219 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements UnrolledInstAnalyzer class. It's used for predicting
 | |
| // potential effects that loop unrolling might have, such as enabling constant
 | |
| // propagation and other optimizations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LoopUnrollAnalyzer.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| /// Try to simplify instruction \param I using its SCEV expression.
 | |
| ///
 | |
| /// The idea is that some AddRec expressions become constants, which then
 | |
| /// could trigger folding of other instructions. However, that only happens
 | |
| /// for expressions whose start value is also constant, which isn't always the
 | |
| /// case. In another common and important case the start value is just some
 | |
| /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
 | |
| /// it along with the base address instead.
 | |
| bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) {
 | |
|   if (!SE.isSCEVable(I->getType()))
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *S = SE.getSCEV(I);
 | |
|   if (auto *SC = dyn_cast<SCEVConstant>(S)) {
 | |
|     SimplifiedValues[I] = SC->getValue();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If we have a loop invariant computation, we only need to compute it once.
 | |
|   // Given that, all but the first occurance are free.
 | |
|   if (!IterationNumber->isZero() && SE.isLoopInvariant(S, L))
 | |
|     return true;
 | |
| 
 | |
|   auto *AR = dyn_cast<SCEVAddRecExpr>(S);
 | |
|   if (!AR || AR->getLoop() != L)
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
 | |
|   // Check if the AddRec expression becomes a constant.
 | |
|   if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
 | |
|     SimplifiedValues[I] = SC->getValue();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check if the offset from the base address becomes a constant.
 | |
|   auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
 | |
|   if (!Base)
 | |
|     return false;
 | |
|   auto *Offset =
 | |
|       dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
 | |
|   if (!Offset)
 | |
|     return false;
 | |
|   SimplifiedAddress Address;
 | |
|   Address.Base = Base->getValue();
 | |
|   Address.Offset = Offset->getValue();
 | |
|   SimplifiedAddresses[I] = Address;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Try to simplify binary operator I.
 | |
| ///
 | |
| /// TODO: Probably it's worth to hoist the code for estimating the
 | |
| /// simplifications effects to a separate class, since we have a very similar
 | |
| /// code in InlineCost already.
 | |
| bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) {
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|   if (!isa<Constant>(LHS))
 | |
|     if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
 | |
|       LHS = SimpleLHS;
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
 | |
|       RHS = SimpleRHS;
 | |
| 
 | |
|   Value *SimpleV = nullptr;
 | |
|   const DataLayout &DL = I.getModule()->getDataLayout();
 | |
|   if (auto FI = dyn_cast<FPMathOperator>(&I))
 | |
|     SimpleV =
 | |
|         simplifyBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
 | |
|   else
 | |
|     SimpleV = simplifyBinOp(I.getOpcode(), LHS, RHS, DL);
 | |
| 
 | |
|   if (SimpleV) {
 | |
|     SimplifiedValues[&I] = SimpleV;
 | |
|     return true;
 | |
|   }
 | |
|   return Base::visitBinaryOperator(I);
 | |
| }
 | |
| 
 | |
| /// Try to fold load I.
 | |
| bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) {
 | |
|   Value *AddrOp = I.getPointerOperand();
 | |
| 
 | |
|   auto AddressIt = SimplifiedAddresses.find(AddrOp);
 | |
|   if (AddressIt == SimplifiedAddresses.end())
 | |
|     return false;
 | |
|   ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
 | |
| 
 | |
|   auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
 | |
|   // We're only interested in loads that can be completely folded to a
 | |
|   // constant.
 | |
|   if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
 | |
|     return false;
 | |
| 
 | |
|   ConstantDataSequential *CDS =
 | |
|       dyn_cast<ConstantDataSequential>(GV->getInitializer());
 | |
|   if (!CDS)
 | |
|     return false;
 | |
| 
 | |
|   // We might have a vector load from an array. FIXME: for now we just bail
 | |
|   // out in this case, but we should be able to resolve and simplify such
 | |
|   // loads.
 | |
|   if (CDS->getElementType() != I.getType())
 | |
|     return false;
 | |
| 
 | |
|   unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
 | |
|   if (SimplifiedAddrOp->getValue().getActiveBits() > 64)
 | |
|     return false;
 | |
|   int64_t SimplifiedAddrOpV = SimplifiedAddrOp->getSExtValue();
 | |
|   if (SimplifiedAddrOpV < 0) {
 | |
|     // FIXME: For now we conservatively ignore out of bound accesses, but
 | |
|     // we're allowed to perform the optimization in this case.
 | |
|     return false;
 | |
|   }
 | |
|   uint64_t Index = static_cast<uint64_t>(SimplifiedAddrOpV) / ElemSize;
 | |
|   if (Index >= CDS->getNumElements()) {
 | |
|     // FIXME: For now we conservatively ignore out of bound accesses, but
 | |
|     // we're allowed to perform the optimization in this case.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Constant *CV = CDS->getElementAsConstant(Index);
 | |
|   assert(CV && "Constant expected.");
 | |
|   SimplifiedValues[&I] = CV;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Try to simplify cast instruction.
 | |
| bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) {
 | |
|   Value *Op = I.getOperand(0);
 | |
|   if (Value *Simplified = SimplifiedValues.lookup(Op))
 | |
|     Op = Simplified;
 | |
| 
 | |
|   // The cast can be invalid, because SimplifiedValues contains results of SCEV
 | |
|   // analysis, which operates on integers (and, e.g., might convert i8* null to
 | |
|   // i32 0).
 | |
|   if (CastInst::castIsValid(I.getOpcode(), Op, I.getType())) {
 | |
|     const DataLayout &DL = I.getModule()->getDataLayout();
 | |
|     if (Value *V = simplifyCastInst(I.getOpcode(), Op, I.getType(), DL)) {
 | |
|       SimplifiedValues[&I] = V;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Base::visitCastInst(I);
 | |
| }
 | |
| 
 | |
| /// Try to simplify cmp instruction.
 | |
| bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) {
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|   // First try to handle simplified comparisons.
 | |
|   if (!isa<Constant>(LHS))
 | |
|     if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
 | |
|       LHS = SimpleLHS;
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
 | |
|       RHS = SimpleRHS;
 | |
| 
 | |
|   if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
 | |
|     auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
 | |
|     if (SimplifiedLHS != SimplifiedAddresses.end()) {
 | |
|       auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
 | |
|       if (SimplifiedRHS != SimplifiedAddresses.end()) {
 | |
|         SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
 | |
|         SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
 | |
|         if (LHSAddr.Base == RHSAddr.Base) {
 | |
|           LHS = LHSAddr.Offset;
 | |
|           RHS = RHSAddr.Offset;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const DataLayout &DL = I.getModule()->getDataLayout();
 | |
|   if (Value *V = simplifyCmpInst(I.getPredicate(), LHS, RHS, DL)) {
 | |
|     SimplifiedValues[&I] = V;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return Base::visitCmpInst(I);
 | |
| }
 | |
| 
 | |
| bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) {
 | |
|   // Run base visitor first. This way we can gather some useful for later
 | |
|   // analysis information.
 | |
|   if (Base::visitPHINode(PN))
 | |
|     return true;
 | |
| 
 | |
|   // The loop induction PHI nodes are definitionally free.
 | |
|   return PN.getParent() == L->getHeader();
 | |
| }
 | |
| 
 | |
| bool UnrolledInstAnalyzer::visitInstruction(Instruction &I) {
 | |
|   return simplifyInstWithSCEV(&I);
 | |
| }
 |