793 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			793 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass statically checks for common and easily-identified constructs
 | |
| // which produce undefined or likely unintended behavior in LLVM IR.
 | |
| //
 | |
| // It is not a guarantee of correctness, in two ways. First, it isn't
 | |
| // comprehensive. There are checks which could be done statically which are
 | |
| // not yet implemented. Some of these are indicated by TODO comments, but
 | |
| // those aren't comprehensive either. Second, many conditions cannot be
 | |
| // checked statically. This pass does no dynamic instrumentation, so it
 | |
| // can't check for all possible problems.
 | |
| //
 | |
| // Another limitation is that it assumes all code will be executed. A store
 | |
| // through a null pointer in a basic block which is never reached is harmless,
 | |
| // but this pass will warn about it anyway. This is the main reason why most
 | |
| // of these checks live here instead of in the Verifier pass.
 | |
| //
 | |
| // Optimization passes may make conditions that this pass checks for more or
 | |
| // less obvious. If an optimization pass appears to be introducing a warning,
 | |
| // it may be that the optimization pass is merely exposing an existing
 | |
| // condition in the code.
 | |
| //
 | |
| // This code may be run before instcombine. In many cases, instcombine checks
 | |
| // for the same kinds of things and turns instructions with undefined behavior
 | |
| // into unreachable (or equivalent). Because of this, this pass makes some
 | |
| // effort to look through bitcasts and so on.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Lint.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LegacyPassManager.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <string>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| namespace MemRef {
 | |
| static const unsigned Read = 1;
 | |
| static const unsigned Write = 2;
 | |
| static const unsigned Callee = 4;
 | |
| static const unsigned Branchee = 8;
 | |
| } // end namespace MemRef
 | |
| 
 | |
| class Lint : public InstVisitor<Lint> {
 | |
|   friend class InstVisitor<Lint>;
 | |
| 
 | |
|   void visitFunction(Function &F);
 | |
| 
 | |
|   void visitCallBase(CallBase &CB);
 | |
|   void visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
 | |
|                             MaybeAlign Alignment, Type *Ty, unsigned Flags);
 | |
|   void visitEHBeginCatch(IntrinsicInst *II);
 | |
|   void visitEHEndCatch(IntrinsicInst *II);
 | |
| 
 | |
|   void visitReturnInst(ReturnInst &I);
 | |
|   void visitLoadInst(LoadInst &I);
 | |
|   void visitStoreInst(StoreInst &I);
 | |
|   void visitXor(BinaryOperator &I);
 | |
|   void visitSub(BinaryOperator &I);
 | |
|   void visitLShr(BinaryOperator &I);
 | |
|   void visitAShr(BinaryOperator &I);
 | |
|   void visitShl(BinaryOperator &I);
 | |
|   void visitSDiv(BinaryOperator &I);
 | |
|   void visitUDiv(BinaryOperator &I);
 | |
|   void visitSRem(BinaryOperator &I);
 | |
|   void visitURem(BinaryOperator &I);
 | |
|   void visitAllocaInst(AllocaInst &I);
 | |
|   void visitVAArgInst(VAArgInst &I);
 | |
|   void visitIndirectBrInst(IndirectBrInst &I);
 | |
|   void visitExtractElementInst(ExtractElementInst &I);
 | |
|   void visitInsertElementInst(InsertElementInst &I);
 | |
|   void visitUnreachableInst(UnreachableInst &I);
 | |
| 
 | |
|   Value *findValue(Value *V, bool OffsetOk) const;
 | |
|   Value *findValueImpl(Value *V, bool OffsetOk,
 | |
|                        SmallPtrSetImpl<Value *> &Visited) const;
 | |
| 
 | |
| public:
 | |
|   Module *Mod;
 | |
|   const DataLayout *DL;
 | |
|   AliasAnalysis *AA;
 | |
|   AssumptionCache *AC;
 | |
|   DominatorTree *DT;
 | |
|   TargetLibraryInfo *TLI;
 | |
| 
 | |
|   std::string Messages;
 | |
|   raw_string_ostream MessagesStr;
 | |
| 
 | |
|   Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA,
 | |
|        AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI)
 | |
|       : Mod(Mod), DL(DL), AA(AA), AC(AC), DT(DT), TLI(TLI),
 | |
|         MessagesStr(Messages) {}
 | |
| 
 | |
|   void WriteValues(ArrayRef<const Value *> Vs) {
 | |
|     for (const Value *V : Vs) {
 | |
|       if (!V)
 | |
|         continue;
 | |
|       if (isa<Instruction>(V)) {
 | |
|         MessagesStr << *V << '\n';
 | |
|       } else {
 | |
|         V->printAsOperand(MessagesStr, true, Mod);
 | |
|         MessagesStr << '\n';
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// A check failed, so printout out the condition and the message.
 | |
|   ///
 | |
|   /// This provides a nice place to put a breakpoint if you want to see why
 | |
|   /// something is not correct.
 | |
|   void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
 | |
| 
 | |
|   /// A check failed (with values to print).
 | |
|   ///
 | |
|   /// This calls the Message-only version so that the above is easier to set
 | |
|   /// a breakpoint on.
 | |
|   template <typename T1, typename... Ts>
 | |
|   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
 | |
|     CheckFailed(Message);
 | |
|     WriteValues({V1, Vs...});
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // Check - We know that cond should be true, if not print an error message.
 | |
| #define Check(C, ...)                                                          \
 | |
|   do {                                                                         \
 | |
|     if (!(C)) {                                                                \
 | |
|       CheckFailed(__VA_ARGS__);                                                \
 | |
|       return;                                                                  \
 | |
|     }                                                                          \
 | |
|   } while (false)
 | |
| 
 | |
| void Lint::visitFunction(Function &F) {
 | |
|   // This isn't undefined behavior, it's just a little unusual, and it's a
 | |
|   // fairly common mistake to neglect to name a function.
 | |
|   Check(F.hasName() || F.hasLocalLinkage(),
 | |
|         "Unusual: Unnamed function with non-local linkage", &F);
 | |
| 
 | |
|   // TODO: Check for irreducible control flow.
 | |
| }
 | |
| 
 | |
| void Lint::visitCallBase(CallBase &I) {
 | |
|   Value *Callee = I.getCalledOperand();
 | |
| 
 | |
|   visitMemoryReference(I, MemoryLocation::getAfter(Callee), None, nullptr,
 | |
|                        MemRef::Callee);
 | |
| 
 | |
|   if (Function *F = dyn_cast<Function>(findValue(Callee,
 | |
|                                                  /*OffsetOk=*/false))) {
 | |
|     Check(I.getCallingConv() == F->getCallingConv(),
 | |
|           "Undefined behavior: Caller and callee calling convention differ",
 | |
|           &I);
 | |
| 
 | |
|     FunctionType *FT = F->getFunctionType();
 | |
|     unsigned NumActualArgs = I.arg_size();
 | |
| 
 | |
|     Check(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
 | |
|                          : FT->getNumParams() == NumActualArgs,
 | |
|           "Undefined behavior: Call argument count mismatches callee "
 | |
|           "argument count",
 | |
|           &I);
 | |
| 
 | |
|     Check(FT->getReturnType() == I.getType(),
 | |
|           "Undefined behavior: Call return type mismatches "
 | |
|           "callee return type",
 | |
|           &I);
 | |
| 
 | |
|     // Check argument types (in case the callee was casted) and attributes.
 | |
|     // TODO: Verify that caller and callee attributes are compatible.
 | |
|     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
 | |
|     auto AI = I.arg_begin(), AE = I.arg_end();
 | |
|     for (; AI != AE; ++AI) {
 | |
|       Value *Actual = *AI;
 | |
|       if (PI != PE) {
 | |
|         Argument *Formal = &*PI++;
 | |
|         Check(Formal->getType() == Actual->getType(),
 | |
|               "Undefined behavior: Call argument type mismatches "
 | |
|               "callee parameter type",
 | |
|               &I);
 | |
| 
 | |
|         // Check that noalias arguments don't alias other arguments. This is
 | |
|         // not fully precise because we don't know the sizes of the dereferenced
 | |
|         // memory regions.
 | |
|         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
 | |
|           AttributeList PAL = I.getAttributes();
 | |
|           unsigned ArgNo = 0;
 | |
|           for (auto BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) {
 | |
|             // Skip ByVal arguments since they will be memcpy'd to the callee's
 | |
|             // stack so we're not really passing the pointer anyway.
 | |
|             if (PAL.hasParamAttr(ArgNo, Attribute::ByVal))
 | |
|               continue;
 | |
|             // If both arguments are readonly, they have no dependence.
 | |
|             if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo))
 | |
|               continue;
 | |
|             if (AI != BI && (*BI)->getType()->isPointerTy()) {
 | |
|               AliasResult Result = AA->alias(*AI, *BI);
 | |
|               Check(Result != AliasResult::MustAlias &&
 | |
|                         Result != AliasResult::PartialAlias,
 | |
|                     "Unusual: noalias argument aliases another argument", &I);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Check that an sret argument points to valid memory.
 | |
|         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
 | |
|           Type *Ty = Formal->getParamStructRetType();
 | |
|           MemoryLocation Loc(
 | |
|               Actual, LocationSize::precise(DL->getTypeStoreSize(Ty)));
 | |
|           visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty,
 | |
|                                MemRef::Read | MemRef::Write);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const auto *CI = dyn_cast<CallInst>(&I)) {
 | |
|     if (CI->isTailCall()) {
 | |
|       const AttributeList &PAL = CI->getAttributes();
 | |
|       unsigned ArgNo = 0;
 | |
|       for (Value *Arg : I.args()) {
 | |
|         // Skip ByVal arguments since they will be memcpy'd to the callee's
 | |
|         // stack anyway.
 | |
|         if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal))
 | |
|           continue;
 | |
|         Value *Obj = findValue(Arg, /*OffsetOk=*/true);
 | |
|         Check(!isa<AllocaInst>(Obj),
 | |
|               "Undefined behavior: Call with \"tail\" keyword references "
 | |
|               "alloca",
 | |
|               &I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default:
 | |
|       break;
 | |
| 
 | |
|       // TODO: Check more intrinsics
 | |
| 
 | |
|     case Intrinsic::memcpy: {
 | |
|       MemCpyInst *MCI = cast<MemCpyInst>(&I);
 | |
|       visitMemoryReference(I, MemoryLocation::getForDest(MCI),
 | |
|                            MCI->getDestAlign(), nullptr, MemRef::Write);
 | |
|       visitMemoryReference(I, MemoryLocation::getForSource(MCI),
 | |
|                            MCI->getSourceAlign(), nullptr, MemRef::Read);
 | |
| 
 | |
|       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
 | |
|       // isn't expressive enough for what we really want to do. Known partial
 | |
|       // overlap is not distinguished from the case where nothing is known.
 | |
|       auto Size = LocationSize::afterPointer();
 | |
|       if (const ConstantInt *Len =
 | |
|               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
 | |
|                                               /*OffsetOk=*/false)))
 | |
|         if (Len->getValue().isIntN(32))
 | |
|           Size = LocationSize::precise(Len->getValue().getZExtValue());
 | |
|       Check(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
 | |
|                 AliasResult::MustAlias,
 | |
|             "Undefined behavior: memcpy source and destination overlap", &I);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::memcpy_inline: {
 | |
|       MemCpyInlineInst *MCII = cast<MemCpyInlineInst>(&I);
 | |
|       const uint64_t Size = MCII->getLength()->getValue().getLimitedValue();
 | |
|       visitMemoryReference(I, MemoryLocation::getForDest(MCII),
 | |
|                            MCII->getDestAlign(), nullptr, MemRef::Write);
 | |
|       visitMemoryReference(I, MemoryLocation::getForSource(MCII),
 | |
|                            MCII->getSourceAlign(), nullptr, MemRef::Read);
 | |
| 
 | |
|       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
 | |
|       // isn't expressive enough for what we really want to do. Known partial
 | |
|       // overlap is not distinguished from the case where nothing is known.
 | |
|       const LocationSize LS = LocationSize::precise(Size);
 | |
|       Check(AA->alias(MCII->getSource(), LS, MCII->getDest(), LS) !=
 | |
|                 AliasResult::MustAlias,
 | |
|             "Undefined behavior: memcpy source and destination overlap", &I);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::memmove: {
 | |
|       MemMoveInst *MMI = cast<MemMoveInst>(&I);
 | |
|       visitMemoryReference(I, MemoryLocation::getForDest(MMI),
 | |
|                            MMI->getDestAlign(), nullptr, MemRef::Write);
 | |
|       visitMemoryReference(I, MemoryLocation::getForSource(MMI),
 | |
|                            MMI->getSourceAlign(), nullptr, MemRef::Read);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::memset: {
 | |
|       MemSetInst *MSI = cast<MemSetInst>(&I);
 | |
|       visitMemoryReference(I, MemoryLocation::getForDest(MSI),
 | |
|                            MSI->getDestAlign(), nullptr, MemRef::Write);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::memset_inline: {
 | |
|       MemSetInlineInst *MSII = cast<MemSetInlineInst>(&I);
 | |
|       visitMemoryReference(I, MemoryLocation::getForDest(MSII),
 | |
|                            MSII->getDestAlign(), nullptr, MemRef::Write);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::vastart:
 | |
|       Check(I.getParent()->getParent()->isVarArg(),
 | |
|             "Undefined behavior: va_start called in a non-varargs function",
 | |
|             &I);
 | |
| 
 | |
|       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None,
 | |
|                            nullptr, MemRef::Read | MemRef::Write);
 | |
|       break;
 | |
|     case Intrinsic::vacopy:
 | |
|       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None,
 | |
|                            nullptr, MemRef::Write);
 | |
|       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI), None,
 | |
|                            nullptr, MemRef::Read);
 | |
|       break;
 | |
|     case Intrinsic::vaend:
 | |
|       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None,
 | |
|                            nullptr, MemRef::Read | MemRef::Write);
 | |
|       break;
 | |
| 
 | |
|     case Intrinsic::stackrestore:
 | |
|       // Stackrestore doesn't read or write memory, but it sets the
 | |
|       // stack pointer, which the compiler may read from or write to
 | |
|       // at any time, so check it for both readability and writeability.
 | |
|       visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None,
 | |
|                            nullptr, MemRef::Read | MemRef::Write);
 | |
|       break;
 | |
|     case Intrinsic::get_active_lane_mask:
 | |
|       if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1)))
 | |
|         Check(!TripCount->isZero(),
 | |
|               "get_active_lane_mask: operand #2 "
 | |
|               "must be greater than 0",
 | |
|               &I);
 | |
|       break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Lint::visitReturnInst(ReturnInst &I) {
 | |
|   Function *F = I.getParent()->getParent();
 | |
|   Check(!F->doesNotReturn(),
 | |
|         "Unusual: Return statement in function with noreturn attribute", &I);
 | |
| 
 | |
|   if (Value *V = I.getReturnValue()) {
 | |
|     Value *Obj = findValue(V, /*OffsetOk=*/true);
 | |
|     Check(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // TODO: Check that the reference is in bounds.
 | |
| // TODO: Check readnone/readonly function attributes.
 | |
| void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
 | |
|                                 MaybeAlign Align, Type *Ty, unsigned Flags) {
 | |
|   // If no memory is being referenced, it doesn't matter if the pointer
 | |
|   // is valid.
 | |
|   if (Loc.Size.isZero())
 | |
|     return;
 | |
| 
 | |
|   Value *Ptr = const_cast<Value *>(Loc.Ptr);
 | |
|   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
 | |
|   Check(!isa<ConstantPointerNull>(UnderlyingObject),
 | |
|         "Undefined behavior: Null pointer dereference", &I);
 | |
|   Check(!isa<UndefValue>(UnderlyingObject),
 | |
|         "Undefined behavior: Undef pointer dereference", &I);
 | |
|   Check(!isa<ConstantInt>(UnderlyingObject) ||
 | |
|             !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
 | |
|         "Unusual: All-ones pointer dereference", &I);
 | |
|   Check(!isa<ConstantInt>(UnderlyingObject) ||
 | |
|             !cast<ConstantInt>(UnderlyingObject)->isOne(),
 | |
|         "Unusual: Address one pointer dereference", &I);
 | |
| 
 | |
|   if (Flags & MemRef::Write) {
 | |
|     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
 | |
|       Check(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
 | |
|             &I);
 | |
|     Check(!isa<Function>(UnderlyingObject) &&
 | |
|               !isa<BlockAddress>(UnderlyingObject),
 | |
|           "Undefined behavior: Write to text section", &I);
 | |
|   }
 | |
|   if (Flags & MemRef::Read) {
 | |
|     Check(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
 | |
|           &I);
 | |
|     Check(!isa<BlockAddress>(UnderlyingObject),
 | |
|           "Undefined behavior: Load from block address", &I);
 | |
|   }
 | |
|   if (Flags & MemRef::Callee) {
 | |
|     Check(!isa<BlockAddress>(UnderlyingObject),
 | |
|           "Undefined behavior: Call to block address", &I);
 | |
|   }
 | |
|   if (Flags & MemRef::Branchee) {
 | |
|     Check(!isa<Constant>(UnderlyingObject) ||
 | |
|               isa<BlockAddress>(UnderlyingObject),
 | |
|           "Undefined behavior: Branch to non-blockaddress", &I);
 | |
|   }
 | |
| 
 | |
|   // Check for buffer overflows and misalignment.
 | |
|   // Only handles memory references that read/write something simple like an
 | |
|   // alloca instruction or a global variable.
 | |
|   int64_t Offset = 0;
 | |
|   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
 | |
|     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
 | |
|     // something we can handle and if so extract the size of this base object
 | |
|     // along with its alignment.
 | |
|     uint64_t BaseSize = MemoryLocation::UnknownSize;
 | |
|     MaybeAlign BaseAlign;
 | |
| 
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
 | |
|       Type *ATy = AI->getAllocatedType();
 | |
|       if (!AI->isArrayAllocation() && ATy->isSized())
 | |
|         BaseSize = DL->getTypeAllocSize(ATy);
 | |
|       BaseAlign = AI->getAlign();
 | |
|     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
 | |
|       // If the global may be defined differently in another compilation unit
 | |
|       // then don't warn about funky memory accesses.
 | |
|       if (GV->hasDefinitiveInitializer()) {
 | |
|         Type *GTy = GV->getValueType();
 | |
|         if (GTy->isSized())
 | |
|           BaseSize = DL->getTypeAllocSize(GTy);
 | |
|         BaseAlign = GV->getAlign();
 | |
|         if (!BaseAlign && GTy->isSized())
 | |
|           BaseAlign = DL->getABITypeAlign(GTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Accesses from before the start or after the end of the object are not
 | |
|     // defined.
 | |
|     Check(!Loc.Size.hasValue() || BaseSize == MemoryLocation::UnknownSize ||
 | |
|               (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize),
 | |
|           "Undefined behavior: Buffer overflow", &I);
 | |
| 
 | |
|     // Accesses that say that the memory is more aligned than it is are not
 | |
|     // defined.
 | |
|     if (!Align && Ty && Ty->isSized())
 | |
|       Align = DL->getABITypeAlign(Ty);
 | |
|     if (BaseAlign && Align)
 | |
|       Check(*Align <= commonAlignment(*BaseAlign, Offset),
 | |
|             "Undefined behavior: Memory reference address is misaligned", &I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Lint::visitLoadInst(LoadInst &I) {
 | |
|   visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(),
 | |
|                        MemRef::Read);
 | |
| }
 | |
| 
 | |
| void Lint::visitStoreInst(StoreInst &I) {
 | |
|   visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(),
 | |
|                        I.getOperand(0)->getType(), MemRef::Write);
 | |
| }
 | |
| 
 | |
| void Lint::visitXor(BinaryOperator &I) {
 | |
|   Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
 | |
|         "Undefined result: xor(undef, undef)", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitSub(BinaryOperator &I) {
 | |
|   Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
 | |
|         "Undefined result: sub(undef, undef)", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitLShr(BinaryOperator &I) {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
 | |
|                                                         /*OffsetOk=*/false)))
 | |
|     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
 | |
|           "Undefined result: Shift count out of range", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitAShr(BinaryOperator &I) {
 | |
|   if (ConstantInt *CI =
 | |
|           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
 | |
|     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
 | |
|           "Undefined result: Shift count out of range", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitShl(BinaryOperator &I) {
 | |
|   if (ConstantInt *CI =
 | |
|           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
 | |
|     Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
 | |
|           "Undefined result: Shift count out of range", &I);
 | |
| }
 | |
| 
 | |
| static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
 | |
|                    AssumptionCache *AC) {
 | |
|   // Assume undef could be zero.
 | |
|   if (isa<UndefValue>(V))
 | |
|     return true;
 | |
| 
 | |
|   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
 | |
|   if (!VecTy) {
 | |
|     KnownBits Known =
 | |
|         computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
 | |
|     return Known.isZero();
 | |
|   }
 | |
| 
 | |
|   // Per-component check doesn't work with zeroinitializer
 | |
|   Constant *C = dyn_cast<Constant>(V);
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   if (C->isZeroValue())
 | |
|     return true;
 | |
| 
 | |
|   // For a vector, KnownZero will only be true if all values are zero, so check
 | |
|   // this per component
 | |
|   for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements();
 | |
|        I != N; ++I) {
 | |
|     Constant *Elem = C->getAggregateElement(I);
 | |
|     if (isa<UndefValue>(Elem))
 | |
|       return true;
 | |
| 
 | |
|     KnownBits Known = computeKnownBits(Elem, DL);
 | |
|     if (Known.isZero())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Lint::visitSDiv(BinaryOperator &I) {
 | |
|   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
 | |
|         "Undefined behavior: Division by zero", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitUDiv(BinaryOperator &I) {
 | |
|   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
 | |
|         "Undefined behavior: Division by zero", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitSRem(BinaryOperator &I) {
 | |
|   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
 | |
|         "Undefined behavior: Division by zero", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitURem(BinaryOperator &I) {
 | |
|   Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
 | |
|         "Undefined behavior: Division by zero", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitAllocaInst(AllocaInst &I) {
 | |
|   if (isa<ConstantInt>(I.getArraySize()))
 | |
|     // This isn't undefined behavior, it's just an obvious pessimization.
 | |
|     Check(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
 | |
|           "Pessimization: Static alloca outside of entry block", &I);
 | |
| 
 | |
|   // TODO: Check for an unusual size (MSB set?)
 | |
| }
 | |
| 
 | |
| void Lint::visitVAArgInst(VAArgInst &I) {
 | |
|   visitMemoryReference(I, MemoryLocation::get(&I), None, nullptr,
 | |
|                        MemRef::Read | MemRef::Write);
 | |
| }
 | |
| 
 | |
| void Lint::visitIndirectBrInst(IndirectBrInst &I) {
 | |
|   visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()), None,
 | |
|                        nullptr, MemRef::Branchee);
 | |
| 
 | |
|   Check(I.getNumDestinations() != 0,
 | |
|         "Undefined behavior: indirectbr with no destinations", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitExtractElementInst(ExtractElementInst &I) {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
 | |
|                                                         /*OffsetOk=*/false)))
 | |
|     Check(
 | |
|         CI->getValue().ult(
 | |
|             cast<FixedVectorType>(I.getVectorOperandType())->getNumElements()),
 | |
|         "Undefined result: extractelement index out of range", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitInsertElementInst(InsertElementInst &I) {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
 | |
|                                                         /*OffsetOk=*/false)))
 | |
|     Check(CI->getValue().ult(
 | |
|               cast<FixedVectorType>(I.getType())->getNumElements()),
 | |
|           "Undefined result: insertelement index out of range", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitUnreachableInst(UnreachableInst &I) {
 | |
|   // This isn't undefined behavior, it's merely suspicious.
 | |
|   Check(&I == &I.getParent()->front() ||
 | |
|             std::prev(I.getIterator())->mayHaveSideEffects(),
 | |
|         "Unusual: unreachable immediately preceded by instruction without "
 | |
|         "side effects",
 | |
|         &I);
 | |
| }
 | |
| 
 | |
| /// findValue - Look through bitcasts and simple memory reference patterns
 | |
| /// to identify an equivalent, but more informative, value.  If OffsetOk
 | |
| /// is true, look through getelementptrs with non-zero offsets too.
 | |
| ///
 | |
| /// Most analysis passes don't require this logic, because instcombine
 | |
| /// will simplify most of these kinds of things away. But it's a goal of
 | |
| /// this Lint pass to be useful even on non-optimized IR.
 | |
| Value *Lint::findValue(Value *V, bool OffsetOk) const {
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
|   return findValueImpl(V, OffsetOk, Visited);
 | |
| }
 | |
| 
 | |
| /// findValueImpl - Implementation helper for findValue.
 | |
| Value *Lint::findValueImpl(Value *V, bool OffsetOk,
 | |
|                            SmallPtrSetImpl<Value *> &Visited) const {
 | |
|   // Detect self-referential values.
 | |
|   if (!Visited.insert(V).second)
 | |
|     return UndefValue::get(V->getType());
 | |
| 
 | |
|   // TODO: Look through sext or zext cast, when the result is known to
 | |
|   // be interpreted as signed or unsigned, respectively.
 | |
|   // TODO: Look through eliminable cast pairs.
 | |
|   // TODO: Look through calls with unique return values.
 | |
|   // TODO: Look through vector insert/extract/shuffle.
 | |
|   V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts();
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
 | |
|     BasicBlock::iterator BBI = L->getIterator();
 | |
|     BasicBlock *BB = L->getParent();
 | |
|     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
 | |
|     for (;;) {
 | |
|       if (!VisitedBlocks.insert(BB).second)
 | |
|         break;
 | |
|       if (Value *U =
 | |
|               FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
 | |
|         return findValueImpl(U, OffsetOk, Visited);
 | |
|       if (BBI != BB->begin())
 | |
|         break;
 | |
|       BB = BB->getUniquePredecessor();
 | |
|       if (!BB)
 | |
|         break;
 | |
|       BBI = BB->end();
 | |
|     }
 | |
|   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | |
|     if (Value *W = PN->hasConstantValue())
 | |
|       return findValueImpl(W, OffsetOk, Visited);
 | |
|   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
 | |
|     if (CI->isNoopCast(*DL))
 | |
|       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
 | |
|   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
 | |
|     if (Value *W =
 | |
|             FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices()))
 | |
|       if (W != V)
 | |
|         return findValueImpl(W, OffsetOk, Visited);
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     // Same as above, but for ConstantExpr instead of Instruction.
 | |
|     if (Instruction::isCast(CE->getOpcode())) {
 | |
|       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
 | |
|                                CE->getOperand(0)->getType(), CE->getType(),
 | |
|                                *DL))
 | |
|         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
 | |
|     } else if (CE->getOpcode() == Instruction::ExtractValue) {
 | |
|       ArrayRef<unsigned> Indices = CE->getIndices();
 | |
|       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
 | |
|         if (W != V)
 | |
|           return findValueImpl(W, OffsetOk, Visited);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // As a last resort, try SimplifyInstruction or constant folding.
 | |
|   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
 | |
|     if (Value *W = simplifyInstruction(Inst, {*DL, TLI, DT, AC}))
 | |
|       return findValueImpl(W, OffsetOk, Visited);
 | |
|   } else if (auto *C = dyn_cast<Constant>(V)) {
 | |
|     Value *W = ConstantFoldConstant(C, *DL, TLI);
 | |
|     if (W != V)
 | |
|       return findValueImpl(W, OffsetOk, Visited);
 | |
|   }
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   auto *Mod = F.getParent();
 | |
|   auto *DL = &F.getParent()->getDataLayout();
 | |
|   auto *AA = &AM.getResult<AAManager>(F);
 | |
|   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
 | |
|   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
 | |
|   Lint L(Mod, DL, AA, AC, DT, TLI);
 | |
|   L.visit(F);
 | |
|   dbgs() << L.MessagesStr.str();
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class LintLegacyPass : public FunctionPass {
 | |
| public:
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
|   LintLegacyPass() : FunctionPass(ID) {
 | |
|     initializeLintLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesAll();
 | |
|     AU.addRequired<AAResultsWrapperPass>();
 | |
|     AU.addRequired<AssumptionCacheTracker>();
 | |
|     AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   }
 | |
|   void print(raw_ostream &O, const Module *M) const override {}
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| char LintLegacyPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LintLegacyPass, "lint", "Statically lint-checks LLVM IR",
 | |
|                       false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_END(LintLegacyPass, "lint", "Statically lint-checks LLVM IR",
 | |
|                     false, true)
 | |
| 
 | |
| bool LintLegacyPass::runOnFunction(Function &F) {
 | |
|   auto *Mod = F.getParent();
 | |
|   auto *DL = &F.getParent()->getDataLayout();
 | |
|   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | |
|   Lint L(Mod, DL, AA, AC, DT, TLI);
 | |
|   L.visit(F);
 | |
|   dbgs() << L.MessagesStr.str();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Implement the public interfaces to this file...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FunctionPass *llvm::createLintLegacyPassPass() { return new LintLegacyPass(); }
 | |
| 
 | |
| /// lintFunction - Check a function for errors, printing messages on stderr.
 | |
| ///
 | |
| void llvm::lintFunction(const Function &f) {
 | |
|   Function &F = const_cast<Function &>(f);
 | |
|   assert(!F.isDeclaration() && "Cannot lint external functions");
 | |
| 
 | |
|   legacy::FunctionPassManager FPM(F.getParent());
 | |
|   auto *V = new LintLegacyPass();
 | |
|   FPM.add(V);
 | |
|   FPM.run(F);
 | |
| }
 | |
| 
 | |
| /// lintModule - Check a module for errors, printing messages on stderr.
 | |
| ///
 | |
| void llvm::lintModule(const Module &M) {
 | |
|   legacy::PassManager PM;
 | |
|   auto *V = new LintLegacyPass();
 | |
|   PM.add(V);
 | |
|   PM.run(const_cast<Module &>(M));
 | |
| }
 |