514 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			514 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains routines that help determine which pointers are captured.
 | |
| // A pointer value is captured if the function makes a copy of any part of the
 | |
| // pointer that outlives the call.  Not being captured means, more or less, that
 | |
| // the pointer is only dereferenced and not stored in a global.  Returning part
 | |
| // of the pointer as the function return value may or may not count as capturing
 | |
| // the pointer, depending on the context.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "capture-tracking"
 | |
| 
 | |
| STATISTIC(NumCaptured,          "Number of pointers maybe captured");
 | |
| STATISTIC(NumNotCaptured,       "Number of pointers not captured");
 | |
| STATISTIC(NumCapturedBefore,    "Number of pointers maybe captured before");
 | |
| STATISTIC(NumNotCapturedBefore, "Number of pointers not captured before");
 | |
| 
 | |
| /// The default value for MaxUsesToExplore argument. It's relatively small to
 | |
| /// keep the cost of analysis reasonable for clients like BasicAliasAnalysis,
 | |
| /// where the results can't be cached.
 | |
| /// TODO: we should probably introduce a caching CaptureTracking analysis and
 | |
| /// use it where possible. The caching version can use much higher limit or
 | |
| /// don't have this cap at all.
 | |
| static cl::opt<unsigned>
 | |
|     DefaultMaxUsesToExplore("capture-tracking-max-uses-to-explore", cl::Hidden,
 | |
|                             cl::desc("Maximal number of uses to explore."),
 | |
|                             cl::init(100));
 | |
| 
 | |
| unsigned llvm::getDefaultMaxUsesToExploreForCaptureTracking() {
 | |
|   return DefaultMaxUsesToExplore;
 | |
| }
 | |
| 
 | |
| CaptureTracker::~CaptureTracker() = default;
 | |
| 
 | |
| bool CaptureTracker::shouldExplore(const Use *U) { return true; }
 | |
| 
 | |
| bool CaptureTracker::isDereferenceableOrNull(Value *O, const DataLayout &DL) {
 | |
|   // An inbounds GEP can either be a valid pointer (pointing into
 | |
|   // or to the end of an allocation), or be null in the default
 | |
|   // address space. So for an inbounds GEP there is no way to let
 | |
|   // the pointer escape using clever GEP hacking because doing so
 | |
|   // would make the pointer point outside of the allocated object
 | |
|   // and thus make the GEP result a poison value. Similarly, other
 | |
|   // dereferenceable pointers cannot be manipulated without producing
 | |
|   // poison.
 | |
|   if (auto *GEP = dyn_cast<GetElementPtrInst>(O))
 | |
|     if (GEP->isInBounds())
 | |
|       return true;
 | |
|   bool CanBeNull, CanBeFreed;
 | |
|   return O->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct SimpleCaptureTracker : public CaptureTracker {
 | |
|     explicit SimpleCaptureTracker(
 | |
| 
 | |
|         const SmallPtrSetImpl<const Value *> &EphValues, bool ReturnCaptures)
 | |
|         : EphValues(EphValues), ReturnCaptures(ReturnCaptures) {}
 | |
| 
 | |
|     void tooManyUses() override { Captured = true; }
 | |
| 
 | |
|     bool captured(const Use *U) override {
 | |
|       if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures)
 | |
|         return false;
 | |
| 
 | |
|       if (EphValues.contains(U->getUser()))
 | |
|         return false;
 | |
| 
 | |
|       Captured = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     const SmallPtrSetImpl<const Value *> &EphValues;
 | |
| 
 | |
|     bool ReturnCaptures;
 | |
| 
 | |
|     bool Captured = false;
 | |
|   };
 | |
| 
 | |
|   /// Only find pointer captures which happen before the given instruction. Uses
 | |
|   /// the dominator tree to determine whether one instruction is before another.
 | |
|   /// Only support the case where the Value is defined in the same basic block
 | |
|   /// as the given instruction and the use.
 | |
|   struct CapturesBefore : public CaptureTracker {
 | |
| 
 | |
|     CapturesBefore(bool ReturnCaptures, const Instruction *I,
 | |
|                    const DominatorTree *DT, bool IncludeI, const LoopInfo *LI)
 | |
|         : BeforeHere(I), DT(DT), ReturnCaptures(ReturnCaptures),
 | |
|           IncludeI(IncludeI), LI(LI) {}
 | |
| 
 | |
|     void tooManyUses() override { Captured = true; }
 | |
| 
 | |
|     bool isSafeToPrune(Instruction *I) {
 | |
|       if (BeforeHere == I)
 | |
|         return !IncludeI;
 | |
| 
 | |
|       // We explore this usage only if the usage can reach "BeforeHere".
 | |
|       // If use is not reachable from entry, there is no need to explore.
 | |
|       if (!DT->isReachableFromEntry(I->getParent()))
 | |
|         return true;
 | |
| 
 | |
|       // Check whether there is a path from I to BeforeHere.
 | |
|       return !isPotentiallyReachable(I, BeforeHere, nullptr, DT, LI);
 | |
|     }
 | |
| 
 | |
|     bool captured(const Use *U) override {
 | |
|       Instruction *I = cast<Instruction>(U->getUser());
 | |
|       if (isa<ReturnInst>(I) && !ReturnCaptures)
 | |
|         return false;
 | |
| 
 | |
|       // Check isSafeToPrune() here rather than in shouldExplore() to avoid
 | |
|       // an expensive reachability query for every instruction we look at.
 | |
|       // Instead we only do one for actual capturing candidates.
 | |
|       if (isSafeToPrune(I))
 | |
|         return false;
 | |
| 
 | |
|       Captured = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     const Instruction *BeforeHere;
 | |
|     const DominatorTree *DT;
 | |
| 
 | |
|     bool ReturnCaptures;
 | |
|     bool IncludeI;
 | |
| 
 | |
|     bool Captured = false;
 | |
| 
 | |
|     const LoopInfo *LI;
 | |
|   };
 | |
| 
 | |
|   /// Find the 'earliest' instruction before which the pointer is known not to
 | |
|   /// be captured. Here an instruction A is considered earlier than instruction
 | |
|   /// B, if A dominates B. If 2 escapes do not dominate each other, the
 | |
|   /// terminator of the common dominator is chosen. If not all uses cannot be
 | |
|   /// analyzed, the earliest escape is set to the first instruction in the
 | |
|   /// function entry block.
 | |
|   // NOTE: Users have to make sure instructions compared against the earliest
 | |
|   // escape are not in a cycle.
 | |
|   struct EarliestCaptures : public CaptureTracker {
 | |
| 
 | |
|     EarliestCaptures(bool ReturnCaptures, Function &F, const DominatorTree &DT,
 | |
|                      const SmallPtrSetImpl<const Value *> &EphValues)
 | |
|         : EphValues(EphValues), DT(DT), ReturnCaptures(ReturnCaptures), F(F) {}
 | |
| 
 | |
|     void tooManyUses() override {
 | |
|       Captured = true;
 | |
|       EarliestCapture = &*F.getEntryBlock().begin();
 | |
|     }
 | |
| 
 | |
|     bool captured(const Use *U) override {
 | |
|       Instruction *I = cast<Instruction>(U->getUser());
 | |
|       if (isa<ReturnInst>(I) && !ReturnCaptures)
 | |
|         return false;
 | |
| 
 | |
|       if (EphValues.contains(I))
 | |
|         return false;
 | |
| 
 | |
|       if (!EarliestCapture) {
 | |
|         EarliestCapture = I;
 | |
|       } else if (EarliestCapture->getParent() == I->getParent()) {
 | |
|         if (I->comesBefore(EarliestCapture))
 | |
|           EarliestCapture = I;
 | |
|       } else {
 | |
|         BasicBlock *CurrentBB = I->getParent();
 | |
|         BasicBlock *EarliestBB = EarliestCapture->getParent();
 | |
|         if (DT.dominates(EarliestBB, CurrentBB)) {
 | |
|           // EarliestCapture already comes before the current use.
 | |
|         } else if (DT.dominates(CurrentBB, EarliestBB)) {
 | |
|           EarliestCapture = I;
 | |
|         } else {
 | |
|           // Otherwise find the nearest common dominator and use its terminator.
 | |
|           auto *NearestCommonDom =
 | |
|               DT.findNearestCommonDominator(CurrentBB, EarliestBB);
 | |
|           EarliestCapture = NearestCommonDom->getTerminator();
 | |
|         }
 | |
|       }
 | |
|       Captured = true;
 | |
| 
 | |
|       // Return false to continue analysis; we need to see all potential
 | |
|       // captures.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     const SmallPtrSetImpl<const Value *> &EphValues;
 | |
| 
 | |
|     Instruction *EarliestCapture = nullptr;
 | |
| 
 | |
|     const DominatorTree &DT;
 | |
| 
 | |
|     bool ReturnCaptures;
 | |
| 
 | |
|     bool Captured = false;
 | |
| 
 | |
|     Function &F;
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// PointerMayBeCaptured - Return true if this pointer value may be captured
 | |
| /// by the enclosing function (which is required to exist).  This routine can
 | |
| /// be expensive, so consider caching the results.  The boolean ReturnCaptures
 | |
| /// specifies whether returning the value (or part of it) from the function
 | |
| /// counts as capturing it or not.  The boolean StoreCaptures specified whether
 | |
| /// storing the value (or part of it) into memory anywhere automatically
 | |
| /// counts as capturing it or not.
 | |
| bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures,
 | |
|                                 bool StoreCaptures, unsigned MaxUsesToExplore) {
 | |
|   SmallPtrSet<const Value *, 1> Empty;
 | |
|   return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures, Empty,
 | |
|                               MaxUsesToExplore);
 | |
| }
 | |
| 
 | |
| /// Variant of the above function which accepts a set of Values that are
 | |
| /// ephemeral and cannot cause pointers to escape.
 | |
| bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures,
 | |
|                                 bool StoreCaptures,
 | |
|                                 const SmallPtrSetImpl<const Value *> &EphValues,
 | |
|                                 unsigned MaxUsesToExplore) {
 | |
|   assert(!isa<GlobalValue>(V) &&
 | |
|          "It doesn't make sense to ask whether a global is captured.");
 | |
| 
 | |
|   // TODO: If StoreCaptures is not true, we could do Fancy analysis
 | |
|   // to determine whether this store is not actually an escape point.
 | |
|   // In that case, BasicAliasAnalysis should be updated as well to
 | |
|   // take advantage of this.
 | |
|   (void)StoreCaptures;
 | |
| 
 | |
|   SimpleCaptureTracker SCT(EphValues, ReturnCaptures);
 | |
|   PointerMayBeCaptured(V, &SCT, MaxUsesToExplore);
 | |
|   if (SCT.Captured)
 | |
|     ++NumCaptured;
 | |
|   else
 | |
|     ++NumNotCaptured;
 | |
|   return SCT.Captured;
 | |
| }
 | |
| 
 | |
| /// PointerMayBeCapturedBefore - Return true if this pointer value may be
 | |
| /// captured by the enclosing function (which is required to exist). If a
 | |
| /// DominatorTree is provided, only captures which happen before the given
 | |
| /// instruction are considered. This routine can be expensive, so consider
 | |
| /// caching the results.  The boolean ReturnCaptures specifies whether
 | |
| /// returning the value (or part of it) from the function counts as capturing
 | |
| /// it or not.  The boolean StoreCaptures specified whether storing the value
 | |
| /// (or part of it) into memory anywhere automatically counts as capturing it
 | |
| /// or not.
 | |
| bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures,
 | |
|                                       bool StoreCaptures, const Instruction *I,
 | |
|                                       const DominatorTree *DT, bool IncludeI,
 | |
|                                       unsigned MaxUsesToExplore,
 | |
|                                       const LoopInfo *LI) {
 | |
|   assert(!isa<GlobalValue>(V) &&
 | |
|          "It doesn't make sense to ask whether a global is captured.");
 | |
| 
 | |
|   if (!DT)
 | |
|     return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures,
 | |
|                                 MaxUsesToExplore);
 | |
| 
 | |
|   // TODO: See comment in PointerMayBeCaptured regarding what could be done
 | |
|   // with StoreCaptures.
 | |
| 
 | |
|   CapturesBefore CB(ReturnCaptures, I, DT, IncludeI, LI);
 | |
|   PointerMayBeCaptured(V, &CB, MaxUsesToExplore);
 | |
|   if (CB.Captured)
 | |
|     ++NumCapturedBefore;
 | |
|   else
 | |
|     ++NumNotCapturedBefore;
 | |
|   return CB.Captured;
 | |
| }
 | |
| 
 | |
| Instruction *
 | |
| llvm::FindEarliestCapture(const Value *V, Function &F, bool ReturnCaptures,
 | |
|                           bool StoreCaptures, const DominatorTree &DT,
 | |
| 
 | |
|                           const SmallPtrSetImpl<const Value *> &EphValues,
 | |
|                           unsigned MaxUsesToExplore) {
 | |
|   assert(!isa<GlobalValue>(V) &&
 | |
|          "It doesn't make sense to ask whether a global is captured.");
 | |
| 
 | |
|   EarliestCaptures CB(ReturnCaptures, F, DT, EphValues);
 | |
|   PointerMayBeCaptured(V, &CB, MaxUsesToExplore);
 | |
|   if (CB.Captured)
 | |
|     ++NumCapturedBefore;
 | |
|   else
 | |
|     ++NumNotCapturedBefore;
 | |
|   return CB.EarliestCapture;
 | |
| }
 | |
| 
 | |
| UseCaptureKind llvm::DetermineUseCaptureKind(
 | |
|     const Use &U,
 | |
|     function_ref<bool(Value *, const DataLayout &)> IsDereferenceableOrNull) {
 | |
|   Instruction *I = cast<Instruction>(U.getUser());
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::Call:
 | |
|   case Instruction::Invoke: {
 | |
|     auto *Call = cast<CallBase>(I);
 | |
|     // Not captured if the callee is readonly, doesn't return a copy through
 | |
|     // its return value and doesn't unwind (a readonly function can leak bits
 | |
|     // by throwing an exception or not depending on the input value).
 | |
|     if (Call->onlyReadsMemory() && Call->doesNotThrow() &&
 | |
|         Call->getType()->isVoidTy())
 | |
|       return UseCaptureKind::NO_CAPTURE;
 | |
| 
 | |
|     // The pointer is not captured if returned pointer is not captured.
 | |
|     // NOTE: CaptureTracking users should not assume that only functions
 | |
|     // marked with nocapture do not capture. This means that places like
 | |
|     // getUnderlyingObject in ValueTracking or DecomposeGEPExpression
 | |
|     // in BasicAA also need to know about this property.
 | |
|     if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call, true))
 | |
|       return UseCaptureKind::PASSTHROUGH;
 | |
| 
 | |
|     // Volatile operations effectively capture the memory location that they
 | |
|     // load and store to.
 | |
|     if (auto *MI = dyn_cast<MemIntrinsic>(Call))
 | |
|       if (MI->isVolatile())
 | |
|         return UseCaptureKind::MAY_CAPTURE;
 | |
| 
 | |
|     // Calling a function pointer does not in itself cause the pointer to
 | |
|     // be captured.  This is a subtle point considering that (for example)
 | |
|     // the callee might return its own address.  It is analogous to saying
 | |
|     // that loading a value from a pointer does not cause the pointer to be
 | |
|     // captured, even though the loaded value might be the pointer itself
 | |
|     // (think of self-referential objects).
 | |
|     if (Call->isCallee(&U))
 | |
|       return UseCaptureKind::NO_CAPTURE;
 | |
| 
 | |
|     // Not captured if only passed via 'nocapture' arguments.
 | |
|     if (Call->isDataOperand(&U) &&
 | |
|         !Call->doesNotCapture(Call->getDataOperandNo(&U))) {
 | |
|       // The parameter is not marked 'nocapture' - captured.
 | |
|       return UseCaptureKind::MAY_CAPTURE;
 | |
|     }
 | |
|     return UseCaptureKind::NO_CAPTURE;
 | |
|   }
 | |
|   case Instruction::Load:
 | |
|     // Volatile loads make the address observable.
 | |
|     if (cast<LoadInst>(I)->isVolatile())
 | |
|       return UseCaptureKind::MAY_CAPTURE;
 | |
|     return UseCaptureKind::NO_CAPTURE;
 | |
|   case Instruction::VAArg:
 | |
|     // "va-arg" from a pointer does not cause it to be captured.
 | |
|     return UseCaptureKind::NO_CAPTURE;
 | |
|   case Instruction::Store:
 | |
|     // Stored the pointer - conservatively assume it may be captured.
 | |
|     // Volatile stores make the address observable.
 | |
|     if (U.getOperandNo() == 0 || cast<StoreInst>(I)->isVolatile())
 | |
|       return UseCaptureKind::MAY_CAPTURE;
 | |
|     return UseCaptureKind::NO_CAPTURE;
 | |
|   case Instruction::AtomicRMW: {
 | |
|     // atomicrmw conceptually includes both a load and store from
 | |
|     // the same location.
 | |
|     // As with a store, the location being accessed is not captured,
 | |
|     // but the value being stored is.
 | |
|     // Volatile stores make the address observable.
 | |
|     auto *ARMWI = cast<AtomicRMWInst>(I);
 | |
|     if (U.getOperandNo() == 1 || ARMWI->isVolatile())
 | |
|       return UseCaptureKind::MAY_CAPTURE;
 | |
|     return UseCaptureKind::NO_CAPTURE;
 | |
|   }
 | |
|   case Instruction::AtomicCmpXchg: {
 | |
|     // cmpxchg conceptually includes both a load and store from
 | |
|     // the same location.
 | |
|     // As with a store, the location being accessed is not captured,
 | |
|     // but the value being stored is.
 | |
|     // Volatile stores make the address observable.
 | |
|     auto *ACXI = cast<AtomicCmpXchgInst>(I);
 | |
|     if (U.getOperandNo() == 1 || U.getOperandNo() == 2 || ACXI->isVolatile())
 | |
|       return UseCaptureKind::MAY_CAPTURE;
 | |
|     return UseCaptureKind::NO_CAPTURE;
 | |
|   }
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::GetElementPtr:
 | |
|   case Instruction::PHI:
 | |
|   case Instruction::Select:
 | |
|   case Instruction::AddrSpaceCast:
 | |
|     // The original value is not captured via this if the new value isn't.
 | |
|     return UseCaptureKind::PASSTHROUGH;
 | |
|   case Instruction::ICmp: {
 | |
|     unsigned Idx = U.getOperandNo();
 | |
|     unsigned OtherIdx = 1 - Idx;
 | |
|     if (auto *CPN = dyn_cast<ConstantPointerNull>(I->getOperand(OtherIdx))) {
 | |
|       // Don't count comparisons of a no-alias return value against null as
 | |
|       // captures. This allows us to ignore comparisons of malloc results
 | |
|       // with null, for example.
 | |
|       if (CPN->getType()->getAddressSpace() == 0)
 | |
|         if (isNoAliasCall(U.get()->stripPointerCasts()))
 | |
|           return UseCaptureKind::NO_CAPTURE;
 | |
|       if (!I->getFunction()->nullPointerIsDefined()) {
 | |
|         auto *O = I->getOperand(Idx)->stripPointerCastsSameRepresentation();
 | |
|         // Comparing a dereferenceable_or_null pointer against null cannot
 | |
|         // lead to pointer escapes, because if it is not null it must be a
 | |
|         // valid (in-bounds) pointer.
 | |
|         const DataLayout &DL = I->getModule()->getDataLayout();
 | |
|         if (IsDereferenceableOrNull && IsDereferenceableOrNull(O, DL))
 | |
|           return UseCaptureKind::NO_CAPTURE;
 | |
|       }
 | |
|     }
 | |
|     // Comparison against value stored in global variable. Given the pointer
 | |
|     // does not escape, its value cannot be guessed and stored separately in a
 | |
|     // global variable.
 | |
|     auto *LI = dyn_cast<LoadInst>(I->getOperand(OtherIdx));
 | |
|     if (LI && isa<GlobalVariable>(LI->getPointerOperand()))
 | |
|       return UseCaptureKind::NO_CAPTURE;
 | |
|     // Otherwise, be conservative. There are crazy ways to capture pointers
 | |
|     // using comparisons.
 | |
|     return UseCaptureKind::MAY_CAPTURE;
 | |
|   }
 | |
|   default:
 | |
|     // Something else - be conservative and say it is captured.
 | |
|     return UseCaptureKind::MAY_CAPTURE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker,
 | |
|                                 unsigned MaxUsesToExplore) {
 | |
|   assert(V->getType()->isPointerTy() && "Capture is for pointers only!");
 | |
|   if (MaxUsesToExplore == 0)
 | |
|     MaxUsesToExplore = DefaultMaxUsesToExplore;
 | |
| 
 | |
|   SmallVector<const Use *, 20> Worklist;
 | |
|   Worklist.reserve(getDefaultMaxUsesToExploreForCaptureTracking());
 | |
|   SmallSet<const Use *, 20> Visited;
 | |
| 
 | |
|   auto AddUses = [&](const Value *V) {
 | |
|     for (const Use &U : V->uses()) {
 | |
|       // If there are lots of uses, conservatively say that the value
 | |
|       // is captured to avoid taking too much compile time.
 | |
|       if (Visited.size()  >= MaxUsesToExplore) {
 | |
|         Tracker->tooManyUses();
 | |
|         return false;
 | |
|       }
 | |
|       if (!Visited.insert(&U).second)
 | |
|         continue;
 | |
|       if (!Tracker->shouldExplore(&U))
 | |
|         continue;
 | |
|       Worklist.push_back(&U);
 | |
|     }
 | |
|     return true;
 | |
|   };
 | |
|   if (!AddUses(V))
 | |
|     return;
 | |
| 
 | |
|   auto IsDereferenceableOrNull = [Tracker](Value *V, const DataLayout &DL) {
 | |
|     return Tracker->isDereferenceableOrNull(V, DL);
 | |
|   };
 | |
|   while (!Worklist.empty()) {
 | |
|     const Use *U = Worklist.pop_back_val();
 | |
|     switch (DetermineUseCaptureKind(*U, IsDereferenceableOrNull)) {
 | |
|     case UseCaptureKind::NO_CAPTURE:
 | |
|       continue;
 | |
|     case UseCaptureKind::MAY_CAPTURE:
 | |
|       if (Tracker->captured(U))
 | |
|         return;
 | |
|       continue;
 | |
|     case UseCaptureKind::PASSTHROUGH:
 | |
|       if (!AddUses(U->getUser()))
 | |
|         return;
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // All uses examined.
 | |
| }
 | |
| 
 | |
| bool llvm::isNonEscapingLocalObject(
 | |
|     const Value *V, SmallDenseMap<const Value *, bool, 8> *IsCapturedCache) {
 | |
|   SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
 | |
|   if (IsCapturedCache) {
 | |
|     bool Inserted;
 | |
|     std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
 | |
|     if (!Inserted)
 | |
|       // Found cached result, return it!
 | |
|       return CacheIt->second;
 | |
|   }
 | |
| 
 | |
|   // If this is an identified function-local object, check to see if it escapes.
 | |
|   if (isIdentifiedFunctionLocal(V)) {
 | |
|     // Set StoreCaptures to True so that we can assume in our callers that the
 | |
|     // pointer is not the result of a load instruction. Currently
 | |
|     // PointerMayBeCaptured doesn't have any special analysis for the
 | |
|     // StoreCaptures=false case; if it did, our callers could be refined to be
 | |
|     // more precise.
 | |
|     auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
 | |
|     if (IsCapturedCache)
 | |
|       CacheIt->second = Ret;
 | |
|     return Ret;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 |