1212 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1212 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions identifies calls to builtin functions that allocate
 | |
| // or free memory.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/TargetFolder.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/Utils/Local.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <numeric>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "memory-builtins"
 | |
| 
 | |
| enum AllocType : uint8_t {
 | |
|   OpNewLike          = 1<<0, // allocates; never returns null
 | |
|   MallocLike         = 1<<1, // allocates; may return null
 | |
|   AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
 | |
|   CallocLike         = 1<<3, // allocates + bzero
 | |
|   ReallocLike        = 1<<4, // reallocates
 | |
|   StrDupLike         = 1<<5,
 | |
|   MallocOrOpNewLike  = MallocLike | OpNewLike,
 | |
|   MallocOrCallocLike = MallocLike | OpNewLike | CallocLike | AlignedAllocLike,
 | |
|   AllocLike          = MallocOrCallocLike | StrDupLike,
 | |
|   AnyAlloc           = AllocLike | ReallocLike
 | |
| };
 | |
| 
 | |
| enum class MallocFamily {
 | |
|   Malloc,
 | |
|   CPPNew,             // new(unsigned int)
 | |
|   CPPNewAligned,      // new(unsigned int, align_val_t)
 | |
|   CPPNewArray,        // new[](unsigned int)
 | |
|   CPPNewArrayAligned, // new[](unsigned long, align_val_t)
 | |
|   MSVCNew,            // new(unsigned int)
 | |
|   MSVCArrayNew,       // new[](unsigned int)
 | |
|   VecMalloc,
 | |
|   KmpcAllocShared,
 | |
| };
 | |
| 
 | |
| StringRef mangledNameForMallocFamily(const MallocFamily &Family) {
 | |
|   switch (Family) {
 | |
|   case MallocFamily::Malloc:
 | |
|     return "malloc";
 | |
|   case MallocFamily::CPPNew:
 | |
|     return "_Znwm";
 | |
|   case MallocFamily::CPPNewAligned:
 | |
|     return "_ZnwmSt11align_val_t";
 | |
|   case MallocFamily::CPPNewArray:
 | |
|     return "_Znam";
 | |
|   case MallocFamily::CPPNewArrayAligned:
 | |
|     return "_ZnamSt11align_val_t";
 | |
|   case MallocFamily::MSVCNew:
 | |
|     return "??2@YAPAXI@Z";
 | |
|   case MallocFamily::MSVCArrayNew:
 | |
|     return "??_U@YAPAXI@Z";
 | |
|   case MallocFamily::VecMalloc:
 | |
|     return "vec_malloc";
 | |
|   case MallocFamily::KmpcAllocShared:
 | |
|     return "__kmpc_alloc_shared";
 | |
|   }
 | |
|   llvm_unreachable("missing an alloc family");
 | |
| }
 | |
| 
 | |
| struct AllocFnsTy {
 | |
|   AllocType AllocTy;
 | |
|   unsigned NumParams;
 | |
|   // First and Second size parameters (or -1 if unused)
 | |
|   int FstParam, SndParam;
 | |
|   // Alignment parameter for aligned_alloc and aligned new
 | |
|   int AlignParam;
 | |
|   // Name of default allocator function to group malloc/free calls by family
 | |
|   MallocFamily Family;
 | |
| };
 | |
| 
 | |
| // clang-format off
 | |
| // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
 | |
| // know which functions are nounwind, noalias, nocapture parameters, etc.
 | |
| static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
 | |
|     {LibFunc_malloc,                            {MallocLike,       1,  0, -1, -1, MallocFamily::Malloc}},
 | |
|     {LibFunc_vec_malloc,                        {MallocLike,       1,  0, -1, -1, MallocFamily::VecMalloc}},
 | |
|     {LibFunc_valloc,                            {MallocLike,       1,  0, -1, -1, MallocFamily::Malloc}},
 | |
|     {LibFunc_Znwj,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned int)
 | |
|     {LibFunc_ZnwjRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned int, nothrow)
 | |
|     {LibFunc_ZnwjSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned int, align_val_t)
 | |
|     {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned int, align_val_t, nothrow)
 | |
|     {LibFunc_Znwm,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned long)
 | |
|     {LibFunc_ZnwmRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned long, nothrow)
 | |
|     {LibFunc_ZnwmSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned long, align_val_t)
 | |
|     {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned long, align_val_t, nothrow)
 | |
|     {LibFunc_Znaj,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned int)
 | |
|     {LibFunc_ZnajRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned int, nothrow)
 | |
|     {LibFunc_ZnajSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t)
 | |
|     {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow)
 | |
|     {LibFunc_Znam,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned long)
 | |
|     {LibFunc_ZnamRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned long, nothrow)
 | |
|     {LibFunc_ZnamSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t)
 | |
|     {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow)
 | |
|     {LibFunc_msvc_new_int,                      {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned int)
 | |
|     {LibFunc_msvc_new_int_nothrow,              {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned int, nothrow)
 | |
|     {LibFunc_msvc_new_longlong,                 {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned long long)
 | |
|     {LibFunc_msvc_new_longlong_nothrow,         {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned long long, nothrow)
 | |
|     {LibFunc_msvc_new_array_int,                {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned int)
 | |
|     {LibFunc_msvc_new_array_int_nothrow,        {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned int, nothrow)
 | |
|     {LibFunc_msvc_new_array_longlong,           {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned long long)
 | |
|     {LibFunc_msvc_new_array_longlong_nothrow,   {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned long long, nothrow)
 | |
|     {LibFunc_aligned_alloc,                     {AlignedAllocLike, 2,  1, -1,  0, MallocFamily::Malloc}},
 | |
|     {LibFunc_memalign,                          {AlignedAllocLike, 2,  1, -1,  0, MallocFamily::Malloc}},
 | |
|     {LibFunc_calloc,                            {CallocLike,       2,  0,  1, -1, MallocFamily::Malloc}},
 | |
|     {LibFunc_vec_calloc,                        {CallocLike,       2,  0,  1, -1, MallocFamily::VecMalloc}},
 | |
|     {LibFunc_realloc,                           {ReallocLike,      2,  1, -1, -1, MallocFamily::Malloc}},
 | |
|     {LibFunc_vec_realloc,                       {ReallocLike,      2,  1, -1, -1, MallocFamily::VecMalloc}},
 | |
|     {LibFunc_reallocf,                          {ReallocLike,      2,  1, -1, -1, MallocFamily::Malloc}},
 | |
|     {LibFunc_strdup,                            {StrDupLike,       1, -1, -1, -1, MallocFamily::Malloc}},
 | |
|     {LibFunc_dunder_strdup,                     {StrDupLike,       1, -1, -1, -1, MallocFamily::Malloc}},
 | |
|     {LibFunc_strndup,                           {StrDupLike,       2,  1, -1, -1, MallocFamily::Malloc}},
 | |
|     {LibFunc_dunder_strndup,                    {StrDupLike,       2,  1, -1, -1, MallocFamily::Malloc}},
 | |
|     {LibFunc___kmpc_alloc_shared,               {MallocLike,       1,  0, -1, -1, MallocFamily::KmpcAllocShared}},
 | |
| };
 | |
| // clang-format on
 | |
| 
 | |
| static const Function *getCalledFunction(const Value *V,
 | |
|                                          bool &IsNoBuiltin) {
 | |
|   // Don't care about intrinsics in this case.
 | |
|   if (isa<IntrinsicInst>(V))
 | |
|     return nullptr;
 | |
| 
 | |
|   const auto *CB = dyn_cast<CallBase>(V);
 | |
|   if (!CB)
 | |
|     return nullptr;
 | |
| 
 | |
|   IsNoBuiltin = CB->isNoBuiltin();
 | |
| 
 | |
|   if (const Function *Callee = CB->getCalledFunction())
 | |
|     return Callee;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Returns the allocation data for the given value if it's a call to a known
 | |
| /// allocation function.
 | |
| static Optional<AllocFnsTy>
 | |
| getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
 | |
|                              const TargetLibraryInfo *TLI) {
 | |
|   // Make sure that the function is available.
 | |
|   LibFunc TLIFn;
 | |
|   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
 | |
|     return None;
 | |
| 
 | |
|   const auto *Iter = find_if(
 | |
|       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
 | |
|         return P.first == TLIFn;
 | |
|       });
 | |
| 
 | |
|   if (Iter == std::end(AllocationFnData))
 | |
|     return None;
 | |
| 
 | |
|   const AllocFnsTy *FnData = &Iter->second;
 | |
|   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
 | |
|     return None;
 | |
| 
 | |
|   // Check function prototype.
 | |
|   int FstParam = FnData->FstParam;
 | |
|   int SndParam = FnData->SndParam;
 | |
|   FunctionType *FTy = Callee->getFunctionType();
 | |
| 
 | |
|   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
 | |
|       FTy->getNumParams() == FnData->NumParams &&
 | |
|       (FstParam < 0 ||
 | |
|        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
 | |
|         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
 | |
|       (SndParam < 0 ||
 | |
|        FTy->getParamType(SndParam)->isIntegerTy(32) ||
 | |
|        FTy->getParamType(SndParam)->isIntegerTy(64)))
 | |
|     return *FnData;
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
 | |
|                                               const TargetLibraryInfo *TLI) {
 | |
|   bool IsNoBuiltinCall;
 | |
|   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
 | |
|     if (!IsNoBuiltinCall)
 | |
|       return getAllocationDataForFunction(Callee, AllocTy, TLI);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static Optional<AllocFnsTy>
 | |
| getAllocationData(const Value *V, AllocType AllocTy,
 | |
|                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
 | |
|   bool IsNoBuiltinCall;
 | |
|   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
 | |
|     if (!IsNoBuiltinCall)
 | |
|       return getAllocationDataForFunction(
 | |
|           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static Optional<AllocFnsTy> getAllocationSize(const Value *V,
 | |
|                                               const TargetLibraryInfo *TLI) {
 | |
|   bool IsNoBuiltinCall;
 | |
|   const Function *Callee =
 | |
|       getCalledFunction(V, IsNoBuiltinCall);
 | |
|   if (!Callee)
 | |
|     return None;
 | |
| 
 | |
|   // Prefer to use existing information over allocsize. This will give us an
 | |
|   // accurate AllocTy.
 | |
|   if (!IsNoBuiltinCall)
 | |
|     if (Optional<AllocFnsTy> Data =
 | |
|             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
 | |
|       return Data;
 | |
| 
 | |
|   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
 | |
|   if (Attr == Attribute())
 | |
|     return None;
 | |
| 
 | |
|   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
 | |
| 
 | |
|   AllocFnsTy Result;
 | |
|   // Because allocsize only tells us how many bytes are allocated, we're not
 | |
|   // really allowed to assume anything, so we use MallocLike.
 | |
|   Result.AllocTy = MallocLike;
 | |
|   Result.NumParams = Callee->getNumOperands();
 | |
|   Result.FstParam = Args.first;
 | |
|   Result.SndParam = Args.second.getValueOr(-1);
 | |
|   // Allocsize has no way to specify an alignment argument
 | |
|   Result.AlignParam = -1;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Tests if a value is a call or invoke to a library function that
 | |
| /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
 | |
| /// like).
 | |
| bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
 | |
|   return getAllocationData(V, AnyAlloc, TLI).hasValue();
 | |
| }
 | |
| bool llvm::isAllocationFn(
 | |
|     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
 | |
|   return getAllocationData(V, AnyAlloc, GetTLI).hasValue();
 | |
| }
 | |
| 
 | |
| /// Tests if a value is a call or invoke to a library function that
 | |
| /// allocates uninitialized memory (such as malloc).
 | |
| static bool isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
 | |
|   return getAllocationData(V, MallocOrOpNewLike, TLI).hasValue();
 | |
| }
 | |
| 
 | |
| /// Tests if a value is a call or invoke to a library function that
 | |
| /// allocates uninitialized memory with alignment (such as aligned_alloc).
 | |
| static bool isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
 | |
|   return getAllocationData(V, AlignedAllocLike, TLI)
 | |
|       .hasValue();
 | |
| }
 | |
| 
 | |
| /// Tests if a value is a call or invoke to a library function that
 | |
| /// allocates zero-filled memory (such as calloc).
 | |
| static bool isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
 | |
|   return getAllocationData(V, CallocLike, TLI).hasValue();
 | |
| }
 | |
| 
 | |
| /// Tests if a value is a call or invoke to a library function that
 | |
| /// allocates memory similar to malloc or calloc.
 | |
| bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
 | |
|   return getAllocationData(V, MallocOrCallocLike, TLI).hasValue();
 | |
| }
 | |
| 
 | |
| /// Tests if a value is a call or invoke to a library function that
 | |
| /// allocates memory (either malloc, calloc, or strdup like).
 | |
| bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
 | |
|   return getAllocationData(V, AllocLike, TLI).hasValue();
 | |
| }
 | |
| 
 | |
| /// Tests if a value is a call or invoke to a library function that
 | |
| /// reallocates memory (e.g., realloc).
 | |
| bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
 | |
|   return getAllocationData(V, ReallocLike, TLI).hasValue();
 | |
| }
 | |
| 
 | |
| /// Tests if a functions is a call or invoke to a library function that
 | |
| /// reallocates memory (e.g., realloc).
 | |
| bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
 | |
|   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
 | |
| }
 | |
| 
 | |
| bool llvm::isAllocRemovable(const CallBase *CB, const TargetLibraryInfo *TLI) {
 | |
|   assert(isAllocationFn(CB, TLI));
 | |
| 
 | |
|   // Note: Removability is highly dependent on the source language.  For
 | |
|   // example, recent C++ requires direct calls to the global allocation
 | |
|   // [basic.stc.dynamic.allocation] to be observable unless part of a new
 | |
|   // expression [expr.new paragraph 13].
 | |
| 
 | |
|   // Historically we've treated the C family allocation routines as removable
 | |
|   return isAllocLikeFn(CB, TLI);
 | |
| }
 | |
| 
 | |
| Value *llvm::getAllocAlignment(const CallBase *V,
 | |
|                                const TargetLibraryInfo *TLI) {
 | |
|   const Optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
 | |
|   if (FnData.hasValue() && FnData->AlignParam >= 0) {
 | |
|     return V->getOperand(FnData->AlignParam);
 | |
|   }
 | |
|   return V->getArgOperandWithAttribute(Attribute::AllocAlign);
 | |
| }
 | |
| 
 | |
| /// When we're compiling N-bit code, and the user uses parameters that are
 | |
| /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
 | |
| /// trouble with APInt size issues. This function handles resizing + overflow
 | |
| /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
 | |
| /// I's value.
 | |
| static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) {
 | |
|   // More bits than we can handle. Checking the bit width isn't necessary, but
 | |
|   // it's faster than checking active bits, and should give `false` in the
 | |
|   // vast majority of cases.
 | |
|   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
 | |
|     return false;
 | |
|   if (I.getBitWidth() != IntTyBits)
 | |
|     I = I.zextOrTrunc(IntTyBits);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Optional<APInt>
 | |
| llvm::getAllocSize(const CallBase *CB,
 | |
|                    const TargetLibraryInfo *TLI,
 | |
|                    std::function<const Value*(const Value*)> Mapper) {
 | |
|   // Note: This handles both explicitly listed allocation functions and
 | |
|   // allocsize.  The code structure could stand to be cleaned up a bit.
 | |
|   Optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI);
 | |
|   if (!FnData)
 | |
|     return None;
 | |
| 
 | |
|   // Get the index type for this address space, results and intermediate
 | |
|   // computations are performed at that width.
 | |
|   auto &DL = CB->getModule()->getDataLayout();
 | |
|   const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType());
 | |
| 
 | |
|   // Handle strdup-like functions separately.
 | |
|   if (FnData->AllocTy == StrDupLike) {
 | |
|     APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0))));
 | |
|     if (!Size)
 | |
|       return None;
 | |
| 
 | |
|     // Strndup limits strlen.
 | |
|     if (FnData->FstParam > 0) {
 | |
|       const ConstantInt *Arg =
 | |
|         dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
 | |
|       if (!Arg)
 | |
|         return None;
 | |
| 
 | |
|       APInt MaxSize = Arg->getValue().zext(IntTyBits);
 | |
|       if (Size.ugt(MaxSize))
 | |
|         Size = MaxSize + 1;
 | |
|     }
 | |
|     return Size;
 | |
|   }
 | |
| 
 | |
|   const ConstantInt *Arg =
 | |
|     dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
 | |
|   if (!Arg)
 | |
|     return None;
 | |
| 
 | |
|   APInt Size = Arg->getValue();
 | |
|   if (!CheckedZextOrTrunc(Size, IntTyBits))
 | |
|     return None;
 | |
| 
 | |
|   // Size is determined by just 1 parameter.
 | |
|   if (FnData->SndParam < 0)
 | |
|     return Size;
 | |
| 
 | |
|   Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam)));
 | |
|   if (!Arg)
 | |
|     return None;
 | |
| 
 | |
|   APInt NumElems = Arg->getValue();
 | |
|   if (!CheckedZextOrTrunc(NumElems, IntTyBits))
 | |
|     return None;
 | |
| 
 | |
|   bool Overflow;
 | |
|   Size = Size.umul_ov(NumElems, Overflow);
 | |
|   if (Overflow)
 | |
|     return None;
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| Constant *llvm::getInitialValueOfAllocation(const CallBase *Alloc,
 | |
|                                             const TargetLibraryInfo *TLI,
 | |
|                                             Type *Ty) {
 | |
|   assert(isAllocationFn(Alloc, TLI));
 | |
| 
 | |
|   // malloc and aligned_alloc are uninitialized (undef)
 | |
|   if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI))
 | |
|     return UndefValue::get(Ty);
 | |
| 
 | |
|   // calloc zero initializes
 | |
|   if (isCallocLikeFn(Alloc, TLI))
 | |
|     return Constant::getNullValue(Ty);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| struct FreeFnsTy {
 | |
|   unsigned NumParams;
 | |
|   // Name of default allocator function to group malloc/free calls by family
 | |
|   MallocFamily Family;
 | |
| };
 | |
| 
 | |
| // clang-format off
 | |
| static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = {
 | |
|     {LibFunc_free,                               {1, MallocFamily::Malloc}},
 | |
|     {LibFunc_vec_free,                           {1, MallocFamily::VecMalloc}},
 | |
|     {LibFunc_ZdlPv,                              {1, MallocFamily::CPPNew}},             // operator delete(void*)
 | |
|     {LibFunc_ZdaPv,                              {1, MallocFamily::CPPNewArray}},        // operator delete[](void*)
 | |
|     {LibFunc_msvc_delete_ptr32,                  {1, MallocFamily::MSVCNew}},            // operator delete(void*)
 | |
|     {LibFunc_msvc_delete_ptr64,                  {1, MallocFamily::MSVCNew}},            // operator delete(void*)
 | |
|     {LibFunc_msvc_delete_array_ptr32,            {1, MallocFamily::MSVCArrayNew}},       // operator delete[](void*)
 | |
|     {LibFunc_msvc_delete_array_ptr64,            {1, MallocFamily::MSVCArrayNew}},       // operator delete[](void*)
 | |
|     {LibFunc_ZdlPvj,                             {2, MallocFamily::CPPNew}},             // delete(void*, uint)
 | |
|     {LibFunc_ZdlPvm,                             {2, MallocFamily::CPPNew}},             // delete(void*, ulong)
 | |
|     {LibFunc_ZdlPvRKSt9nothrow_t,                {2, MallocFamily::CPPNew}},             // delete(void*, nothrow)
 | |
|     {LibFunc_ZdlPvSt11align_val_t,               {2, MallocFamily::CPPNewAligned}},      // delete(void*, align_val_t)
 | |
|     {LibFunc_ZdaPvj,                             {2, MallocFamily::CPPNewArray}},        // delete[](void*, uint)
 | |
|     {LibFunc_ZdaPvm,                             {2, MallocFamily::CPPNewArray}},        // delete[](void*, ulong)
 | |
|     {LibFunc_ZdaPvRKSt9nothrow_t,                {2, MallocFamily::CPPNewArray}},        // delete[](void*, nothrow)
 | |
|     {LibFunc_ZdaPvSt11align_val_t,               {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t)
 | |
|     {LibFunc_msvc_delete_ptr32_int,              {2, MallocFamily::MSVCNew}},            // delete(void*, uint)
 | |
|     {LibFunc_msvc_delete_ptr64_longlong,         {2, MallocFamily::MSVCNew}},            // delete(void*, ulonglong)
 | |
|     {LibFunc_msvc_delete_ptr32_nothrow,          {2, MallocFamily::MSVCNew}},            // delete(void*, nothrow)
 | |
|     {LibFunc_msvc_delete_ptr64_nothrow,          {2, MallocFamily::MSVCNew}},            // delete(void*, nothrow)
 | |
|     {LibFunc_msvc_delete_array_ptr32_int,        {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, uint)
 | |
|     {LibFunc_msvc_delete_array_ptr64_longlong,   {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, ulonglong)
 | |
|     {LibFunc_msvc_delete_array_ptr32_nothrow,    {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, nothrow)
 | |
|     {LibFunc_msvc_delete_array_ptr64_nothrow,    {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, nothrow)
 | |
|     {LibFunc___kmpc_free_shared,                 {2, MallocFamily::KmpcAllocShared}},    // OpenMP Offloading RTL free
 | |
|     {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}},      // delete(void*, align_val_t, nothrow)
 | |
|     {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow)
 | |
|     {LibFunc_ZdlPvjSt11align_val_t,              {3, MallocFamily::CPPNewAligned}},      // delete(void*, unsigned int, align_val_t)
 | |
|     {LibFunc_ZdlPvmSt11align_val_t,              {3, MallocFamily::CPPNewAligned}},      // delete(void*, unsigned long, align_val_t)
 | |
|     {LibFunc_ZdaPvjSt11align_val_t,              {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t)
 | |
|     {LibFunc_ZdaPvmSt11align_val_t,              {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t)
 | |
| };
 | |
| // clang-format on
 | |
| 
 | |
| Optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee,
 | |
|                                                    const LibFunc TLIFn) {
 | |
|   const auto *Iter =
 | |
|       find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) {
 | |
|         return P.first == TLIFn;
 | |
|       });
 | |
|   if (Iter == std::end(FreeFnData))
 | |
|     return None;
 | |
|   return Iter->second;
 | |
| }
 | |
| 
 | |
| Optional<StringRef> llvm::getAllocationFamily(const Value *I,
 | |
|                                               const TargetLibraryInfo *TLI) {
 | |
|   bool IsNoBuiltin;
 | |
|   const Function *Callee = getCalledFunction(I, IsNoBuiltin);
 | |
|   if (Callee == nullptr || IsNoBuiltin)
 | |
|     return None;
 | |
|   LibFunc TLIFn;
 | |
|   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
 | |
|     return None;
 | |
|   const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI);
 | |
|   if (AllocData.hasValue())
 | |
|     return mangledNameForMallocFamily(AllocData.getValue().Family);
 | |
|   const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn);
 | |
|   if (FreeData.hasValue())
 | |
|     return mangledNameForMallocFamily(FreeData.getValue().Family);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| /// isLibFreeFunction - Returns true if the function is a builtin free()
 | |
| bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
 | |
|   Optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn);
 | |
|   if (!FnData.hasValue())
 | |
|     return false;
 | |
| 
 | |
|   // Check free prototype.
 | |
|   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
 | |
|   // attribute will exist.
 | |
|   FunctionType *FTy = F->getFunctionType();
 | |
|   if (!FTy->getReturnType()->isVoidTy())
 | |
|     return false;
 | |
|   if (FTy->getNumParams() != FnData->NumParams)
 | |
|     return false;
 | |
|   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isFreeCall - Returns non-null if the value is a call to the builtin free()
 | |
| const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
 | |
|   bool IsNoBuiltinCall;
 | |
|   const Function *Callee = getCalledFunction(I, IsNoBuiltinCall);
 | |
|   if (Callee == nullptr || IsNoBuiltinCall)
 | |
|     return nullptr;
 | |
| 
 | |
|   LibFunc TLIFn;
 | |
|   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
 | |
|     return nullptr;
 | |
| 
 | |
|   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Utility functions to compute size of objects.
 | |
| //
 | |
| static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
 | |
|   if (Data.second.isNegative() || Data.first.ult(Data.second))
 | |
|     return APInt(Data.first.getBitWidth(), 0);
 | |
|   return Data.first - Data.second;
 | |
| }
 | |
| 
 | |
| /// Compute the size of the object pointed by Ptr. Returns true and the
 | |
| /// object size in Size if successful, and false otherwise.
 | |
| /// If RoundToAlign is true, then Size is rounded up to the alignment of
 | |
| /// allocas, byval arguments, and global variables.
 | |
| bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
 | |
|                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
 | |
|   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
 | |
|   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
 | |
|   if (!Visitor.bothKnown(Data))
 | |
|     return false;
 | |
| 
 | |
|   Size = getSizeWithOverflow(Data).getZExtValue();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
 | |
|                                  const DataLayout &DL,
 | |
|                                  const TargetLibraryInfo *TLI,
 | |
|                                  bool MustSucceed) {
 | |
|   return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr,
 | |
|                              MustSucceed);
 | |
| }
 | |
| 
 | |
| Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
 | |
|                                  const DataLayout &DL,
 | |
|                                  const TargetLibraryInfo *TLI, AAResults *AA,
 | |
|                                  bool MustSucceed) {
 | |
|   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
 | |
|          "ObjectSize must be a call to llvm.objectsize!");
 | |
| 
 | |
|   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
 | |
|   ObjectSizeOpts EvalOptions;
 | |
|   EvalOptions.AA = AA;
 | |
| 
 | |
|   // Unless we have to fold this to something, try to be as accurate as
 | |
|   // possible.
 | |
|   if (MustSucceed)
 | |
|     EvalOptions.EvalMode =
 | |
|         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
 | |
|   else
 | |
|     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
 | |
| 
 | |
|   EvalOptions.NullIsUnknownSize =
 | |
|       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
 | |
| 
 | |
|   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
 | |
|   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
 | |
|   if (StaticOnly) {
 | |
|     // FIXME: Does it make sense to just return a failure value if the size won't
 | |
|     // fit in the output and `!MustSucceed`?
 | |
|     uint64_t Size;
 | |
|     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
 | |
|         isUIntN(ResultType->getBitWidth(), Size))
 | |
|       return ConstantInt::get(ResultType, Size);
 | |
|   } else {
 | |
|     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
 | |
|     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
 | |
|     SizeOffsetEvalType SizeOffsetPair =
 | |
|         Eval.compute(ObjectSize->getArgOperand(0));
 | |
| 
 | |
|     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
 | |
|       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
 | |
|       Builder.SetInsertPoint(ObjectSize);
 | |
| 
 | |
|       // If we've outside the end of the object, then we can always access
 | |
|       // exactly 0 bytes.
 | |
|       Value *ResultSize =
 | |
|           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
 | |
|       Value *UseZero =
 | |
|           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
 | |
|       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
 | |
|       Value *Ret = Builder.CreateSelect(
 | |
|           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
 | |
| 
 | |
|       // The non-constant size expression cannot evaluate to -1.
 | |
|       if (!isa<Constant>(SizeOffsetPair.first) ||
 | |
|           !isa<Constant>(SizeOffsetPair.second))
 | |
|         Builder.CreateAssumption(
 | |
|             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
 | |
| 
 | |
|       return Ret;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MustSucceed)
 | |
|     return nullptr;
 | |
| 
 | |
|   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
 | |
| }
 | |
| 
 | |
| STATISTIC(ObjectVisitorArgument,
 | |
|           "Number of arguments with unsolved size and offset");
 | |
| STATISTIC(ObjectVisitorLoad,
 | |
|           "Number of load instructions with unsolved size and offset");
 | |
| 
 | |
| APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
 | |
|   if (Options.RoundToAlign && Alignment)
 | |
|     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Alignment));
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
 | |
|                                                  const TargetLibraryInfo *TLI,
 | |
|                                                  LLVMContext &Context,
 | |
|                                                  ObjectSizeOpts Options)
 | |
|     : DL(DL), TLI(TLI), Options(Options) {
 | |
|   // Pointer size must be rechecked for each object visited since it could have
 | |
|   // a different address space.
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
 | |
|   unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType());
 | |
| 
 | |
|   // Stripping pointer casts can strip address space casts which can change the
 | |
|   // index type size. The invariant is that we use the value type to determine
 | |
|   // the index type size and if we stripped address space casts we have to
 | |
|   // readjust the APInt as we pass it upwards in order for the APInt to match
 | |
|   // the type the caller passed in.
 | |
|   APInt Offset(InitialIntTyBits, 0);
 | |
|   V = V->stripAndAccumulateConstantOffsets(
 | |
|       DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true);
 | |
| 
 | |
|   // Later we use the index type size and zero but it will match the type of the
 | |
|   // value that is passed to computeImpl.
 | |
|   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
 | |
|   Zero = APInt::getZero(IntTyBits);
 | |
| 
 | |
|   bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits;
 | |
|   if (!IndexTypeSizeChanged && Offset.isZero())
 | |
|     return computeImpl(V);
 | |
| 
 | |
|   // We stripped an address space cast that changed the index type size or we
 | |
|   // accumulated some constant offset (or both). Readjust the bit width to match
 | |
|   // the argument index type size and apply the offset, as required.
 | |
|   SizeOffsetType SOT = computeImpl(V);
 | |
|   if (IndexTypeSizeChanged) {
 | |
|     if (knownSize(SOT) && !::CheckedZextOrTrunc(SOT.first, InitialIntTyBits))
 | |
|       SOT.first = APInt();
 | |
|     if (knownOffset(SOT) && !::CheckedZextOrTrunc(SOT.second, InitialIntTyBits))
 | |
|       SOT.second = APInt();
 | |
|   }
 | |
|   // If the computed offset is "unknown" we cannot add the stripped offset.
 | |
|   return {SOT.first,
 | |
|           SOT.second.getBitWidth() > 1 ? SOT.second + Offset : SOT.second};
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::computeImpl(Value *V) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     // If we have already seen this instruction, bail out. Cycles can happen in
 | |
|     // unreachable code after constant propagation.
 | |
|     if (!SeenInsts.insert(I).second)
 | |
|       return unknown();
 | |
| 
 | |
|     return visit(*I);
 | |
|   }
 | |
|   if (Argument *A = dyn_cast<Argument>(V))
 | |
|     return visitArgument(*A);
 | |
|   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
 | |
|     return visitConstantPointerNull(*P);
 | |
|   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
 | |
|     return visitGlobalAlias(*GA);
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return visitGlobalVariable(*GV);
 | |
|   if (UndefValue *UV = dyn_cast<UndefValue>(V))
 | |
|     return visitUndefValue(*UV);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
 | |
|                     << *V << '\n');
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
 | |
|   return ::CheckedZextOrTrunc(I, IntTyBits);
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
 | |
|   if (!I.getAllocatedType()->isSized())
 | |
|     return unknown();
 | |
| 
 | |
|   TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType());
 | |
|   if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min)
 | |
|     return unknown();
 | |
|   APInt Size(IntTyBits, ElemSize.getKnownMinSize());
 | |
|   if (!I.isArrayAllocation())
 | |
|     return std::make_pair(align(Size, I.getAlign()), Zero);
 | |
| 
 | |
|   Value *ArraySize = I.getArraySize();
 | |
|   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
 | |
|     APInt NumElems = C->getValue();
 | |
|     if (!CheckedZextOrTrunc(NumElems))
 | |
|       return unknown();
 | |
| 
 | |
|     bool Overflow;
 | |
|     Size = Size.umul_ov(NumElems, Overflow);
 | |
|     return Overflow ? unknown()
 | |
|                     : std::make_pair(align(Size, I.getAlign()), Zero);
 | |
|   }
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
 | |
|   Type *MemoryTy = A.getPointeeInMemoryValueType();
 | |
|   // No interprocedural analysis is done at the moment.
 | |
|   if (!MemoryTy|| !MemoryTy->isSized()) {
 | |
|     ++ObjectVisitorArgument;
 | |
|     return unknown();
 | |
|   }
 | |
| 
 | |
|   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
 | |
|   return std::make_pair(align(Size, A.getParamAlign()), Zero);
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
 | |
|   auto Mapper = [](const Value *V) { return V; };
 | |
|   if (Optional<APInt> Size = getAllocSize(&CB, TLI, Mapper))
 | |
|     return std::make_pair(*Size, Zero);
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType
 | |
| ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
 | |
|   // If null is unknown, there's nothing we can do. Additionally, non-zero
 | |
|   // address spaces can make use of null, so we don't presume to know anything
 | |
|   // about that.
 | |
|   //
 | |
|   // TODO: How should this work with address space casts? We currently just drop
 | |
|   // them on the floor, but it's unclear what we should do when a NULL from
 | |
|   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
 | |
|   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
 | |
|     return unknown();
 | |
|   return std::make_pair(Zero, Zero);
 | |
| }
 | |
| 
 | |
| SizeOffsetType
 | |
| ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType
 | |
| ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
 | |
|   // Easy cases were already folded by previous passes.
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
 | |
|   if (GA.isInterposable())
 | |
|     return unknown();
 | |
|   return compute(GA.getAliasee());
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
 | |
|   if (!GV.hasDefinitiveInitializer())
 | |
|     return unknown();
 | |
| 
 | |
|   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
 | |
|   return std::make_pair(align(Size, GV.getAlign()), Zero);
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
 | |
|   // clueless
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::findLoadSizeOffset(
 | |
|     LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From,
 | |
|     SmallDenseMap<BasicBlock *, SizeOffsetType, 8> &VisitedBlocks,
 | |
|     unsigned &ScannedInstCount) {
 | |
|   constexpr unsigned MaxInstsToScan = 128;
 | |
| 
 | |
|   auto Where = VisitedBlocks.find(&BB);
 | |
|   if (Where != VisitedBlocks.end())
 | |
|     return Where->second;
 | |
| 
 | |
|   auto Unknown = [this, &BB, &VisitedBlocks]() {
 | |
|     return VisitedBlocks[&BB] = unknown();
 | |
|   };
 | |
|   auto Known = [&BB, &VisitedBlocks](SizeOffsetType SO) {
 | |
|     return VisitedBlocks[&BB] = SO;
 | |
|   };
 | |
| 
 | |
|   do {
 | |
|     Instruction &I = *From;
 | |
| 
 | |
|     if (I.isDebugOrPseudoInst())
 | |
|       continue;
 | |
| 
 | |
|     if (++ScannedInstCount > MaxInstsToScan)
 | |
|       return Unknown();
 | |
| 
 | |
|     if (!I.mayWriteToMemory())
 | |
|       continue;
 | |
| 
 | |
|     if (auto *SI = dyn_cast<StoreInst>(&I)) {
 | |
|       AliasResult AR =
 | |
|           Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand());
 | |
|       switch ((AliasResult::Kind)AR) {
 | |
|       case AliasResult::NoAlias:
 | |
|         continue;
 | |
|       case AliasResult::MustAlias:
 | |
|         if (SI->getValueOperand()->getType()->isPointerTy())
 | |
|           return Known(compute(SI->getValueOperand()));
 | |
|         else
 | |
|           return Unknown(); // No handling of non-pointer values by `compute`.
 | |
|       default:
 | |
|         return Unknown();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (auto *CB = dyn_cast<CallBase>(&I)) {
 | |
|       Function *Callee = CB->getCalledFunction();
 | |
|       // Bail out on indirect call.
 | |
|       if (!Callee)
 | |
|         return Unknown();
 | |
| 
 | |
|       LibFunc TLIFn;
 | |
|       if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) ||
 | |
|           !TLI->has(TLIFn))
 | |
|         return Unknown();
 | |
| 
 | |
|       // TODO: There's probably more interesting case to support here.
 | |
|       if (TLIFn != LibFunc_posix_memalign)
 | |
|         return Unknown();
 | |
| 
 | |
|       AliasResult AR =
 | |
|           Options.AA->alias(CB->getOperand(0), Load.getPointerOperand());
 | |
|       switch ((AliasResult::Kind)AR) {
 | |
|       case AliasResult::NoAlias:
 | |
|         continue;
 | |
|       case AliasResult::MustAlias:
 | |
|         break;
 | |
|       default:
 | |
|         return Unknown();
 | |
|       }
 | |
| 
 | |
|       // Is the error status of posix_memalign correctly checked? If not it
 | |
|       // would be incorrect to assume it succeeds and load doesn't see the
 | |
|       // previous value.
 | |
|       Optional<bool> Checked = isImpliedByDomCondition(
 | |
|           ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL);
 | |
|       if (!Checked || !*Checked)
 | |
|         return Unknown();
 | |
| 
 | |
|       Value *Size = CB->getOperand(2);
 | |
|       auto *C = dyn_cast<ConstantInt>(Size);
 | |
|       if (!C)
 | |
|         return Unknown();
 | |
| 
 | |
|       return Known({C->getValue(), APInt(C->getValue().getBitWidth(), 0)});
 | |
|     }
 | |
| 
 | |
|     return Unknown();
 | |
|   } while (From-- != BB.begin());
 | |
| 
 | |
|   SmallVector<SizeOffsetType> PredecessorSizeOffsets;
 | |
|   for (auto *PredBB : predecessors(&BB)) {
 | |
|     PredecessorSizeOffsets.push_back(findLoadSizeOffset(
 | |
|         Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()),
 | |
|         VisitedBlocks, ScannedInstCount));
 | |
|     if (!bothKnown(PredecessorSizeOffsets.back()))
 | |
|       return Unknown();
 | |
|   }
 | |
| 
 | |
|   if (PredecessorSizeOffsets.empty())
 | |
|     return Unknown();
 | |
| 
 | |
|   return Known(std::accumulate(PredecessorSizeOffsets.begin() + 1,
 | |
|                                PredecessorSizeOffsets.end(),
 | |
|                                PredecessorSizeOffsets.front(),
 | |
|                                [this](SizeOffsetType LHS, SizeOffsetType RHS) {
 | |
|                                  return combineSizeOffset(LHS, RHS);
 | |
|                                }));
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) {
 | |
|   if (!Options.AA) {
 | |
|     ++ObjectVisitorLoad;
 | |
|     return unknown();
 | |
|   }
 | |
| 
 | |
|   SmallDenseMap<BasicBlock *, SizeOffsetType, 8> VisitedBlocks;
 | |
|   unsigned ScannedInstCount = 0;
 | |
|   SizeOffsetType SO =
 | |
|       findLoadSizeOffset(LI, *LI.getParent(), BasicBlock::iterator(LI),
 | |
|                          VisitedBlocks, ScannedInstCount);
 | |
|   if (!bothKnown(SO))
 | |
|     ++ObjectVisitorLoad;
 | |
|   return SO;
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetType LHS,
 | |
|                                                           SizeOffsetType RHS) {
 | |
|   if (!bothKnown(LHS) || !bothKnown(RHS))
 | |
|     return unknown();
 | |
| 
 | |
|   switch (Options.EvalMode) {
 | |
|   case ObjectSizeOpts::Mode::Min:
 | |
|     return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS;
 | |
|   case ObjectSizeOpts::Mode::Max:
 | |
|     return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS;
 | |
|   case ObjectSizeOpts::Mode::Exact:
 | |
|     return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS))) ? LHS
 | |
|                                                                    : unknown();
 | |
|   }
 | |
|   llvm_unreachable("missing an eval mode");
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) {
 | |
|   auto IncomingValues = PN.incoming_values();
 | |
|   return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(),
 | |
|                          compute(*IncomingValues.begin()),
 | |
|                          [this](SizeOffsetType LHS, Value *VRHS) {
 | |
|                            return combineSizeOffset(LHS, compute(VRHS));
 | |
|                          });
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
 | |
|   return combineSizeOffset(compute(I.getTrueValue()),
 | |
|                            compute(I.getFalseValue()));
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
 | |
|   return std::make_pair(Zero, Zero);
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
 | |
|   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
 | |
|                     << '\n');
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
 | |
|     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
 | |
|     ObjectSizeOpts EvalOpts)
 | |
|     : DL(DL), TLI(TLI), Context(Context),
 | |
|       Builder(Context, TargetFolder(DL),
 | |
|               IRBuilderCallbackInserter(
 | |
|                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
 | |
|       EvalOpts(EvalOpts) {
 | |
|   // IntTy and Zero must be set for each compute() since the address space may
 | |
|   // be different for later objects.
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
 | |
|   // XXX - Are vectors of pointers possible here?
 | |
|   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
 | |
|   Zero = ConstantInt::get(IntTy, 0);
 | |
| 
 | |
|   SizeOffsetEvalType Result = compute_(V);
 | |
| 
 | |
|   if (!bothKnown(Result)) {
 | |
|     // Erase everything that was computed in this iteration from the cache, so
 | |
|     // that no dangling references are left behind. We could be a bit smarter if
 | |
|     // we kept a dependency graph. It's probably not worth the complexity.
 | |
|     for (const Value *SeenVal : SeenVals) {
 | |
|       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
 | |
|       // non-computable results can be safely cached
 | |
|       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
 | |
|         CacheMap.erase(CacheIt);
 | |
|     }
 | |
| 
 | |
|     // Erase any instructions we inserted as part of the traversal.
 | |
|     for (Instruction *I : InsertedInstructions) {
 | |
|       I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|       I->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SeenVals.clear();
 | |
|   InsertedInstructions.clear();
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
 | |
|   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
 | |
|   SizeOffsetType Const = Visitor.compute(V);
 | |
|   if (Visitor.bothKnown(Const))
 | |
|     return std::make_pair(ConstantInt::get(Context, Const.first),
 | |
|                           ConstantInt::get(Context, Const.second));
 | |
| 
 | |
|   V = V->stripPointerCasts();
 | |
| 
 | |
|   // Check cache.
 | |
|   CacheMapTy::iterator CacheIt = CacheMap.find(V);
 | |
|   if (CacheIt != CacheMap.end())
 | |
|     return CacheIt->second;
 | |
| 
 | |
|   // Always generate code immediately before the instruction being
 | |
|   // processed, so that the generated code dominates the same BBs.
 | |
|   BuilderTy::InsertPointGuard Guard(Builder);
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     Builder.SetInsertPoint(I);
 | |
| 
 | |
|   // Now compute the size and offset.
 | |
|   SizeOffsetEvalType Result;
 | |
| 
 | |
|   // Record the pointers that were handled in this run, so that they can be
 | |
|   // cleaned later if something fails. We also use this set to break cycles that
 | |
|   // can occur in dead code.
 | |
|   if (!SeenVals.insert(V).second) {
 | |
|     Result = unknown();
 | |
|   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|     Result = visitGEPOperator(*GEP);
 | |
|   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     Result = visit(*I);
 | |
|   } else if (isa<Argument>(V) ||
 | |
|              (isa<ConstantExpr>(V) &&
 | |
|               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
 | |
|              isa<GlobalAlias>(V) ||
 | |
|              isa<GlobalVariable>(V)) {
 | |
|     // Ignore values where we cannot do more than ObjectSizeVisitor.
 | |
|     Result = unknown();
 | |
|   } else {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
 | |
|                << '\n');
 | |
|     Result = unknown();
 | |
|   }
 | |
| 
 | |
|   // Don't reuse CacheIt since it may be invalid at this point.
 | |
|   CacheMap[V] = Result;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
 | |
|   if (!I.getAllocatedType()->isSized())
 | |
|     return unknown();
 | |
| 
 | |
|   // must be a VLA
 | |
|   assert(I.isArrayAllocation());
 | |
| 
 | |
|   // If needed, adjust the alloca's operand size to match the pointer size.
 | |
|   // Subsequent math operations expect the types to match.
 | |
|   Value *ArraySize = Builder.CreateZExtOrTrunc(
 | |
|       I.getArraySize(), DL.getIntPtrType(I.getContext()));
 | |
|   assert(ArraySize->getType() == Zero->getType() &&
 | |
|          "Expected zero constant to have pointer type");
 | |
| 
 | |
|   Value *Size = ConstantInt::get(ArraySize->getType(),
 | |
|                                  DL.getTypeAllocSize(I.getAllocatedType()));
 | |
|   Size = Builder.CreateMul(Size, ArraySize);
 | |
|   return std::make_pair(Size, Zero);
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
 | |
|   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
 | |
|   if (!FnData)
 | |
|     return unknown();
 | |
| 
 | |
|   // Handle strdup-like functions separately.
 | |
|   if (FnData->AllocTy == StrDupLike) {
 | |
|     // TODO: implement evaluation of strdup/strndup
 | |
|     return unknown();
 | |
|   }
 | |
| 
 | |
|   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
 | |
|   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
 | |
|   if (FnData->SndParam < 0)
 | |
|     return std::make_pair(FirstArg, Zero);
 | |
| 
 | |
|   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
 | |
|   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
 | |
|   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
 | |
|   return std::make_pair(Size, Zero);
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType
 | |
| ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType
 | |
| ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType
 | |
| ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
 | |
|   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
 | |
|   if (!bothKnown(PtrData))
 | |
|     return unknown();
 | |
| 
 | |
|   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
 | |
|   Offset = Builder.CreateAdd(PtrData.second, Offset);
 | |
|   return std::make_pair(PtrData.first, Offset);
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
 | |
|   // clueless
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) {
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
 | |
|   // Create 2 PHIs: one for size and another for offset.
 | |
|   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
 | |
|   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
 | |
| 
 | |
|   // Insert right away in the cache to handle recursive PHIs.
 | |
|   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
 | |
| 
 | |
|   // Compute offset/size for each PHI incoming pointer.
 | |
|   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
 | |
|     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
 | |
|     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
 | |
| 
 | |
|     if (!bothKnown(EdgeData)) {
 | |
|       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
 | |
|       OffsetPHI->eraseFromParent();
 | |
|       InsertedInstructions.erase(OffsetPHI);
 | |
|       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
 | |
|       SizePHI->eraseFromParent();
 | |
|       InsertedInstructions.erase(SizePHI);
 | |
|       return unknown();
 | |
|     }
 | |
|     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
 | |
|     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
 | |
|   }
 | |
| 
 | |
|   Value *Size = SizePHI, *Offset = OffsetPHI;
 | |
|   if (Value *Tmp = SizePHI->hasConstantValue()) {
 | |
|     Size = Tmp;
 | |
|     SizePHI->replaceAllUsesWith(Size);
 | |
|     SizePHI->eraseFromParent();
 | |
|     InsertedInstructions.erase(SizePHI);
 | |
|   }
 | |
|   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
 | |
|     Offset = Tmp;
 | |
|     OffsetPHI->replaceAllUsesWith(Offset);
 | |
|     OffsetPHI->eraseFromParent();
 | |
|     InsertedInstructions.erase(OffsetPHI);
 | |
|   }
 | |
|   return std::make_pair(Size, Offset);
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
 | |
|   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
 | |
|   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
 | |
| 
 | |
|   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
 | |
|     return unknown();
 | |
|   if (TrueSide == FalseSide)
 | |
|     return TrueSide;
 | |
| 
 | |
|   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
 | |
|                                      FalseSide.first);
 | |
|   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
 | |
|                                        FalseSide.second);
 | |
|   return std::make_pair(Size, Offset);
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
 | |
|   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
 | |
|                     << '\n');
 | |
|   return unknown();
 | |
| }
 |