4139 lines
		
	
	
		
			154 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4139 lines
		
	
	
		
			154 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // DependenceAnalysis is an LLVM pass that analyses dependences between memory
 | |
| // accesses. Currently, it is an (incomplete) implementation of the approach
 | |
| // described in
 | |
| //
 | |
| //            Practical Dependence Testing
 | |
| //            Goff, Kennedy, Tseng
 | |
| //            PLDI 1991
 | |
| //
 | |
| // There's a single entry point that analyzes the dependence between a pair
 | |
| // of memory references in a function, returning either NULL, for no dependence,
 | |
| // or a more-or-less detailed description of the dependence between them.
 | |
| //
 | |
| // Currently, the implementation cannot propagate constraints between
 | |
| // coupled RDIV subscripts and lacks a multi-subscript MIV test.
 | |
| // Both of these are conservative weaknesses;
 | |
| // that is, not a source of correctness problems.
 | |
| //
 | |
| // Since Clang linearizes some array subscripts, the dependence
 | |
| // analysis is using SCEV->delinearize to recover the representation of multiple
 | |
| // subscripts, and thus avoid the more expensive and less precise MIV tests. The
 | |
| // delinearization is controlled by the flag -da-delinearize.
 | |
| //
 | |
| // We should pay some careful attention to the possibility of integer overflow
 | |
| // in the implementation of the various tests. This could happen with Add,
 | |
| // Subtract, or Multiply, with both APInt's and SCEV's.
 | |
| //
 | |
| // Some non-linear subscript pairs can be handled by the GCD test
 | |
| // (and perhaps other tests).
 | |
| // Should explore how often these things occur.
 | |
| //
 | |
| // Finally, it seems like certain test cases expose weaknesses in the SCEV
 | |
| // simplification, especially in the handling of sign and zero extensions.
 | |
| // It could be useful to spend time exploring these.
 | |
| //
 | |
| // Please note that this is work in progress and the interface is subject to
 | |
| // change.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                                                            //
 | |
| //                   In memory of Ken Kennedy, 1945 - 2007                    //
 | |
| //                                                                            //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/DependenceAnalysis.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Delinearization.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "da"
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // statistics
 | |
| 
 | |
| STATISTIC(TotalArrayPairs, "Array pairs tested");
 | |
| STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
 | |
| STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
 | |
| STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
 | |
| STATISTIC(ZIVapplications, "ZIV applications");
 | |
| STATISTIC(ZIVindependence, "ZIV independence");
 | |
| STATISTIC(StrongSIVapplications, "Strong SIV applications");
 | |
| STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
 | |
| STATISTIC(StrongSIVindependence, "Strong SIV independence");
 | |
| STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
 | |
| STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
 | |
| STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
 | |
| STATISTIC(ExactSIVapplications, "Exact SIV applications");
 | |
| STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
 | |
| STATISTIC(ExactSIVindependence, "Exact SIV independence");
 | |
| STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
 | |
| STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
 | |
| STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
 | |
| STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
 | |
| STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
 | |
| STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
 | |
| STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
 | |
| STATISTIC(DeltaApplications, "Delta applications");
 | |
| STATISTIC(DeltaSuccesses, "Delta successes");
 | |
| STATISTIC(DeltaIndependence, "Delta independence");
 | |
| STATISTIC(DeltaPropagations, "Delta propagations");
 | |
| STATISTIC(GCDapplications, "GCD applications");
 | |
| STATISTIC(GCDsuccesses, "GCD successes");
 | |
| STATISTIC(GCDindependence, "GCD independence");
 | |
| STATISTIC(BanerjeeApplications, "Banerjee applications");
 | |
| STATISTIC(BanerjeeIndependence, "Banerjee independence");
 | |
| STATISTIC(BanerjeeSuccesses, "Banerjee successes");
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     Delinearize("da-delinearize", cl::init(true), cl::Hidden,
 | |
|                 cl::desc("Try to delinearize array references."));
 | |
| static cl::opt<bool> DisableDelinearizationChecks(
 | |
|     "da-disable-delinearization-checks", cl::Hidden,
 | |
|     cl::desc(
 | |
|         "Disable checks that try to statically verify validity of "
 | |
|         "delinearized subscripts. Enabling this option may result in incorrect "
 | |
|         "dependence vectors for languages that allow the subscript of one "
 | |
|         "dimension to underflow or overflow into another dimension."));
 | |
| 
 | |
| static cl::opt<unsigned> MIVMaxLevelThreshold(
 | |
|     "da-miv-max-level-threshold", cl::init(7), cl::Hidden,
 | |
|     cl::desc("Maximum depth allowed for the recursive algorithm used to "
 | |
|              "explore MIV direction vectors."));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // basics
 | |
| 
 | |
| DependenceAnalysis::Result
 | |
| DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
 | |
|   auto &AA = FAM.getResult<AAManager>(F);
 | |
|   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
 | |
|   auto &LI = FAM.getResult<LoopAnalysis>(F);
 | |
|   return DependenceInfo(&F, &AA, &SE, &LI);
 | |
| }
 | |
| 
 | |
| AnalysisKey DependenceAnalysis::Key;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
 | |
|                       "Dependence Analysis", true, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
 | |
|                     true, true)
 | |
| 
 | |
| char DependenceAnalysisWrapperPass::ID = 0;
 | |
| 
 | |
| DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
 | |
|     : FunctionPass(ID) {
 | |
|   initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
 | |
|   return new DependenceAnalysisWrapperPass();
 | |
| }
 | |
| 
 | |
| bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
 | |
|   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
 | |
| 
 | |
| void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
 | |
| 
 | |
| void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequiredTransitive<AAResultsWrapperPass>();
 | |
|   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
 | |
|   AU.addRequiredTransitive<LoopInfoWrapperPass>();
 | |
| }
 | |
| 
 | |
| // Used to test the dependence analyzer.
 | |
| // Looks through the function, noting instructions that may access memory.
 | |
| // Calls depends() on every possible pair and prints out the result.
 | |
| // Ignores all other instructions.
 | |
| static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
 | |
|   auto *F = DA->getFunction();
 | |
|   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
 | |
|        ++SrcI) {
 | |
|     if (SrcI->mayReadOrWriteMemory()) {
 | |
|       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
 | |
|            DstI != DstE; ++DstI) {
 | |
|         if (DstI->mayReadOrWriteMemory()) {
 | |
|           OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
 | |
|           OS << "  da analyze - ";
 | |
|           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
 | |
|             D->dump(OS);
 | |
|             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
 | |
|               if (D->isSplitable(Level)) {
 | |
|                 OS << "  da analyze - split level = " << Level;
 | |
|                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
 | |
|                 OS << "!\n";
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           else
 | |
|             OS << "none!\n";
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
 | |
|                                           const Module *) const {
 | |
|   dumpExampleDependence(OS, info.get());
 | |
| }
 | |
| 
 | |
| PreservedAnalyses
 | |
| DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
 | |
|   OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
 | |
|   dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Dependence methods
 | |
| 
 | |
| // Returns true if this is an input dependence.
 | |
| bool Dependence::isInput() const {
 | |
|   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if this is an output dependence.
 | |
| bool Dependence::isOutput() const {
 | |
|   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if this is an flow (aka true)  dependence.
 | |
| bool Dependence::isFlow() const {
 | |
|   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if this is an anti dependence.
 | |
| bool Dependence::isAnti() const {
 | |
|   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if a particular level is scalar; that is,
 | |
| // if no subscript in the source or destination mention the induction
 | |
| // variable associated with the loop at this level.
 | |
| // Leave this out of line, so it will serve as a virtual method anchor
 | |
| bool Dependence::isScalar(unsigned level) const {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // FullDependence methods
 | |
| 
 | |
| FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
 | |
|                                bool PossiblyLoopIndependent,
 | |
|                                unsigned CommonLevels)
 | |
|     : Dependence(Source, Destination), Levels(CommonLevels),
 | |
|       LoopIndependent(PossiblyLoopIndependent) {
 | |
|   Consistent = true;
 | |
|   if (CommonLevels)
 | |
|     DV = std::make_unique<DVEntry[]>(CommonLevels);
 | |
| }
 | |
| 
 | |
| // The rest are simple getters that hide the implementation.
 | |
| 
 | |
| // getDirection - Returns the direction associated with a particular level.
 | |
| unsigned FullDependence::getDirection(unsigned Level) const {
 | |
|   assert(0 < Level && Level <= Levels && "Level out of range");
 | |
|   return DV[Level - 1].Direction;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns the distance (or NULL) associated with a particular level.
 | |
| const SCEV *FullDependence::getDistance(unsigned Level) const {
 | |
|   assert(0 < Level && Level <= Levels && "Level out of range");
 | |
|   return DV[Level - 1].Distance;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if a particular level is scalar; that is,
 | |
| // if no subscript in the source or destination mention the induction
 | |
| // variable associated with the loop at this level.
 | |
| bool FullDependence::isScalar(unsigned Level) const {
 | |
|   assert(0 < Level && Level <= Levels && "Level out of range");
 | |
|   return DV[Level - 1].Scalar;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if peeling the first iteration from this loop
 | |
| // will break this dependence.
 | |
| bool FullDependence::isPeelFirst(unsigned Level) const {
 | |
|   assert(0 < Level && Level <= Levels && "Level out of range");
 | |
|   return DV[Level - 1].PeelFirst;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if peeling the last iteration from this loop
 | |
| // will break this dependence.
 | |
| bool FullDependence::isPeelLast(unsigned Level) const {
 | |
|   assert(0 < Level && Level <= Levels && "Level out of range");
 | |
|   return DV[Level - 1].PeelLast;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if splitting this loop will break the dependence.
 | |
| bool FullDependence::isSplitable(unsigned Level) const {
 | |
|   assert(0 < Level && Level <= Levels && "Level out of range");
 | |
|   return DV[Level - 1].Splitable;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DependenceInfo::Constraint methods
 | |
| 
 | |
| // If constraint is a point <X, Y>, returns X.
 | |
| // Otherwise assert.
 | |
| const SCEV *DependenceInfo::Constraint::getX() const {
 | |
|   assert(Kind == Point && "Kind should be Point");
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| 
 | |
| // If constraint is a point <X, Y>, returns Y.
 | |
| // Otherwise assert.
 | |
| const SCEV *DependenceInfo::Constraint::getY() const {
 | |
|   assert(Kind == Point && "Kind should be Point");
 | |
|   return B;
 | |
| }
 | |
| 
 | |
| 
 | |
| // If constraint is a line AX + BY = C, returns A.
 | |
| // Otherwise assert.
 | |
| const SCEV *DependenceInfo::Constraint::getA() const {
 | |
|   assert((Kind == Line || Kind == Distance) &&
 | |
|          "Kind should be Line (or Distance)");
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| 
 | |
| // If constraint is a line AX + BY = C, returns B.
 | |
| // Otherwise assert.
 | |
| const SCEV *DependenceInfo::Constraint::getB() const {
 | |
|   assert((Kind == Line || Kind == Distance) &&
 | |
|          "Kind should be Line (or Distance)");
 | |
|   return B;
 | |
| }
 | |
| 
 | |
| 
 | |
| // If constraint is a line AX + BY = C, returns C.
 | |
| // Otherwise assert.
 | |
| const SCEV *DependenceInfo::Constraint::getC() const {
 | |
|   assert((Kind == Line || Kind == Distance) &&
 | |
|          "Kind should be Line (or Distance)");
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| 
 | |
| // If constraint is a distance, returns D.
 | |
| // Otherwise assert.
 | |
| const SCEV *DependenceInfo::Constraint::getD() const {
 | |
|   assert(Kind == Distance && "Kind should be Distance");
 | |
|   return SE->getNegativeSCEV(C);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns the loop associated with this constraint.
 | |
| const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
 | |
|   assert((Kind == Distance || Kind == Line || Kind == Point) &&
 | |
|          "Kind should be Distance, Line, or Point");
 | |
|   return AssociatedLoop;
 | |
| }
 | |
| 
 | |
| void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
 | |
|                                           const Loop *CurLoop) {
 | |
|   Kind = Point;
 | |
|   A = X;
 | |
|   B = Y;
 | |
|   AssociatedLoop = CurLoop;
 | |
| }
 | |
| 
 | |
| void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
 | |
|                                          const SCEV *CC, const Loop *CurLoop) {
 | |
|   Kind = Line;
 | |
|   A = AA;
 | |
|   B = BB;
 | |
|   C = CC;
 | |
|   AssociatedLoop = CurLoop;
 | |
| }
 | |
| 
 | |
| void DependenceInfo::Constraint::setDistance(const SCEV *D,
 | |
|                                              const Loop *CurLoop) {
 | |
|   Kind = Distance;
 | |
|   A = SE->getOne(D->getType());
 | |
|   B = SE->getNegativeSCEV(A);
 | |
|   C = SE->getNegativeSCEV(D);
 | |
|   AssociatedLoop = CurLoop;
 | |
| }
 | |
| 
 | |
| void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
 | |
| 
 | |
| void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
 | |
|   SE = NewSE;
 | |
|   Kind = Any;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| // For debugging purposes. Dumps the constraint out to OS.
 | |
| LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
 | |
|   if (isEmpty())
 | |
|     OS << " Empty\n";
 | |
|   else if (isAny())
 | |
|     OS << " Any\n";
 | |
|   else if (isPoint())
 | |
|     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
 | |
|   else if (isDistance())
 | |
|     OS << " Distance is " << *getD() <<
 | |
|       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
 | |
|   else if (isLine())
 | |
|     OS << " Line is " << *getA() << "*X + " <<
 | |
|       *getB() << "*Y = " << *getC() << "\n";
 | |
|   else
 | |
|     llvm_unreachable("unknown constraint type in Constraint::dump");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| // Updates X with the intersection
 | |
| // of the Constraints X and Y. Returns true if X has changed.
 | |
| // Corresponds to Figure 4 from the paper
 | |
| //
 | |
| //            Practical Dependence Testing
 | |
| //            Goff, Kennedy, Tseng
 | |
| //            PLDI 1991
 | |
| bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
 | |
|   ++DeltaApplications;
 | |
|   LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
 | |
|   LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
 | |
|   assert(!Y->isPoint() && "Y must not be a Point");
 | |
|   if (X->isAny()) {
 | |
|     if (Y->isAny())
 | |
|       return false;
 | |
|     *X = *Y;
 | |
|     return true;
 | |
|   }
 | |
|   if (X->isEmpty())
 | |
|     return false;
 | |
|   if (Y->isEmpty()) {
 | |
|     X->setEmpty();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (X->isDistance() && Y->isDistance()) {
 | |
|     LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
 | |
|     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
 | |
|       return false;
 | |
|     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
 | |
|       X->setEmpty();
 | |
|       ++DeltaSuccesses;
 | |
|       return true;
 | |
|     }
 | |
|     // Hmmm, interesting situation.
 | |
|     // I guess if either is constant, keep it and ignore the other.
 | |
|     if (isa<SCEVConstant>(Y->getD())) {
 | |
|       *X = *Y;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // At this point, the pseudo-code in Figure 4 of the paper
 | |
|   // checks if (X->isPoint() && Y->isPoint()).
 | |
|   // This case can't occur in our implementation,
 | |
|   // since a Point can only arise as the result of intersecting
 | |
|   // two Line constraints, and the right-hand value, Y, is never
 | |
|   // the result of an intersection.
 | |
|   assert(!(X->isPoint() && Y->isPoint()) &&
 | |
|          "We shouldn't ever see X->isPoint() && Y->isPoint()");
 | |
| 
 | |
|   if (X->isLine() && Y->isLine()) {
 | |
|     LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
 | |
|     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
 | |
|     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
 | |
|     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
 | |
|       // slopes are equal, so lines are parallel
 | |
|       LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
 | |
|       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
 | |
|       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
 | |
|       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
 | |
|         return false;
 | |
|       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
 | |
|         X->setEmpty();
 | |
|         ++DeltaSuccesses;
 | |
|         return true;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
 | |
|       // slopes differ, so lines intersect
 | |
|       LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
 | |
|       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
 | |
|       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
 | |
|       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
 | |
|       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
 | |
|       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
 | |
|       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
 | |
|       const SCEVConstant *C1A2_C2A1 =
 | |
|         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
 | |
|       const SCEVConstant *C1B2_C2B1 =
 | |
|         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
 | |
|       const SCEVConstant *A1B2_A2B1 =
 | |
|         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
 | |
|       const SCEVConstant *A2B1_A1B2 =
 | |
|         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
 | |
|       if (!C1B2_C2B1 || !C1A2_C2A1 ||
 | |
|           !A1B2_A2B1 || !A2B1_A1B2)
 | |
|         return false;
 | |
|       APInt Xtop = C1B2_C2B1->getAPInt();
 | |
|       APInt Xbot = A1B2_A2B1->getAPInt();
 | |
|       APInt Ytop = C1A2_C2A1->getAPInt();
 | |
|       APInt Ybot = A2B1_A1B2->getAPInt();
 | |
|       LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
 | |
|       LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
 | |
|       LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
 | |
|       LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
 | |
|       APInt Xq = Xtop; // these need to be initialized, even
 | |
|       APInt Xr = Xtop; // though they're just going to be overwritten
 | |
|       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
 | |
|       APInt Yq = Ytop;
 | |
|       APInt Yr = Ytop;
 | |
|       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
 | |
|       if (Xr != 0 || Yr != 0) {
 | |
|         X->setEmpty();
 | |
|         ++DeltaSuccesses;
 | |
|         return true;
 | |
|       }
 | |
|       LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
 | |
|       if (Xq.slt(0) || Yq.slt(0)) {
 | |
|         X->setEmpty();
 | |
|         ++DeltaSuccesses;
 | |
|         return true;
 | |
|       }
 | |
|       if (const SCEVConstant *CUB =
 | |
|           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
 | |
|         const APInt &UpperBound = CUB->getAPInt();
 | |
|         LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
 | |
|         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
 | |
|           X->setEmpty();
 | |
|           ++DeltaSuccesses;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|       X->setPoint(SE->getConstant(Xq),
 | |
|                   SE->getConstant(Yq),
 | |
|                   X->getAssociatedLoop());
 | |
|       ++DeltaSuccesses;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // if (X->isLine() && Y->isPoint()) This case can't occur.
 | |
|   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
 | |
| 
 | |
|   if (X->isPoint() && Y->isLine()) {
 | |
|     LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
 | |
|     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
 | |
|     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
 | |
|     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
 | |
|     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
 | |
|       return false;
 | |
|     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
 | |
|       X->setEmpty();
 | |
|       ++DeltaSuccesses;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("shouldn't reach the end of Constraint intersection");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DependenceInfo methods
 | |
| 
 | |
| // For debugging purposes. Dumps a dependence to OS.
 | |
| void Dependence::dump(raw_ostream &OS) const {
 | |
|   bool Splitable = false;
 | |
|   if (isConfused())
 | |
|     OS << "confused";
 | |
|   else {
 | |
|     if (isConsistent())
 | |
|       OS << "consistent ";
 | |
|     if (isFlow())
 | |
|       OS << "flow";
 | |
|     else if (isOutput())
 | |
|       OS << "output";
 | |
|     else if (isAnti())
 | |
|       OS << "anti";
 | |
|     else if (isInput())
 | |
|       OS << "input";
 | |
|     unsigned Levels = getLevels();
 | |
|     OS << " [";
 | |
|     for (unsigned II = 1; II <= Levels; ++II) {
 | |
|       if (isSplitable(II))
 | |
|         Splitable = true;
 | |
|       if (isPeelFirst(II))
 | |
|         OS << 'p';
 | |
|       const SCEV *Distance = getDistance(II);
 | |
|       if (Distance)
 | |
|         OS << *Distance;
 | |
|       else if (isScalar(II))
 | |
|         OS << "S";
 | |
|       else {
 | |
|         unsigned Direction = getDirection(II);
 | |
|         if (Direction == DVEntry::ALL)
 | |
|           OS << "*";
 | |
|         else {
 | |
|           if (Direction & DVEntry::LT)
 | |
|             OS << "<";
 | |
|           if (Direction & DVEntry::EQ)
 | |
|             OS << "=";
 | |
|           if (Direction & DVEntry::GT)
 | |
|             OS << ">";
 | |
|         }
 | |
|       }
 | |
|       if (isPeelLast(II))
 | |
|         OS << 'p';
 | |
|       if (II < Levels)
 | |
|         OS << " ";
 | |
|     }
 | |
|     if (isLoopIndependent())
 | |
|       OS << "|<";
 | |
|     OS << "]";
 | |
|     if (Splitable)
 | |
|       OS << " splitable";
 | |
|   }
 | |
|   OS << "!\n";
 | |
| }
 | |
| 
 | |
| // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
 | |
| // underlaying objects. If LocA and LocB are known to not alias (for any reason:
 | |
| // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
 | |
| // Otherwise the underlying objects are checked to see if they point to
 | |
| // different identifiable objects.
 | |
| static AliasResult underlyingObjectsAlias(AAResults *AA,
 | |
|                                           const DataLayout &DL,
 | |
|                                           const MemoryLocation &LocA,
 | |
|                                           const MemoryLocation &LocB) {
 | |
|   // Check the original locations (minus size) for noalias, which can happen for
 | |
|   // tbaa, incompatible underlying object locations, etc.
 | |
|   MemoryLocation LocAS =
 | |
|       MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
 | |
|   MemoryLocation LocBS =
 | |
|       MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
 | |
|   if (AA->isNoAlias(LocAS, LocBS))
 | |
|     return AliasResult::NoAlias;
 | |
| 
 | |
|   // Check the underlying objects are the same
 | |
|   const Value *AObj = getUnderlyingObject(LocA.Ptr);
 | |
|   const Value *BObj = getUnderlyingObject(LocB.Ptr);
 | |
| 
 | |
|   // If the underlying objects are the same, they must alias
 | |
|   if (AObj == BObj)
 | |
|     return AliasResult::MustAlias;
 | |
| 
 | |
|   // We may have hit the recursion limit for underlying objects, or have
 | |
|   // underlying objects where we don't know they will alias.
 | |
|   if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
 | |
|     return AliasResult::MayAlias;
 | |
| 
 | |
|   // Otherwise we know the objects are different and both identified objects so
 | |
|   // must not alias.
 | |
|   return AliasResult::NoAlias;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if the load or store can be analyzed. Atomic and volatile
 | |
| // operations have properties which this analysis does not understand.
 | |
| static
 | |
| bool isLoadOrStore(const Instruction *I) {
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->isUnordered();
 | |
|   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->isUnordered();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Examines the loop nesting of the Src and Dst
 | |
| // instructions and establishes their shared loops. Sets the variables
 | |
| // CommonLevels, SrcLevels, and MaxLevels.
 | |
| // The source and destination instructions needn't be contained in the same
 | |
| // loop. The routine establishNestingLevels finds the level of most deeply
 | |
| // nested loop that contains them both, CommonLevels. An instruction that's
 | |
| // not contained in a loop is at level = 0. MaxLevels is equal to the level
 | |
| // of the source plus the level of the destination, minus CommonLevels.
 | |
| // This lets us allocate vectors MaxLevels in length, with room for every
 | |
| // distinct loop referenced in both the source and destination subscripts.
 | |
| // The variable SrcLevels is the nesting depth of the source instruction.
 | |
| // It's used to help calculate distinct loops referenced by the destination.
 | |
| // Here's the map from loops to levels:
 | |
| //            0 - unused
 | |
| //            1 - outermost common loop
 | |
| //          ... - other common loops
 | |
| // CommonLevels - innermost common loop
 | |
| //          ... - loops containing Src but not Dst
 | |
| //    SrcLevels - innermost loop containing Src but not Dst
 | |
| //          ... - loops containing Dst but not Src
 | |
| //    MaxLevels - innermost loops containing Dst but not Src
 | |
| // Consider the follow code fragment:
 | |
| //   for (a = ...) {
 | |
| //     for (b = ...) {
 | |
| //       for (c = ...) {
 | |
| //         for (d = ...) {
 | |
| //           A[] = ...;
 | |
| //         }
 | |
| //       }
 | |
| //       for (e = ...) {
 | |
| //         for (f = ...) {
 | |
| //           for (g = ...) {
 | |
| //             ... = A[];
 | |
| //           }
 | |
| //         }
 | |
| //       }
 | |
| //     }
 | |
| //   }
 | |
| // If we're looking at the possibility of a dependence between the store
 | |
| // to A (the Src) and the load from A (the Dst), we'll note that they
 | |
| // have 2 loops in common, so CommonLevels will equal 2 and the direction
 | |
| // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
 | |
| // A map from loop names to loop numbers would look like
 | |
| //     a - 1
 | |
| //     b - 2 = CommonLevels
 | |
| //     c - 3
 | |
| //     d - 4 = SrcLevels
 | |
| //     e - 5
 | |
| //     f - 6
 | |
| //     g - 7 = MaxLevels
 | |
| void DependenceInfo::establishNestingLevels(const Instruction *Src,
 | |
|                                             const Instruction *Dst) {
 | |
|   const BasicBlock *SrcBlock = Src->getParent();
 | |
|   const BasicBlock *DstBlock = Dst->getParent();
 | |
|   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
 | |
|   unsigned DstLevel = LI->getLoopDepth(DstBlock);
 | |
|   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
 | |
|   const Loop *DstLoop = LI->getLoopFor(DstBlock);
 | |
|   SrcLevels = SrcLevel;
 | |
|   MaxLevels = SrcLevel + DstLevel;
 | |
|   while (SrcLevel > DstLevel) {
 | |
|     SrcLoop = SrcLoop->getParentLoop();
 | |
|     SrcLevel--;
 | |
|   }
 | |
|   while (DstLevel > SrcLevel) {
 | |
|     DstLoop = DstLoop->getParentLoop();
 | |
|     DstLevel--;
 | |
|   }
 | |
|   while (SrcLoop != DstLoop) {
 | |
|     SrcLoop = SrcLoop->getParentLoop();
 | |
|     DstLoop = DstLoop->getParentLoop();
 | |
|     SrcLevel--;
 | |
|   }
 | |
|   CommonLevels = SrcLevel;
 | |
|   MaxLevels -= CommonLevels;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Given one of the loops containing the source, return
 | |
| // its level index in our numbering scheme.
 | |
| unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
 | |
|   return SrcLoop->getLoopDepth();
 | |
| }
 | |
| 
 | |
| 
 | |
| // Given one of the loops containing the destination,
 | |
| // return its level index in our numbering scheme.
 | |
| unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
 | |
|   unsigned D = DstLoop->getLoopDepth();
 | |
|   if (D > CommonLevels)
 | |
|     // This tries to make sure that we assign unique numbers to src and dst when
 | |
|     // the memory accesses reside in different loops that have the same depth.
 | |
|     return D - CommonLevels + SrcLevels;
 | |
|   else
 | |
|     return D;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if Expression is loop invariant in LoopNest.
 | |
| bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
 | |
|                                      const Loop *LoopNest) const {
 | |
|   // Unlike ScalarEvolution::isLoopInvariant() we consider an access outside of
 | |
|   // any loop as invariant, because we only consier expression evaluation at a
 | |
|   // specific position (where the array access takes place), and not across the
 | |
|   // entire function.
 | |
|   if (!LoopNest)
 | |
|     return true;
 | |
| 
 | |
|   // If the expression is invariant in the outermost loop of the loop nest, it
 | |
|   // is invariant anywhere in the loop nest.
 | |
|   return SE->isLoopInvariant(Expression, LoopNest->getOutermostLoop());
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // Finds the set of loops from the LoopNest that
 | |
| // have a level <= CommonLevels and are referred to by the SCEV Expression.
 | |
| void DependenceInfo::collectCommonLoops(const SCEV *Expression,
 | |
|                                         const Loop *LoopNest,
 | |
|                                         SmallBitVector &Loops) const {
 | |
|   while (LoopNest) {
 | |
|     unsigned Level = LoopNest->getLoopDepth();
 | |
|     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
 | |
|       Loops.set(Level);
 | |
|     LoopNest = LoopNest->getParentLoop();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
 | |
| 
 | |
|   unsigned widestWidthSeen = 0;
 | |
|   Type *widestType;
 | |
| 
 | |
|   // Go through each pair and find the widest bit to which we need
 | |
|   // to extend all of them.
 | |
|   for (Subscript *Pair : Pairs) {
 | |
|     const SCEV *Src = Pair->Src;
 | |
|     const SCEV *Dst = Pair->Dst;
 | |
|     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
 | |
|     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
 | |
|     if (SrcTy == nullptr || DstTy == nullptr) {
 | |
|       assert(SrcTy == DstTy && "This function only unify integer types and "
 | |
|              "expect Src and Dst share the same type "
 | |
|              "otherwise.");
 | |
|       continue;
 | |
|     }
 | |
|     if (SrcTy->getBitWidth() > widestWidthSeen) {
 | |
|       widestWidthSeen = SrcTy->getBitWidth();
 | |
|       widestType = SrcTy;
 | |
|     }
 | |
|     if (DstTy->getBitWidth() > widestWidthSeen) {
 | |
|       widestWidthSeen = DstTy->getBitWidth();
 | |
|       widestType = DstTy;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   assert(widestWidthSeen > 0);
 | |
| 
 | |
|   // Now extend each pair to the widest seen.
 | |
|   for (Subscript *Pair : Pairs) {
 | |
|     const SCEV *Src = Pair->Src;
 | |
|     const SCEV *Dst = Pair->Dst;
 | |
|     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
 | |
|     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
 | |
|     if (SrcTy == nullptr || DstTy == nullptr) {
 | |
|       assert(SrcTy == DstTy && "This function only unify integer types and "
 | |
|              "expect Src and Dst share the same type "
 | |
|              "otherwise.");
 | |
|       continue;
 | |
|     }
 | |
|     if (SrcTy->getBitWidth() < widestWidthSeen)
 | |
|       // Sign-extend Src to widestType
 | |
|       Pair->Src = SE->getSignExtendExpr(Src, widestType);
 | |
|     if (DstTy->getBitWidth() < widestWidthSeen) {
 | |
|       // Sign-extend Dst to widestType
 | |
|       Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // removeMatchingExtensions - Examines a subscript pair.
 | |
| // If the source and destination are identically sign (or zero)
 | |
| // extended, it strips off the extension in an effect to simplify
 | |
| // the actual analysis.
 | |
| void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
 | |
|   const SCEV *Src = Pair->Src;
 | |
|   const SCEV *Dst = Pair->Dst;
 | |
|   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
 | |
|       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
 | |
|     const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
 | |
|     const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
 | |
|     const SCEV *SrcCastOp = SrcCast->getOperand();
 | |
|     const SCEV *DstCastOp = DstCast->getOperand();
 | |
|     if (SrcCastOp->getType() == DstCastOp->getType()) {
 | |
|       Pair->Src = SrcCastOp;
 | |
|       Pair->Dst = DstCastOp;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Examine the scev and return true iff it's affine.
 | |
| // Collect any loops mentioned in the set of "Loops".
 | |
| bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
 | |
|                                     SmallBitVector &Loops, bool IsSrc) {
 | |
|   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
 | |
|   if (!AddRec)
 | |
|     return isLoopInvariant(Expr, LoopNest);
 | |
| 
 | |
|   // The AddRec must depend on one of the containing loops. Otherwise,
 | |
|   // mapSrcLoop and mapDstLoop return indices outside the intended range. This
 | |
|   // can happen when a subscript in one loop references an IV from a sibling
 | |
|   // loop that could not be replaced with a concrete exit value by
 | |
|   // getSCEVAtScope.
 | |
|   const Loop *L = LoopNest;
 | |
|   while (L && AddRec->getLoop() != L)
 | |
|     L = L->getParentLoop();
 | |
|   if (!L)
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *Start = AddRec->getStart();
 | |
|   const SCEV *Step = AddRec->getStepRecurrence(*SE);
 | |
|   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
 | |
|   if (!isa<SCEVCouldNotCompute>(UB)) {
 | |
|     if (SE->getTypeSizeInBits(Start->getType()) <
 | |
|         SE->getTypeSizeInBits(UB->getType())) {
 | |
|       if (!AddRec->getNoWrapFlags())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   if (!isLoopInvariant(Step, LoopNest))
 | |
|     return false;
 | |
|   if (IsSrc)
 | |
|     Loops.set(mapSrcLoop(AddRec->getLoop()));
 | |
|   else
 | |
|     Loops.set(mapDstLoop(AddRec->getLoop()));
 | |
|   return checkSubscript(Start, LoopNest, Loops, IsSrc);
 | |
| }
 | |
| 
 | |
| // Examine the scev and return true iff it's linear.
 | |
| // Collect any loops mentioned in the set of "Loops".
 | |
| bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
 | |
|                                        SmallBitVector &Loops) {
 | |
|   return checkSubscript(Src, LoopNest, Loops, true);
 | |
| }
 | |
| 
 | |
| // Examine the scev and return true iff it's linear.
 | |
| // Collect any loops mentioned in the set of "Loops".
 | |
| bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
 | |
|                                        SmallBitVector &Loops) {
 | |
|   return checkSubscript(Dst, LoopNest, Loops, false);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Examines the subscript pair (the Src and Dst SCEVs)
 | |
| // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
 | |
| // Collects the associated loops in a set.
 | |
| DependenceInfo::Subscript::ClassificationKind
 | |
| DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
 | |
|                              const SCEV *Dst, const Loop *DstLoopNest,
 | |
|                              SmallBitVector &Loops) {
 | |
|   SmallBitVector SrcLoops(MaxLevels + 1);
 | |
|   SmallBitVector DstLoops(MaxLevels + 1);
 | |
|   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
 | |
|     return Subscript::NonLinear;
 | |
|   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
 | |
|     return Subscript::NonLinear;
 | |
|   Loops = SrcLoops;
 | |
|   Loops |= DstLoops;
 | |
|   unsigned N = Loops.count();
 | |
|   if (N == 0)
 | |
|     return Subscript::ZIV;
 | |
|   if (N == 1)
 | |
|     return Subscript::SIV;
 | |
|   if (N == 2 && (SrcLoops.count() == 0 ||
 | |
|                  DstLoops.count() == 0 ||
 | |
|                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
 | |
|     return Subscript::RDIV;
 | |
|   return Subscript::MIV;
 | |
| }
 | |
| 
 | |
| 
 | |
| // A wrapper around SCEV::isKnownPredicate.
 | |
| // Looks for cases where we're interested in comparing for equality.
 | |
| // If both X and Y have been identically sign or zero extended,
 | |
| // it strips off the (confusing) extensions before invoking
 | |
| // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
 | |
| // will be similarly updated.
 | |
| //
 | |
| // If SCEV::isKnownPredicate can't prove the predicate,
 | |
| // we try simple subtraction, which seems to help in some cases
 | |
| // involving symbolics.
 | |
| bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
 | |
|                                       const SCEV *Y) const {
 | |
|   if (Pred == CmpInst::ICMP_EQ ||
 | |
|       Pred == CmpInst::ICMP_NE) {
 | |
|     if ((isa<SCEVSignExtendExpr>(X) &&
 | |
|          isa<SCEVSignExtendExpr>(Y)) ||
 | |
|         (isa<SCEVZeroExtendExpr>(X) &&
 | |
|          isa<SCEVZeroExtendExpr>(Y))) {
 | |
|       const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
 | |
|       const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
 | |
|       const SCEV *Xop = CX->getOperand();
 | |
|       const SCEV *Yop = CY->getOperand();
 | |
|       if (Xop->getType() == Yop->getType()) {
 | |
|         X = Xop;
 | |
|         Y = Yop;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (SE->isKnownPredicate(Pred, X, Y))
 | |
|     return true;
 | |
|   // If SE->isKnownPredicate can't prove the condition,
 | |
|   // we try the brute-force approach of subtracting
 | |
|   // and testing the difference.
 | |
|   // By testing with SE->isKnownPredicate first, we avoid
 | |
|   // the possibility of overflow when the arguments are constants.
 | |
|   const SCEV *Delta = SE->getMinusSCEV(X, Y);
 | |
|   switch (Pred) {
 | |
|   case CmpInst::ICMP_EQ:
 | |
|     return Delta->isZero();
 | |
|   case CmpInst::ICMP_NE:
 | |
|     return SE->isKnownNonZero(Delta);
 | |
|   case CmpInst::ICMP_SGE:
 | |
|     return SE->isKnownNonNegative(Delta);
 | |
|   case CmpInst::ICMP_SLE:
 | |
|     return SE->isKnownNonPositive(Delta);
 | |
|   case CmpInst::ICMP_SGT:
 | |
|     return SE->isKnownPositive(Delta);
 | |
|   case CmpInst::ICMP_SLT:
 | |
|     return SE->isKnownNegative(Delta);
 | |
|   default:
 | |
|     llvm_unreachable("unexpected predicate in isKnownPredicate");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
 | |
| /// with some extra checking if S is an AddRec and we can prove less-than using
 | |
| /// the loop bounds.
 | |
| bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
 | |
|   // First unify to the same type
 | |
|   auto *SType = dyn_cast<IntegerType>(S->getType());
 | |
|   auto *SizeType = dyn_cast<IntegerType>(Size->getType());
 | |
|   if (!SType || !SizeType)
 | |
|     return false;
 | |
|   Type *MaxType =
 | |
|       (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
 | |
|   S = SE->getTruncateOrZeroExtend(S, MaxType);
 | |
|   Size = SE->getTruncateOrZeroExtend(Size, MaxType);
 | |
| 
 | |
|   // Special check for addrecs using BE taken count
 | |
|   const SCEV *Bound = SE->getMinusSCEV(S, Size);
 | |
|   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
 | |
|     if (AddRec->isAffine()) {
 | |
|       const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
 | |
|       if (!isa<SCEVCouldNotCompute>(BECount)) {
 | |
|         const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
 | |
|         if (SE->isKnownNegative(Limit))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check using normal isKnownNegative
 | |
|   const SCEV *LimitedBound =
 | |
|       SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
 | |
|   return SE->isKnownNegative(LimitedBound);
 | |
| }
 | |
| 
 | |
| bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
 | |
|   bool Inbounds = false;
 | |
|   if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
 | |
|     Inbounds = SrcGEP->isInBounds();
 | |
|   if (Inbounds) {
 | |
|     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|       if (AddRec->isAffine()) {
 | |
|         // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
 | |
|         // If both parts are NonNegative, the end result will be NonNegative
 | |
|         if (SE->isKnownNonNegative(AddRec->getStart()) &&
 | |
|             SE->isKnownNonNegative(AddRec->getOperand(1)))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SE->isKnownNonNegative(S);
 | |
| }
 | |
| 
 | |
| // All subscripts are all the same type.
 | |
| // Loop bound may be smaller (e.g., a char).
 | |
| // Should zero extend loop bound, since it's always >= 0.
 | |
| // This routine collects upper bound and extends or truncates if needed.
 | |
| // Truncating is safe when subscripts are known not to wrap. Cases without
 | |
| // nowrap flags should have been rejected earlier.
 | |
| // Return null if no bound available.
 | |
| const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
 | |
|   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
 | |
|     const SCEV *UB = SE->getBackedgeTakenCount(L);
 | |
|     return SE->getTruncateOrZeroExtend(UB, T);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
 | |
| // If the cast fails, returns NULL.
 | |
| const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
 | |
|                                                               Type *T) const {
 | |
|   if (const SCEV *UB = collectUpperBound(L, T))
 | |
|     return dyn_cast<SCEVConstant>(UB);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| // testZIV -
 | |
| // When we have a pair of subscripts of the form [c1] and [c2],
 | |
| // where c1 and c2 are both loop invariant, we attack it using
 | |
| // the ZIV test. Basically, we test by comparing the two values,
 | |
| // but there are actually three possible results:
 | |
| // 1) the values are equal, so there's a dependence
 | |
| // 2) the values are different, so there's no dependence
 | |
| // 3) the values might be equal, so we have to assume a dependence.
 | |
| //
 | |
| // Return true if dependence disproved.
 | |
| bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
 | |
|                              FullDependence &Result) const {
 | |
|   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
 | |
|   ++ZIVapplications;
 | |
|   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
 | |
|     LLVM_DEBUG(dbgs() << "    provably dependent\n");
 | |
|     return false; // provably dependent
 | |
|   }
 | |
|   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
 | |
|     LLVM_DEBUG(dbgs() << "    provably independent\n");
 | |
|     ++ZIVindependence;
 | |
|     return true; // provably independent
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "    possibly dependent\n");
 | |
|   Result.Consistent = false;
 | |
|   return false; // possibly dependent
 | |
| }
 | |
| 
 | |
| 
 | |
| // strongSIVtest -
 | |
| // From the paper, Practical Dependence Testing, Section 4.2.1
 | |
| //
 | |
| // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
 | |
| // where i is an induction variable, c1 and c2 are loop invariant,
 | |
| //  and a is a constant, we can solve it exactly using the Strong SIV test.
 | |
| //
 | |
| // Can prove independence. Failing that, can compute distance (and direction).
 | |
| // In the presence of symbolic terms, we can sometimes make progress.
 | |
| //
 | |
| // If there's a dependence,
 | |
| //
 | |
| //    c1 + a*i = c2 + a*i'
 | |
| //
 | |
| // The dependence distance is
 | |
| //
 | |
| //    d = i' - i = (c1 - c2)/a
 | |
| //
 | |
| // A dependence only exists if d is an integer and abs(d) <= U, where U is the
 | |
| // loop's upper bound. If a dependence exists, the dependence direction is
 | |
| // defined as
 | |
| //
 | |
| //                { < if d > 0
 | |
| //    direction = { = if d = 0
 | |
| //                { > if d < 0
 | |
| //
 | |
| // Return true if dependence disproved.
 | |
| bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
 | |
|                                    const SCEV *DstConst, const Loop *CurLoop,
 | |
|                                    unsigned Level, FullDependence &Result,
 | |
|                                    Constraint &NewConstraint) const {
 | |
|   LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
 | |
|   LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
 | |
|   LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
 | |
|   LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
 | |
|   ++StrongSIVapplications;
 | |
|   assert(0 < Level && Level <= CommonLevels && "level out of range");
 | |
|   Level--;
 | |
| 
 | |
|   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
 | |
|   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
 | |
|   LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
 | |
| 
 | |
|   // check that |Delta| < iteration count
 | |
|   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
 | |
|     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
 | |
|     LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
 | |
|     const SCEV *AbsDelta =
 | |
|       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
 | |
|     const SCEV *AbsCoeff =
 | |
|       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
 | |
|     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
 | |
|     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
 | |
|       // Distance greater than trip count - no dependence
 | |
|       ++StrongSIVindependence;
 | |
|       ++StrongSIVsuccesses;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Can we compute distance?
 | |
|   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
 | |
|     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
 | |
|     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
 | |
|     APInt Distance  = ConstDelta; // these need to be initialized
 | |
|     APInt Remainder = ConstDelta;
 | |
|     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
 | |
|     LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
 | |
|     LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
 | |
|     // Make sure Coeff divides Delta exactly
 | |
|     if (Remainder != 0) {
 | |
|       // Coeff doesn't divide Distance, no dependence
 | |
|       ++StrongSIVindependence;
 | |
|       ++StrongSIVsuccesses;
 | |
|       return true;
 | |
|     }
 | |
|     Result.DV[Level].Distance = SE->getConstant(Distance);
 | |
|     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
 | |
|     if (Distance.sgt(0))
 | |
|       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
 | |
|     else if (Distance.slt(0))
 | |
|       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
 | |
|     else
 | |
|       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
 | |
|     ++StrongSIVsuccesses;
 | |
|   }
 | |
|   else if (Delta->isZero()) {
 | |
|     // since 0/X == 0
 | |
|     Result.DV[Level].Distance = Delta;
 | |
|     NewConstraint.setDistance(Delta, CurLoop);
 | |
|     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
 | |
|     ++StrongSIVsuccesses;
 | |
|   }
 | |
|   else {
 | |
|     if (Coeff->isOne()) {
 | |
|       LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
 | |
|       Result.DV[Level].Distance = Delta; // since X/1 == X
 | |
|       NewConstraint.setDistance(Delta, CurLoop);
 | |
|     }
 | |
|     else {
 | |
|       Result.Consistent = false;
 | |
|       NewConstraint.setLine(Coeff,
 | |
|                             SE->getNegativeSCEV(Coeff),
 | |
|                             SE->getNegativeSCEV(Delta), CurLoop);
 | |
|     }
 | |
| 
 | |
|     // maybe we can get a useful direction
 | |
|     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
 | |
|     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
 | |
|     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
 | |
|     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
 | |
|     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
 | |
|     // The double negatives above are confusing.
 | |
|     // It helps to read !SE->isKnownNonZero(Delta)
 | |
|     // as "Delta might be Zero"
 | |
|     unsigned NewDirection = Dependence::DVEntry::NONE;
 | |
|     if ((DeltaMaybePositive && CoeffMaybePositive) ||
 | |
|         (DeltaMaybeNegative && CoeffMaybeNegative))
 | |
|       NewDirection = Dependence::DVEntry::LT;
 | |
|     if (DeltaMaybeZero)
 | |
|       NewDirection |= Dependence::DVEntry::EQ;
 | |
|     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
 | |
|         (DeltaMaybePositive && CoeffMaybeNegative))
 | |
|       NewDirection |= Dependence::DVEntry::GT;
 | |
|     if (NewDirection < Result.DV[Level].Direction)
 | |
|       ++StrongSIVsuccesses;
 | |
|     Result.DV[Level].Direction &= NewDirection;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // weakCrossingSIVtest -
 | |
| // From the paper, Practical Dependence Testing, Section 4.2.2
 | |
| //
 | |
| // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
 | |
| // where i is an induction variable, c1 and c2 are loop invariant,
 | |
| // and a is a constant, we can solve it exactly using the
 | |
| // Weak-Crossing SIV test.
 | |
| //
 | |
| // Given c1 + a*i = c2 - a*i', we can look for the intersection of
 | |
| // the two lines, where i = i', yielding
 | |
| //
 | |
| //    c1 + a*i = c2 - a*i
 | |
| //    2a*i = c2 - c1
 | |
| //    i = (c2 - c1)/2a
 | |
| //
 | |
| // If i < 0, there is no dependence.
 | |
| // If i > upperbound, there is no dependence.
 | |
| // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
 | |
| // If i = upperbound, there's a dependence with distance = 0.
 | |
| // If i is integral, there's a dependence (all directions).
 | |
| // If the non-integer part = 1/2, there's a dependence (<> directions).
 | |
| // Otherwise, there's no dependence.
 | |
| //
 | |
| // Can prove independence. Failing that,
 | |
| // can sometimes refine the directions.
 | |
| // Can determine iteration for splitting.
 | |
| //
 | |
| // Return true if dependence disproved.
 | |
| bool DependenceInfo::weakCrossingSIVtest(
 | |
|     const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
 | |
|     const Loop *CurLoop, unsigned Level, FullDependence &Result,
 | |
|     Constraint &NewConstraint, const SCEV *&SplitIter) const {
 | |
|   LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
 | |
|   ++WeakCrossingSIVapplications;
 | |
|   assert(0 < Level && Level <= CommonLevels && "Level out of range");
 | |
|   Level--;
 | |
|   Result.Consistent = false;
 | |
|   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
 | |
|   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | |
|   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
 | |
|   if (Delta->isZero()) {
 | |
|     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
 | |
|     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
 | |
|     ++WeakCrossingSIVsuccesses;
 | |
|     if (!Result.DV[Level].Direction) {
 | |
|       ++WeakCrossingSIVindependence;
 | |
|       return true;
 | |
|     }
 | |
|     Result.DV[Level].Distance = Delta; // = 0
 | |
|     return false;
 | |
|   }
 | |
|   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
 | |
|   if (!ConstCoeff)
 | |
|     return false;
 | |
| 
 | |
|   Result.DV[Level].Splitable = true;
 | |
|   if (SE->isKnownNegative(ConstCoeff)) {
 | |
|     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
 | |
|     assert(ConstCoeff &&
 | |
|            "dynamic cast of negative of ConstCoeff should yield constant");
 | |
|     Delta = SE->getNegativeSCEV(Delta);
 | |
|   }
 | |
|   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
 | |
| 
 | |
|   // compute SplitIter for use by DependenceInfo::getSplitIteration()
 | |
|   SplitIter = SE->getUDivExpr(
 | |
|       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
 | |
|       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
 | |
|   LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
 | |
| 
 | |
|   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
 | |
|   if (!ConstDelta)
 | |
|     return false;
 | |
| 
 | |
|   // We're certain that ConstCoeff > 0; therefore,
 | |
|   // if Delta < 0, then no dependence.
 | |
|   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
 | |
|   if (SE->isKnownNegative(Delta)) {
 | |
|     // No dependence, Delta < 0
 | |
|     ++WeakCrossingSIVindependence;
 | |
|     ++WeakCrossingSIVsuccesses;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // We're certain that Delta > 0 and ConstCoeff > 0.
 | |
|   // Check Delta/(2*ConstCoeff) against upper loop bound
 | |
|   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
 | |
|     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
 | |
|     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
 | |
|     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
 | |
|                                     ConstantTwo);
 | |
|     LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
 | |
|     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
 | |
|       // Delta too big, no dependence
 | |
|       ++WeakCrossingSIVindependence;
 | |
|       ++WeakCrossingSIVsuccesses;
 | |
|       return true;
 | |
|     }
 | |
|     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
 | |
|       // i = i' = UB
 | |
|       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
 | |
|       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
 | |
|       ++WeakCrossingSIVsuccesses;
 | |
|       if (!Result.DV[Level].Direction) {
 | |
|         ++WeakCrossingSIVindependence;
 | |
|         return true;
 | |
|       }
 | |
|       Result.DV[Level].Splitable = false;
 | |
|       Result.DV[Level].Distance = SE->getZero(Delta->getType());
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // check that Coeff divides Delta
 | |
|   APInt APDelta = ConstDelta->getAPInt();
 | |
|   APInt APCoeff = ConstCoeff->getAPInt();
 | |
|   APInt Distance = APDelta; // these need to be initialzed
 | |
|   APInt Remainder = APDelta;
 | |
|   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
 | |
|   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
 | |
|   if (Remainder != 0) {
 | |
|     // Coeff doesn't divide Delta, no dependence
 | |
|     ++WeakCrossingSIVindependence;
 | |
|     ++WeakCrossingSIVsuccesses;
 | |
|     return true;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
 | |
| 
 | |
|   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
 | |
|   APInt Two = APInt(Distance.getBitWidth(), 2, true);
 | |
|   Remainder = Distance.srem(Two);
 | |
|   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
 | |
|   if (Remainder != 0) {
 | |
|     // Equal direction isn't possible
 | |
|     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
 | |
|     ++WeakCrossingSIVsuccesses;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Kirch's algorithm, from
 | |
| //
 | |
| //        Optimizing Supercompilers for Supercomputers
 | |
| //        Michael Wolfe
 | |
| //        MIT Press, 1989
 | |
| //
 | |
| // Program 2.1, page 29.
 | |
| // Computes the GCD of AM and BM.
 | |
| // Also finds a solution to the equation ax - by = gcd(a, b).
 | |
| // Returns true if dependence disproved; i.e., gcd does not divide Delta.
 | |
| static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
 | |
|                     const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
 | |
|   APInt A0(Bits, 1, true), A1(Bits, 0, true);
 | |
|   APInt B0(Bits, 0, true), B1(Bits, 1, true);
 | |
|   APInt G0 = AM.abs();
 | |
|   APInt G1 = BM.abs();
 | |
|   APInt Q = G0; // these need to be initialized
 | |
|   APInt R = G0;
 | |
|   APInt::sdivrem(G0, G1, Q, R);
 | |
|   while (R != 0) {
 | |
|     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
 | |
|     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
 | |
|     G0 = G1; G1 = R;
 | |
|     APInt::sdivrem(G0, G1, Q, R);
 | |
|   }
 | |
|   G = G1;
 | |
|   LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
 | |
|   X = AM.slt(0) ? -A1 : A1;
 | |
|   Y = BM.slt(0) ? B1 : -B1;
 | |
| 
 | |
|   // make sure gcd divides Delta
 | |
|   R = Delta.srem(G);
 | |
|   if (R != 0)
 | |
|     return true; // gcd doesn't divide Delta, no dependence
 | |
|   Q = Delta.sdiv(G);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static APInt floorOfQuotient(const APInt &A, const APInt &B) {
 | |
|   APInt Q = A; // these need to be initialized
 | |
|   APInt R = A;
 | |
|   APInt::sdivrem(A, B, Q, R);
 | |
|   if (R == 0)
 | |
|     return Q;
 | |
|   if ((A.sgt(0) && B.sgt(0)) ||
 | |
|       (A.slt(0) && B.slt(0)))
 | |
|     return Q;
 | |
|   else
 | |
|     return Q - 1;
 | |
| }
 | |
| 
 | |
| static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
 | |
|   APInt Q = A; // these need to be initialized
 | |
|   APInt R = A;
 | |
|   APInt::sdivrem(A, B, Q, R);
 | |
|   if (R == 0)
 | |
|     return Q;
 | |
|   if ((A.sgt(0) && B.sgt(0)) ||
 | |
|       (A.slt(0) && B.slt(0)))
 | |
|     return Q + 1;
 | |
|   else
 | |
|     return Q;
 | |
| }
 | |
| 
 | |
| // exactSIVtest -
 | |
| // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
 | |
| // where i is an induction variable, c1 and c2 are loop invariant, and a1
 | |
| // and a2 are constant, we can solve it exactly using an algorithm developed
 | |
| // by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in:
 | |
| //
 | |
| //        Dependence Analysis for Supercomputing
 | |
| //        Utpal Banerjee
 | |
| //        Kluwer Academic Publishers, 1988
 | |
| //
 | |
| // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
 | |
| // so use them if possible. They're also a bit better with symbolics and,
 | |
| // in the case of the strong SIV test, can compute Distances.
 | |
| //
 | |
| // Return true if dependence disproved.
 | |
| //
 | |
| // This is a modified version of the original Banerjee algorithm. The original
 | |
| // only tested whether Dst depends on Src. This algorithm extends that and
 | |
| // returns all the dependencies that exist between Dst and Src.
 | |
| bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
 | |
|                                   const SCEV *SrcConst, const SCEV *DstConst,
 | |
|                                   const Loop *CurLoop, unsigned Level,
 | |
|                                   FullDependence &Result,
 | |
|                                   Constraint &NewConstraint) const {
 | |
|   LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
 | |
|   ++ExactSIVapplications;
 | |
|   assert(0 < Level && Level <= CommonLevels && "Level out of range");
 | |
|   Level--;
 | |
|   Result.Consistent = false;
 | |
|   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
 | |
|   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | |
|   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta,
 | |
|                         CurLoop);
 | |
|   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
 | |
|   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
 | |
|   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
 | |
|   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
 | |
|     return false;
 | |
| 
 | |
|   // find gcd
 | |
|   APInt G, X, Y;
 | |
|   APInt AM = ConstSrcCoeff->getAPInt();
 | |
|   APInt BM = ConstDstCoeff->getAPInt();
 | |
|   APInt CM = ConstDelta->getAPInt();
 | |
|   unsigned Bits = AM.getBitWidth();
 | |
|   if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
 | |
|     // gcd doesn't divide Delta, no dependence
 | |
|     ++ExactSIVindependence;
 | |
|     ++ExactSIVsuccesses;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
 | |
| 
 | |
|   // since SCEV construction normalizes, LM = 0
 | |
|   APInt UM(Bits, 1, true);
 | |
|   bool UMValid = false;
 | |
|   // UM is perhaps unavailable, let's check
 | |
|   if (const SCEVConstant *CUB =
 | |
|           collectConstantUpperBound(CurLoop, Delta->getType())) {
 | |
|     UM = CUB->getAPInt();
 | |
|     LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
 | |
|     UMValid = true;
 | |
|   }
 | |
| 
 | |
|   APInt TU(APInt::getSignedMaxValue(Bits));
 | |
|   APInt TL(APInt::getSignedMinValue(Bits));
 | |
|   APInt TC = CM.sdiv(G);
 | |
|   APInt TX = X * TC;
 | |
|   APInt TY = Y * TC;
 | |
|   LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
 | |
| 
 | |
|   SmallVector<APInt, 2> TLVec, TUVec;
 | |
|   APInt TB = BM.sdiv(G);
 | |
|   if (TB.sgt(0)) {
 | |
|     TLVec.push_back(ceilingOfQuotient(-TX, TB));
 | |
|     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
 | |
|     // New bound check - modification to Banerjee's e3 check
 | |
|     if (UMValid) {
 | |
|       TUVec.push_back(floorOfQuotient(UM - TX, TB));
 | |
|       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
 | |
|     }
 | |
|   } else {
 | |
|     TUVec.push_back(floorOfQuotient(-TX, TB));
 | |
|     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
 | |
|     // New bound check - modification to Banerjee's e3 check
 | |
|     if (UMValid) {
 | |
|       TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
 | |
|       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   APInt TA = AM.sdiv(G);
 | |
|   if (TA.sgt(0)) {
 | |
|     if (UMValid) {
 | |
|       TUVec.push_back(floorOfQuotient(UM - TY, TA));
 | |
|       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
 | |
|     }
 | |
|     // New bound check - modification to Banerjee's e3 check
 | |
|     TLVec.push_back(ceilingOfQuotient(-TY, TA));
 | |
|     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
 | |
|   } else {
 | |
|     if (UMValid) {
 | |
|       TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
 | |
|       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
 | |
|     }
 | |
|     // New bound check - modification to Banerjee's e3 check
 | |
|     TUVec.push_back(floorOfQuotient(-TY, TA));
 | |
|     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
 | |
| 
 | |
|   if (TLVec.empty() || TUVec.empty())
 | |
|     return false;
 | |
|   TL = APIntOps::smax(TLVec.front(), TLVec.back());
 | |
|   TU = APIntOps::smin(TUVec.front(), TUVec.back());
 | |
|   LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
 | |
| 
 | |
|   if (TL.sgt(TU)) {
 | |
|     ++ExactSIVindependence;
 | |
|     ++ExactSIVsuccesses;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // explore directions
 | |
|   unsigned NewDirection = Dependence::DVEntry::NONE;
 | |
|   APInt LowerDistance, UpperDistance;
 | |
|   if (TA.sgt(TB)) {
 | |
|     LowerDistance = (TY - TX) + (TA - TB) * TL;
 | |
|     UpperDistance = (TY - TX) + (TA - TB) * TU;
 | |
|   } else {
 | |
|     LowerDistance = (TY - TX) + (TA - TB) * TU;
 | |
|     UpperDistance = (TY - TX) + (TA - TB) * TL;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\t    LowerDistance = " << LowerDistance << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    UpperDistance = " << UpperDistance << "\n");
 | |
| 
 | |
|   APInt Zero(Bits, 0, true);
 | |
|   if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) {
 | |
|     NewDirection |= Dependence::DVEntry::EQ;
 | |
|     ++ExactSIVsuccesses;
 | |
|   }
 | |
|   if (LowerDistance.slt(0)) {
 | |
|     NewDirection |= Dependence::DVEntry::GT;
 | |
|     ++ExactSIVsuccesses;
 | |
|   }
 | |
|   if (UpperDistance.sgt(0)) {
 | |
|     NewDirection |= Dependence::DVEntry::LT;
 | |
|     ++ExactSIVsuccesses;
 | |
|   }
 | |
| 
 | |
|   // finished
 | |
|   Result.DV[Level].Direction &= NewDirection;
 | |
|   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
 | |
|     ++ExactSIVindependence;
 | |
|   LLVM_DEBUG(dbgs() << "\t    Result = ");
 | |
|   LLVM_DEBUG(Result.dump(dbgs()));
 | |
|   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Return true if the divisor evenly divides the dividend.
 | |
| static
 | |
| bool isRemainderZero(const SCEVConstant *Dividend,
 | |
|                      const SCEVConstant *Divisor) {
 | |
|   const APInt &ConstDividend = Dividend->getAPInt();
 | |
|   const APInt &ConstDivisor = Divisor->getAPInt();
 | |
|   return ConstDividend.srem(ConstDivisor) == 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // weakZeroSrcSIVtest -
 | |
| // From the paper, Practical Dependence Testing, Section 4.2.2
 | |
| //
 | |
| // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
 | |
| // where i is an induction variable, c1 and c2 are loop invariant,
 | |
| // and a is a constant, we can solve it exactly using the
 | |
| // Weak-Zero SIV test.
 | |
| //
 | |
| // Given
 | |
| //
 | |
| //    c1 = c2 + a*i
 | |
| //
 | |
| // we get
 | |
| //
 | |
| //    (c1 - c2)/a = i
 | |
| //
 | |
| // If i is not an integer, there's no dependence.
 | |
| // If i < 0 or > UB, there's no dependence.
 | |
| // If i = 0, the direction is >= and peeling the
 | |
| // 1st iteration will break the dependence.
 | |
| // If i = UB, the direction is <= and peeling the
 | |
| // last iteration will break the dependence.
 | |
| // Otherwise, the direction is *.
 | |
| //
 | |
| // Can prove independence. Failing that, we can sometimes refine
 | |
| // the directions. Can sometimes show that first or last
 | |
| // iteration carries all the dependences (so worth peeling).
 | |
| //
 | |
| // (see also weakZeroDstSIVtest)
 | |
| //
 | |
| // Return true if dependence disproved.
 | |
| bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
 | |
|                                         const SCEV *SrcConst,
 | |
|                                         const SCEV *DstConst,
 | |
|                                         const Loop *CurLoop, unsigned Level,
 | |
|                                         FullDependence &Result,
 | |
|                                         Constraint &NewConstraint) const {
 | |
|   // For the WeakSIV test, it's possible the loop isn't common to
 | |
|   // the Src and Dst loops. If it isn't, then there's no need to
 | |
|   // record a direction.
 | |
|   LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
 | |
|   ++WeakZeroSIVapplications;
 | |
|   assert(0 < Level && Level <= MaxLevels && "Level out of range");
 | |
|   Level--;
 | |
|   Result.Consistent = false;
 | |
|   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
 | |
|   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
 | |
|                         CurLoop);
 | |
|   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | |
|   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
 | |
|     if (Level < CommonLevels) {
 | |
|       Result.DV[Level].Direction &= Dependence::DVEntry::GE;
 | |
|       Result.DV[Level].PeelFirst = true;
 | |
|       ++WeakZeroSIVsuccesses;
 | |
|     }
 | |
|     return false; // dependences caused by first iteration
 | |
|   }
 | |
|   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
 | |
|   if (!ConstCoeff)
 | |
|     return false;
 | |
|   const SCEV *AbsCoeff =
 | |
|     SE->isKnownNegative(ConstCoeff) ?
 | |
|     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
 | |
|   const SCEV *NewDelta =
 | |
|     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
 | |
| 
 | |
|   // check that Delta/SrcCoeff < iteration count
 | |
|   // really check NewDelta < count*AbsCoeff
 | |
|   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
 | |
|     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
 | |
|     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
 | |
|     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
 | |
|       ++WeakZeroSIVindependence;
 | |
|       ++WeakZeroSIVsuccesses;
 | |
|       return true;
 | |
|     }
 | |
|     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
 | |
|       // dependences caused by last iteration
 | |
|       if (Level < CommonLevels) {
 | |
|         Result.DV[Level].Direction &= Dependence::DVEntry::LE;
 | |
|         Result.DV[Level].PeelLast = true;
 | |
|         ++WeakZeroSIVsuccesses;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // check that Delta/SrcCoeff >= 0
 | |
|   // really check that NewDelta >= 0
 | |
|   if (SE->isKnownNegative(NewDelta)) {
 | |
|     // No dependence, newDelta < 0
 | |
|     ++WeakZeroSIVindependence;
 | |
|     ++WeakZeroSIVsuccesses;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // if SrcCoeff doesn't divide Delta, then no dependence
 | |
|   if (isa<SCEVConstant>(Delta) &&
 | |
|       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
 | |
|     ++WeakZeroSIVindependence;
 | |
|     ++WeakZeroSIVsuccesses;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // weakZeroDstSIVtest -
 | |
| // From the paper, Practical Dependence Testing, Section 4.2.2
 | |
| //
 | |
| // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
 | |
| // where i is an induction variable, c1 and c2 are loop invariant,
 | |
| // and a is a constant, we can solve it exactly using the
 | |
| // Weak-Zero SIV test.
 | |
| //
 | |
| // Given
 | |
| //
 | |
| //    c1 + a*i = c2
 | |
| //
 | |
| // we get
 | |
| //
 | |
| //    i = (c2 - c1)/a
 | |
| //
 | |
| // If i is not an integer, there's no dependence.
 | |
| // If i < 0 or > UB, there's no dependence.
 | |
| // If i = 0, the direction is <= and peeling the
 | |
| // 1st iteration will break the dependence.
 | |
| // If i = UB, the direction is >= and peeling the
 | |
| // last iteration will break the dependence.
 | |
| // Otherwise, the direction is *.
 | |
| //
 | |
| // Can prove independence. Failing that, we can sometimes refine
 | |
| // the directions. Can sometimes show that first or last
 | |
| // iteration carries all the dependences (so worth peeling).
 | |
| //
 | |
| // (see also weakZeroSrcSIVtest)
 | |
| //
 | |
| // Return true if dependence disproved.
 | |
| bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
 | |
|                                         const SCEV *SrcConst,
 | |
|                                         const SCEV *DstConst,
 | |
|                                         const Loop *CurLoop, unsigned Level,
 | |
|                                         FullDependence &Result,
 | |
|                                         Constraint &NewConstraint) const {
 | |
|   // For the WeakSIV test, it's possible the loop isn't common to the
 | |
|   // Src and Dst loops. If it isn't, then there's no need to record a direction.
 | |
|   LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
 | |
|   ++WeakZeroSIVapplications;
 | |
|   assert(0 < Level && Level <= SrcLevels && "Level out of range");
 | |
|   Level--;
 | |
|   Result.Consistent = false;
 | |
|   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
 | |
|   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
 | |
|                         CurLoop);
 | |
|   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | |
|   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
 | |
|     if (Level < CommonLevels) {
 | |
|       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
 | |
|       Result.DV[Level].PeelFirst = true;
 | |
|       ++WeakZeroSIVsuccesses;
 | |
|     }
 | |
|     return false; // dependences caused by first iteration
 | |
|   }
 | |
|   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
 | |
|   if (!ConstCoeff)
 | |
|     return false;
 | |
|   const SCEV *AbsCoeff =
 | |
|     SE->isKnownNegative(ConstCoeff) ?
 | |
|     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
 | |
|   const SCEV *NewDelta =
 | |
|     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
 | |
| 
 | |
|   // check that Delta/SrcCoeff < iteration count
 | |
|   // really check NewDelta < count*AbsCoeff
 | |
|   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
 | |
|     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
 | |
|     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
 | |
|     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
 | |
|       ++WeakZeroSIVindependence;
 | |
|       ++WeakZeroSIVsuccesses;
 | |
|       return true;
 | |
|     }
 | |
|     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
 | |
|       // dependences caused by last iteration
 | |
|       if (Level < CommonLevels) {
 | |
|         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
 | |
|         Result.DV[Level].PeelLast = true;
 | |
|         ++WeakZeroSIVsuccesses;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // check that Delta/SrcCoeff >= 0
 | |
|   // really check that NewDelta >= 0
 | |
|   if (SE->isKnownNegative(NewDelta)) {
 | |
|     // No dependence, newDelta < 0
 | |
|     ++WeakZeroSIVindependence;
 | |
|     ++WeakZeroSIVsuccesses;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // if SrcCoeff doesn't divide Delta, then no dependence
 | |
|   if (isa<SCEVConstant>(Delta) &&
 | |
|       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
 | |
|     ++WeakZeroSIVindependence;
 | |
|     ++WeakZeroSIVsuccesses;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // exactRDIVtest - Tests the RDIV subscript pair for dependence.
 | |
| // Things of the form [c1 + a*i] and [c2 + b*j],
 | |
| // where i and j are induction variable, c1 and c2 are loop invariant,
 | |
| // and a and b are constants.
 | |
| // Returns true if any possible dependence is disproved.
 | |
| // Marks the result as inconsistent.
 | |
| // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
 | |
| bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
 | |
|                                    const SCEV *SrcConst, const SCEV *DstConst,
 | |
|                                    const Loop *SrcLoop, const Loop *DstLoop,
 | |
|                                    FullDependence &Result) const {
 | |
|   LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
 | |
|   ++ExactRDIVapplications;
 | |
|   Result.Consistent = false;
 | |
|   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
 | |
|   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | |
|   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
 | |
|   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
 | |
|   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
 | |
|   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
 | |
|     return false;
 | |
| 
 | |
|   // find gcd
 | |
|   APInt G, X, Y;
 | |
|   APInt AM = ConstSrcCoeff->getAPInt();
 | |
|   APInt BM = ConstDstCoeff->getAPInt();
 | |
|   APInt CM = ConstDelta->getAPInt();
 | |
|   unsigned Bits = AM.getBitWidth();
 | |
|   if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
 | |
|     // gcd doesn't divide Delta, no dependence
 | |
|     ++ExactRDIVindependence;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
 | |
| 
 | |
|   // since SCEV construction seems to normalize, LM = 0
 | |
|   APInt SrcUM(Bits, 1, true);
 | |
|   bool SrcUMvalid = false;
 | |
|   // SrcUM is perhaps unavailable, let's check
 | |
|   if (const SCEVConstant *UpperBound =
 | |
|           collectConstantUpperBound(SrcLoop, Delta->getType())) {
 | |
|     SrcUM = UpperBound->getAPInt();
 | |
|     LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
 | |
|     SrcUMvalid = true;
 | |
|   }
 | |
| 
 | |
|   APInt DstUM(Bits, 1, true);
 | |
|   bool DstUMvalid = false;
 | |
|   // UM is perhaps unavailable, let's check
 | |
|   if (const SCEVConstant *UpperBound =
 | |
|           collectConstantUpperBound(DstLoop, Delta->getType())) {
 | |
|     DstUM = UpperBound->getAPInt();
 | |
|     LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
 | |
|     DstUMvalid = true;
 | |
|   }
 | |
| 
 | |
|   APInt TU(APInt::getSignedMaxValue(Bits));
 | |
|   APInt TL(APInt::getSignedMinValue(Bits));
 | |
|   APInt TC = CM.sdiv(G);
 | |
|   APInt TX = X * TC;
 | |
|   APInt TY = Y * TC;
 | |
|   LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
 | |
| 
 | |
|   SmallVector<APInt, 2> TLVec, TUVec;
 | |
|   APInt TB = BM.sdiv(G);
 | |
|   if (TB.sgt(0)) {
 | |
|     TLVec.push_back(ceilingOfQuotient(-TX, TB));
 | |
|     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
 | |
|     if (SrcUMvalid) {
 | |
|       TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
 | |
|       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
 | |
|     }
 | |
|   } else {
 | |
|     TUVec.push_back(floorOfQuotient(-TX, TB));
 | |
|     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
 | |
|     if (SrcUMvalid) {
 | |
|       TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
 | |
|       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   APInt TA = AM.sdiv(G);
 | |
|   if (TA.sgt(0)) {
 | |
|     TLVec.push_back(ceilingOfQuotient(-TY, TA));
 | |
|     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
 | |
|     if (DstUMvalid) {
 | |
|       TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
 | |
|       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
 | |
|     }
 | |
|   } else {
 | |
|     TUVec.push_back(floorOfQuotient(-TY, TA));
 | |
|     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
 | |
|     if (DstUMvalid) {
 | |
|       TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
 | |
|       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TLVec.empty() || TUVec.empty())
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
 | |
| 
 | |
|   TL = APIntOps::smax(TLVec.front(), TLVec.back());
 | |
|   TU = APIntOps::smin(TUVec.front(), TUVec.back());
 | |
|   LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
 | |
| 
 | |
|   if (TL.sgt(TU))
 | |
|     ++ExactRDIVindependence;
 | |
|   return TL.sgt(TU);
 | |
| }
 | |
| 
 | |
| 
 | |
| // symbolicRDIVtest -
 | |
| // In Section 4.5 of the Practical Dependence Testing paper,the authors
 | |
| // introduce a special case of Banerjee's Inequalities (also called the
 | |
| // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
 | |
| // particularly cases with symbolics. Since it's only able to disprove
 | |
| // dependence (not compute distances or directions), we'll use it as a
 | |
| // fall back for the other tests.
 | |
| //
 | |
| // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
 | |
| // where i and j are induction variables and c1 and c2 are loop invariants,
 | |
| // we can use the symbolic tests to disprove some dependences, serving as a
 | |
| // backup for the RDIV test. Note that i and j can be the same variable,
 | |
| // letting this test serve as a backup for the various SIV tests.
 | |
| //
 | |
| // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
 | |
| //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
 | |
| // loop bounds for the i and j loops, respectively. So, ...
 | |
| //
 | |
| // c1 + a1*i = c2 + a2*j
 | |
| // a1*i - a2*j = c2 - c1
 | |
| //
 | |
| // To test for a dependence, we compute c2 - c1 and make sure it's in the
 | |
| // range of the maximum and minimum possible values of a1*i - a2*j.
 | |
| // Considering the signs of a1 and a2, we have 4 possible cases:
 | |
| //
 | |
| // 1) If a1 >= 0 and a2 >= 0, then
 | |
| //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
 | |
| //              -a2*N2 <= c2 - c1 <= a1*N1
 | |
| //
 | |
| // 2) If a1 >= 0 and a2 <= 0, then
 | |
| //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
 | |
| //                  0 <= c2 - c1 <= a1*N1 - a2*N2
 | |
| //
 | |
| // 3) If a1 <= 0 and a2 >= 0, then
 | |
| //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
 | |
| //        a1*N1 - a2*N2 <= c2 - c1 <= 0
 | |
| //
 | |
| // 4) If a1 <= 0 and a2 <= 0, then
 | |
| //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
 | |
| //        a1*N1         <= c2 - c1 <=       -a2*N2
 | |
| //
 | |
| // return true if dependence disproved
 | |
| bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
 | |
|                                       const SCEV *C1, const SCEV *C2,
 | |
|                                       const Loop *Loop1,
 | |
|                                       const Loop *Loop2) const {
 | |
|   ++SymbolicRDIVapplications;
 | |
|   LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
 | |
|   LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
 | |
|   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
 | |
|   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
 | |
|   LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
 | |
|   LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
 | |
|   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
 | |
|   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
 | |
|   LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
 | |
|   if (SE->isKnownNonNegative(A1)) {
 | |
|     if (SE->isKnownNonNegative(A2)) {
 | |
|       // A1 >= 0 && A2 >= 0
 | |
|       if (N1) {
 | |
|         // make sure that c2 - c1 <= a1*N1
 | |
|         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
 | |
|         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
 | |
|         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
 | |
|           ++SymbolicRDIVindependence;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|       if (N2) {
 | |
|         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
 | |
|         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
 | |
|         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
 | |
|         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
 | |
|           ++SymbolicRDIVindependence;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     else if (SE->isKnownNonPositive(A2)) {
 | |
|       // a1 >= 0 && a2 <= 0
 | |
|       if (N1 && N2) {
 | |
|         // make sure that c2 - c1 <= a1*N1 - a2*N2
 | |
|         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
 | |
|         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
 | |
|         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
 | |
|         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
 | |
|         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
 | |
|           ++SymbolicRDIVindependence;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|       // make sure that 0 <= c2 - c1
 | |
|       if (SE->isKnownNegative(C2_C1)) {
 | |
|         ++SymbolicRDIVindependence;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   else if (SE->isKnownNonPositive(A1)) {
 | |
|     if (SE->isKnownNonNegative(A2)) {
 | |
|       // a1 <= 0 && a2 >= 0
 | |
|       if (N1 && N2) {
 | |
|         // make sure that a1*N1 - a2*N2 <= c2 - c1
 | |
|         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
 | |
|         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
 | |
|         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
 | |
|         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
 | |
|         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
 | |
|           ++SymbolicRDIVindependence;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|       // make sure that c2 - c1 <= 0
 | |
|       if (SE->isKnownPositive(C2_C1)) {
 | |
|         ++SymbolicRDIVindependence;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     else if (SE->isKnownNonPositive(A2)) {
 | |
|       // a1 <= 0 && a2 <= 0
 | |
|       if (N1) {
 | |
|         // make sure that a1*N1 <= c2 - c1
 | |
|         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
 | |
|         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
 | |
|         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
 | |
|           ++SymbolicRDIVindependence;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|       if (N2) {
 | |
|         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
 | |
|         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
 | |
|         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
 | |
|         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
 | |
|           ++SymbolicRDIVindependence;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // testSIV -
 | |
| // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
 | |
| // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
 | |
| // a2 are constant, we attack it with an SIV test. While they can all be
 | |
| // solved with the Exact SIV test, it's worthwhile to use simpler tests when
 | |
| // they apply; they're cheaper and sometimes more precise.
 | |
| //
 | |
| // Return true if dependence disproved.
 | |
| bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
 | |
|                              FullDependence &Result, Constraint &NewConstraint,
 | |
|                              const SCEV *&SplitIter) const {
 | |
|   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
 | |
|   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
 | |
|   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
 | |
|   if (SrcAddRec && DstAddRec) {
 | |
|     const SCEV *SrcConst = SrcAddRec->getStart();
 | |
|     const SCEV *DstConst = DstAddRec->getStart();
 | |
|     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
 | |
|     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
 | |
|     const Loop *CurLoop = SrcAddRec->getLoop();
 | |
|     assert(CurLoop == DstAddRec->getLoop() &&
 | |
|            "both loops in SIV should be same");
 | |
|     Level = mapSrcLoop(CurLoop);
 | |
|     bool disproven;
 | |
|     if (SrcCoeff == DstCoeff)
 | |
|       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
 | |
|                                 Level, Result, NewConstraint);
 | |
|     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
 | |
|       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
 | |
|                                       Level, Result, NewConstraint, SplitIter);
 | |
|     else
 | |
|       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
 | |
|                                Level, Result, NewConstraint);
 | |
|     return disproven ||
 | |
|       gcdMIVtest(Src, Dst, Result) ||
 | |
|       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
 | |
|   }
 | |
|   if (SrcAddRec) {
 | |
|     const SCEV *SrcConst = SrcAddRec->getStart();
 | |
|     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
 | |
|     const SCEV *DstConst = Dst;
 | |
|     const Loop *CurLoop = SrcAddRec->getLoop();
 | |
|     Level = mapSrcLoop(CurLoop);
 | |
|     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
 | |
|                               Level, Result, NewConstraint) ||
 | |
|       gcdMIVtest(Src, Dst, Result);
 | |
|   }
 | |
|   if (DstAddRec) {
 | |
|     const SCEV *DstConst = DstAddRec->getStart();
 | |
|     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
 | |
|     const SCEV *SrcConst = Src;
 | |
|     const Loop *CurLoop = DstAddRec->getLoop();
 | |
|     Level = mapDstLoop(CurLoop);
 | |
|     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
 | |
|                               CurLoop, Level, Result, NewConstraint) ||
 | |
|       gcdMIVtest(Src, Dst, Result);
 | |
|   }
 | |
|   llvm_unreachable("SIV test expected at least one AddRec");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // testRDIV -
 | |
| // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
 | |
| // where i and j are induction variables, c1 and c2 are loop invariant,
 | |
| // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
 | |
| // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
 | |
| // It doesn't make sense to talk about distance or direction in this case,
 | |
| // so there's no point in making special versions of the Strong SIV test or
 | |
| // the Weak-crossing SIV test.
 | |
| //
 | |
| // With minor algebra, this test can also be used for things like
 | |
| // [c1 + a1*i + a2*j][c2].
 | |
| //
 | |
| // Return true if dependence disproved.
 | |
| bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
 | |
|                               FullDependence &Result) const {
 | |
|   // we have 3 possible situations here:
 | |
|   //   1) [a*i + b] and [c*j + d]
 | |
|   //   2) [a*i + c*j + b] and [d]
 | |
|   //   3) [b] and [a*i + c*j + d]
 | |
|   // We need to find what we've got and get organized
 | |
| 
 | |
|   const SCEV *SrcConst, *DstConst;
 | |
|   const SCEV *SrcCoeff, *DstCoeff;
 | |
|   const Loop *SrcLoop, *DstLoop;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
 | |
|   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
 | |
|   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
 | |
|   if (SrcAddRec && DstAddRec) {
 | |
|     SrcConst = SrcAddRec->getStart();
 | |
|     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
 | |
|     SrcLoop = SrcAddRec->getLoop();
 | |
|     DstConst = DstAddRec->getStart();
 | |
|     DstCoeff = DstAddRec->getStepRecurrence(*SE);
 | |
|     DstLoop = DstAddRec->getLoop();
 | |
|   }
 | |
|   else if (SrcAddRec) {
 | |
|     if (const SCEVAddRecExpr *tmpAddRec =
 | |
|         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
 | |
|       SrcConst = tmpAddRec->getStart();
 | |
|       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
 | |
|       SrcLoop = tmpAddRec->getLoop();
 | |
|       DstConst = Dst;
 | |
|       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
 | |
|       DstLoop = SrcAddRec->getLoop();
 | |
|     }
 | |
|     else
 | |
|       llvm_unreachable("RDIV reached by surprising SCEVs");
 | |
|   }
 | |
|   else if (DstAddRec) {
 | |
|     if (const SCEVAddRecExpr *tmpAddRec =
 | |
|         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
 | |
|       DstConst = tmpAddRec->getStart();
 | |
|       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
 | |
|       DstLoop = tmpAddRec->getLoop();
 | |
|       SrcConst = Src;
 | |
|       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
 | |
|       SrcLoop = DstAddRec->getLoop();
 | |
|     }
 | |
|     else
 | |
|       llvm_unreachable("RDIV reached by surprising SCEVs");
 | |
|   }
 | |
|   else
 | |
|     llvm_unreachable("RDIV expected at least one AddRec");
 | |
|   return exactRDIVtest(SrcCoeff, DstCoeff,
 | |
|                        SrcConst, DstConst,
 | |
|                        SrcLoop, DstLoop,
 | |
|                        Result) ||
 | |
|     gcdMIVtest(Src, Dst, Result) ||
 | |
|     symbolicRDIVtest(SrcCoeff, DstCoeff,
 | |
|                      SrcConst, DstConst,
 | |
|                      SrcLoop, DstLoop);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Tests the single-subscript MIV pair (Src and Dst) for dependence.
 | |
| // Return true if dependence disproved.
 | |
| // Can sometimes refine direction vectors.
 | |
| bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
 | |
|                              const SmallBitVector &Loops,
 | |
|                              FullDependence &Result) const {
 | |
|   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
 | |
|   Result.Consistent = false;
 | |
|   return gcdMIVtest(Src, Dst, Result) ||
 | |
|     banerjeeMIVtest(Src, Dst, Loops, Result);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Given a product, e.g., 10*X*Y, returns the first constant operand,
 | |
| // in this case 10. If there is no constant part, returns NULL.
 | |
| static
 | |
| const SCEVConstant *getConstantPart(const SCEV *Expr) {
 | |
|   if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
 | |
|     return Constant;
 | |
|   else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
 | |
|     if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
 | |
|       return Constant;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // gcdMIVtest -
 | |
| // Tests an MIV subscript pair for dependence.
 | |
| // Returns true if any possible dependence is disproved.
 | |
| // Marks the result as inconsistent.
 | |
| // Can sometimes disprove the equal direction for 1 or more loops,
 | |
| // as discussed in Michael Wolfe's book,
 | |
| // High Performance Compilers for Parallel Computing, page 235.
 | |
| //
 | |
| // We spend some effort (code!) to handle cases like
 | |
| // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
 | |
| // but M and N are just loop-invariant variables.
 | |
| // This should help us handle linearized subscripts;
 | |
| // also makes this test a useful backup to the various SIV tests.
 | |
| //
 | |
| // It occurs to me that the presence of loop-invariant variables
 | |
| // changes the nature of the test from "greatest common divisor"
 | |
| // to "a common divisor".
 | |
| bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
 | |
|                                 FullDependence &Result) const {
 | |
|   LLVM_DEBUG(dbgs() << "starting gcd\n");
 | |
|   ++GCDapplications;
 | |
|   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
 | |
|   APInt RunningGCD = APInt::getZero(BitWidth);
 | |
| 
 | |
|   // Examine Src coefficients.
 | |
|   // Compute running GCD and record source constant.
 | |
|   // Because we're looking for the constant at the end of the chain,
 | |
|   // we can't quit the loop just because the GCD == 1.
 | |
|   const SCEV *Coefficients = Src;
 | |
|   while (const SCEVAddRecExpr *AddRec =
 | |
|          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
 | |
|     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
 | |
|     // If the coefficient is the product of a constant and other stuff,
 | |
|     // we can use the constant in the GCD computation.
 | |
|     const auto *Constant = getConstantPart(Coeff);
 | |
|     if (!Constant)
 | |
|       return false;
 | |
|     APInt ConstCoeff = Constant->getAPInt();
 | |
|     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
 | |
|     Coefficients = AddRec->getStart();
 | |
|   }
 | |
|   const SCEV *SrcConst = Coefficients;
 | |
| 
 | |
|   // Examine Dst coefficients.
 | |
|   // Compute running GCD and record destination constant.
 | |
|   // Because we're looking for the constant at the end of the chain,
 | |
|   // we can't quit the loop just because the GCD == 1.
 | |
|   Coefficients = Dst;
 | |
|   while (const SCEVAddRecExpr *AddRec =
 | |
|          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
 | |
|     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
 | |
|     // If the coefficient is the product of a constant and other stuff,
 | |
|     // we can use the constant in the GCD computation.
 | |
|     const auto *Constant = getConstantPart(Coeff);
 | |
|     if (!Constant)
 | |
|       return false;
 | |
|     APInt ConstCoeff = Constant->getAPInt();
 | |
|     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
 | |
|     Coefficients = AddRec->getStart();
 | |
|   }
 | |
|   const SCEV *DstConst = Coefficients;
 | |
| 
 | |
|   APInt ExtraGCD = APInt::getZero(BitWidth);
 | |
|   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
 | |
|   LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
 | |
|   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
 | |
|   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
 | |
|     // If Delta is a sum of products, we may be able to make further progress.
 | |
|     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
 | |
|       const SCEV *Operand = Sum->getOperand(Op);
 | |
|       if (isa<SCEVConstant>(Operand)) {
 | |
|         assert(!Constant && "Surprised to find multiple constants");
 | |
|         Constant = cast<SCEVConstant>(Operand);
 | |
|       }
 | |
|       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
 | |
|         // Search for constant operand to participate in GCD;
 | |
|         // If none found; return false.
 | |
|         const SCEVConstant *ConstOp = getConstantPart(Product);
 | |
|         if (!ConstOp)
 | |
|           return false;
 | |
|         APInt ConstOpValue = ConstOp->getAPInt();
 | |
|         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
 | |
|                                                    ConstOpValue.abs());
 | |
|       }
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   if (!Constant)
 | |
|     return false;
 | |
|   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
 | |
|   LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
 | |
|   if (ConstDelta == 0)
 | |
|     return false;
 | |
|   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
 | |
|   LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
 | |
|   APInt Remainder = ConstDelta.srem(RunningGCD);
 | |
|   if (Remainder != 0) {
 | |
|     ++GCDindependence;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Try to disprove equal directions.
 | |
|   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
 | |
|   // the code above can't disprove the dependence because the GCD = 1.
 | |
|   // So we consider what happen if i = i' and what happens if j = j'.
 | |
|   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
 | |
|   // which is infeasible, so we can disallow the = direction for the i level.
 | |
|   // Setting j = j' doesn't help matters, so we end up with a direction vector
 | |
|   // of [<>, *]
 | |
|   //
 | |
|   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
 | |
|   // we need to remember that the constant part is 5 and the RunningGCD should
 | |
|   // be initialized to ExtraGCD = 30.
 | |
|   LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
 | |
| 
 | |
|   bool Improved = false;
 | |
|   Coefficients = Src;
 | |
|   while (const SCEVAddRecExpr *AddRec =
 | |
|          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
 | |
|     Coefficients = AddRec->getStart();
 | |
|     const Loop *CurLoop = AddRec->getLoop();
 | |
|     RunningGCD = ExtraGCD;
 | |
|     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
 | |
|     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
 | |
|     const SCEV *Inner = Src;
 | |
|     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
 | |
|       AddRec = cast<SCEVAddRecExpr>(Inner);
 | |
|       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
 | |
|       if (CurLoop == AddRec->getLoop())
 | |
|         ; // SrcCoeff == Coeff
 | |
|       else {
 | |
|         // If the coefficient is the product of a constant and other stuff,
 | |
|         // we can use the constant in the GCD computation.
 | |
|         Constant = getConstantPart(Coeff);
 | |
|         if (!Constant)
 | |
|           return false;
 | |
|         APInt ConstCoeff = Constant->getAPInt();
 | |
|         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
 | |
|       }
 | |
|       Inner = AddRec->getStart();
 | |
|     }
 | |
|     Inner = Dst;
 | |
|     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
 | |
|       AddRec = cast<SCEVAddRecExpr>(Inner);
 | |
|       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
 | |
|       if (CurLoop == AddRec->getLoop())
 | |
|         DstCoeff = Coeff;
 | |
|       else {
 | |
|         // If the coefficient is the product of a constant and other stuff,
 | |
|         // we can use the constant in the GCD computation.
 | |
|         Constant = getConstantPart(Coeff);
 | |
|         if (!Constant)
 | |
|           return false;
 | |
|         APInt ConstCoeff = Constant->getAPInt();
 | |
|         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
 | |
|       }
 | |
|       Inner = AddRec->getStart();
 | |
|     }
 | |
|     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
 | |
|     // If the coefficient is the product of a constant and other stuff,
 | |
|     // we can use the constant in the GCD computation.
 | |
|     Constant = getConstantPart(Delta);
 | |
|     if (!Constant)
 | |
|       // The difference of the two coefficients might not be a product
 | |
|       // or constant, in which case we give up on this direction.
 | |
|       continue;
 | |
|     APInt ConstCoeff = Constant->getAPInt();
 | |
|     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
 | |
|     LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
 | |
|     if (RunningGCD != 0) {
 | |
|       Remainder = ConstDelta.srem(RunningGCD);
 | |
|       LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
 | |
|       if (Remainder != 0) {
 | |
|         unsigned Level = mapSrcLoop(CurLoop);
 | |
|         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
 | |
|         Improved = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (Improved)
 | |
|     ++GCDsuccesses;
 | |
|   LLVM_DEBUG(dbgs() << "all done\n");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // banerjeeMIVtest -
 | |
| // Use Banerjee's Inequalities to test an MIV subscript pair.
 | |
| // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
 | |
| // Generally follows the discussion in Section 2.5.2 of
 | |
| //
 | |
| //    Optimizing Supercompilers for Supercomputers
 | |
| //    Michael Wolfe
 | |
| //
 | |
| // The inequalities given on page 25 are simplified in that loops are
 | |
| // normalized so that the lower bound is always 0 and the stride is always 1.
 | |
| // For example, Wolfe gives
 | |
| //
 | |
| //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
 | |
| //
 | |
| // where A_k is the coefficient of the kth index in the source subscript,
 | |
| // B_k is the coefficient of the kth index in the destination subscript,
 | |
| // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
 | |
| // index, and N_k is the stride of the kth index. Since all loops are normalized
 | |
| // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
 | |
| // equation to
 | |
| //
 | |
| //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
 | |
| //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
 | |
| //
 | |
| // Similar simplifications are possible for the other equations.
 | |
| //
 | |
| // When we can't determine the number of iterations for a loop,
 | |
| // we use NULL as an indicator for the worst case, infinity.
 | |
| // When computing the upper bound, NULL denotes +inf;
 | |
| // for the lower bound, NULL denotes -inf.
 | |
| //
 | |
| // Return true if dependence disproved.
 | |
| bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
 | |
|                                      const SmallBitVector &Loops,
 | |
|                                      FullDependence &Result) const {
 | |
|   LLVM_DEBUG(dbgs() << "starting Banerjee\n");
 | |
|   ++BanerjeeApplications;
 | |
|   LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
 | |
|   const SCEV *A0;
 | |
|   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
 | |
|   LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
 | |
|   const SCEV *B0;
 | |
|   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
 | |
|   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
 | |
|   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
 | |
|   LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
 | |
| 
 | |
|   // Compute bounds for all the * directions.
 | |
|   LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
 | |
|   for (unsigned K = 1; K <= MaxLevels; ++K) {
 | |
|     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
 | |
|     Bound[K].Direction = Dependence::DVEntry::ALL;
 | |
|     Bound[K].DirSet = Dependence::DVEntry::NONE;
 | |
|     findBoundsALL(A, B, Bound, K);
 | |
| #ifndef NDEBUG
 | |
|     LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
 | |
|     if (Bound[K].Lower[Dependence::DVEntry::ALL])
 | |
|       LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
 | |
|     else
 | |
|       LLVM_DEBUG(dbgs() << "-inf\t");
 | |
|     if (Bound[K].Upper[Dependence::DVEntry::ALL])
 | |
|       LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
 | |
|     else
 | |
|       LLVM_DEBUG(dbgs() << "+inf\n");
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // Test the *, *, *, ... case.
 | |
|   bool Disproved = false;
 | |
|   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
 | |
|     // Explore the direction vector hierarchy.
 | |
|     unsigned DepthExpanded = 0;
 | |
|     unsigned NewDeps = exploreDirections(1, A, B, Bound,
 | |
|                                          Loops, DepthExpanded, Delta);
 | |
|     if (NewDeps > 0) {
 | |
|       bool Improved = false;
 | |
|       for (unsigned K = 1; K <= CommonLevels; ++K) {
 | |
|         if (Loops[K]) {
 | |
|           unsigned Old = Result.DV[K - 1].Direction;
 | |
|           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
 | |
|           Improved |= Old != Result.DV[K - 1].Direction;
 | |
|           if (!Result.DV[K - 1].Direction) {
 | |
|             Improved = false;
 | |
|             Disproved = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (Improved)
 | |
|         ++BanerjeeSuccesses;
 | |
|     }
 | |
|     else {
 | |
|       ++BanerjeeIndependence;
 | |
|       Disproved = true;
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     ++BanerjeeIndependence;
 | |
|     Disproved = true;
 | |
|   }
 | |
|   delete [] Bound;
 | |
|   delete [] A;
 | |
|   delete [] B;
 | |
|   return Disproved;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Hierarchically expands the direction vector
 | |
| // search space, combining the directions of discovered dependences
 | |
| // in the DirSet field of Bound. Returns the number of distinct
 | |
| // dependences discovered. If the dependence is disproved,
 | |
| // it will return 0.
 | |
| unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
 | |
|                                            CoefficientInfo *B, BoundInfo *Bound,
 | |
|                                            const SmallBitVector &Loops,
 | |
|                                            unsigned &DepthExpanded,
 | |
|                                            const SCEV *Delta) const {
 | |
|   // This algorithm has worst case complexity of O(3^n), where 'n' is the number
 | |
|   // of common loop levels. To avoid excessive compile-time, pessimize all the
 | |
|   // results and immediately return when the number of common levels is beyond
 | |
|   // the given threshold.
 | |
|   if (CommonLevels > MIVMaxLevelThreshold) {
 | |
|     LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV "
 | |
|                          "direction exploration is terminated.\n");
 | |
|     for (unsigned K = 1; K <= CommonLevels; ++K)
 | |
|       if (Loops[K])
 | |
|         Bound[K].DirSet = Dependence::DVEntry::ALL;
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   if (Level > CommonLevels) {
 | |
|     // record result
 | |
|     LLVM_DEBUG(dbgs() << "\t[");
 | |
|     for (unsigned K = 1; K <= CommonLevels; ++K) {
 | |
|       if (Loops[K]) {
 | |
|         Bound[K].DirSet |= Bound[K].Direction;
 | |
| #ifndef NDEBUG
 | |
|         switch (Bound[K].Direction) {
 | |
|         case Dependence::DVEntry::LT:
 | |
|           LLVM_DEBUG(dbgs() << " <");
 | |
|           break;
 | |
|         case Dependence::DVEntry::EQ:
 | |
|           LLVM_DEBUG(dbgs() << " =");
 | |
|           break;
 | |
|         case Dependence::DVEntry::GT:
 | |
|           LLVM_DEBUG(dbgs() << " >");
 | |
|           break;
 | |
|         case Dependence::DVEntry::ALL:
 | |
|           LLVM_DEBUG(dbgs() << " *");
 | |
|           break;
 | |
|         default:
 | |
|           llvm_unreachable("unexpected Bound[K].Direction");
 | |
|         }
 | |
| #endif
 | |
|       }
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << " ]\n");
 | |
|     return 1;
 | |
|   }
 | |
|   if (Loops[Level]) {
 | |
|     if (Level > DepthExpanded) {
 | |
|       DepthExpanded = Level;
 | |
|       // compute bounds for <, =, > at current level
 | |
|       findBoundsLT(A, B, Bound, Level);
 | |
|       findBoundsGT(A, B, Bound, Level);
 | |
|       findBoundsEQ(A, B, Bound, Level);
 | |
| #ifndef NDEBUG
 | |
|       LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
 | |
|       LLVM_DEBUG(dbgs() << "\t    <\t");
 | |
|       if (Bound[Level].Lower[Dependence::DVEntry::LT])
 | |
|         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
 | |
|                           << '\t');
 | |
|       else
 | |
|         LLVM_DEBUG(dbgs() << "-inf\t");
 | |
|       if (Bound[Level].Upper[Dependence::DVEntry::LT])
 | |
|         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
 | |
|                           << '\n');
 | |
|       else
 | |
|         LLVM_DEBUG(dbgs() << "+inf\n");
 | |
|       LLVM_DEBUG(dbgs() << "\t    =\t");
 | |
|       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
 | |
|         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
 | |
|                           << '\t');
 | |
|       else
 | |
|         LLVM_DEBUG(dbgs() << "-inf\t");
 | |
|       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
 | |
|         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
 | |
|                           << '\n');
 | |
|       else
 | |
|         LLVM_DEBUG(dbgs() << "+inf\n");
 | |
|       LLVM_DEBUG(dbgs() << "\t    >\t");
 | |
|       if (Bound[Level].Lower[Dependence::DVEntry::GT])
 | |
|         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
 | |
|                           << '\t');
 | |
|       else
 | |
|         LLVM_DEBUG(dbgs() << "-inf\t");
 | |
|       if (Bound[Level].Upper[Dependence::DVEntry::GT])
 | |
|         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
 | |
|                           << '\n');
 | |
|       else
 | |
|         LLVM_DEBUG(dbgs() << "+inf\n");
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     unsigned NewDeps = 0;
 | |
| 
 | |
|     // test bounds for <, *, *, ...
 | |
|     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
 | |
|       NewDeps += exploreDirections(Level + 1, A, B, Bound,
 | |
|                                    Loops, DepthExpanded, Delta);
 | |
| 
 | |
|     // Test bounds for =, *, *, ...
 | |
|     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
 | |
|       NewDeps += exploreDirections(Level + 1, A, B, Bound,
 | |
|                                    Loops, DepthExpanded, Delta);
 | |
| 
 | |
|     // test bounds for >, *, *, ...
 | |
|     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
 | |
|       NewDeps += exploreDirections(Level + 1, A, B, Bound,
 | |
|                                    Loops, DepthExpanded, Delta);
 | |
| 
 | |
|     Bound[Level].Direction = Dependence::DVEntry::ALL;
 | |
|     return NewDeps;
 | |
|   }
 | |
|   else
 | |
|     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true iff the current bounds are plausible.
 | |
| bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
 | |
|                                 BoundInfo *Bound, const SCEV *Delta) const {
 | |
|   Bound[Level].Direction = DirKind;
 | |
|   if (const SCEV *LowerBound = getLowerBound(Bound))
 | |
|     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
 | |
|       return false;
 | |
|   if (const SCEV *UpperBound = getUpperBound(Bound))
 | |
|     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Computes the upper and lower bounds for level K
 | |
| // using the * direction. Records them in Bound.
 | |
| // Wolfe gives the equations
 | |
| //
 | |
| //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
 | |
| //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
 | |
| //
 | |
| // Since we normalize loops, we can simplify these equations to
 | |
| //
 | |
| //    LB^*_k = (A^-_k - B^+_k)U_k
 | |
| //    UB^*_k = (A^+_k - B^-_k)U_k
 | |
| //
 | |
| // We must be careful to handle the case where the upper bound is unknown.
 | |
| // Note that the lower bound is always <= 0
 | |
| // and the upper bound is always >= 0.
 | |
| void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
 | |
|                                    BoundInfo *Bound, unsigned K) const {
 | |
|   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
 | |
|   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
 | |
|   if (Bound[K].Iterations) {
 | |
|     Bound[K].Lower[Dependence::DVEntry::ALL] =
 | |
|       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
 | |
|                      Bound[K].Iterations);
 | |
|     Bound[K].Upper[Dependence::DVEntry::ALL] =
 | |
|       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
 | |
|                      Bound[K].Iterations);
 | |
|   }
 | |
|   else {
 | |
|     // If the difference is 0, we won't need to know the number of iterations.
 | |
|     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
 | |
|       Bound[K].Lower[Dependence::DVEntry::ALL] =
 | |
|           SE->getZero(A[K].Coeff->getType());
 | |
|     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
 | |
|       Bound[K].Upper[Dependence::DVEntry::ALL] =
 | |
|           SE->getZero(A[K].Coeff->getType());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Computes the upper and lower bounds for level K
 | |
| // using the = direction. Records them in Bound.
 | |
| // Wolfe gives the equations
 | |
| //
 | |
| //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
 | |
| //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
 | |
| //
 | |
| // Since we normalize loops, we can simplify these equations to
 | |
| //
 | |
| //    LB^=_k = (A_k - B_k)^- U_k
 | |
| //    UB^=_k = (A_k - B_k)^+ U_k
 | |
| //
 | |
| // We must be careful to handle the case where the upper bound is unknown.
 | |
| // Note that the lower bound is always <= 0
 | |
| // and the upper bound is always >= 0.
 | |
| void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
 | |
|                                   BoundInfo *Bound, unsigned K) const {
 | |
|   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
 | |
|   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
 | |
|   if (Bound[K].Iterations) {
 | |
|     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
 | |
|     const SCEV *NegativePart = getNegativePart(Delta);
 | |
|     Bound[K].Lower[Dependence::DVEntry::EQ] =
 | |
|       SE->getMulExpr(NegativePart, Bound[K].Iterations);
 | |
|     const SCEV *PositivePart = getPositivePart(Delta);
 | |
|     Bound[K].Upper[Dependence::DVEntry::EQ] =
 | |
|       SE->getMulExpr(PositivePart, Bound[K].Iterations);
 | |
|   }
 | |
|   else {
 | |
|     // If the positive/negative part of the difference is 0,
 | |
|     // we won't need to know the number of iterations.
 | |
|     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
 | |
|     const SCEV *NegativePart = getNegativePart(Delta);
 | |
|     if (NegativePart->isZero())
 | |
|       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
 | |
|     const SCEV *PositivePart = getPositivePart(Delta);
 | |
|     if (PositivePart->isZero())
 | |
|       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Computes the upper and lower bounds for level K
 | |
| // using the < direction. Records them in Bound.
 | |
| // Wolfe gives the equations
 | |
| //
 | |
| //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
 | |
| //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
 | |
| //
 | |
| // Since we normalize loops, we can simplify these equations to
 | |
| //
 | |
| //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
 | |
| //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
 | |
| //
 | |
| // We must be careful to handle the case where the upper bound is unknown.
 | |
| void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
 | |
|                                   BoundInfo *Bound, unsigned K) const {
 | |
|   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
 | |
|   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
 | |
|   if (Bound[K].Iterations) {
 | |
|     const SCEV *Iter_1 = SE->getMinusSCEV(
 | |
|         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
 | |
|     const SCEV *NegPart =
 | |
|       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
 | |
|     Bound[K].Lower[Dependence::DVEntry::LT] =
 | |
|       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
 | |
|     const SCEV *PosPart =
 | |
|       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
 | |
|     Bound[K].Upper[Dependence::DVEntry::LT] =
 | |
|       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
 | |
|   }
 | |
|   else {
 | |
|     // If the positive/negative part of the difference is 0,
 | |
|     // we won't need to know the number of iterations.
 | |
|     const SCEV *NegPart =
 | |
|       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
 | |
|     if (NegPart->isZero())
 | |
|       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
 | |
|     const SCEV *PosPart =
 | |
|       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
 | |
|     if (PosPart->isZero())
 | |
|       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Computes the upper and lower bounds for level K
 | |
| // using the > direction. Records them in Bound.
 | |
| // Wolfe gives the equations
 | |
| //
 | |
| //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
 | |
| //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
 | |
| //
 | |
| // Since we normalize loops, we can simplify these equations to
 | |
| //
 | |
| //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
 | |
| //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
 | |
| //
 | |
| // We must be careful to handle the case where the upper bound is unknown.
 | |
| void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
 | |
|                                   BoundInfo *Bound, unsigned K) const {
 | |
|   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
 | |
|   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
 | |
|   if (Bound[K].Iterations) {
 | |
|     const SCEV *Iter_1 = SE->getMinusSCEV(
 | |
|         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
 | |
|     const SCEV *NegPart =
 | |
|       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
 | |
|     Bound[K].Lower[Dependence::DVEntry::GT] =
 | |
|       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
 | |
|     const SCEV *PosPart =
 | |
|       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
 | |
|     Bound[K].Upper[Dependence::DVEntry::GT] =
 | |
|       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
 | |
|   }
 | |
|   else {
 | |
|     // If the positive/negative part of the difference is 0,
 | |
|     // we won't need to know the number of iterations.
 | |
|     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
 | |
|     if (NegPart->isZero())
 | |
|       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
 | |
|     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
 | |
|     if (PosPart->isZero())
 | |
|       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // X^+ = max(X, 0)
 | |
| const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
 | |
|   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
 | |
| }
 | |
| 
 | |
| 
 | |
| // X^- = min(X, 0)
 | |
| const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
 | |
|   return SE->getSMinExpr(X, SE->getZero(X->getType()));
 | |
| }
 | |
| 
 | |
| 
 | |
| // Walks through the subscript,
 | |
| // collecting each coefficient, the associated loop bounds,
 | |
| // and recording its positive and negative parts for later use.
 | |
| DependenceInfo::CoefficientInfo *
 | |
| DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
 | |
|                                  const SCEV *&Constant) const {
 | |
|   const SCEV *Zero = SE->getZero(Subscript->getType());
 | |
|   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
 | |
|   for (unsigned K = 1; K <= MaxLevels; ++K) {
 | |
|     CI[K].Coeff = Zero;
 | |
|     CI[K].PosPart = Zero;
 | |
|     CI[K].NegPart = Zero;
 | |
|     CI[K].Iterations = nullptr;
 | |
|   }
 | |
|   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
 | |
|     const Loop *L = AddRec->getLoop();
 | |
|     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
 | |
|     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
 | |
|     CI[K].PosPart = getPositivePart(CI[K].Coeff);
 | |
|     CI[K].NegPart = getNegativePart(CI[K].Coeff);
 | |
|     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
 | |
|     Subscript = AddRec->getStart();
 | |
|   }
 | |
|   Constant = Subscript;
 | |
| #ifndef NDEBUG
 | |
|   LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
 | |
|   for (unsigned K = 1; K <= MaxLevels; ++K) {
 | |
|     LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
 | |
|     LLVM_DEBUG(dbgs() << "\tPos Part = ");
 | |
|     LLVM_DEBUG(dbgs() << *CI[K].PosPart);
 | |
|     LLVM_DEBUG(dbgs() << "\tNeg Part = ");
 | |
|     LLVM_DEBUG(dbgs() << *CI[K].NegPart);
 | |
|     LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
 | |
|     if (CI[K].Iterations)
 | |
|       LLVM_DEBUG(dbgs() << *CI[K].Iterations);
 | |
|     else
 | |
|       LLVM_DEBUG(dbgs() << "+inf");
 | |
|     LLVM_DEBUG(dbgs() << '\n');
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
 | |
| #endif
 | |
|   return CI;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Looks through all the bounds info and
 | |
| // computes the lower bound given the current direction settings
 | |
| // at each level. If the lower bound for any level is -inf,
 | |
| // the result is -inf.
 | |
| const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
 | |
|   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
 | |
|   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
 | |
|     if (Bound[K].Lower[Bound[K].Direction])
 | |
|       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
 | |
|     else
 | |
|       Sum = nullptr;
 | |
|   }
 | |
|   return Sum;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Looks through all the bounds info and
 | |
| // computes the upper bound given the current direction settings
 | |
| // at each level. If the upper bound at any level is +inf,
 | |
| // the result is +inf.
 | |
| const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
 | |
|   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
 | |
|   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
 | |
|     if (Bound[K].Upper[Bound[K].Direction])
 | |
|       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
 | |
|     else
 | |
|       Sum = nullptr;
 | |
|   }
 | |
|   return Sum;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Constraint manipulation for Delta test.
 | |
| 
 | |
| // Given a linear SCEV,
 | |
| // return the coefficient (the step)
 | |
| // corresponding to the specified loop.
 | |
| // If there isn't one, return 0.
 | |
| // For example, given a*i + b*j + c*k, finding the coefficient
 | |
| // corresponding to the j loop would yield b.
 | |
| const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
 | |
|                                             const Loop *TargetLoop) const {
 | |
|   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
 | |
|   if (!AddRec)
 | |
|     return SE->getZero(Expr->getType());
 | |
|   if (AddRec->getLoop() == TargetLoop)
 | |
|     return AddRec->getStepRecurrence(*SE);
 | |
|   return findCoefficient(AddRec->getStart(), TargetLoop);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Given a linear SCEV,
 | |
| // return the SCEV given by zeroing out the coefficient
 | |
| // corresponding to the specified loop.
 | |
| // For example, given a*i + b*j + c*k, zeroing the coefficient
 | |
| // corresponding to the j loop would yield a*i + c*k.
 | |
| const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
 | |
|                                             const Loop *TargetLoop) const {
 | |
|   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
 | |
|   if (!AddRec)
 | |
|     return Expr; // ignore
 | |
|   if (AddRec->getLoop() == TargetLoop)
 | |
|     return AddRec->getStart();
 | |
|   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
 | |
|                            AddRec->getStepRecurrence(*SE),
 | |
|                            AddRec->getLoop(),
 | |
|                            AddRec->getNoWrapFlags());
 | |
| }
 | |
| 
 | |
| 
 | |
| // Given a linear SCEV Expr,
 | |
| // return the SCEV given by adding some Value to the
 | |
| // coefficient corresponding to the specified TargetLoop.
 | |
| // For example, given a*i + b*j + c*k, adding 1 to the coefficient
 | |
| // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
 | |
| const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
 | |
|                                              const Loop *TargetLoop,
 | |
|                                              const SCEV *Value) const {
 | |
|   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
 | |
|   if (!AddRec) // create a new addRec
 | |
|     return SE->getAddRecExpr(Expr,
 | |
|                              Value,
 | |
|                              TargetLoop,
 | |
|                              SCEV::FlagAnyWrap); // Worst case, with no info.
 | |
|   if (AddRec->getLoop() == TargetLoop) {
 | |
|     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
 | |
|     if (Sum->isZero())
 | |
|       return AddRec->getStart();
 | |
|     return SE->getAddRecExpr(AddRec->getStart(),
 | |
|                              Sum,
 | |
|                              AddRec->getLoop(),
 | |
|                              AddRec->getNoWrapFlags());
 | |
|   }
 | |
|   if (SE->isLoopInvariant(AddRec, TargetLoop))
 | |
|     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
 | |
|   return SE->getAddRecExpr(
 | |
|       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
 | |
|       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
 | |
|       AddRec->getNoWrapFlags());
 | |
| }
 | |
| 
 | |
| 
 | |
| // Review the constraints, looking for opportunities
 | |
| // to simplify a subscript pair (Src and Dst).
 | |
| // Return true if some simplification occurs.
 | |
| // If the simplification isn't exact (that is, if it is conservative
 | |
| // in terms of dependence), set consistent to false.
 | |
| // Corresponds to Figure 5 from the paper
 | |
| //
 | |
| //            Practical Dependence Testing
 | |
| //            Goff, Kennedy, Tseng
 | |
| //            PLDI 1991
 | |
| bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
 | |
|                                SmallBitVector &Loops,
 | |
|                                SmallVectorImpl<Constraint> &Constraints,
 | |
|                                bool &Consistent) {
 | |
|   bool Result = false;
 | |
|   for (unsigned LI : Loops.set_bits()) {
 | |
|     LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
 | |
|     LLVM_DEBUG(Constraints[LI].dump(dbgs()));
 | |
|     if (Constraints[LI].isDistance())
 | |
|       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
 | |
|     else if (Constraints[LI].isLine())
 | |
|       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
 | |
|     else if (Constraints[LI].isPoint())
 | |
|       Result |= propagatePoint(Src, Dst, Constraints[LI]);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Attempt to propagate a distance
 | |
| // constraint into a subscript pair (Src and Dst).
 | |
| // Return true if some simplification occurs.
 | |
| // If the simplification isn't exact (that is, if it is conservative
 | |
| // in terms of dependence), set consistent to false.
 | |
| bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
 | |
|                                        Constraint &CurConstraint,
 | |
|                                        bool &Consistent) {
 | |
|   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
 | |
|   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
 | |
|   const SCEV *A_K = findCoefficient(Src, CurLoop);
 | |
|   if (A_K->isZero())
 | |
|     return false;
 | |
|   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
 | |
|   Src = SE->getMinusSCEV(Src, DA_K);
 | |
|   Src = zeroCoefficient(Src, CurLoop);
 | |
|   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
 | |
|   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
 | |
|   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
 | |
|   if (!findCoefficient(Dst, CurLoop)->isZero())
 | |
|     Consistent = false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Attempt to propagate a line
 | |
| // constraint into a subscript pair (Src and Dst).
 | |
| // Return true if some simplification occurs.
 | |
| // If the simplification isn't exact (that is, if it is conservative
 | |
| // in terms of dependence), set consistent to false.
 | |
| bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
 | |
|                                    Constraint &CurConstraint,
 | |
|                                    bool &Consistent) {
 | |
|   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
 | |
|   const SCEV *A = CurConstraint.getA();
 | |
|   const SCEV *B = CurConstraint.getB();
 | |
|   const SCEV *C = CurConstraint.getC();
 | |
|   LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
 | |
|                     << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
 | |
|   if (A->isZero()) {
 | |
|     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
 | |
|     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
 | |
|     if (!Bconst || !Cconst) return false;
 | |
|     APInt Beta = Bconst->getAPInt();
 | |
|     APInt Charlie = Cconst->getAPInt();
 | |
|     APInt CdivB = Charlie.sdiv(Beta);
 | |
|     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
 | |
|     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
 | |
|     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
 | |
|     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
 | |
|     Dst = zeroCoefficient(Dst, CurLoop);
 | |
|     if (!findCoefficient(Src, CurLoop)->isZero())
 | |
|       Consistent = false;
 | |
|   }
 | |
|   else if (B->isZero()) {
 | |
|     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
 | |
|     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
 | |
|     if (!Aconst || !Cconst) return false;
 | |
|     APInt Alpha = Aconst->getAPInt();
 | |
|     APInt Charlie = Cconst->getAPInt();
 | |
|     APInt CdivA = Charlie.sdiv(Alpha);
 | |
|     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
 | |
|     const SCEV *A_K = findCoefficient(Src, CurLoop);
 | |
|     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
 | |
|     Src = zeroCoefficient(Src, CurLoop);
 | |
|     if (!findCoefficient(Dst, CurLoop)->isZero())
 | |
|       Consistent = false;
 | |
|   }
 | |
|   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
 | |
|     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
 | |
|     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
 | |
|     if (!Aconst || !Cconst) return false;
 | |
|     APInt Alpha = Aconst->getAPInt();
 | |
|     APInt Charlie = Cconst->getAPInt();
 | |
|     APInt CdivA = Charlie.sdiv(Alpha);
 | |
|     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
 | |
|     const SCEV *A_K = findCoefficient(Src, CurLoop);
 | |
|     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
 | |
|     Src = zeroCoefficient(Src, CurLoop);
 | |
|     Dst = addToCoefficient(Dst, CurLoop, A_K);
 | |
|     if (!findCoefficient(Dst, CurLoop)->isZero())
 | |
|       Consistent = false;
 | |
|   }
 | |
|   else {
 | |
|     // paper is incorrect here, or perhaps just misleading
 | |
|     const SCEV *A_K = findCoefficient(Src, CurLoop);
 | |
|     Src = SE->getMulExpr(Src, A);
 | |
|     Dst = SE->getMulExpr(Dst, A);
 | |
|     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
 | |
|     Src = zeroCoefficient(Src, CurLoop);
 | |
|     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
 | |
|     if (!findCoefficient(Dst, CurLoop)->isZero())
 | |
|       Consistent = false;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Attempt to propagate a point
 | |
| // constraint into a subscript pair (Src and Dst).
 | |
| // Return true if some simplification occurs.
 | |
| bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
 | |
|                                     Constraint &CurConstraint) {
 | |
|   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
 | |
|   const SCEV *A_K = findCoefficient(Src, CurLoop);
 | |
|   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
 | |
|   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
 | |
|   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
 | |
|   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
 | |
|   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
 | |
|   Src = zeroCoefficient(Src, CurLoop);
 | |
|   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
 | |
|   Dst = zeroCoefficient(Dst, CurLoop);
 | |
|   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Update direction vector entry based on the current constraint.
 | |
| void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
 | |
|                                      const Constraint &CurConstraint) const {
 | |
|   LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
 | |
|   LLVM_DEBUG(CurConstraint.dump(dbgs()));
 | |
|   if (CurConstraint.isAny())
 | |
|     ; // use defaults
 | |
|   else if (CurConstraint.isDistance()) {
 | |
|     // this one is consistent, the others aren't
 | |
|     Level.Scalar = false;
 | |
|     Level.Distance = CurConstraint.getD();
 | |
|     unsigned NewDirection = Dependence::DVEntry::NONE;
 | |
|     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
 | |
|       NewDirection = Dependence::DVEntry::EQ;
 | |
|     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
 | |
|       NewDirection |= Dependence::DVEntry::LT;
 | |
|     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
 | |
|       NewDirection |= Dependence::DVEntry::GT;
 | |
|     Level.Direction &= NewDirection;
 | |
|   }
 | |
|   else if (CurConstraint.isLine()) {
 | |
|     Level.Scalar = false;
 | |
|     Level.Distance = nullptr;
 | |
|     // direction should be accurate
 | |
|   }
 | |
|   else if (CurConstraint.isPoint()) {
 | |
|     Level.Scalar = false;
 | |
|     Level.Distance = nullptr;
 | |
|     unsigned NewDirection = Dependence::DVEntry::NONE;
 | |
|     if (!isKnownPredicate(CmpInst::ICMP_NE,
 | |
|                           CurConstraint.getY(),
 | |
|                           CurConstraint.getX()))
 | |
|       // if X may be = Y
 | |
|       NewDirection |= Dependence::DVEntry::EQ;
 | |
|     if (!isKnownPredicate(CmpInst::ICMP_SLE,
 | |
|                           CurConstraint.getY(),
 | |
|                           CurConstraint.getX()))
 | |
|       // if Y may be > X
 | |
|       NewDirection |= Dependence::DVEntry::LT;
 | |
|     if (!isKnownPredicate(CmpInst::ICMP_SGE,
 | |
|                           CurConstraint.getY(),
 | |
|                           CurConstraint.getX()))
 | |
|       // if Y may be < X
 | |
|       NewDirection |= Dependence::DVEntry::GT;
 | |
|     Level.Direction &= NewDirection;
 | |
|   }
 | |
|   else
 | |
|     llvm_unreachable("constraint has unexpected kind");
 | |
| }
 | |
| 
 | |
| /// Check if we can delinearize the subscripts. If the SCEVs representing the
 | |
| /// source and destination array references are recurrences on a nested loop,
 | |
| /// this function flattens the nested recurrences into separate recurrences
 | |
| /// for each loop level.
 | |
| bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
 | |
|                                     SmallVectorImpl<Subscript> &Pair) {
 | |
|   assert(isLoadOrStore(Src) && "instruction is not load or store");
 | |
|   assert(isLoadOrStore(Dst) && "instruction is not load or store");
 | |
|   Value *SrcPtr = getLoadStorePointerOperand(Src);
 | |
|   Value *DstPtr = getLoadStorePointerOperand(Dst);
 | |
|   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
 | |
|   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
 | |
|   const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
 | |
|   const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
 | |
|   const SCEVUnknown *SrcBase =
 | |
|       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
 | |
|   const SCEVUnknown *DstBase =
 | |
|       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
 | |
| 
 | |
|   if (!SrcBase || !DstBase || SrcBase != DstBase)
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
 | |
| 
 | |
|   if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
 | |
|                                SrcSubscripts, DstSubscripts) &&
 | |
|       !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
 | |
|                                     SrcSubscripts, DstSubscripts))
 | |
|     return false;
 | |
| 
 | |
|   int Size = SrcSubscripts.size();
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "\nSrcSubscripts: ";
 | |
|     for (int I = 0; I < Size; I++)
 | |
|       dbgs() << *SrcSubscripts[I];
 | |
|     dbgs() << "\nDstSubscripts: ";
 | |
|     for (int I = 0; I < Size; I++)
 | |
|       dbgs() << *DstSubscripts[I];
 | |
|   });
 | |
| 
 | |
|   // The delinearization transforms a single-subscript MIV dependence test into
 | |
|   // a multi-subscript SIV dependence test that is easier to compute. So we
 | |
|   // resize Pair to contain as many pairs of subscripts as the delinearization
 | |
|   // has found, and then initialize the pairs following the delinearization.
 | |
|   Pair.resize(Size);
 | |
|   for (int I = 0; I < Size; ++I) {
 | |
|     Pair[I].Src = SrcSubscripts[I];
 | |
|     Pair[I].Dst = DstSubscripts[I];
 | |
|     unifySubscriptType(&Pair[I]);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Try to delinearize \p SrcAccessFn and \p DstAccessFn if the underlying
 | |
| /// arrays accessed are fixed-size arrays. Return true if delinearization was
 | |
| /// successful.
 | |
| bool DependenceInfo::tryDelinearizeFixedSize(
 | |
|     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
 | |
|     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
 | |
|     SmallVectorImpl<const SCEV *> &DstSubscripts) {
 | |
|   LLVM_DEBUG({
 | |
|     const SCEVUnknown *SrcBase =
 | |
|         dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
 | |
|     const SCEVUnknown *DstBase =
 | |
|         dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
 | |
|     assert(SrcBase && DstBase && SrcBase == DstBase &&
 | |
|            "expected src and dst scev unknowns to be equal");
 | |
|     });
 | |
| 
 | |
|   SmallVector<int, 4> SrcSizes;
 | |
|   SmallVector<int, 4> DstSizes;
 | |
|   if (!tryDelinearizeFixedSizeImpl(SE, Src, SrcAccessFn, SrcSubscripts,
 | |
|                                    SrcSizes) ||
 | |
|       !tryDelinearizeFixedSizeImpl(SE, Dst, DstAccessFn, DstSubscripts,
 | |
|                                    DstSizes))
 | |
|     return false;
 | |
| 
 | |
|   // Check that the two size arrays are non-empty and equal in length and
 | |
|   // value.
 | |
|   if (SrcSizes.size() != DstSizes.size() ||
 | |
|       !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
 | |
|     SrcSubscripts.clear();
 | |
|     DstSubscripts.clear();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   assert(SrcSubscripts.size() == DstSubscripts.size() &&
 | |
|          "Expected equal number of entries in the list of SrcSubscripts and "
 | |
|          "DstSubscripts.");
 | |
| 
 | |
|   Value *SrcPtr = getLoadStorePointerOperand(Src);
 | |
|   Value *DstPtr = getLoadStorePointerOperand(Dst);
 | |
| 
 | |
|   // In general we cannot safely assume that the subscripts recovered from GEPs
 | |
|   // are in the range of values defined for their corresponding array
 | |
|   // dimensions. For example some C language usage/interpretation make it
 | |
|   // impossible to verify this at compile-time. As such we can only delinearize
 | |
|   // iff the subscripts are positive and are less than the range of the
 | |
|   // dimension.
 | |
|   if (!DisableDelinearizationChecks) {
 | |
|     auto AllIndiciesInRange = [&](SmallVector<int, 4> &DimensionSizes,
 | |
|                                   SmallVectorImpl<const SCEV *> &Subscripts,
 | |
|                                   Value *Ptr) {
 | |
|       size_t SSize = Subscripts.size();
 | |
|       for (size_t I = 1; I < SSize; ++I) {
 | |
|         const SCEV *S = Subscripts[I];
 | |
|         if (!isKnownNonNegative(S, Ptr))
 | |
|           return false;
 | |
|         if (auto *SType = dyn_cast<IntegerType>(S->getType())) {
 | |
|           const SCEV *Range = SE->getConstant(
 | |
|               ConstantInt::get(SType, DimensionSizes[I - 1], false));
 | |
|           if (!isKnownLessThan(S, Range))
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
|       return true;
 | |
|     };
 | |
| 
 | |
|     if (!AllIndiciesInRange(SrcSizes, SrcSubscripts, SrcPtr) ||
 | |
|         !AllIndiciesInRange(DstSizes, DstSubscripts, DstPtr)) {
 | |
|       SrcSubscripts.clear();
 | |
|       DstSubscripts.clear();
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Delinearized subscripts of fixed-size array\n"
 | |
|            << "SrcGEP:" << *SrcPtr << "\n"
 | |
|            << "DstGEP:" << *DstPtr << "\n";
 | |
|   });
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DependenceInfo::tryDelinearizeParametricSize(
 | |
|     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
 | |
|     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
 | |
|     SmallVectorImpl<const SCEV *> &DstSubscripts) {
 | |
| 
 | |
|   Value *SrcPtr = getLoadStorePointerOperand(Src);
 | |
|   Value *DstPtr = getLoadStorePointerOperand(Dst);
 | |
|   const SCEVUnknown *SrcBase =
 | |
|       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
 | |
|   const SCEVUnknown *DstBase =
 | |
|       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
 | |
|   assert(SrcBase && DstBase && SrcBase == DstBase &&
 | |
|          "expected src and dst scev unknowns to be equal");
 | |
| 
 | |
|   const SCEV *ElementSize = SE->getElementSize(Src);
 | |
|   if (ElementSize != SE->getElementSize(Dst))
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
 | |
|   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
 | |
| 
 | |
|   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
 | |
|   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
 | |
|   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
 | |
|     return false;
 | |
| 
 | |
|   // First step: collect parametric terms in both array references.
 | |
|   SmallVector<const SCEV *, 4> Terms;
 | |
|   collectParametricTerms(*SE, SrcAR, Terms);
 | |
|   collectParametricTerms(*SE, DstAR, Terms);
 | |
| 
 | |
|   // Second step: find subscript sizes.
 | |
|   SmallVector<const SCEV *, 4> Sizes;
 | |
|   findArrayDimensions(*SE, Terms, Sizes, ElementSize);
 | |
| 
 | |
|   // Third step: compute the access functions for each subscript.
 | |
|   computeAccessFunctions(*SE, SrcAR, SrcSubscripts, Sizes);
 | |
|   computeAccessFunctions(*SE, DstAR, DstSubscripts, Sizes);
 | |
| 
 | |
|   // Fail when there is only a subscript: that's a linearized access function.
 | |
|   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
 | |
|       SrcSubscripts.size() != DstSubscripts.size())
 | |
|     return false;
 | |
| 
 | |
|   size_t Size = SrcSubscripts.size();
 | |
| 
 | |
|   // Statically check that the array bounds are in-range. The first subscript we
 | |
|   // don't have a size for and it cannot overflow into another subscript, so is
 | |
|   // always safe. The others need to be 0 <= subscript[i] < bound, for both src
 | |
|   // and dst.
 | |
|   // FIXME: It may be better to record these sizes and add them as constraints
 | |
|   // to the dependency checks.
 | |
|   if (!DisableDelinearizationChecks)
 | |
|     for (size_t I = 1; I < Size; ++I) {
 | |
|       if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
 | |
|         return false;
 | |
| 
 | |
|       if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
 | |
|         return false;
 | |
| 
 | |
|       if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
 | |
|         return false;
 | |
| 
 | |
|       if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| // For debugging purposes, dump a small bit vector to dbgs().
 | |
| static void dumpSmallBitVector(SmallBitVector &BV) {
 | |
|   dbgs() << "{";
 | |
|   for (unsigned VI : BV.set_bits()) {
 | |
|     dbgs() << VI;
 | |
|     if (BV.find_next(VI) >= 0)
 | |
|       dbgs() << ' ';
 | |
|   }
 | |
|   dbgs() << "}\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
 | |
|                                 FunctionAnalysisManager::Invalidator &Inv) {
 | |
|   // Check if the analysis itself has been invalidated.
 | |
|   auto PAC = PA.getChecker<DependenceAnalysis>();
 | |
|   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
 | |
|     return true;
 | |
| 
 | |
|   // Check transitive dependencies.
 | |
|   return Inv.invalidate<AAManager>(F, PA) ||
 | |
|          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
 | |
|          Inv.invalidate<LoopAnalysis>(F, PA);
 | |
| }
 | |
| 
 | |
| // depends -
 | |
| // Returns NULL if there is no dependence.
 | |
| // Otherwise, return a Dependence with as many details as possible.
 | |
| // Corresponds to Section 3.1 in the paper
 | |
| //
 | |
| //            Practical Dependence Testing
 | |
| //            Goff, Kennedy, Tseng
 | |
| //            PLDI 1991
 | |
| //
 | |
| // Care is required to keep the routine below, getSplitIteration(),
 | |
| // up to date with respect to this routine.
 | |
| std::unique_ptr<Dependence>
 | |
| DependenceInfo::depends(Instruction *Src, Instruction *Dst,
 | |
|                         bool PossiblyLoopIndependent) {
 | |
|   if (Src == Dst)
 | |
|     PossiblyLoopIndependent = false;
 | |
| 
 | |
|   if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
 | |
|     // if both instructions don't reference memory, there's no dependence
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
 | |
|     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
 | |
|     LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
 | |
|     return std::make_unique<Dependence>(Src, Dst);
 | |
|   }
 | |
| 
 | |
|   assert(isLoadOrStore(Src) && "instruction is not load or store");
 | |
|   assert(isLoadOrStore(Dst) && "instruction is not load or store");
 | |
|   Value *SrcPtr = getLoadStorePointerOperand(Src);
 | |
|   Value *DstPtr = getLoadStorePointerOperand(Dst);
 | |
| 
 | |
|   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
 | |
|                                  MemoryLocation::get(Dst),
 | |
|                                  MemoryLocation::get(Src))) {
 | |
|   case AliasResult::MayAlias:
 | |
|   case AliasResult::PartialAlias:
 | |
|     // cannot analyse objects if we don't understand their aliasing.
 | |
|     LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
 | |
|     return std::make_unique<Dependence>(Src, Dst);
 | |
|   case AliasResult::NoAlias:
 | |
|     // If the objects noalias, they are distinct, accesses are independent.
 | |
|     LLVM_DEBUG(dbgs() << "no alias\n");
 | |
|     return nullptr;
 | |
|   case AliasResult::MustAlias:
 | |
|     break; // The underlying objects alias; test accesses for dependence.
 | |
|   }
 | |
| 
 | |
|   // establish loop nesting levels
 | |
|   establishNestingLevels(Src, Dst);
 | |
|   LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
 | |
| 
 | |
|   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
 | |
|   ++TotalArrayPairs;
 | |
| 
 | |
|   unsigned Pairs = 1;
 | |
|   SmallVector<Subscript, 2> Pair(Pairs);
 | |
|   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
 | |
|   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
 | |
|   LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
 | |
|   if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) {
 | |
|     // If two pointers have different bases, trying to analyze indexes won't
 | |
|     // work; we can't compare them to each other. This can happen, for example,
 | |
|     // if one is produced by an LCSSA PHI node.
 | |
|     //
 | |
|     // We check this upfront so we don't crash in cases where getMinusSCEV()
 | |
|     // returns a SCEVCouldNotCompute.
 | |
|     LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n");
 | |
|     return std::make_unique<Dependence>(Src, Dst);
 | |
|   }
 | |
|   Pair[0].Src = SrcSCEV;
 | |
|   Pair[0].Dst = DstSCEV;
 | |
| 
 | |
|   if (Delinearize) {
 | |
|     if (tryDelinearize(Src, Dst, Pair)) {
 | |
|       LLVM_DEBUG(dbgs() << "    delinearized\n");
 | |
|       Pairs = Pair.size();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned P = 0; P < Pairs; ++P) {
 | |
|     Pair[P].Loops.resize(MaxLevels + 1);
 | |
|     Pair[P].GroupLoops.resize(MaxLevels + 1);
 | |
|     Pair[P].Group.resize(Pairs);
 | |
|     removeMatchingExtensions(&Pair[P]);
 | |
|     Pair[P].Classification =
 | |
|       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
 | |
|                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
 | |
|                    Pair[P].Loops);
 | |
|     Pair[P].GroupLoops = Pair[P].Loops;
 | |
|     Pair[P].Group.set(P);
 | |
|     LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
 | |
|     LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
 | |
|     LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
 | |
|     LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
 | |
|     LLVM_DEBUG(dbgs() << "\tloops = ");
 | |
|     LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
 | |
|   }
 | |
| 
 | |
|   SmallBitVector Separable(Pairs);
 | |
|   SmallBitVector Coupled(Pairs);
 | |
| 
 | |
|   // Partition subscripts into separable and minimally-coupled groups
 | |
|   // Algorithm in paper is algorithmically better;
 | |
|   // this may be faster in practice. Check someday.
 | |
|   //
 | |
|   // Here's an example of how it works. Consider this code:
 | |
|   //
 | |
|   //   for (i = ...) {
 | |
|   //     for (j = ...) {
 | |
|   //       for (k = ...) {
 | |
|   //         for (l = ...) {
 | |
|   //           for (m = ...) {
 | |
|   //             A[i][j][k][m] = ...;
 | |
|   //             ... = A[0][j][l][i + j];
 | |
|   //           }
 | |
|   //         }
 | |
|   //       }
 | |
|   //     }
 | |
|   //   }
 | |
|   //
 | |
|   // There are 4 subscripts here:
 | |
|   //    0 [i] and [0]
 | |
|   //    1 [j] and [j]
 | |
|   //    2 [k] and [l]
 | |
|   //    3 [m] and [i + j]
 | |
|   //
 | |
|   // We've already classified each subscript pair as ZIV, SIV, etc.,
 | |
|   // and collected all the loops mentioned by pair P in Pair[P].Loops.
 | |
|   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
 | |
|   // and set Pair[P].Group = {P}.
 | |
|   //
 | |
|   //      Src Dst    Classification Loops  GroupLoops Group
 | |
|   //    0 [i] [0]         SIV       {1}      {1}        {0}
 | |
|   //    1 [j] [j]         SIV       {2}      {2}        {1}
 | |
|   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
 | |
|   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
 | |
|   //
 | |
|   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
 | |
|   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
 | |
|   //
 | |
|   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
 | |
|   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
 | |
|   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
 | |
|   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
 | |
|   // to either Separable or Coupled).
 | |
|   //
 | |
|   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
 | |
|   // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
 | |
|   // so Pair[3].Group = {0, 1, 3} and Done = false.
 | |
|   //
 | |
|   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
 | |
|   // Since Done remains true, we add 2 to the set of Separable pairs.
 | |
|   //
 | |
|   // Finally, we consider 3. There's nothing to compare it with,
 | |
|   // so Done remains true and we add it to the Coupled set.
 | |
|   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
 | |
|   //
 | |
|   // In the end, we've got 1 separable subscript and 1 coupled group.
 | |
|   for (unsigned SI = 0; SI < Pairs; ++SI) {
 | |
|     if (Pair[SI].Classification == Subscript::NonLinear) {
 | |
|       // ignore these, but collect loops for later
 | |
|       ++NonlinearSubscriptPairs;
 | |
|       collectCommonLoops(Pair[SI].Src,
 | |
|                          LI->getLoopFor(Src->getParent()),
 | |
|                          Pair[SI].Loops);
 | |
|       collectCommonLoops(Pair[SI].Dst,
 | |
|                          LI->getLoopFor(Dst->getParent()),
 | |
|                          Pair[SI].Loops);
 | |
|       Result.Consistent = false;
 | |
|     } else if (Pair[SI].Classification == Subscript::ZIV) {
 | |
|       // always separable
 | |
|       Separable.set(SI);
 | |
|     }
 | |
|     else {
 | |
|       // SIV, RDIV, or MIV, so check for coupled group
 | |
|       bool Done = true;
 | |
|       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
 | |
|         SmallBitVector Intersection = Pair[SI].GroupLoops;
 | |
|         Intersection &= Pair[SJ].GroupLoops;
 | |
|         if (Intersection.any()) {
 | |
|           // accumulate set of all the loops in group
 | |
|           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
 | |
|           // accumulate set of all subscripts in group
 | |
|           Pair[SJ].Group |= Pair[SI].Group;
 | |
|           Done = false;
 | |
|         }
 | |
|       }
 | |
|       if (Done) {
 | |
|         if (Pair[SI].Group.count() == 1) {
 | |
|           Separable.set(SI);
 | |
|           ++SeparableSubscriptPairs;
 | |
|         }
 | |
|         else {
 | |
|           Coupled.set(SI);
 | |
|           ++CoupledSubscriptPairs;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "    Separable = ");
 | |
|   LLVM_DEBUG(dumpSmallBitVector(Separable));
 | |
|   LLVM_DEBUG(dbgs() << "    Coupled = ");
 | |
|   LLVM_DEBUG(dumpSmallBitVector(Coupled));
 | |
| 
 | |
|   Constraint NewConstraint;
 | |
|   NewConstraint.setAny(SE);
 | |
| 
 | |
|   // test separable subscripts
 | |
|   for (unsigned SI : Separable.set_bits()) {
 | |
|     LLVM_DEBUG(dbgs() << "testing subscript " << SI);
 | |
|     switch (Pair[SI].Classification) {
 | |
|     case Subscript::ZIV:
 | |
|       LLVM_DEBUG(dbgs() << ", ZIV\n");
 | |
|       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
 | |
|         return nullptr;
 | |
|       break;
 | |
|     case Subscript::SIV: {
 | |
|       LLVM_DEBUG(dbgs() << ", SIV\n");
 | |
|       unsigned Level;
 | |
|       const SCEV *SplitIter = nullptr;
 | |
|       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
 | |
|                   SplitIter))
 | |
|         return nullptr;
 | |
|       break;
 | |
|     }
 | |
|     case Subscript::RDIV:
 | |
|       LLVM_DEBUG(dbgs() << ", RDIV\n");
 | |
|       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
 | |
|         return nullptr;
 | |
|       break;
 | |
|     case Subscript::MIV:
 | |
|       LLVM_DEBUG(dbgs() << ", MIV\n");
 | |
|       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
 | |
|         return nullptr;
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("subscript has unexpected classification");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Coupled.count()) {
 | |
|     // test coupled subscript groups
 | |
|     LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
 | |
|     LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
 | |
|     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
 | |
|     for (unsigned II = 0; II <= MaxLevels; ++II)
 | |
|       Constraints[II].setAny(SE);
 | |
|     for (unsigned SI : Coupled.set_bits()) {
 | |
|       LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
 | |
|       SmallBitVector Group(Pair[SI].Group);
 | |
|       SmallBitVector Sivs(Pairs);
 | |
|       SmallBitVector Mivs(Pairs);
 | |
|       SmallBitVector ConstrainedLevels(MaxLevels + 1);
 | |
|       SmallVector<Subscript *, 4> PairsInGroup;
 | |
|       for (unsigned SJ : Group.set_bits()) {
 | |
|         LLVM_DEBUG(dbgs() << SJ << " ");
 | |
|         if (Pair[SJ].Classification == Subscript::SIV)
 | |
|           Sivs.set(SJ);
 | |
|         else
 | |
|           Mivs.set(SJ);
 | |
|         PairsInGroup.push_back(&Pair[SJ]);
 | |
|       }
 | |
|       unifySubscriptType(PairsInGroup);
 | |
|       LLVM_DEBUG(dbgs() << "}\n");
 | |
|       while (Sivs.any()) {
 | |
|         bool Changed = false;
 | |
|         for (unsigned SJ : Sivs.set_bits()) {
 | |
|           LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
 | |
|           // SJ is an SIV subscript that's part of the current coupled group
 | |
|           unsigned Level;
 | |
|           const SCEV *SplitIter = nullptr;
 | |
|           LLVM_DEBUG(dbgs() << "SIV\n");
 | |
|           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
 | |
|                       SplitIter))
 | |
|             return nullptr;
 | |
|           ConstrainedLevels.set(Level);
 | |
|           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
 | |
|             if (Constraints[Level].isEmpty()) {
 | |
|               ++DeltaIndependence;
 | |
|               return nullptr;
 | |
|             }
 | |
|             Changed = true;
 | |
|           }
 | |
|           Sivs.reset(SJ);
 | |
|         }
 | |
|         if (Changed) {
 | |
|           // propagate, possibly creating new SIVs and ZIVs
 | |
|           LLVM_DEBUG(dbgs() << "    propagating\n");
 | |
|           LLVM_DEBUG(dbgs() << "\tMivs = ");
 | |
|           LLVM_DEBUG(dumpSmallBitVector(Mivs));
 | |
|           for (unsigned SJ : Mivs.set_bits()) {
 | |
|             // SJ is an MIV subscript that's part of the current coupled group
 | |
|             LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
 | |
|             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
 | |
|                           Constraints, Result.Consistent)) {
 | |
|               LLVM_DEBUG(dbgs() << "\t    Changed\n");
 | |
|               ++DeltaPropagations;
 | |
|               Pair[SJ].Classification =
 | |
|                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
 | |
|                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
 | |
|                              Pair[SJ].Loops);
 | |
|               switch (Pair[SJ].Classification) {
 | |
|               case Subscript::ZIV:
 | |
|                 LLVM_DEBUG(dbgs() << "ZIV\n");
 | |
|                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
 | |
|                   return nullptr;
 | |
|                 Mivs.reset(SJ);
 | |
|                 break;
 | |
|               case Subscript::SIV:
 | |
|                 Sivs.set(SJ);
 | |
|                 Mivs.reset(SJ);
 | |
|                 break;
 | |
|               case Subscript::RDIV:
 | |
|               case Subscript::MIV:
 | |
|                 break;
 | |
|               default:
 | |
|                 llvm_unreachable("bad subscript classification");
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // test & propagate remaining RDIVs
 | |
|       for (unsigned SJ : Mivs.set_bits()) {
 | |
|         if (Pair[SJ].Classification == Subscript::RDIV) {
 | |
|           LLVM_DEBUG(dbgs() << "RDIV test\n");
 | |
|           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
 | |
|             return nullptr;
 | |
|           // I don't yet understand how to propagate RDIV results
 | |
|           Mivs.reset(SJ);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // test remaining MIVs
 | |
|       // This code is temporary.
 | |
|       // Better to somehow test all remaining subscripts simultaneously.
 | |
|       for (unsigned SJ : Mivs.set_bits()) {
 | |
|         if (Pair[SJ].Classification == Subscript::MIV) {
 | |
|           LLVM_DEBUG(dbgs() << "MIV test\n");
 | |
|           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
 | |
|             return nullptr;
 | |
|         }
 | |
|         else
 | |
|           llvm_unreachable("expected only MIV subscripts at this point");
 | |
|       }
 | |
| 
 | |
|       // update Result.DV from constraint vector
 | |
|       LLVM_DEBUG(dbgs() << "    updating\n");
 | |
|       for (unsigned SJ : ConstrainedLevels.set_bits()) {
 | |
|         if (SJ > CommonLevels)
 | |
|           break;
 | |
|         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
 | |
|         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
 | |
|           return nullptr;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure the Scalar flags are set correctly.
 | |
|   SmallBitVector CompleteLoops(MaxLevels + 1);
 | |
|   for (unsigned SI = 0; SI < Pairs; ++SI)
 | |
|     CompleteLoops |= Pair[SI].Loops;
 | |
|   for (unsigned II = 1; II <= CommonLevels; ++II)
 | |
|     if (CompleteLoops[II])
 | |
|       Result.DV[II - 1].Scalar = false;
 | |
| 
 | |
|   if (PossiblyLoopIndependent) {
 | |
|     // Make sure the LoopIndependent flag is set correctly.
 | |
|     // All directions must include equal, otherwise no
 | |
|     // loop-independent dependence is possible.
 | |
|     for (unsigned II = 1; II <= CommonLevels; ++II) {
 | |
|       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
 | |
|         Result.LoopIndependent = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     // On the other hand, if all directions are equal and there's no
 | |
|     // loop-independent dependence possible, then no dependence exists.
 | |
|     bool AllEqual = true;
 | |
|     for (unsigned II = 1; II <= CommonLevels; ++II) {
 | |
|       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
 | |
|         AllEqual = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (AllEqual)
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   return std::make_unique<FullDependence>(std::move(Result));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // getSplitIteration -
 | |
| // Rather than spend rarely-used space recording the splitting iteration
 | |
| // during the Weak-Crossing SIV test, we re-compute it on demand.
 | |
| // The re-computation is basically a repeat of the entire dependence test,
 | |
| // though simplified since we know that the dependence exists.
 | |
| // It's tedious, since we must go through all propagations, etc.
 | |
| //
 | |
| // Care is required to keep this code up to date with respect to the routine
 | |
| // above, depends().
 | |
| //
 | |
| // Generally, the dependence analyzer will be used to build
 | |
| // a dependence graph for a function (basically a map from instructions
 | |
| // to dependences). Looking for cycles in the graph shows us loops
 | |
| // that cannot be trivially vectorized/parallelized.
 | |
| //
 | |
| // We can try to improve the situation by examining all the dependences
 | |
| // that make up the cycle, looking for ones we can break.
 | |
| // Sometimes, peeling the first or last iteration of a loop will break
 | |
| // dependences, and we've got flags for those possibilities.
 | |
| // Sometimes, splitting a loop at some other iteration will do the trick,
 | |
| // and we've got a flag for that case. Rather than waste the space to
 | |
| // record the exact iteration (since we rarely know), we provide
 | |
| // a method that calculates the iteration. It's a drag that it must work
 | |
| // from scratch, but wonderful in that it's possible.
 | |
| //
 | |
| // Here's an example:
 | |
| //
 | |
| //    for (i = 0; i < 10; i++)
 | |
| //        A[i] = ...
 | |
| //        ... = A[11 - i]
 | |
| //
 | |
| // There's a loop-carried flow dependence from the store to the load,
 | |
| // found by the weak-crossing SIV test. The dependence will have a flag,
 | |
| // indicating that the dependence can be broken by splitting the loop.
 | |
| // Calling getSplitIteration will return 5.
 | |
| // Splitting the loop breaks the dependence, like so:
 | |
| //
 | |
| //    for (i = 0; i <= 5; i++)
 | |
| //        A[i] = ...
 | |
| //        ... = A[11 - i]
 | |
| //    for (i = 6; i < 10; i++)
 | |
| //        A[i] = ...
 | |
| //        ... = A[11 - i]
 | |
| //
 | |
| // breaks the dependence and allows us to vectorize/parallelize
 | |
| // both loops.
 | |
| const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
 | |
|                                               unsigned SplitLevel) {
 | |
|   assert(Dep.isSplitable(SplitLevel) &&
 | |
|          "Dep should be splitable at SplitLevel");
 | |
|   Instruction *Src = Dep.getSrc();
 | |
|   Instruction *Dst = Dep.getDst();
 | |
|   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
 | |
|   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
 | |
|   assert(isLoadOrStore(Src));
 | |
|   assert(isLoadOrStore(Dst));
 | |
|   Value *SrcPtr = getLoadStorePointerOperand(Src);
 | |
|   Value *DstPtr = getLoadStorePointerOperand(Dst);
 | |
|   assert(underlyingObjectsAlias(
 | |
|              AA, F->getParent()->getDataLayout(), MemoryLocation::get(Dst),
 | |
|              MemoryLocation::get(Src)) == AliasResult::MustAlias);
 | |
| 
 | |
|   // establish loop nesting levels
 | |
|   establishNestingLevels(Src, Dst);
 | |
| 
 | |
|   FullDependence Result(Src, Dst, false, CommonLevels);
 | |
| 
 | |
|   unsigned Pairs = 1;
 | |
|   SmallVector<Subscript, 2> Pair(Pairs);
 | |
|   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
 | |
|   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
 | |
|   Pair[0].Src = SrcSCEV;
 | |
|   Pair[0].Dst = DstSCEV;
 | |
| 
 | |
|   if (Delinearize) {
 | |
|     if (tryDelinearize(Src, Dst, Pair)) {
 | |
|       LLVM_DEBUG(dbgs() << "    delinearized\n");
 | |
|       Pairs = Pair.size();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned P = 0; P < Pairs; ++P) {
 | |
|     Pair[P].Loops.resize(MaxLevels + 1);
 | |
|     Pair[P].GroupLoops.resize(MaxLevels + 1);
 | |
|     Pair[P].Group.resize(Pairs);
 | |
|     removeMatchingExtensions(&Pair[P]);
 | |
|     Pair[P].Classification =
 | |
|       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
 | |
|                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
 | |
|                    Pair[P].Loops);
 | |
|     Pair[P].GroupLoops = Pair[P].Loops;
 | |
|     Pair[P].Group.set(P);
 | |
|   }
 | |
| 
 | |
|   SmallBitVector Separable(Pairs);
 | |
|   SmallBitVector Coupled(Pairs);
 | |
| 
 | |
|   // partition subscripts into separable and minimally-coupled groups
 | |
|   for (unsigned SI = 0; SI < Pairs; ++SI) {
 | |
|     if (Pair[SI].Classification == Subscript::NonLinear) {
 | |
|       // ignore these, but collect loops for later
 | |
|       collectCommonLoops(Pair[SI].Src,
 | |
|                          LI->getLoopFor(Src->getParent()),
 | |
|                          Pair[SI].Loops);
 | |
|       collectCommonLoops(Pair[SI].Dst,
 | |
|                          LI->getLoopFor(Dst->getParent()),
 | |
|                          Pair[SI].Loops);
 | |
|       Result.Consistent = false;
 | |
|     }
 | |
|     else if (Pair[SI].Classification == Subscript::ZIV)
 | |
|       Separable.set(SI);
 | |
|     else {
 | |
|       // SIV, RDIV, or MIV, so check for coupled group
 | |
|       bool Done = true;
 | |
|       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
 | |
|         SmallBitVector Intersection = Pair[SI].GroupLoops;
 | |
|         Intersection &= Pair[SJ].GroupLoops;
 | |
|         if (Intersection.any()) {
 | |
|           // accumulate set of all the loops in group
 | |
|           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
 | |
|           // accumulate set of all subscripts in group
 | |
|           Pair[SJ].Group |= Pair[SI].Group;
 | |
|           Done = false;
 | |
|         }
 | |
|       }
 | |
|       if (Done) {
 | |
|         if (Pair[SI].Group.count() == 1)
 | |
|           Separable.set(SI);
 | |
|         else
 | |
|           Coupled.set(SI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Constraint NewConstraint;
 | |
|   NewConstraint.setAny(SE);
 | |
| 
 | |
|   // test separable subscripts
 | |
|   for (unsigned SI : Separable.set_bits()) {
 | |
|     switch (Pair[SI].Classification) {
 | |
|     case Subscript::SIV: {
 | |
|       unsigned Level;
 | |
|       const SCEV *SplitIter = nullptr;
 | |
|       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
 | |
|                      Result, NewConstraint, SplitIter);
 | |
|       if (Level == SplitLevel) {
 | |
|         assert(SplitIter != nullptr);
 | |
|         return SplitIter;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case Subscript::ZIV:
 | |
|     case Subscript::RDIV:
 | |
|     case Subscript::MIV:
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("subscript has unexpected classification");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Coupled.count()) {
 | |
|     // test coupled subscript groups
 | |
|     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
 | |
|     for (unsigned II = 0; II <= MaxLevels; ++II)
 | |
|       Constraints[II].setAny(SE);
 | |
|     for (unsigned SI : Coupled.set_bits()) {
 | |
|       SmallBitVector Group(Pair[SI].Group);
 | |
|       SmallBitVector Sivs(Pairs);
 | |
|       SmallBitVector Mivs(Pairs);
 | |
|       SmallBitVector ConstrainedLevels(MaxLevels + 1);
 | |
|       for (unsigned SJ : Group.set_bits()) {
 | |
|         if (Pair[SJ].Classification == Subscript::SIV)
 | |
|           Sivs.set(SJ);
 | |
|         else
 | |
|           Mivs.set(SJ);
 | |
|       }
 | |
|       while (Sivs.any()) {
 | |
|         bool Changed = false;
 | |
|         for (unsigned SJ : Sivs.set_bits()) {
 | |
|           // SJ is an SIV subscript that's part of the current coupled group
 | |
|           unsigned Level;
 | |
|           const SCEV *SplitIter = nullptr;
 | |
|           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
 | |
|                          Result, NewConstraint, SplitIter);
 | |
|           if (Level == SplitLevel && SplitIter)
 | |
|             return SplitIter;
 | |
|           ConstrainedLevels.set(Level);
 | |
|           if (intersectConstraints(&Constraints[Level], &NewConstraint))
 | |
|             Changed = true;
 | |
|           Sivs.reset(SJ);
 | |
|         }
 | |
|         if (Changed) {
 | |
|           // propagate, possibly creating new SIVs and ZIVs
 | |
|           for (unsigned SJ : Mivs.set_bits()) {
 | |
|             // SJ is an MIV subscript that's part of the current coupled group
 | |
|             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
 | |
|                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
 | |
|               Pair[SJ].Classification =
 | |
|                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
 | |
|                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
 | |
|                              Pair[SJ].Loops);
 | |
|               switch (Pair[SJ].Classification) {
 | |
|               case Subscript::ZIV:
 | |
|                 Mivs.reset(SJ);
 | |
|                 break;
 | |
|               case Subscript::SIV:
 | |
|                 Sivs.set(SJ);
 | |
|                 Mivs.reset(SJ);
 | |
|                 break;
 | |
|               case Subscript::RDIV:
 | |
|               case Subscript::MIV:
 | |
|                 break;
 | |
|               default:
 | |
|                 llvm_unreachable("bad subscript classification");
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("somehow reached end of routine");
 | |
|   return nullptr;
 | |
| }
 |