 
						|
    return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
 | 
						|
  case TEK_Aggregate:
 | 
						|
    return lvalue.asAggregateRValue();
 | 
						|
  case TEK_Scalar:
 | 
						|
    return RValue::get(EmitLoadOfScalar(lvalue, loc));
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad evaluation kind");
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
 | 
						|
  assert(Val->getType()->isFPOrFPVectorTy());
 | 
						|
  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::MDBuilder MDHelper(getLLVMContext());
 | 
						|
  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
 | 
						|
 | 
						|
  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct LValueOrRValue {
 | 
						|
    LValue LV;
 | 
						|
    RValue RV;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
 | 
						|
                                           const PseudoObjectExpr *E,
 | 
						|
                                           bool forLValue,
 | 
						|
                                           AggValueSlot slot) {
 | 
						|
  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
 | 
						|
 | 
						|
  // Find the result expression, if any.
 | 
						|
  const Expr *resultExpr = E->getResultExpr();
 | 
						|
  LValueOrRValue result;
 | 
						|
 | 
						|
  for (PseudoObjectExpr::const_semantics_iterator
 | 
						|
         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
 | 
						|
    const Expr *semantic = *i;
 | 
						|
 | 
						|
    // If this semantic expression is an opaque value, bind it
 | 
						|
    // to the result of its source expression.
 | 
						|
    if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
 | 
						|
 | 
						|
      // If this is the result expression, we may need to evaluate
 | 
						|
      // directly into the slot.
 | 
						|
      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
 | 
						|
      OVMA opaqueData;
 | 
						|
      if (ov == resultExpr && ov->isRValue() && !forLValue &&
 | 
						|
          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
 | 
						|
        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
 | 
						|
 | 
						|
        LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
 | 
						|
                                       AlignmentSource::Decl);
 | 
						|
        opaqueData = OVMA::bind(CGF, ov, LV);
 | 
						|
        result.RV = slot.asRValue();
 | 
						|
 | 
						|
      // Otherwise, emit as normal.
 | 
						|
      } else {
 | 
						|
        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
 | 
						|
 | 
						|
        // If this is the result, also evaluate the result now.
 | 
						|
        if (ov == resultExpr) {
 | 
						|
          if (forLValue)
 | 
						|
            result.LV = CGF.EmitLValue(ov);
 | 
						|
          else
 | 
						|
            result.RV = CGF.EmitAnyExpr(ov, slot);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      opaques.push_back(opaqueData);
 | 
						|
 | 
						|
    // Otherwise, if the expression is the result, evaluate it
 | 
						|
    // and remember the result.
 | 
						|
    } else if (semantic == resultExpr) {
 | 
						|
      if (forLValue)
 | 
						|
        result.LV = CGF.EmitLValue(semantic);
 | 
						|
      else
 | 
						|
        result.RV = CGF.EmitAnyExpr(semantic, slot);
 | 
						|
 | 
						|
    // Otherwise, evaluate the expression in an ignored context.
 | 
						|
    } else {
 | 
						|
      CGF.EmitIgnoredExpr(semantic);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Unbind all the opaques now.
 | 
						|
  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
 | 
						|
    opaques[i].unbind(CGF);
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
 | 
						|
                                               AggValueSlot slot) {
 | 
						|
  return emitPseudoObjectExpr(*this, E, false, slot).RV;
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
 | 
						|
  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
 | 
						|
}
 |