432 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			432 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Common functionality for different debug information format backends.
 | |
| // LLVM currently supports DWARF and CodeView.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/DebugHandlerBase.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/CodeGen/AsmPrinter.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/MC/MCStreamer.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "dwarfdebug"
 | |
| 
 | |
| /// If true, we drop variable location ranges which exist entirely outside the
 | |
| /// variable's lexical scope instruction ranges.
 | |
| static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true));
 | |
| 
 | |
| Optional<DbgVariableLocation>
 | |
| DbgVariableLocation::extractFromMachineInstruction(
 | |
|     const MachineInstr &Instruction) {
 | |
|   DbgVariableLocation Location;
 | |
|   // Variables calculated from multiple locations can't be represented here.
 | |
|   if (Instruction.getNumDebugOperands() != 1)
 | |
|     return None;
 | |
|   if (!Instruction.getDebugOperand(0).isReg())
 | |
|     return None;
 | |
|   Location.Register = Instruction.getDebugOperand(0).getReg();
 | |
|   Location.FragmentInfo.reset();
 | |
|   // We only handle expressions generated by DIExpression::appendOffset,
 | |
|   // which doesn't require a full stack machine.
 | |
|   int64_t Offset = 0;
 | |
|   const DIExpression *DIExpr = Instruction.getDebugExpression();
 | |
|   auto Op = DIExpr->expr_op_begin();
 | |
|   // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that
 | |
|   // appears exactly once at the start of the expression.
 | |
|   if (Instruction.isDebugValueList()) {
 | |
|     if (Instruction.getNumDebugOperands() == 1 &&
 | |
|         Op->getOp() == dwarf::DW_OP_LLVM_arg)
 | |
|       ++Op;
 | |
|     else
 | |
|       return None;
 | |
|   }
 | |
|   while (Op != DIExpr->expr_op_end()) {
 | |
|     switch (Op->getOp()) {
 | |
|     case dwarf::DW_OP_constu: {
 | |
|       int Value = Op->getArg(0);
 | |
|       ++Op;
 | |
|       if (Op != DIExpr->expr_op_end()) {
 | |
|         switch (Op->getOp()) {
 | |
|         case dwarf::DW_OP_minus:
 | |
|           Offset -= Value;
 | |
|           break;
 | |
|         case dwarf::DW_OP_plus:
 | |
|           Offset += Value;
 | |
|           break;
 | |
|         default:
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     } break;
 | |
|     case dwarf::DW_OP_plus_uconst:
 | |
|       Offset += Op->getArg(0);
 | |
|       break;
 | |
|     case dwarf::DW_OP_LLVM_fragment:
 | |
|       Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
 | |
|       break;
 | |
|     case dwarf::DW_OP_deref:
 | |
|       Location.LoadChain.push_back(Offset);
 | |
|       Offset = 0;
 | |
|       break;
 | |
|     default:
 | |
|       return None;
 | |
|     }
 | |
|     ++Op;
 | |
|   }
 | |
| 
 | |
|   // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
 | |
|   // instruction.
 | |
|   // FIXME: Replace these with DIExpression.
 | |
|   if (Instruction.isIndirectDebugValue())
 | |
|     Location.LoadChain.push_back(Offset);
 | |
| 
 | |
|   return Location;
 | |
| }
 | |
| 
 | |
| DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
 | |
| 
 | |
| void DebugHandlerBase::beginModule(Module *M) {
 | |
|   if (M->debug_compile_units().empty())
 | |
|     Asm = nullptr;
 | |
| }
 | |
| 
 | |
| // Each LexicalScope has first instruction and last instruction to mark
 | |
| // beginning and end of a scope respectively. Create an inverse map that list
 | |
| // scopes starts (and ends) with an instruction. One instruction may start (or
 | |
| // end) multiple scopes. Ignore scopes that are not reachable.
 | |
| void DebugHandlerBase::identifyScopeMarkers() {
 | |
|   SmallVector<LexicalScope *, 4> WorkList;
 | |
|   WorkList.push_back(LScopes.getCurrentFunctionScope());
 | |
|   while (!WorkList.empty()) {
 | |
|     LexicalScope *S = WorkList.pop_back_val();
 | |
| 
 | |
|     const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
 | |
|     if (!Children.empty())
 | |
|       WorkList.append(Children.begin(), Children.end());
 | |
| 
 | |
|     if (S->isAbstractScope())
 | |
|       continue;
 | |
| 
 | |
|     for (const InsnRange &R : S->getRanges()) {
 | |
|       assert(R.first && "InsnRange does not have first instruction!");
 | |
|       assert(R.second && "InsnRange does not have second instruction!");
 | |
|       requestLabelBeforeInsn(R.first);
 | |
|       requestLabelAfterInsn(R.second);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return Label preceding the instruction.
 | |
| MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) {
 | |
|   MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
 | |
|   assert(Label && "Didn't insert label before instruction");
 | |
|   return Label;
 | |
| }
 | |
| 
 | |
| // Return Label immediately following the instruction.
 | |
| MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
 | |
|   return LabelsAfterInsn.lookup(MI);
 | |
| }
 | |
| 
 | |
| /// If this type is derived from a base type then return base type size.
 | |
| uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) {
 | |
|   assert(Ty);
 | |
|   const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
 | |
|   if (!DDTy)
 | |
|     return Ty->getSizeInBits();
 | |
| 
 | |
|   unsigned Tag = DDTy->getTag();
 | |
| 
 | |
|   if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
 | |
|       Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
 | |
|       Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type &&
 | |
|       Tag != dwarf::DW_TAG_immutable_type)
 | |
|     return DDTy->getSizeInBits();
 | |
| 
 | |
|   DIType *BaseType = DDTy->getBaseType();
 | |
| 
 | |
|   if (!BaseType)
 | |
|     return 0;
 | |
| 
 | |
|   // If this is a derived type, go ahead and get the base type, unless it's a
 | |
|   // reference then it's just the size of the field. Pointer types have no need
 | |
|   // of this since they're a different type of qualification on the type.
 | |
|   if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
 | |
|       BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
 | |
|     return Ty->getSizeInBits();
 | |
| 
 | |
|   return getBaseTypeSize(BaseType);
 | |
| }
 | |
| 
 | |
| bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) {
 | |
|   if (isa<DIStringType>(Ty)) {
 | |
|     // Some transformations (e.g. instcombine) may decide to turn a Fortran
 | |
|     // character object into an integer, and later ones (e.g. SROA) may
 | |
|     // further inject a constant integer in a llvm.dbg.value call to track
 | |
|     // the object's value. Here we trust the transformations are doing the
 | |
|     // right thing, and treat the constant as unsigned to preserve that value
 | |
|     // (i.e. avoid sign extension).
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (auto *CTy = dyn_cast<DICompositeType>(Ty)) {
 | |
|     if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) {
 | |
|       if (!(Ty = CTy->getBaseType()))
 | |
|         // FIXME: Enums without a fixed underlying type have unknown signedness
 | |
|         // here, leading to incorrectly emitted constants.
 | |
|         return false;
 | |
|     } else
 | |
|       // (Pieces of) aggregate types that get hacked apart by SROA may be
 | |
|       // represented by a constant. Encode them as unsigned bytes.
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
 | |
|     dwarf::Tag T = (dwarf::Tag)Ty->getTag();
 | |
|     // Encode pointer constants as unsigned bytes. This is used at least for
 | |
|     // null pointer constant emission.
 | |
|     // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
 | |
|     // here, but accept them for now due to a bug in SROA producing bogus
 | |
|     // dbg.values.
 | |
|     if (T == dwarf::DW_TAG_pointer_type ||
 | |
|         T == dwarf::DW_TAG_ptr_to_member_type ||
 | |
|         T == dwarf::DW_TAG_reference_type ||
 | |
|         T == dwarf::DW_TAG_rvalue_reference_type)
 | |
|       return true;
 | |
|     assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
 | |
|            T == dwarf::DW_TAG_volatile_type ||
 | |
|            T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type ||
 | |
|            T == dwarf::DW_TAG_immutable_type);
 | |
|     assert(DTy->getBaseType() && "Expected valid base type");
 | |
|     return isUnsignedDIType(DTy->getBaseType());
 | |
|   }
 | |
| 
 | |
|   auto *BTy = cast<DIBasicType>(Ty);
 | |
|   unsigned Encoding = BTy->getEncoding();
 | |
|   assert((Encoding == dwarf::DW_ATE_unsigned ||
 | |
|           Encoding == dwarf::DW_ATE_unsigned_char ||
 | |
|           Encoding == dwarf::DW_ATE_signed ||
 | |
|           Encoding == dwarf::DW_ATE_signed_char ||
 | |
|           Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF ||
 | |
|           Encoding == dwarf::DW_ATE_boolean ||
 | |
|           (Ty->getTag() == dwarf::DW_TAG_unspecified_type &&
 | |
|            Ty->getName() == "decltype(nullptr)")) &&
 | |
|          "Unsupported encoding");
 | |
|   return Encoding == dwarf::DW_ATE_unsigned ||
 | |
|          Encoding == dwarf::DW_ATE_unsigned_char ||
 | |
|          Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
 | |
|          Ty->getTag() == dwarf::DW_TAG_unspecified_type;
 | |
| }
 | |
| 
 | |
| static bool hasDebugInfo(const MachineModuleInfo *MMI,
 | |
|                          const MachineFunction *MF) {
 | |
|   if (!MMI->hasDebugInfo())
 | |
|     return false;
 | |
|   auto *SP = MF->getFunction().getSubprogram();
 | |
|   if (!SP)
 | |
|     return false;
 | |
|   assert(SP->getUnit());
 | |
|   auto EK = SP->getUnit()->getEmissionKind();
 | |
|   if (EK == DICompileUnit::NoDebug)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
 | |
|   PrevInstBB = nullptr;
 | |
| 
 | |
|   if (!Asm || !hasDebugInfo(MMI, MF)) {
 | |
|     skippedNonDebugFunction();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Grab the lexical scopes for the function, if we don't have any of those
 | |
|   // then we're not going to be able to do anything.
 | |
|   LScopes.initialize(*MF);
 | |
|   if (LScopes.empty()) {
 | |
|     beginFunctionImpl(MF);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Make sure that each lexical scope will have a begin/end label.
 | |
|   identifyScopeMarkers();
 | |
| 
 | |
|   // Calculate history for local variables.
 | |
|   assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
 | |
|   assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!");
 | |
|   calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
 | |
|                             DbgValues, DbgLabels);
 | |
|   InstOrdering.initialize(*MF);
 | |
|   if (TrimVarLocs)
 | |
|     DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering);
 | |
|   LLVM_DEBUG(DbgValues.dump());
 | |
| 
 | |
|   // Request labels for the full history.
 | |
|   for (const auto &I : DbgValues) {
 | |
|     const auto &Entries = I.second;
 | |
|     if (Entries.empty())
 | |
|       continue;
 | |
| 
 | |
|     auto IsDescribedByReg = [](const MachineInstr *MI) {
 | |
|       return any_of(MI->debug_operands(),
 | |
|                     [](auto &MO) { return MO.isReg() && MO.getReg(); });
 | |
|     };
 | |
| 
 | |
|     // The first mention of a function argument gets the CurrentFnBegin label,
 | |
|     // so arguments are visible when breaking at function entry.
 | |
|     //
 | |
|     // We do not change the label for values that are described by registers,
 | |
|     // as that could place them above their defining instructions. We should
 | |
|     // ideally not change the labels for constant debug values either, since
 | |
|     // doing that violates the ranges that are calculated in the history map.
 | |
|     // However, we currently do not emit debug values for constant arguments
 | |
|     // directly at the start of the function, so this code is still useful.
 | |
|     const DILocalVariable *DIVar =
 | |
|         Entries.front().getInstr()->getDebugVariable();
 | |
|     if (DIVar->isParameter() &&
 | |
|         getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) {
 | |
|       if (!IsDescribedByReg(Entries.front().getInstr()))
 | |
|         LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin();
 | |
|       if (Entries.front().getInstr()->getDebugExpression()->isFragment()) {
 | |
|         // Mark all non-overlapping initial fragments.
 | |
|         for (auto I = Entries.begin(); I != Entries.end(); ++I) {
 | |
|           if (!I->isDbgValue())
 | |
|             continue;
 | |
|           const DIExpression *Fragment = I->getInstr()->getDebugExpression();
 | |
|           if (std::any_of(Entries.begin(), I,
 | |
|                           [&](DbgValueHistoryMap::Entry Pred) {
 | |
|                             return Pred.isDbgValue() &&
 | |
|                                    Fragment->fragmentsOverlap(
 | |
|                                        Pred.getInstr()->getDebugExpression());
 | |
|                           }))
 | |
|             break;
 | |
|           // The code that generates location lists for DWARF assumes that the
 | |
|           // entries' start labels are monotonically increasing, and since we
 | |
|           // don't change the label for fragments that are described by
 | |
|           // registers, we must bail out when encountering such a fragment.
 | |
|           if (IsDescribedByReg(I->getInstr()))
 | |
|             break;
 | |
|           LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (const auto &Entry : Entries) {
 | |
|       if (Entry.isDbgValue())
 | |
|         requestLabelBeforeInsn(Entry.getInstr());
 | |
|       else
 | |
|         requestLabelAfterInsn(Entry.getInstr());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Ensure there is a symbol before DBG_LABEL.
 | |
|   for (const auto &I : DbgLabels) {
 | |
|     const MachineInstr *MI = I.second;
 | |
|     requestLabelBeforeInsn(MI);
 | |
|   }
 | |
| 
 | |
|   PrevInstLoc = DebugLoc();
 | |
|   PrevLabel = Asm->getFunctionBegin();
 | |
|   beginFunctionImpl(MF);
 | |
| }
 | |
| 
 | |
| void DebugHandlerBase::beginInstruction(const MachineInstr *MI) {
 | |
|   if (!Asm || !MMI->hasDebugInfo())
 | |
|     return;
 | |
| 
 | |
|   assert(CurMI == nullptr);
 | |
|   CurMI = MI;
 | |
| 
 | |
|   // Insert labels where requested.
 | |
|   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
 | |
|       LabelsBeforeInsn.find(MI);
 | |
| 
 | |
|   // No label needed.
 | |
|   if (I == LabelsBeforeInsn.end())
 | |
|     return;
 | |
| 
 | |
|   // Label already assigned.
 | |
|   if (I->second)
 | |
|     return;
 | |
| 
 | |
|   if (!PrevLabel) {
 | |
|     PrevLabel = MMI->getContext().createTempSymbol();
 | |
|     Asm->OutStreamer->emitLabel(PrevLabel);
 | |
|   }
 | |
|   I->second = PrevLabel;
 | |
| }
 | |
| 
 | |
| void DebugHandlerBase::endInstruction() {
 | |
|   if (!Asm || !MMI->hasDebugInfo())
 | |
|     return;
 | |
| 
 | |
|   assert(CurMI != nullptr);
 | |
|   // Don't create a new label after DBG_VALUE and other instructions that don't
 | |
|   // generate code.
 | |
|   if (!CurMI->isMetaInstruction()) {
 | |
|     PrevLabel = nullptr;
 | |
|     PrevInstBB = CurMI->getParent();
 | |
|   }
 | |
| 
 | |
|   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
 | |
|       LabelsAfterInsn.find(CurMI);
 | |
| 
 | |
|   // No label needed or label already assigned.
 | |
|   if (I == LabelsAfterInsn.end() || I->second) {
 | |
|     CurMI = nullptr;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We need a label after this instruction.  With basic block sections, just
 | |
|   // use the end symbol of the section if this is the last instruction of the
 | |
|   // section.  This reduces the need for an additional label and also helps
 | |
|   // merging ranges.
 | |
|   if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) {
 | |
|     PrevLabel = CurMI->getParent()->getEndSymbol();
 | |
|   } else if (!PrevLabel) {
 | |
|     PrevLabel = MMI->getContext().createTempSymbol();
 | |
|     Asm->OutStreamer->emitLabel(PrevLabel);
 | |
|   }
 | |
|   I->second = PrevLabel;
 | |
|   CurMI = nullptr;
 | |
| }
 | |
| 
 | |
| void DebugHandlerBase::endFunction(const MachineFunction *MF) {
 | |
|   if (Asm && hasDebugInfo(MMI, MF))
 | |
|     endFunctionImpl(MF);
 | |
|   DbgValues.clear();
 | |
|   DbgLabels.clear();
 | |
|   LabelsBeforeInsn.clear();
 | |
|   LabelsAfterInsn.clear();
 | |
|   InstOrdering.clear();
 | |
| }
 | |
| 
 | |
| void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock &MBB) {
 | |
|   if (!MBB.isBeginSection())
 | |
|     return;
 | |
| 
 | |
|   PrevLabel = MBB.getSymbol();
 | |
| }
 | |
| 
 | |
| void DebugHandlerBase::endBasicBlock(const MachineBasicBlock &MBB) {
 | |
|   if (!MBB.isEndSection())
 | |
|     return;
 | |
| 
 | |
|   PrevLabel = nullptr;
 | |
| }
 |