256 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			256 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ScalarEvolutionDivision.h - See below --------------------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the class that knows how to divide SCEV's.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ScalarEvolutionDivision.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| 
 | |
| namespace llvm {
 | |
| class Type;
 | |
| }
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| static inline int sizeOfSCEV(const SCEV *S) {
 | |
|   struct FindSCEVSize {
 | |
|     int Size = 0;
 | |
| 
 | |
|     FindSCEVSize() = default;
 | |
| 
 | |
|     bool follow(const SCEV *S) {
 | |
|       ++Size;
 | |
|       // Keep looking at all operands of S.
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool isDone() const { return false; }
 | |
|   };
 | |
| 
 | |
|   FindSCEVSize F;
 | |
|   SCEVTraversal<FindSCEVSize> ST(F);
 | |
|   ST.visitAll(S);
 | |
|   return F.Size;
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| // Computes the Quotient and Remainder of the division of Numerator by
 | |
| // Denominator.
 | |
| void SCEVDivision::divide(ScalarEvolution &SE, const SCEV *Numerator,
 | |
|                           const SCEV *Denominator, const SCEV **Quotient,
 | |
|                           const SCEV **Remainder) {
 | |
|   assert(Numerator && Denominator && "Uninitialized SCEV");
 | |
| 
 | |
|   SCEVDivision D(SE, Numerator, Denominator);
 | |
| 
 | |
|   // Check for the trivial case here to avoid having to check for it in the
 | |
|   // rest of the code.
 | |
|   if (Numerator == Denominator) {
 | |
|     *Quotient = D.One;
 | |
|     *Remainder = D.Zero;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Numerator->isZero()) {
 | |
|     *Quotient = D.Zero;
 | |
|     *Remainder = D.Zero;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // A simple case when N/1. The quotient is N.
 | |
|   if (Denominator->isOne()) {
 | |
|     *Quotient = Numerator;
 | |
|     *Remainder = D.Zero;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Split the Denominator when it is a product.
 | |
|   if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
 | |
|     const SCEV *Q, *R;
 | |
|     *Quotient = Numerator;
 | |
|     for (const SCEV *Op : T->operands()) {
 | |
|       divide(SE, *Quotient, Op, &Q, &R);
 | |
|       *Quotient = Q;
 | |
| 
 | |
|       // Bail out when the Numerator is not divisible by one of the terms of
 | |
|       // the Denominator.
 | |
|       if (!R->isZero()) {
 | |
|         *Quotient = D.Zero;
 | |
|         *Remainder = Numerator;
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     *Remainder = D.Zero;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   D.visit(Numerator);
 | |
|   *Quotient = D.Quotient;
 | |
|   *Remainder = D.Remainder;
 | |
| }
 | |
| 
 | |
| void SCEVDivision::visitConstant(const SCEVConstant *Numerator) {
 | |
|   if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
 | |
|     APInt NumeratorVal = Numerator->getAPInt();
 | |
|     APInt DenominatorVal = D->getAPInt();
 | |
|     uint32_t NumeratorBW = NumeratorVal.getBitWidth();
 | |
|     uint32_t DenominatorBW = DenominatorVal.getBitWidth();
 | |
| 
 | |
|     if (NumeratorBW > DenominatorBW)
 | |
|       DenominatorVal = DenominatorVal.sext(NumeratorBW);
 | |
|     else if (NumeratorBW < DenominatorBW)
 | |
|       NumeratorVal = NumeratorVal.sext(DenominatorBW);
 | |
| 
 | |
|     APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
 | |
|     APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
 | |
|     APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
 | |
|     Quotient = SE.getConstant(QuotientVal);
 | |
|     Remainder = SE.getConstant(RemainderVal);
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SCEVDivision::visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
 | |
|   const SCEV *StartQ, *StartR, *StepQ, *StepR;
 | |
|   if (!Numerator->isAffine())
 | |
|     return cannotDivide(Numerator);
 | |
|   divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
 | |
|   divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
 | |
|   // Bail out if the types do not match.
 | |
|   Type *Ty = Denominator->getType();
 | |
|   if (Ty != StartQ->getType() || Ty != StartR->getType() ||
 | |
|       Ty != StepQ->getType() || Ty != StepR->getType())
 | |
|     return cannotDivide(Numerator);
 | |
|   Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
 | |
|                               Numerator->getNoWrapFlags());
 | |
|   Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
 | |
|                                Numerator->getNoWrapFlags());
 | |
| }
 | |
| 
 | |
| void SCEVDivision::visitAddExpr(const SCEVAddExpr *Numerator) {
 | |
|   SmallVector<const SCEV *, 2> Qs, Rs;
 | |
|   Type *Ty = Denominator->getType();
 | |
| 
 | |
|   for (const SCEV *Op : Numerator->operands()) {
 | |
|     const SCEV *Q, *R;
 | |
|     divide(SE, Op, Denominator, &Q, &R);
 | |
| 
 | |
|     // Bail out if types do not match.
 | |
|     if (Ty != Q->getType() || Ty != R->getType())
 | |
|       return cannotDivide(Numerator);
 | |
| 
 | |
|     Qs.push_back(Q);
 | |
|     Rs.push_back(R);
 | |
|   }
 | |
| 
 | |
|   if (Qs.size() == 1) {
 | |
|     Quotient = Qs[0];
 | |
|     Remainder = Rs[0];
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Quotient = SE.getAddExpr(Qs);
 | |
|   Remainder = SE.getAddExpr(Rs);
 | |
| }
 | |
| 
 | |
| void SCEVDivision::visitMulExpr(const SCEVMulExpr *Numerator) {
 | |
|   SmallVector<const SCEV *, 2> Qs;
 | |
|   Type *Ty = Denominator->getType();
 | |
| 
 | |
|   bool FoundDenominatorTerm = false;
 | |
|   for (const SCEV *Op : Numerator->operands()) {
 | |
|     // Bail out if types do not match.
 | |
|     if (Ty != Op->getType())
 | |
|       return cannotDivide(Numerator);
 | |
| 
 | |
|     if (FoundDenominatorTerm) {
 | |
|       Qs.push_back(Op);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check whether Denominator divides one of the product operands.
 | |
|     const SCEV *Q, *R;
 | |
|     divide(SE, Op, Denominator, &Q, &R);
 | |
|     if (!R->isZero()) {
 | |
|       Qs.push_back(Op);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Bail out if types do not match.
 | |
|     if (Ty != Q->getType())
 | |
|       return cannotDivide(Numerator);
 | |
| 
 | |
|     FoundDenominatorTerm = true;
 | |
|     Qs.push_back(Q);
 | |
|   }
 | |
| 
 | |
|   if (FoundDenominatorTerm) {
 | |
|     Remainder = Zero;
 | |
|     if (Qs.size() == 1)
 | |
|       Quotient = Qs[0];
 | |
|     else
 | |
|       Quotient = SE.getMulExpr(Qs);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!isa<SCEVUnknown>(Denominator))
 | |
|     return cannotDivide(Numerator);
 | |
| 
 | |
|   // The Remainder is obtained by replacing Denominator by 0 in Numerator.
 | |
|   ValueToSCEVMapTy RewriteMap;
 | |
|   RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = Zero;
 | |
|   Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap);
 | |
| 
 | |
|   if (Remainder->isZero()) {
 | |
|     // The Quotient is obtained by replacing Denominator by 1 in Numerator.
 | |
|     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = One;
 | |
|     Quotient = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Quotient is (Numerator - Remainder) divided by Denominator.
 | |
|   const SCEV *Q, *R;
 | |
|   const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
 | |
|   // This SCEV does not seem to simplify: fail the division here.
 | |
|   if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
 | |
|     return cannotDivide(Numerator);
 | |
|   divide(SE, Diff, Denominator, &Q, &R);
 | |
|   if (R != Zero)
 | |
|     return cannotDivide(Numerator);
 | |
|   Quotient = Q;
 | |
| }
 | |
| 
 | |
| SCEVDivision::SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
 | |
|                            const SCEV *Denominator)
 | |
|     : SE(S), Denominator(Denominator) {
 | |
|   Zero = SE.getZero(Denominator->getType());
 | |
|   One = SE.getOne(Denominator->getType());
 | |
| 
 | |
|   // We generally do not know how to divide Expr by Denominator. We initialize
 | |
|   // the division to a "cannot divide" state to simplify the rest of the code.
 | |
|   cannotDivide(Numerator);
 | |
| }
 | |
| 
 | |
| // Convenience function for giving up on the division. We set the quotient to
 | |
| // be equal to zero and the remainder to be equal to the numerator.
 | |
| void SCEVDivision::cannotDivide(const SCEV *Numerator) {
 | |
|   Quotient = Zero;
 | |
|   Remainder = Numerator;
 | |
| }
 |