143 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			143 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
"""Generate a mock model for LLVM tests.
 | 
						|
 | 
						|
The generated model is not a neural net - it is just a tf.function with the
 | 
						|
correct input and output parameters. By construction, the mock model will always
 | 
						|
output 1.
 | 
						|
"""
 | 
						|
 | 
						|
import os
 | 
						|
import importlib.util
 | 
						|
import sys
 | 
						|
 | 
						|
import tensorflow as tf
 | 
						|
 | 
						|
POLICY_DECISION_LABEL = 'inlining_decision'
 | 
						|
POLICY_OUTPUT_SPEC = """
 | 
						|
[
 | 
						|
    {
 | 
						|
        "logging_name": "inlining_decision",
 | 
						|
        "tensor_spec": {
 | 
						|
            "name": "StatefulPartitionedCall",
 | 
						|
            "port": 0,
 | 
						|
            "type": "int64_t",
 | 
						|
            "shape": [
 | 
						|
                1
 | 
						|
            ]
 | 
						|
        }
 | 
						|
    }
 | 
						|
]
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
# pylint: disable=g-complex-comprehension
 | 
						|
def get_input_signature():
 | 
						|
  """Returns the list of features for LLVM inlining."""
 | 
						|
  # int64 features
 | 
						|
  inputs = [
 | 
						|
      tf.TensorSpec(dtype=tf.int64, shape=(), name=key) for key in [
 | 
						|
          'caller_basic_block_count',
 | 
						|
          'caller_conditionally_executed_blocks',
 | 
						|
          'caller_users',
 | 
						|
          'callee_basic_block_count',
 | 
						|
          'callee_conditionally_executed_blocks',
 | 
						|
          'callee_users',
 | 
						|
          'nr_ctant_params',
 | 
						|
          'node_count',
 | 
						|
          'edge_count',
 | 
						|
          'callsite_height',
 | 
						|
          'cost_estimate',
 | 
						|
          'inlining_default',
 | 
						|
          'sroa_savings',
 | 
						|
          'sroa_losses',
 | 
						|
          'load_elimination',
 | 
						|
          'call_penalty',
 | 
						|
          'call_argument_setup',
 | 
						|
          'load_relative_intrinsic',
 | 
						|
          'lowered_call_arg_setup',
 | 
						|
          'indirect_call_penalty',
 | 
						|
          'jump_table_penalty',
 | 
						|
          'case_cluster_penalty',
 | 
						|
          'switch_penalty',
 | 
						|
          'unsimplified_common_instructions',
 | 
						|
          'num_loops',
 | 
						|
          'dead_blocks',
 | 
						|
          'simplified_instructions',
 | 
						|
          'constant_args',
 | 
						|
          'constant_offset_ptr_args',
 | 
						|
          'callsite_cost',
 | 
						|
          'cold_cc_penalty',
 | 
						|
          'last_call_to_static_bonus',
 | 
						|
          'is_multiple_blocks',
 | 
						|
          'nested_inlines',
 | 
						|
          'nested_inline_cost_estimate',
 | 
						|
          'threshold',
 | 
						|
      ]
 | 
						|
  ]
 | 
						|
 | 
						|
  # float32 features
 | 
						|
  inputs.extend([
 | 
						|
      tf.TensorSpec(dtype=tf.float32, shape=(), name=key)
 | 
						|
      for key in ['discount', 'reward']
 | 
						|
  ])
 | 
						|
 | 
						|
  # int32 features
 | 
						|
  inputs.extend([
 | 
						|
      tf.TensorSpec(dtype=tf.int32, shape=(), name=key)
 | 
						|
      for key in ['step_type']
 | 
						|
  ])
 | 
						|
  return inputs
 | 
						|
 | 
						|
 | 
						|
def get_output_signature():
 | 
						|
  return POLICY_DECISION_LABEL
 | 
						|
 | 
						|
 | 
						|
def get_output_spec():
 | 
						|
  return POLICY_OUTPUT_SPEC
 | 
						|
 | 
						|
def get_output_spec_path(path):
 | 
						|
  return os.path.join(path, 'output_spec.json')
 | 
						|
 | 
						|
 | 
						|
def build_mock_model(path, signature):
 | 
						|
  """Build and save the mock model with the given signature"""
 | 
						|
  module = tf.Module()
 | 
						|
 | 
						|
  # We have to set this useless variable in order for the TF C API to correctly
 | 
						|
  # intake it
 | 
						|
  module.var = tf.Variable(0.)
 | 
						|
 | 
						|
  def action(*inputs):
 | 
						|
    s = tf.reduce_sum([tf.cast(x, tf.float32) for x in tf.nest.flatten(inputs)])
 | 
						|
    return {signature['output']: float('inf') + s + module.var}
 | 
						|
 | 
						|
  module.action = tf.function()(action)
 | 
						|
  action = {'action': module.action.get_concrete_function(signature['inputs'])}
 | 
						|
  tf.saved_model.save(module, path, signatures=action)
 | 
						|
 | 
						|
  output_spec_path = get_output_spec_path(path)
 | 
						|
  with open(output_spec_path, 'w') as f:
 | 
						|
    print(f'Writing output spec to {output_spec_path}.')
 | 
						|
    f.write(signature['output_spec'])
 | 
						|
 | 
						|
 | 
						|
def get_signature():
 | 
						|
  return {
 | 
						|
      'inputs': get_input_signature(),
 | 
						|
      'output': get_output_signature(),
 | 
						|
      'output_spec': get_output_spec()
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
def main(argv):
 | 
						|
  assert len(argv) == 2
 | 
						|
  model_path = argv[1]
 | 
						|
 | 
						|
  print(f'Output model to: [{argv[1]}]')
 | 
						|
  signature = get_signature()
 | 
						|
  build_mock_model(model_path, signature)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
  main(sys.argv)
 |