911 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			911 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Implementation of the ML eviction advisor and reward injection pass
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AllocationOrder.h"
 | |
| #include "RegAllocEvictionAdvisor.h"
 | |
| #include "RegAllocGreedy.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/MLModelRunner.h"
 | |
| #include "llvm/Analysis/TensorSpec.h"
 | |
| #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TF_API) 
 | |
| #include "llvm/Analysis/ModelUnderTrainingRunner.h"
 | |
| #include "llvm/Analysis/NoInferenceModelRunner.h"
 | |
| #endif
 | |
| #include "llvm/Analysis/ReleaseModeModelRunner.h"
 | |
| #include "llvm/CodeGen/CalcSpillWeights.h"
 | |
| #include "llvm/CodeGen/LiveRegMatrix.h"
 | |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegisterClassInfo.h"
 | |
| #include "llvm/CodeGen/VirtRegMap.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/PassRegistry.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| 
 | |
| #include <array>
 | |
| #include <memory>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "ml-regalloc"
 | |
| 
 | |
| // Generated header in release (AOT) mode
 | |
| #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
 | |
| #include "RegallocEvictModel.h"
 | |
| using CompiledModelType = RegallocEvictModel;
 | |
| #else
 | |
| using CompiledModelType = NoopSavedModelImpl;
 | |
| #endif
 | |
| 
 | |
| // Options that only make sense in development mode
 | |
| #ifdef LLVM_HAVE_TF_API
 | |
| #include "RegAllocScore.h"
 | |
| #include "llvm/Analysis/Utils/TFUtils.h"
 | |
| 
 | |
| static cl::opt<std::string> TrainingLog(
 | |
|     "regalloc-training-log", cl::Hidden,
 | |
|     cl::desc("Training log for the register allocator eviction model"));
 | |
| 
 | |
| static cl::opt<std::string> ModelUnderTraining(
 | |
|     "regalloc-model", cl::Hidden,
 | |
|     cl::desc("The model being trained for register allocation eviction"));
 | |
| 
 | |
| #endif // #ifdef LLVM_HAVE_TF_API
 | |
| 
 | |
| extern cl::opt<unsigned> EvictInterferenceCutoff;
 | |
| 
 | |
| /// The score injection pass.
 | |
| /// This pass calculates the score for a function and inserts it in the log, but
 | |
| /// this happens only in development mode. It's a no-op otherwise.
 | |
| namespace llvm {
 | |
| class RegAllocScoring : public MachineFunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   RegAllocScoring() : MachineFunctionPass(ID) {
 | |
|     initializeRegAllocScoringPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   ~RegAllocScoring() override = default;
 | |
| 
 | |
|   StringRef getPassName() const override {
 | |
|     return "Register Allocation Pass Scoring";
 | |
|   }
 | |
| 
 | |
|   /// RegAllocReward analysis usage.
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesAll();
 | |
|     AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
 | |
|     AU.addRequired<MachineBlockFrequencyInfo>();
 | |
|     AU.addRequired<AAResultsWrapperPass>();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   /// Performs this pass
 | |
|   bool runOnMachineFunction(MachineFunction &) override;
 | |
| };
 | |
| 
 | |
| char RegAllocScoring::ID = 0;
 | |
| FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); }
 | |
| 
 | |
| } // namespace llvm
 | |
| 
 | |
| INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass",
 | |
|                 "Register Allocation Scoring Pass", false, false)
 | |
| 
 | |
| // ===================================
 | |
| // Common ML Advisor declarations
 | |
| // ===================================
 | |
| namespace {
 | |
| // This is the maximum number of interfererring ranges. That's the number of
 | |
| // distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize.
 | |
| // For X86, that's 32.
 | |
| // TODO: find a way to get this, statically, in a programmatic way.
 | |
| static const int64_t MaxInterferences = 32;
 | |
| 
 | |
| // Logically, we can think of the feature set given to the evaluator as a 2D
 | |
| // matrix. The rows are the features (see next). The columns correspond to the
 | |
| // interferences. We treat the candidate virt reg as an 'interference', too, as
 | |
| // its feature set is the same as that of the interferring ranges. So we'll have
 | |
| // MaxInterferences + 1 columns and by convention, we will use the last column
 | |
| // for the virt reg seeking allocation.
 | |
| static const int64_t CandidateVirtRegPos = MaxInterferences;
 | |
| static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1;
 | |
| 
 | |
| // Most features are as described above, so we'll reuse this vector in defining
 | |
| // them.
 | |
| static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences};
 | |
| 
 | |
| // --------------
 | |
| // Features table
 | |
| // --------------
 | |
| // For each interfering live range (incl. the candidate) we collect a number of
 | |
| // features. However, because the features are of different types (and because
 | |
| // of ML best practices), we organize the tensors per feature, not per
 | |
| // candidate. Each such tensor has a scalar value corresponding to the
 | |
| // interferring live range at that position, in the order in AllocationOrder.
 | |
| // The last position corresponds to the virt reg seeking allocation.
 | |
| // Exception to all that is the progression feature, which is just a scalar (see
 | |
| // its documentation for details).
 | |
| // Note on naming: the "_by_max" are normalized using the largest value of that
 | |
| // tensor, as observed in the current decision making stage (i.e. for the
 | |
| // current call to the advisor's tryFindEvictionCandidate)
 | |
| //
 | |
| // The feature list format: type, name, shape, documentation.
 | |
| // Note: we can really just use int64 and float, hence the modeling of some
 | |
| // bools as int64 values.
 | |
| #define RA_EVICT_FEATURES_LIST(M)                                              \
 | |
|   M(int64_t, mask, PerLiveRangeShape,                                          \
 | |
|     "boolean values, 0 for unavailable candidates (i.e. if a position is 0, "  \
 | |
|     "it "                                                                      \
 | |
|     "can't be evicted)")                                                       \
 | |
|   M(int64_t, is_free, PerLiveRangeShape,                                       \
 | |
|     "boolean values, 1 if this phys reg is actually free (no interferences)")  \
 | |
|   M(float, nr_urgent, PerLiveRangeShape,                                       \
 | |
|     "number of 'urgent' intervals, normalized. Urgent are those that are OK "  \
 | |
|     "to break cascades")                                                       \
 | |
|   M(float, nr_broken_hints, PerLiveRangeShape,                                 \
 | |
|     "if this position were evicted, how many broken hints would there be")     \
 | |
|   M(int64_t, is_hint, PerLiveRangeShape,                                       \
 | |
|     "is this a preferred phys reg for the candidate")                          \
 | |
|   M(int64_t, is_local, PerLiveRangeShape,                                      \
 | |
|     "is this live range local to a basic block")                               \
 | |
|   M(float, nr_rematerializable, PerLiveRangeShape,                             \
 | |
|     "nr rematerializable ranges")                                              \
 | |
|   M(float, nr_defs_and_uses, PerLiveRangeShape,                                \
 | |
|     "bb freq - weighed nr defs and uses")                                      \
 | |
|   M(float, weighed_reads_by_max, PerLiveRangeShape,                            \
 | |
|     "bb freq - weighed nr of reads, normalized")                               \
 | |
|   M(float, weighed_writes_by_max, PerLiveRangeShape,                           \
 | |
|     "bb feq - weighed nr of writes, normalized")                               \
 | |
|   M(float, weighed_read_writes_by_max, PerLiveRangeShape,                      \
 | |
|     "bb freq - weighed nr of uses that are both read and writes, normalized")  \
 | |
|   M(float, weighed_indvars_by_max, PerLiveRangeShape,                          \
 | |
|     "bb freq - weighed nr of uses that are indvars, normalized")               \
 | |
|   M(float, hint_weights_by_max, PerLiveRangeShape,                             \
 | |
|     "bb freq - weighed nr of uses that are hints, normalized")                 \
 | |
|   M(float, start_bb_freq_by_max, PerLiveRangeShape,                            \
 | |
|     "the freq in the start block, normalized")                                 \
 | |
|   M(float, end_bb_freq_by_max, PerLiveRangeShape,                              \
 | |
|     "freq of end block, normalized")                                           \
 | |
|   M(float, hottest_bb_freq_by_max, PerLiveRangeShape,                          \
 | |
|     "hottest BB freq, normalized")                                             \
 | |
|   M(float, liverange_size, PerLiveRangeShape,                                  \
 | |
|     "size (instr index diff) of the LR")                                       \
 | |
|   M(float, use_def_density, PerLiveRangeShape,                                 \
 | |
|     "the max weight, as computed by the manual heuristic")                     \
 | |
|   M(int64_t, max_stage, PerLiveRangeShape,                                     \
 | |
|     "largest stage of an interval in this LR")                                 \
 | |
|   M(int64_t, min_stage, PerLiveRangeShape,                                     \
 | |
|     "lowest stage of an interval in this LR")                                  \
 | |
|   M(float, progress, {1}, "ratio of current queue size to initial size")
 | |
| 
 | |
| // The model learns to pick one of the mask == 1 interferences. This is the name
 | |
| // of the output tensor.
 | |
| // The contract with the model is that the output will be guaranteed to be to a
 | |
| // mask == 1 position.
 | |
| // Using a macro here to avoid 'not used' warnings (and keep cond compilation to
 | |
| // a minimum)
 | |
| #define DecisionName "index_to_evict"
 | |
| 
 | |
| // Named features index.
 | |
| enum FeatureIDs {
 | |
| #define _FEATURE_IDX(_, name, __, ___) name,
 | |
|   RA_EVICT_FEATURES_LIST(_FEATURE_IDX)
 | |
| #undef _FEATURE_IDX
 | |
|       FeatureCount
 | |
| };
 | |
| 
 | |
| // The ML advisor will typically have a sparse input to the evaluator, because
 | |
| // various phys regs won't be available. It's easier (maintenance-wise) to
 | |
| // bulk-reset the state of the evaluator each time we are about to use it again.
 | |
| template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) {
 | |
|   size_t Ret = sizeof(T);
 | |
|   for (const auto V : Shape)
 | |
|     Ret *= V;
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| void resetInputs(MLModelRunner &Runner) {
 | |
| #define _RESET(TYPE, NAME, SHAPE, __)                                          \
 | |
|   std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0,                    \
 | |
|               getTotalSize<TYPE>(SHAPE));
 | |
|   RA_EVICT_FEATURES_LIST(_RESET)
 | |
| #undef _RESET
 | |
| }
 | |
| 
 | |
| // Per-live interval components that get aggregated into the feature values that
 | |
| // will be passed to the evaluator.
 | |
| struct LIFeatureComponents {
 | |
|   double R = 0;
 | |
|   double W = 0;
 | |
|   double RW = 0;
 | |
|   double IndVarUpdates = 0;
 | |
|   double HintWeights = 0.0;
 | |
|   int64_t NrDefsAndUses = 0;
 | |
|   float HottestBlockFreq = 0.0;
 | |
|   bool IsRemat = false;
 | |
| };
 | |
| 
 | |
| using CandidateRegList =
 | |
|     std::array<std::pair<MCRegister, bool>, NumberOfInterferences>;
 | |
| using FeaturesListNormalizer = std::array<float, FeatureIDs::FeatureCount>;
 | |
| 
 | |
| /// The ML evictor (commonalities between release and development mode)
 | |
| class MLEvictAdvisor : public RegAllocEvictionAdvisor {
 | |
| public:
 | |
|   MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
 | |
|                  MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI,
 | |
|                  const MachineLoopInfo &Loops);
 | |
| 
 | |
| protected:
 | |
|   const RegAllocEvictionAdvisor &getDefaultAdvisor() const {
 | |
|     return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor);
 | |
|   }
 | |
| 
 | |
|   // The assumption is that if the Runner could not be constructed, we emit-ed
 | |
|   // error, and we shouldn't be asking for it here.
 | |
|   const MLModelRunner &getRunner() const { return *Runner; }
 | |
| 
 | |
|   /// This just calls Evaluate on the Runner, but in the development mode case,
 | |
|   /// if we're just capturing the log of the default advisor, it needs to call
 | |
|   /// the latter instead, so we need to pass all the necessary parameters for
 | |
|   /// it. In the development case, it will also log.
 | |
|   virtual int64_t
 | |
|   tryFindEvictionCandidatePosition(const LiveInterval &VirtReg,
 | |
|                                    const AllocationOrder &Order,
 | |
|                                    unsigned OrderLimit, uint8_t CostPerUseLimit,
 | |
|                                    const SmallVirtRegSet &FixedRegisters) const;
 | |
| 
 | |
|   /// Load the features of the given VirtReg (allocated or not) at column Pos,
 | |
|   /// but if  that can't be evicted, return false instead.
 | |
|   bool
 | |
|   loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg,
 | |
|                            bool IsHint, const SmallVirtRegSet &FixedRegisters,
 | |
|                            std::array<float, FeatureIDs::FeatureCount> &Largest,
 | |
|                            size_t Pos) const;
 | |
| 
 | |
| private:
 | |
|   static float getInitialQueueSize(const MachineFunction &MF);
 | |
| 
 | |
|   MCRegister tryFindEvictionCandidate(
 | |
|       const LiveInterval &VirtReg, const AllocationOrder &Order,
 | |
|       uint8_t CostPerUseLimit,
 | |
|       const SmallVirtRegSet &FixedRegisters) const override;
 | |
| 
 | |
|   void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals,
 | |
|                        std::array<float, FeatureIDs::FeatureCount> &Largest,
 | |
|                        size_t Pos, int64_t IsHint, int64_t LocalIntfsCount,
 | |
|                        float NrUrgent) const;
 | |
| 
 | |
|   // Point-in-time: we didn't learn this, so we always delegate to the default.
 | |
|   bool canEvictHintInterference(
 | |
|       const LiveInterval &VirtReg, MCRegister PhysReg,
 | |
|       const SmallVirtRegSet &FixedRegisters) const override {
 | |
|     return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg,
 | |
|                                                         FixedRegisters);
 | |
|   }
 | |
| 
 | |
|   const LIFeatureComponents &
 | |
|   getLIFeatureComponents(const LiveInterval &LI) const;
 | |
| 
 | |
|   // Hold on to a default advisor for:
 | |
|   // 1) the implementation of canEvictHintInterference, because we didn't learn
 | |
|   // that nuance yet;
 | |
|   // 2) for bootstrapping (logging) in the development mode case.
 | |
|   const DefaultEvictionAdvisor DefaultAdvisor;
 | |
|   MLModelRunner *const Runner;
 | |
|   const MachineBlockFrequencyInfo &MBFI;
 | |
|   const MachineLoopInfo &Loops;
 | |
| 
 | |
|   // Indices of those features we don't want to normalize.
 | |
|   // This could be static and shared, but its initialization is non-trivial.
 | |
|   std::bitset<FeatureIDs::FeatureCount> DoNotNormalize;
 | |
|   const float InitialQSize;
 | |
| 
 | |
|   using RegID = unsigned;
 | |
|   mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures;
 | |
| };
 | |
| 
 | |
| #define _DECL_FEATURES(type, name, shape, _)                                   \
 | |
|   TensorSpec::createSpec<type>(#name, shape),
 | |
| 
 | |
| static const std::vector<TensorSpec> InputFeatures{
 | |
|     {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)},
 | |
| };
 | |
| #undef _DECL_FEATURES
 | |
| // ===================================
 | |
| // Release (AOT) - specifics
 | |
| // ===================================
 | |
| class ReleaseModeEvictionAdvisorAnalysis final
 | |
|     : public RegAllocEvictionAdvisorAnalysis {
 | |
| public:
 | |
|   ReleaseModeEvictionAdvisorAnalysis()
 | |
|       : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {}
 | |
|   // support for isa<> and dyn_cast.
 | |
|   static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
 | |
|     return R->getAdvisorMode() == AdvisorMode::Release;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<MachineBlockFrequencyInfo>();
 | |
|     AU.addRequired<MachineLoopInfo>();
 | |
|     RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   std::unique_ptr<RegAllocEvictionAdvisor>
 | |
|   getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
 | |
|     if (!Runner)
 | |
|       Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
 | |
|           MF.getFunction().getContext(), InputFeatures, DecisionName);
 | |
|     return std::make_unique<MLEvictAdvisor>(
 | |
|         MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
 | |
|         getAnalysis<MachineLoopInfo>());
 | |
|   }
 | |
|   std::unique_ptr<ReleaseModeModelRunner<CompiledModelType>> Runner;
 | |
| };
 | |
| 
 | |
| // ===================================
 | |
| // Development mode-specifics
 | |
| // ===================================
 | |
| //
 | |
| // Features we log
 | |
| #ifdef LLVM_HAVE_TF_API
 | |
| static const TensorSpec Output =
 | |
|     TensorSpec::createSpec<int64_t>(DecisionName, {1});
 | |
| static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
 | |
| 
 | |
| // Features we bind on the model. The tensor names have a prefix, and we also
 | |
| // need to include some tensors that are expected to be present by the training
 | |
| // algo.
 | |
| // TODO: can we just get rid of these?
 | |
| #define _DECL_TRAIN_FEATURES(type, name, shape, _)                             \
 | |
|   TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
 | |
| 
 | |
| static const std::vector<TensorSpec> TrainingInputFeatures{
 | |
|     {RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
 | |
|          TensorSpec::createSpec<float>("action_discount", {1}),
 | |
|      TensorSpec::createSpec<int32_t>("action_step_type", {1}),
 | |
|      TensorSpec::createSpec<float>("action_reward", {1})}};
 | |
| #undef _DECL_TRAIN_FEATURES
 | |
| 
 | |
| class DevelopmentModeEvictAdvisor : public MLEvictAdvisor {
 | |
| public:
 | |
|   DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
 | |
|                               MLModelRunner *Runner,
 | |
|                               const MachineBlockFrequencyInfo &MBFI,
 | |
|                               const MachineLoopInfo &Loops, Logger *Log)
 | |
|       : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {}
 | |
| 
 | |
| private:
 | |
|   int64_t tryFindEvictionCandidatePosition(
 | |
|       const LiveInterval &VirtReg, const AllocationOrder &Order,
 | |
|       unsigned OrderLimit, uint8_t CostPerUseLimit,
 | |
|       const SmallVirtRegSet &FixedRegisters) const override;
 | |
| 
 | |
|   Logger *const Log;
 | |
| };
 | |
| 
 | |
| class DevelopmentModeEvictionAdvisorAnalysis final
 | |
|     : public RegAllocEvictionAdvisorAnalysis {
 | |
| public:
 | |
|   DevelopmentModeEvictionAdvisorAnalysis()
 | |
|       : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {}
 | |
|   // support for isa<> and dyn_cast.
 | |
|   static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
 | |
|     return R->getAdvisorMode() == AdvisorMode::Development;
 | |
|   }
 | |
| 
 | |
|   /// get the logger for the given function, or nullptr if we didn't collect
 | |
|   /// one. This is used to inject the score by the RegAllocScoring pass.
 | |
|   Logger *getLogger(const MachineFunction &MF) const {
 | |
|     auto I = LogMap.find(MF.getName());
 | |
|     if (I == LogMap.end())
 | |
|       return nullptr;
 | |
|     return I->second.get();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<MachineBlockFrequencyInfo>();
 | |
|     AU.addRequired<MachineLoopInfo>();
 | |
|     RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   // Save all the logs (when requested).
 | |
|   bool doFinalization(Module &M) override {
 | |
|     if (TrainingLog.empty())
 | |
|       return false;
 | |
|     std::error_code EC;
 | |
|     auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
 | |
|     if (EC) {
 | |
|       M.getContext().emitError(EC.message() + ":" + TrainingLog);
 | |
|       return false;
 | |
|     }
 | |
|     Logger::flushLogs(*OS, LogMap);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   std::unique_ptr<RegAllocEvictionAdvisor>
 | |
|   getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
 | |
|     LLVMContext &Ctx = MF.getFunction().getContext();
 | |
|     if (ModelUnderTraining.empty() && TrainingLog.empty()) {
 | |
|       Ctx.emitError("Regalloc development mode should be requested with at "
 | |
|                     "least logging enabled and/or a training model");
 | |
|       return nullptr;
 | |
|     }
 | |
|     if (!Runner) {
 | |
|       if (ModelUnderTraining.empty())
 | |
|         Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
 | |
|       else
 | |
|         Runner = ModelUnderTrainingRunner::createAndEnsureValid(
 | |
|             Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
 | |
|       if (!Runner) {
 | |
|         Ctx.emitError("Regalloc: could not set up the model runner");
 | |
|         return nullptr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Logger *Log = nullptr;
 | |
|     if (!TrainingLog.empty()) {
 | |
|       std::vector<LoggedFeatureSpec> LFS;
 | |
|       for (const auto &FS : InputFeatures)
 | |
|         LFS.push_back({FS, None});
 | |
|       if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
 | |
|         if (MUTR->outputLoggedFeatureSpecs().size() > 1)
 | |
|           append_range(LFS, drop_begin(MUTR->outputLoggedFeatureSpecs()));
 | |
|       // We always log the output; in particular, if we're not evaluating, we
 | |
|       // don't have an output spec json file. That's why we handle the
 | |
|       // 'normal' output separately.
 | |
|       LFS.push_back({Output, None});
 | |
|       auto I = LogMap.insert(std::make_pair(
 | |
|           MF.getFunction().getName(),
 | |
|           std::make_unique<Logger>(LFS, Reward, /*IncludeReward*/ true)));
 | |
|       assert(I.second);
 | |
|       Log = I.first->second.get();
 | |
|     }
 | |
|     return std::make_unique<DevelopmentModeEvictAdvisor>(
 | |
|         MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
 | |
|         getAnalysis<MachineLoopInfo>(), Log);
 | |
|   }
 | |
| 
 | |
|   std::unique_ptr<MLModelRunner> Runner;
 | |
|   StringMap<std::unique_ptr<Logger>> LogMap;
 | |
| };
 | |
| #endif //#ifdef LLVM_HAVE_TF_API
 | |
| } // namespace
 | |
| 
 | |
| float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) {
 | |
|   auto &MRI = MF.getRegInfo();
 | |
|   float Ret = 0.0;
 | |
|   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
 | |
|     Register Reg = Register::index2VirtReg(I);
 | |
|     if (MRI.reg_nodbg_empty(Reg))
 | |
|       continue;
 | |
|     ++Ret;
 | |
|   }
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
 | |
|                                MLModelRunner *Runner,
 | |
|                                const MachineBlockFrequencyInfo &MBFI,
 | |
|                                const MachineLoopInfo &Loops)
 | |
|     : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA),
 | |
|       Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops),
 | |
|       InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) {
 | |
|   assert(this->Runner);
 | |
|   DoNotNormalize.set(FeatureIDs::mask);
 | |
|   DoNotNormalize.set(FeatureIDs::is_free);
 | |
|   DoNotNormalize.set(FeatureIDs::is_hint);
 | |
|   DoNotNormalize.set(FeatureIDs::is_local);
 | |
|   DoNotNormalize.set(FeatureIDs::min_stage);
 | |
|   DoNotNormalize.set(FeatureIDs::max_stage);
 | |
|   DoNotNormalize.set(FeatureIDs::progress);
 | |
| }
 | |
| 
 | |
| int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition(
 | |
|     const LiveInterval &, const AllocationOrder &, unsigned, uint8_t,
 | |
|     const SmallVirtRegSet &) const {
 | |
|   int64_t Ret = Runner->evaluate<int64_t>();
 | |
|   assert(Ret >= 0);
 | |
|   assert(Ret <= CandidateVirtRegPos);
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| bool MLEvictAdvisor::loadInterferenceFeatures(
 | |
|     const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
 | |
|     const SmallVirtRegSet &FixedRegisters, FeaturesListNormalizer &Largest,
 | |
|     size_t Pos) const {
 | |
|   // It is only possible to evict virtual register interference.
 | |
|   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) {
 | |
|     // leave unavailable
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
 | |
|   int64_t LocalIntfs = 0;
 | |
|   float NrUrgent = 0.0f;
 | |
| 
 | |
|   // The cascade tracking is the same as in the default advisor
 | |
|   unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg());
 | |
| 
 | |
|   SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals;
 | |
|   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
 | |
|     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
 | |
|     // Different from the default heuristic, we don't make any assumptions about
 | |
|     // what having more than 10 results in the query may mean.
 | |
|     const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff);
 | |
|     if (IFIntervals.empty() && InterferingIntervals.empty())
 | |
|       continue;
 | |
|     if (IFIntervals.size() >= EvictInterferenceCutoff)
 | |
|       return false;
 | |
|     InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end());
 | |
|     for (const LiveInterval *Intf : reverse(IFIntervals)) {
 | |
|       assert(Register::isVirtualRegister(Intf->reg()) &&
 | |
|              "Only expecting virtual register interference from query");
 | |
|       // This is the same set of legality checks as in the default case: don't
 | |
|       // try to evict fixed regs or 'done' ones. Also don't break cascades,
 | |
|       // except in the urgent case, with the same nuances used in the default
 | |
|       // heuristic.
 | |
|       // We could try sharing this between the advisors, but it may end up
 | |
|       // more complex than it is right now.
 | |
|       if (FixedRegisters.count(Intf->reg()))
 | |
|         return false;
 | |
|       if (RA.getExtraInfo().getStage(*Intf) == RS_Done)
 | |
|         return false;
 | |
|       bool Urgent =
 | |
|           !VirtReg.isSpillable() &&
 | |
|           (Intf->isSpillable() ||
 | |
|            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
 | |
|                RegClassInfo.getNumAllocatableRegs(
 | |
|                    MRI->getRegClass(Intf->reg())));
 | |
|       // Only evict older cascades or live ranges without a cascade.
 | |
|       unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg());
 | |
|       if (Cascade <= IntfCascade) {
 | |
|         if (!Urgent)
 | |
|           return false;
 | |
|         ++NrUrgent;
 | |
|       }
 | |
| 
 | |
|       LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
 | |
|                      (!EnableLocalReassign || !canReassign(*Intf, PhysReg)));
 | |
|     }
 | |
|   }
 | |
|   // OK, so if we made it this far, this LR is an eviction candidate, load its
 | |
|   // features.
 | |
|   extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs,
 | |
|                   NrUrgent);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MCRegister MLEvictAdvisor::tryFindEvictionCandidate(
 | |
|     const LiveInterval &VirtReg, const AllocationOrder &Order,
 | |
|     uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
 | |
|   auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit);
 | |
|   if (!MaybeOrderLimit)
 | |
|     return MCRegister::NoRegister;
 | |
|   unsigned OrderLimit = *MaybeOrderLimit;
 | |
| 
 | |
|   // The heuristic sets initial costs such as, if CostPerUseLimit is
 | |
|   // max<uint8_t>, then any of the costs of the legally-evictable intervals
 | |
|   // would be lower. When that happens, one of those will be selected.
 | |
|   // Therefore, we allow the candidate be selected, unless the candidate is
 | |
|   // unspillable, in which case it would be incorrect to not find a register for
 | |
|   // it.
 | |
|   const bool MustFindEviction =
 | |
|       (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u));
 | |
|   // Number of available candidates - if 0, no need to continue.
 | |
|   size_t Available = 0;
 | |
|   // Make sure we don't have leftover partial state from an attempt where we had
 | |
|   // no available candidates and bailed out early.
 | |
|   resetInputs(*Runner);
 | |
| 
 | |
|   // Track the index->register mapping because AllocationOrder doesn't do that
 | |
|   // and we'd have to scan it.
 | |
|   // Also track their mask, to write asserts/debug.
 | |
|   CandidateRegList Regs;
 | |
|   Regs.fill({0, false});
 | |
| 
 | |
|   // Track the largest value of features seen during this eviction session. We
 | |
|   // only normalize (some of) the float features, but it's just simpler to
 | |
|   // dimension 'Largest' to all the features, especially since we have the
 | |
|   // 'DoNotNormalize' list.
 | |
|   FeaturesListNormalizer Largest;
 | |
|   Largest.fill(0.0);
 | |
| 
 | |
|   // Same overal idea as in the default eviction policy - we visit the values of
 | |
|   // AllocationOrder one at a time. If it's not legally available, we mask off
 | |
|   // the corresponding feature column (==do nothing because we already reset all
 | |
|   // the features to 0)
 | |
|   // Use Pos to capture the column we load features at - in AllocationOrder
 | |
|   // order.
 | |
|   size_t Pos = 0;
 | |
|   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
 | |
|        ++I, ++Pos) {
 | |
|     MCRegister PhysReg = *I;
 | |
|     assert(!Regs[Pos].second);
 | |
|     assert(PhysReg);
 | |
|     if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) {
 | |
|       continue;
 | |
|     }
 | |
|     if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters,
 | |
|                                  Largest, Pos)) {
 | |
|       ++Available;
 | |
|       Regs[Pos] = std::make_pair(PhysReg, true);
 | |
|     }
 | |
|   }
 | |
|   if (Available == 0) {
 | |
|     // Nothing to decide, nothing to learn.
 | |
|     assert(!MustFindEviction);
 | |
|     return MCRegister::NoRegister;
 | |
|   }
 | |
|   const size_t ValidPosLimit = Pos;
 | |
|   // If we must find eviction, the candidate should be masked out of the
 | |
|   // decision making process.
 | |
|   Regs[CandidateVirtRegPos].second = !MustFindEviction;
 | |
|   if (!MustFindEviction)
 | |
|     extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest,
 | |
|                     CandidateVirtRegPos, /*IsHint*/ 0, /*LocalIntfsCount*/ 0,
 | |
|                     /*NrUrgent*/ 0.0);
 | |
|   assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had "
 | |
|                                "nothing to allocate initially.");
 | |
|   // Normalize the features.
 | |
|   for (auto &V : Largest)
 | |
|     V = V ? V : 1.0;
 | |
|   for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount;
 | |
|        ++FeatureIndex) {
 | |
|     if (DoNotNormalize.test(FeatureIndex))
 | |
|       continue;
 | |
|     for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) {
 | |
|       Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex];
 | |
|     }
 | |
|   }
 | |
|   *Runner->getTensor<float>(FeatureIDs::progress) =
 | |
|       static_cast<float>(RA.getQueueSize()) / InitialQSize;
 | |
| 
 | |
|   // Get a decision.
 | |
|   size_t CandidatePos = tryFindEvictionCandidatePosition(
 | |
|       VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
 | |
|   // The contract with the ML side is that CandidatePos is mask == 1 (i.e.
 | |
|   // Regs[CandidatePos].second)
 | |
|   assert(Regs[CandidatePos].second);
 | |
|   if (CandidatePos == CandidateVirtRegPos) {
 | |
|     assert(!MustFindEviction);
 | |
|     return MCRegister::NoRegister;
 | |
|   }
 | |
|   assert(CandidatePos < ValidPosLimit);
 | |
|   (void)ValidPosLimit;
 | |
|   return Regs[CandidatePos].first;
 | |
| }
 | |
| 
 | |
| const LIFeatureComponents &
 | |
| MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const {
 | |
|   RegID ID = LI.reg().id();
 | |
|   LIFeatureComponents Empty;
 | |
|   auto I = CachedFeatures.insert(std::make_pair(ID, Empty));
 | |
|   LIFeatureComponents &Ret = I.first->getSecond();
 | |
|   if (!I.second)
 | |
|     return Ret;
 | |
| 
 | |
|   SmallPtrSet<MachineInstr *, 8> Visited;
 | |
|   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
 | |
| 
 | |
|   for (MachineRegisterInfo::reg_instr_nodbg_iterator
 | |
|            I = MRI->reg_instr_nodbg_begin(LI.reg()),
 | |
|            E = MRI->reg_instr_nodbg_end();
 | |
|        I != E;) {
 | |
|     MachineInstr *MI = &*(I++);
 | |
| 
 | |
|     ++Ret.NrDefsAndUses;
 | |
|     if (!Visited.insert(MI).second)
 | |
|       continue;
 | |
| 
 | |
|     if (MI->isIdentityCopy() || MI->isImplicitDef())
 | |
|       continue;
 | |
| 
 | |
|     bool Reads, Writes;
 | |
|     std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
 | |
| 
 | |
|     float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent());
 | |
|     Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq);
 | |
| 
 | |
|     Ret.R += (Reads && !Writes) * Freq;
 | |
|     Ret.W += (!Reads && Writes) * Freq;
 | |
|     Ret.RW += (Reads && Writes) * Freq;
 | |
| 
 | |
|     auto *MBB = MI->getParent();
 | |
|     auto *Loop = Loops.getLoopFor(MBB);
 | |
|     bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
 | |
| 
 | |
|     if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB))
 | |
|       Ret.IndVarUpdates += Freq;
 | |
| 
 | |
|     if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI))
 | |
|       Ret.HintWeights += Freq;
 | |
|   }
 | |
|   Ret.IsRemat = VirtRegAuxInfo::isRematerializable(
 | |
|       LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo());
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| // Overall, this currently mimics what we do for weight calculation, but instead
 | |
| // of accummulating the various features, we keep them separate.
 | |
| void MLEvictAdvisor::extractFeatures(
 | |
|     const SmallVectorImpl<const LiveInterval *> &Intervals,
 | |
|     std::array<float, FeatureIDs::FeatureCount> &Largest, size_t Pos,
 | |
|     int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent) const {
 | |
|   int64_t NrDefsAndUses = 0;
 | |
|   int64_t NrBrokenHints = 0;
 | |
|   double R = 0.0;
 | |
|   double W = 0.0;
 | |
|   double RW = 0.0;
 | |
|   double IndVarUpdates = 0.0;
 | |
|   double HintWeights = 0.0;
 | |
|   float StartBBFreq = 0.0;
 | |
|   float EndBBFreq = 0.0;
 | |
|   float HottestBlockFreq = 0.0;
 | |
|   int32_t NrRematerializable = 0;
 | |
|   float TotalWeight = 0.0;
 | |
| 
 | |
|   SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex();
 | |
|   SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex();
 | |
|   int64_t MaxStage = 0;
 | |
|   int64_t MinStage =
 | |
|       Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max();
 | |
| 
 | |
|   for (const auto *L : Intervals) {
 | |
|     const LiveInterval &LI = *L;
 | |
|     MaxStage = std::max<int64_t>(
 | |
|         MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
 | |
|     MinStage = std::min<int64_t>(
 | |
|         MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
 | |
| 
 | |
|     TotalWeight = std::max(TotalWeight, LI.weight());
 | |
| 
 | |
|     if (LI.beginIndex() < StartSI)
 | |
|       StartSI = LI.beginIndex();
 | |
| 
 | |
|     if (LI.endIndex() > EndSI)
 | |
|       EndSI = LI.endIndex();
 | |
|     const LIFeatureComponents &LIFC = getLIFeatureComponents(LI);
 | |
|     NrBrokenHints += VRM->hasPreferredPhys(LI.reg());
 | |
| 
 | |
|     NrDefsAndUses += LIFC.NrDefsAndUses;
 | |
|     HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq);
 | |
|     R += LIFC.R;
 | |
|     W += LIFC.W;
 | |
|     RW += LIFC.RW;
 | |
| 
 | |
|     IndVarUpdates += LIFC.IndVarUpdates;
 | |
| 
 | |
|     HintWeights += LIFC.HintWeights;
 | |
|     NrRematerializable += LIFC.IsRemat;
 | |
|   }
 | |
|   size_t Size = 0;
 | |
|   if (!Intervals.empty()) {
 | |
|     StartBBFreq =
 | |
|         MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI));
 | |
|     if (EndSI >= LIS->getSlotIndexes()->getLastIndex())
 | |
|       EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex();
 | |
|     EndBBFreq =
 | |
|         MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI));
 | |
|     Size = StartSI.distance(EndSI);
 | |
|   }
 | |
|   // Set the features at the column 'Pos'.
 | |
| #define SET(ID, TYPE, VAL)                                                     \
 | |
|   do {                                                                         \
 | |
|     Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL);     \
 | |
|     if (!DoNotNormalize.test(FeatureIDs::ID))                                  \
 | |
|       Largest[FeatureIDs::ID] =                                                \
 | |
|           std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL));          \
 | |
|   } while (false)
 | |
|   SET(mask, int64_t, 1);
 | |
|   SET(is_free, int64_t, Intervals.empty());
 | |
|   SET(nr_urgent, float, NrUrgent);
 | |
|   SET(nr_broken_hints, float, NrBrokenHints);
 | |
|   SET(is_hint, int64_t, IsHint);
 | |
|   SET(is_local, int64_t, LocalIntfsCount);
 | |
|   SET(nr_rematerializable, float, NrRematerializable);
 | |
|   SET(nr_defs_and_uses, float, NrDefsAndUses);
 | |
|   SET(weighed_reads_by_max, float, R);
 | |
|   SET(weighed_writes_by_max, float, W);
 | |
|   SET(weighed_read_writes_by_max, float, RW);
 | |
|   SET(weighed_indvars_by_max, float, IndVarUpdates);
 | |
|   SET(hint_weights_by_max, float, HintWeights);
 | |
|   SET(start_bb_freq_by_max, float, StartBBFreq);
 | |
|   SET(end_bb_freq_by_max, float, EndBBFreq);
 | |
|   SET(hottest_bb_freq_by_max, float, HottestBlockFreq);
 | |
|   SET(liverange_size, float, Size);
 | |
|   SET(use_def_density, float, TotalWeight);
 | |
|   SET(max_stage, int64_t, MaxStage);
 | |
|   SET(min_stage, int64_t, MinStage);
 | |
| #undef SET
 | |
| }
 | |
| 
 | |
| // Development mode-specific implementations
 | |
| #ifdef LLVM_HAVE_TF_API
 | |
| RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() {
 | |
|   return new DevelopmentModeEvictionAdvisorAnalysis();
 | |
| }
 | |
| 
 | |
| int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition(
 | |
|     const LiveInterval &VirtReg, const AllocationOrder &Order,
 | |
|     unsigned OrderLimit, uint8_t CostPerUseLimit,
 | |
|     const SmallVirtRegSet &FixedRegisters) const {
 | |
|   int64_t Ret = 0;
 | |
|   if (isa<ModelUnderTrainingRunner>(getRunner())) {
 | |
|     Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition(
 | |
|         VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
 | |
|   } else {
 | |
|     MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate(
 | |
|         VirtReg, Order, CostPerUseLimit, FixedRegisters);
 | |
|     // Find the index of the selected PhysReg. We need it for logging, otherwise
 | |
|     // this is wasted cycles (but so would starting development mode without a
 | |
|     // model nor logging)
 | |
|     if (!PhysReg)
 | |
|       Ret = CandidateVirtRegPos;
 | |
|     else
 | |
|       for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit);
 | |
|            I != E; ++I, ++Ret)
 | |
|         if (*I == PhysReg)
 | |
|           break;
 | |
|   }
 | |
|   if (TrainingLog.empty())
 | |
|     return Ret;
 | |
|   size_t CurrentFeature = 0;
 | |
|   for (; CurrentFeature < FeatureIDs::FeatureCount; ++CurrentFeature) {
 | |
|     Log->logSpecifiedTensorValue(
 | |
|         CurrentFeature, reinterpret_cast<const char *>(
 | |
|                             getRunner().getTensorUntyped(CurrentFeature)));
 | |
|   }
 | |
|   if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner()))
 | |
|     for (size_t I = 1; I < MUTR->outputLoggedFeatureSpecs().size();
 | |
|          ++I, ++CurrentFeature)
 | |
|       Log->logSpecifiedTensorValue(
 | |
|           CurrentFeature,
 | |
|           reinterpret_cast<const char *>(
 | |
|               MUTR->lastEvaluationResult()->getUntypedTensorValue(I)));
 | |
|   // The output is right after the features and the extra outputs
 | |
|   Log->logInt64Value(CurrentFeature, &Ret);
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (auto *DevModeAnalysis = dyn_cast<DevelopmentModeEvictionAdvisorAnalysis>(
 | |
|           &getAnalysis<RegAllocEvictionAdvisorAnalysis>()))
 | |
|     if (auto *Log = DevModeAnalysis->getLogger(MF))
 | |
|       Log->logFloatFinalReward(static_cast<float>(
 | |
|           calculateRegAllocScore(
 | |
|               MF, getAnalysis<MachineBlockFrequencyInfo>(),
 | |
|               getAnalysis<AAResultsWrapperPass>().getAAResults())
 | |
|               .getScore()));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| #endif // #ifdef LLVM_HAVE_TF_API
 | |
| 
 | |
| RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() {
 | |
|   return new ReleaseModeEvictionAdvisorAnalysis();
 | |
| }
 | |
| 
 | |
| // In all cases except development mode, we don't need scoring.
 | |
| #if !defined(LLVM_HAVE_TF_API)
 | |
| bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; }
 | |
| #endif
 |