1356 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1356 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
| //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the Emit routines for the SelectionDAG class, which creates
 | |
| // MachineInstrs based on the decisions of the SelectionDAG instruction
 | |
| // selection.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstrEmitter.h"
 | |
| #include "SDNodeDbgValue.h"
 | |
| #include "llvm/BinaryFormat/Dwarf.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/PseudoProbe.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "instr-emitter"
 | |
| 
 | |
| /// MinRCSize - Smallest register class we allow when constraining virtual
 | |
| /// registers.  If satisfying all register class constraints would require
 | |
| /// using a smaller register class, emit a COPY to a new virtual register
 | |
| /// instead.
 | |
| const unsigned MinRCSize = 4;
 | |
| 
 | |
| /// CountResults - The results of target nodes have register or immediate
 | |
| /// operands first, then an optional chain, and optional glue operands (which do
 | |
| /// not go into the resulting MachineInstr).
 | |
| unsigned InstrEmitter::CountResults(SDNode *Node) {
 | |
|   unsigned N = Node->getNumValues();
 | |
|   while (N && Node->getValueType(N - 1) == MVT::Glue)
 | |
|     --N;
 | |
|   if (N && Node->getValueType(N - 1) == MVT::Other)
 | |
|     --N;    // Skip over chain result.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// countOperands - The inputs to target nodes have any actual inputs first,
 | |
| /// followed by an optional chain operand, then an optional glue operand.
 | |
| /// Compute the number of actual operands that will go into the resulting
 | |
| /// MachineInstr.
 | |
| ///
 | |
| /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
 | |
| /// the chain and glue. These operands may be implicit on the machine instr.
 | |
| static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
 | |
|                               unsigned &NumImpUses) {
 | |
|   unsigned N = Node->getNumOperands();
 | |
|   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
 | |
|     --N;
 | |
|   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
 | |
|     --N; // Ignore chain if it exists.
 | |
| 
 | |
|   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
 | |
|   NumImpUses = N - NumExpUses;
 | |
|   for (unsigned I = N; I > NumExpUses; --I) {
 | |
|     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
 | |
|       continue;
 | |
|     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
 | |
|       if (Register::isPhysicalRegister(RN->getReg()))
 | |
|         continue;
 | |
|     NumImpUses = N - I;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
 | |
| /// implicit physical register output.
 | |
| void InstrEmitter::
 | |
| EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
 | |
|                 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
 | |
|   Register VRBase;
 | |
|   if (SrcReg.isVirtual()) {
 | |
|     // Just use the input register directly!
 | |
|     SDValue Op(Node, ResNo);
 | |
|     if (IsClone)
 | |
|       VRBaseMap.erase(Op);
 | |
|     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
 | |
|     (void)isNew; // Silence compiler warning.
 | |
|     assert(isNew && "Node emitted out of order - early");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
 | |
|   // the CopyToReg'd destination register instead of creating a new vreg.
 | |
|   bool MatchReg = true;
 | |
|   const TargetRegisterClass *UseRC = nullptr;
 | |
|   MVT VT = Node->getSimpleValueType(ResNo);
 | |
| 
 | |
|   // Stick to the preferred register classes for legal types.
 | |
|   if (TLI->isTypeLegal(VT))
 | |
|     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
 | |
| 
 | |
|   if (!IsClone && !IsCloned)
 | |
|     for (SDNode *User : Node->uses()) {
 | |
|       bool Match = true;
 | |
|       if (User->getOpcode() == ISD::CopyToReg &&
 | |
|           User->getOperand(2).getNode() == Node &&
 | |
|           User->getOperand(2).getResNo() == ResNo) {
 | |
|         Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
 | |
|         if (DestReg.isVirtual()) {
 | |
|           VRBase = DestReg;
 | |
|           Match = false;
 | |
|         } else if (DestReg != SrcReg)
 | |
|           Match = false;
 | |
|       } else {
 | |
|         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
 | |
|           SDValue Op = User->getOperand(i);
 | |
|           if (Op.getNode() != Node || Op.getResNo() != ResNo)
 | |
|             continue;
 | |
|           MVT VT = Node->getSimpleValueType(Op.getResNo());
 | |
|           if (VT == MVT::Other || VT == MVT::Glue)
 | |
|             continue;
 | |
|           Match = false;
 | |
|           if (User->isMachineOpcode()) {
 | |
|             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
 | |
|             const TargetRegisterClass *RC = nullptr;
 | |
|             if (i+II.getNumDefs() < II.getNumOperands()) {
 | |
|               RC = TRI->getAllocatableClass(
 | |
|                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
 | |
|             }
 | |
|             if (!UseRC)
 | |
|               UseRC = RC;
 | |
|             else if (RC) {
 | |
|               const TargetRegisterClass *ComRC =
 | |
|                 TRI->getCommonSubClass(UseRC, RC);
 | |
|               // If multiple uses expect disjoint register classes, we emit
 | |
|               // copies in AddRegisterOperand.
 | |
|               if (ComRC)
 | |
|                 UseRC = ComRC;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       MatchReg &= Match;
 | |
|       if (VRBase)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
 | |
|   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
 | |
| 
 | |
|   // Figure out the register class to create for the destreg.
 | |
|   if (VRBase) {
 | |
|     DstRC = MRI->getRegClass(VRBase);
 | |
|   } else if (UseRC) {
 | |
|     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
 | |
|            "Incompatible phys register def and uses!");
 | |
|     DstRC = UseRC;
 | |
|   } else
 | |
|     DstRC = SrcRC;
 | |
| 
 | |
|   // If all uses are reading from the src physical register and copying the
 | |
|   // register is either impossible or very expensive, then don't create a copy.
 | |
|   if (MatchReg && SrcRC->getCopyCost() < 0) {
 | |
|     VRBase = SrcReg;
 | |
|   } else {
 | |
|     // Create the reg, emit the copy.
 | |
|     VRBase = MRI->createVirtualRegister(DstRC);
 | |
|     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
 | |
|             VRBase).addReg(SrcReg);
 | |
|   }
 | |
| 
 | |
|   SDValue Op(Node, ResNo);
 | |
|   if (IsClone)
 | |
|     VRBaseMap.erase(Op);
 | |
|   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
 | |
|   (void)isNew; // Silence compiler warning.
 | |
|   assert(isNew && "Node emitted out of order - early");
 | |
| }
 | |
| 
 | |
| void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
 | |
|                                        MachineInstrBuilder &MIB,
 | |
|                                        const MCInstrDesc &II,
 | |
|                                        bool IsClone, bool IsCloned,
 | |
|                                        DenseMap<SDValue, Register> &VRBaseMap) {
 | |
|   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
 | |
|          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
 | |
| 
 | |
|   unsigned NumResults = CountResults(Node);
 | |
|   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
 | |
|                              II.isVariadic() && II.variadicOpsAreDefs();
 | |
|   unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
 | |
|   if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
 | |
|     NumVRegs = NumResults;
 | |
|   for (unsigned i = 0; i < NumVRegs; ++i) {
 | |
|     // If the specific node value is only used by a CopyToReg and the dest reg
 | |
|     // is a vreg in the same register class, use the CopyToReg'd destination
 | |
|     // register instead of creating a new vreg.
 | |
|     Register VRBase;
 | |
|     const TargetRegisterClass *RC =
 | |
|       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
 | |
|     // Always let the value type influence the used register class. The
 | |
|     // constraints on the instruction may be too lax to represent the value
 | |
|     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
 | |
|     // the 32-bit float super-class (X86::FR32).
 | |
|     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
 | |
|       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
 | |
|           Node->getSimpleValueType(i),
 | |
|           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
 | |
|       if (RC)
 | |
|         VTRC = TRI->getCommonSubClass(RC, VTRC);
 | |
|       if (VTRC)
 | |
|         RC = VTRC;
 | |
|     }
 | |
| 
 | |
|     if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
 | |
|       // Optional def must be a physical register.
 | |
|       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
 | |
|       assert(VRBase.isPhysical());
 | |
|       MIB.addReg(VRBase, RegState::Define);
 | |
|     }
 | |
| 
 | |
|     if (!VRBase && !IsClone && !IsCloned)
 | |
|       for (SDNode *User : Node->uses()) {
 | |
|         if (User->getOpcode() == ISD::CopyToReg &&
 | |
|             User->getOperand(2).getNode() == Node &&
 | |
|             User->getOperand(2).getResNo() == i) {
 | |
|           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
 | |
|           if (Register::isVirtualRegister(Reg)) {
 | |
|             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
 | |
|             if (RegRC == RC) {
 | |
|               VRBase = Reg;
 | |
|               MIB.addReg(VRBase, RegState::Define);
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Create the result registers for this node and add the result regs to
 | |
|     // the machine instruction.
 | |
|     if (VRBase == 0) {
 | |
|       assert(RC && "Isn't a register operand!");
 | |
|       VRBase = MRI->createVirtualRegister(RC);
 | |
|       MIB.addReg(VRBase, RegState::Define);
 | |
|     }
 | |
| 
 | |
|     // If this def corresponds to a result of the SDNode insert the VRBase into
 | |
|     // the lookup map.
 | |
|     if (i < NumResults) {
 | |
|       SDValue Op(Node, i);
 | |
|       if (IsClone)
 | |
|         VRBaseMap.erase(Op);
 | |
|       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
 | |
|       (void)isNew; // Silence compiler warning.
 | |
|       assert(isNew && "Node emitted out of order - early");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getVR - Return the virtual register corresponding to the specified result
 | |
| /// of the specified node.
 | |
| Register InstrEmitter::getVR(SDValue Op,
 | |
|                              DenseMap<SDValue, Register> &VRBaseMap) {
 | |
|   if (Op.isMachineOpcode() &&
 | |
|       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
 | |
|     // Add an IMPLICIT_DEF instruction before every use.
 | |
|     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
 | |
|     // does not include operand register class info.
 | |
|     const TargetRegisterClass *RC = TLI->getRegClassFor(
 | |
|         Op.getSimpleValueType(), Op.getNode()->isDivergent());
 | |
|     Register VReg = MRI->createVirtualRegister(RC);
 | |
|     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
 | |
|             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
 | |
|     return VReg;
 | |
|   }
 | |
| 
 | |
|   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
 | |
|   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
 | |
|   return I->second;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AddRegisterOperand - Add the specified register as an operand to the
 | |
| /// specified machine instr. Insert register copies if the register is
 | |
| /// not in the required register class.
 | |
| void
 | |
| InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
 | |
|                                  SDValue Op,
 | |
|                                  unsigned IIOpNum,
 | |
|                                  const MCInstrDesc *II,
 | |
|                                  DenseMap<SDValue, Register> &VRBaseMap,
 | |
|                                  bool IsDebug, bool IsClone, bool IsCloned) {
 | |
|   assert(Op.getValueType() != MVT::Other &&
 | |
|          Op.getValueType() != MVT::Glue &&
 | |
|          "Chain and glue operands should occur at end of operand list!");
 | |
|   // Get/emit the operand.
 | |
|   Register VReg = getVR(Op, VRBaseMap);
 | |
| 
 | |
|   const MCInstrDesc &MCID = MIB->getDesc();
 | |
|   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
 | |
|     MCID.OpInfo[IIOpNum].isOptionalDef();
 | |
| 
 | |
|   // If the instruction requires a register in a different class, create
 | |
|   // a new virtual register and copy the value into it, but first attempt to
 | |
|   // shrink VReg's register class within reason.  For example, if VReg == GR32
 | |
|   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
 | |
|   if (II) {
 | |
|     const TargetRegisterClass *OpRC = nullptr;
 | |
|     if (IIOpNum < II->getNumOperands())
 | |
|       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
 | |
| 
 | |
|     if (OpRC) {
 | |
|       unsigned MinNumRegs = MinRCSize;
 | |
|       // Don't apply any RC size limit for IMPLICIT_DEF. Each use has a unique
 | |
|       // virtual register.
 | |
|       if (Op.isMachineOpcode() &&
 | |
|           Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)
 | |
|         MinNumRegs = 0;
 | |
| 
 | |
|       const TargetRegisterClass *ConstrainedRC
 | |
|         = MRI->constrainRegClass(VReg, OpRC, MinNumRegs);
 | |
|       if (!ConstrainedRC) {
 | |
|         OpRC = TRI->getAllocatableClass(OpRC);
 | |
|         assert(OpRC && "Constraints cannot be fulfilled for allocation");
 | |
|         Register NewVReg = MRI->createVirtualRegister(OpRC);
 | |
|         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
 | |
|                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
 | |
|         VReg = NewVReg;
 | |
|       } else {
 | |
|         assert(ConstrainedRC->isAllocatable() &&
 | |
|            "Constraining an allocatable VReg produced an unallocatable class?");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this value has only one use, that use is a kill. This is a
 | |
|   // conservative approximation. InstrEmitter does trivial coalescing
 | |
|   // with CopyFromReg nodes, so don't emit kill flags for them.
 | |
|   // Avoid kill flags on Schedule cloned nodes, since there will be
 | |
|   // multiple uses.
 | |
|   // Tied operands are never killed, so we need to check that. And that
 | |
|   // means we need to determine the index of the operand.
 | |
|   bool isKill = Op.hasOneUse() &&
 | |
|                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
 | |
|                 !IsDebug &&
 | |
|                 !(IsClone || IsCloned);
 | |
|   if (isKill) {
 | |
|     unsigned Idx = MIB->getNumOperands();
 | |
|     while (Idx > 0 &&
 | |
|            MIB->getOperand(Idx-1).isReg() &&
 | |
|            MIB->getOperand(Idx-1).isImplicit())
 | |
|       --Idx;
 | |
|     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
 | |
|     if (isTied)
 | |
|       isKill = false;
 | |
|   }
 | |
| 
 | |
|   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
 | |
|              getDebugRegState(IsDebug));
 | |
| }
 | |
| 
 | |
| /// AddOperand - Add the specified operand to the specified machine instr.  II
 | |
| /// specifies the instruction information for the node, and IIOpNum is the
 | |
| /// operand number (in the II) that we are adding.
 | |
| void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
 | |
|                               SDValue Op,
 | |
|                               unsigned IIOpNum,
 | |
|                               const MCInstrDesc *II,
 | |
|                               DenseMap<SDValue, Register> &VRBaseMap,
 | |
|                               bool IsDebug, bool IsClone, bool IsCloned) {
 | |
|   if (Op.isMachineOpcode()) {
 | |
|     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
 | |
|                        IsDebug, IsClone, IsCloned);
 | |
|   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|     MIB.addImm(C->getSExtValue());
 | |
|   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
 | |
|     MIB.addFPImm(F->getConstantFPValue());
 | |
|   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
 | |
|     Register VReg = R->getReg();
 | |
|     MVT OpVT = Op.getSimpleValueType();
 | |
|     const TargetRegisterClass *IIRC =
 | |
|         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
 | |
|            : nullptr;
 | |
|     const TargetRegisterClass *OpRC =
 | |
|         TLI->isTypeLegal(OpVT)
 | |
|             ? TLI->getRegClassFor(OpVT,
 | |
|                                   Op.getNode()->isDivergent() ||
 | |
|                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
 | |
|             : nullptr;
 | |
| 
 | |
|     if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
 | |
|       Register NewVReg = MRI->createVirtualRegister(IIRC);
 | |
|       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
 | |
|                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
 | |
|       VReg = NewVReg;
 | |
|     }
 | |
|     // Turn additional physreg operands into implicit uses on non-variadic
 | |
|     // instructions. This is used by call and return instructions passing
 | |
|     // arguments in registers.
 | |
|     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
 | |
|     MIB.addReg(VReg, getImplRegState(Imp));
 | |
|   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
 | |
|     MIB.addRegMask(RM->getRegMask());
 | |
|   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
 | |
|     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
 | |
|                          TGA->getTargetFlags());
 | |
|   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
 | |
|     MIB.addMBB(BBNode->getBasicBlock());
 | |
|   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
 | |
|     MIB.addFrameIndex(FI->getIndex());
 | |
|   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
 | |
|     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
 | |
|   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
 | |
|     int Offset = CP->getOffset();
 | |
|     Align Alignment = CP->getAlign();
 | |
| 
 | |
|     unsigned Idx;
 | |
|     MachineConstantPool *MCP = MF->getConstantPool();
 | |
|     if (CP->isMachineConstantPoolEntry())
 | |
|       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
 | |
|     else
 | |
|       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
 | |
|     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
 | |
|   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
 | |
|     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
 | |
|   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
 | |
|     MIB.addSym(SymNode->getMCSymbol());
 | |
|   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
 | |
|     MIB.addBlockAddress(BA->getBlockAddress(),
 | |
|                         BA->getOffset(),
 | |
|                         BA->getTargetFlags());
 | |
|   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
 | |
|     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
 | |
|   } else {
 | |
|     assert(Op.getValueType() != MVT::Other &&
 | |
|            Op.getValueType() != MVT::Glue &&
 | |
|            "Chain and glue operands should occur at end of operand list!");
 | |
|     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
 | |
|                        IsDebug, IsClone, IsCloned);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
 | |
|                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
 | |
|   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
 | |
|   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
 | |
| 
 | |
|   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
 | |
|   // within reason.
 | |
|   if (RC && RC != VRC)
 | |
|     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
 | |
| 
 | |
|   // VReg has been adjusted.  It can be used with SubIdx operands now.
 | |
|   if (RC)
 | |
|     return VReg;
 | |
| 
 | |
|   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
 | |
|   // register instead.
 | |
|   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
 | |
|   assert(RC && "No legal register class for VT supports that SubIdx");
 | |
|   Register NewReg = MRI->createVirtualRegister(RC);
 | |
|   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
 | |
|     .addReg(VReg);
 | |
|   return NewReg;
 | |
| }
 | |
| 
 | |
| /// EmitSubregNode - Generate machine code for subreg nodes.
 | |
| ///
 | |
| void InstrEmitter::EmitSubregNode(SDNode *Node,
 | |
|                                   DenseMap<SDValue, Register> &VRBaseMap,
 | |
|                                   bool IsClone, bool IsCloned) {
 | |
|   Register VRBase;
 | |
|   unsigned Opc = Node->getMachineOpcode();
 | |
| 
 | |
|   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
 | |
|   // the CopyToReg'd destination register instead of creating a new vreg.
 | |
|   for (SDNode *User : Node->uses()) {
 | |
|     if (User->getOpcode() == ISD::CopyToReg &&
 | |
|         User->getOperand(2).getNode() == Node) {
 | |
|       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
 | |
|       if (DestReg.isVirtual()) {
 | |
|         VRBase = DestReg;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
 | |
|     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
 | |
|     // constraints on the %dst register, COPY can target all legal register
 | |
|     // classes.
 | |
|     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
 | |
|     const TargetRegisterClass *TRC =
 | |
|       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
 | |
| 
 | |
|     Register Reg;
 | |
|     MachineInstr *DefMI;
 | |
|     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
 | |
|     if (R && Register::isPhysicalRegister(R->getReg())) {
 | |
|       Reg = R->getReg();
 | |
|       DefMI = nullptr;
 | |
|     } else {
 | |
|       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
 | |
|       DefMI = MRI->getVRegDef(Reg);
 | |
|     }
 | |
| 
 | |
|     Register SrcReg, DstReg;
 | |
|     unsigned DefSubIdx;
 | |
|     if (DefMI &&
 | |
|         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
 | |
|         SubIdx == DefSubIdx &&
 | |
|         TRC == MRI->getRegClass(SrcReg)) {
 | |
|       // Optimize these:
 | |
|       // r1025 = s/zext r1024, 4
 | |
|       // r1026 = extract_subreg r1025, 4
 | |
|       // to a copy
 | |
|       // r1026 = copy r1024
 | |
|       VRBase = MRI->createVirtualRegister(TRC);
 | |
|       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
 | |
|               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
 | |
|       MRI->clearKillFlags(SrcReg);
 | |
|     } else {
 | |
|       // Reg may not support a SubIdx sub-register, and we may need to
 | |
|       // constrain its register class or issue a COPY to a compatible register
 | |
|       // class.
 | |
|       if (Reg.isVirtual())
 | |
|         Reg = ConstrainForSubReg(Reg, SubIdx,
 | |
|                                  Node->getOperand(0).getSimpleValueType(),
 | |
|                                  Node->isDivergent(), Node->getDebugLoc());
 | |
|       // Create the destreg if it is missing.
 | |
|       if (!VRBase)
 | |
|         VRBase = MRI->createVirtualRegister(TRC);
 | |
| 
 | |
|       // Create the extract_subreg machine instruction.
 | |
|       MachineInstrBuilder CopyMI =
 | |
|           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
 | |
|                   TII->get(TargetOpcode::COPY), VRBase);
 | |
|       if (Reg.isVirtual())
 | |
|         CopyMI.addReg(Reg, 0, SubIdx);
 | |
|       else
 | |
|         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
 | |
|     }
 | |
|   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
 | |
|              Opc == TargetOpcode::SUBREG_TO_REG) {
 | |
|     SDValue N0 = Node->getOperand(0);
 | |
|     SDValue N1 = Node->getOperand(1);
 | |
|     SDValue N2 = Node->getOperand(2);
 | |
|     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
 | |
| 
 | |
|     // Figure out the register class to create for the destreg.  It should be
 | |
|     // the largest legal register class supporting SubIdx sub-registers.
 | |
|     // RegisterCoalescer will constrain it further if it decides to eliminate
 | |
|     // the INSERT_SUBREG instruction.
 | |
|     //
 | |
|     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
 | |
|     //
 | |
|     // is lowered by TwoAddressInstructionPass to:
 | |
|     //
 | |
|     //   %dst = COPY %src
 | |
|     //   %dst:SubIdx = COPY %sub
 | |
|     //
 | |
|     // There is no constraint on the %src register class.
 | |
|     //
 | |
|     const TargetRegisterClass *SRC =
 | |
|         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
 | |
|     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
 | |
|     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
 | |
| 
 | |
|     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
 | |
|       VRBase = MRI->createVirtualRegister(SRC);
 | |
| 
 | |
|     // Create the insert_subreg or subreg_to_reg machine instruction.
 | |
|     MachineInstrBuilder MIB =
 | |
|       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
 | |
| 
 | |
|     // If creating a subreg_to_reg, then the first input operand
 | |
|     // is an implicit value immediate, otherwise it's a register
 | |
|     if (Opc == TargetOpcode::SUBREG_TO_REG) {
 | |
|       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
 | |
|       MIB.addImm(SD->getZExtValue());
 | |
|     } else
 | |
|       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
 | |
|                  IsClone, IsCloned);
 | |
|     // Add the subregister being inserted
 | |
|     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
 | |
|                IsClone, IsCloned);
 | |
|     MIB.addImm(SubIdx);
 | |
|     MBB->insert(InsertPos, MIB);
 | |
|   } else
 | |
|     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
 | |
| 
 | |
|   SDValue Op(Node, 0);
 | |
|   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
 | |
|   (void)isNew; // Silence compiler warning.
 | |
|   assert(isNew && "Node emitted out of order - early");
 | |
| }
 | |
| 
 | |
| /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
 | |
| /// COPY_TO_REGCLASS is just a normal copy, except that the destination
 | |
| /// register is constrained to be in a particular register class.
 | |
| ///
 | |
| void
 | |
| InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
 | |
|                                      DenseMap<SDValue, Register> &VRBaseMap) {
 | |
|   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
 | |
| 
 | |
|   // Create the new VReg in the destination class and emit a copy.
 | |
|   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
 | |
|   const TargetRegisterClass *DstRC =
 | |
|     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
 | |
|   Register NewVReg = MRI->createVirtualRegister(DstRC);
 | |
|   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
 | |
|     NewVReg).addReg(VReg);
 | |
| 
 | |
|   SDValue Op(Node, 0);
 | |
|   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
 | |
|   (void)isNew; // Silence compiler warning.
 | |
|   assert(isNew && "Node emitted out of order - early");
 | |
| }
 | |
| 
 | |
| /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
 | |
| ///
 | |
| void InstrEmitter::EmitRegSequence(SDNode *Node,
 | |
|                                   DenseMap<SDValue, Register> &VRBaseMap,
 | |
|                                   bool IsClone, bool IsCloned) {
 | |
|   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
 | |
|   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
 | |
|   Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
 | |
|   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
 | |
|   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
 | |
|   unsigned NumOps = Node->getNumOperands();
 | |
|   // If the input pattern has a chain, then the root of the corresponding
 | |
|   // output pattern will get a chain as well. This can happen to be a
 | |
|   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
 | |
|   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
 | |
|     --NumOps; // Ignore chain if it exists.
 | |
| 
 | |
|   assert((NumOps & 1) == 1 &&
 | |
|          "REG_SEQUENCE must have an odd number of operands!");
 | |
|   for (unsigned i = 1; i != NumOps; ++i) {
 | |
|     SDValue Op = Node->getOperand(i);
 | |
|     if ((i & 1) == 0) {
 | |
|       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
 | |
|       // Skip physical registers as they don't have a vreg to get and we'll
 | |
|       // insert copies for them in TwoAddressInstructionPass anyway.
 | |
|       if (!R || !Register::isPhysicalRegister(R->getReg())) {
 | |
|         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
 | |
|         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
 | |
|         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
 | |
|         const TargetRegisterClass *SRC =
 | |
|         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
 | |
|         if (SRC && SRC != RC) {
 | |
|           MRI->setRegClass(NewVReg, SRC);
 | |
|           RC = SRC;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
 | |
|                IsClone, IsCloned);
 | |
|   }
 | |
| 
 | |
|   MBB->insert(InsertPos, MIB);
 | |
|   SDValue Op(Node, 0);
 | |
|   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
 | |
|   (void)isNew; // Silence compiler warning.
 | |
|   assert(isNew && "Node emitted out of order - early");
 | |
| }
 | |
| 
 | |
| /// EmitDbgValue - Generate machine instruction for a dbg_value node.
 | |
| ///
 | |
| MachineInstr *
 | |
| InstrEmitter::EmitDbgValue(SDDbgValue *SD,
 | |
|                            DenseMap<SDValue, Register> &VRBaseMap) {
 | |
|   MDNode *Var = SD->getVariable();
 | |
|   MDNode *Expr = SD->getExpression();
 | |
|   DebugLoc DL = SD->getDebugLoc();
 | |
|   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
 | |
|          "Expected inlined-at fields to agree");
 | |
| 
 | |
|   SD->setIsEmitted();
 | |
| 
 | |
|   ArrayRef<SDDbgOperand> LocationOps = SD->getLocationOps();
 | |
|   assert(!LocationOps.empty() && "dbg_value with no location operands?");
 | |
| 
 | |
|   if (SD->isInvalidated())
 | |
|     return EmitDbgNoLocation(SD);
 | |
| 
 | |
|   // Emit variadic dbg_value nodes as DBG_VALUE_LIST.
 | |
|   if (SD->isVariadic()) {
 | |
|     // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
 | |
|     const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
 | |
|     // Build the DBG_VALUE_LIST instruction base.
 | |
|     auto MIB = BuildMI(*MF, DL, DbgValDesc);
 | |
|     MIB.addMetadata(Var);
 | |
|     MIB.addMetadata(Expr);
 | |
|     AddDbgValueLocationOps(MIB, DbgValDesc, LocationOps, VRBaseMap);
 | |
|     return &*MIB;
 | |
|   }
 | |
| 
 | |
|   // Attempt to produce a DBG_INSTR_REF if we've been asked to.
 | |
|   // We currently exclude the possibility of instruction references for
 | |
|   // variadic nodes; if at some point we enable them, this should be moved
 | |
|   // above the variadic block.
 | |
|   if (EmitDebugInstrRefs)
 | |
|     if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
 | |
|       return InstrRef;
 | |
| 
 | |
|   return EmitDbgValueFromSingleOp(SD, VRBaseMap);
 | |
| }
 | |
| 
 | |
| void InstrEmitter::AddDbgValueLocationOps(
 | |
|     MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
 | |
|     ArrayRef<SDDbgOperand> LocationOps,
 | |
|     DenseMap<SDValue, Register> &VRBaseMap) {
 | |
|   for (const SDDbgOperand &Op : LocationOps) {
 | |
|     switch (Op.getKind()) {
 | |
|     case SDDbgOperand::FRAMEIX:
 | |
|       MIB.addFrameIndex(Op.getFrameIx());
 | |
|       break;
 | |
|     case SDDbgOperand::VREG:
 | |
|       MIB.addReg(Op.getVReg());
 | |
|       break;
 | |
|     case SDDbgOperand::SDNODE: {
 | |
|       SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
 | |
|       // It's possible we replaced this SDNode with other(s) and therefore
 | |
|       // didn't generate code for it. It's better to catch these cases where
 | |
|       // they happen and transfer the debug info, but trying to guarantee that
 | |
|       // in all cases would be very fragile; this is a safeguard for any
 | |
|       // that were missed.
 | |
|       if (VRBaseMap.count(V) == 0)
 | |
|         MIB.addReg(0U); // undef
 | |
|       else
 | |
|         AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
 | |
|                    /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
 | |
|     } break;
 | |
|     case SDDbgOperand::CONST: {
 | |
|       const Value *V = Op.getConst();
 | |
|       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|         if (CI->getBitWidth() > 64)
 | |
|           MIB.addCImm(CI);
 | |
|         else
 | |
|           MIB.addImm(CI->getSExtValue());
 | |
|       } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
 | |
|         MIB.addFPImm(CF);
 | |
|       } else if (isa<ConstantPointerNull>(V)) {
 | |
|         // Note: This assumes that all nullptr constants are zero-valued.
 | |
|         MIB.addImm(0);
 | |
|       } else {
 | |
|         // Could be an Undef. In any case insert an Undef so we can see what we
 | |
|         // dropped.
 | |
|         MIB.addReg(0U);
 | |
|       }
 | |
|     } break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
 | |
|                               DenseMap<SDValue, Register> &VRBaseMap) {
 | |
|   assert(!SD->isVariadic());
 | |
|   SDDbgOperand DbgOperand = SD->getLocationOps()[0];
 | |
|   MDNode *Var = SD->getVariable();
 | |
|   DIExpression *Expr = (DIExpression*)SD->getExpression();
 | |
|   DebugLoc DL = SD->getDebugLoc();
 | |
|   const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
 | |
| 
 | |
|   // Handle variable locations that don't actually depend on the instructions
 | |
|   // in the program: constants and stack locations.
 | |
|   if (DbgOperand.getKind() == SDDbgOperand::FRAMEIX ||
 | |
|       DbgOperand.getKind() == SDDbgOperand::CONST)
 | |
|     return EmitDbgValueFromSingleOp(SD, VRBaseMap);
 | |
| 
 | |
|   // Immediately fold any indirectness from the LLVM-IR intrinsic into the
 | |
|   // expression:
 | |
|   if (SD->isIndirect()) {
 | |
|     std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
 | |
|     Expr = DIExpression::append(Expr, Elts);
 | |
|   }
 | |
| 
 | |
|   // It may not be immediately possible to identify the MachineInstr that
 | |
|   // defines a VReg, it can depend for example on the order blocks are
 | |
|   // emitted in. When this happens, or when further analysis is needed later,
 | |
|   // produce an instruction like this:
 | |
|   //
 | |
|   //    DBG_INSTR_REF %0:gr64, 0, !123, !456
 | |
|   //
 | |
|   // i.e., point the instruction at the vreg, and patch it up later in
 | |
|   // MachineFunction::finalizeDebugInstrRefs.
 | |
|   auto EmitHalfDoneInstrRef = [&](unsigned VReg) -> MachineInstr * {
 | |
|     auto MIB = BuildMI(*MF, DL, RefII);
 | |
|     MIB.addReg(VReg);
 | |
|     MIB.addImm(0);
 | |
|     MIB.addMetadata(Var);
 | |
|     MIB.addMetadata(Expr);
 | |
|     return MIB;
 | |
|   };
 | |
| 
 | |
|   // Try to find both the defined register and the instruction defining it.
 | |
|   MachineInstr *DefMI = nullptr;
 | |
|   unsigned VReg;
 | |
| 
 | |
|   if (DbgOperand.getKind() == SDDbgOperand::VREG) {
 | |
|     VReg = DbgOperand.getVReg();
 | |
| 
 | |
|     // No definition means that block hasn't been emitted yet. Leave a vreg
 | |
|     // reference to be fixed later.
 | |
|     if (!MRI->hasOneDef(VReg))
 | |
|       return EmitHalfDoneInstrRef(VReg);
 | |
| 
 | |
|     DefMI = &*MRI->def_instr_begin(VReg);
 | |
|   } else {
 | |
|     assert(DbgOperand.getKind() == SDDbgOperand::SDNODE);
 | |
|     // Look up the corresponding VReg for the given SDNode, if any.
 | |
|     SDNode *Node = DbgOperand.getSDNode();
 | |
|     SDValue Op = SDValue(Node, DbgOperand.getResNo());
 | |
|     DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
 | |
|     // No VReg -> produce a DBG_VALUE $noreg instead.
 | |
|     if (I==VRBaseMap.end())
 | |
|       return EmitDbgNoLocation(SD);
 | |
| 
 | |
|     // Try to pick out a defining instruction at this point.
 | |
|     VReg = getVR(Op, VRBaseMap);
 | |
| 
 | |
|     // Again, if there's no instruction defining the VReg right now, fix it up
 | |
|     // later.
 | |
|     if (!MRI->hasOneDef(VReg))
 | |
|       return EmitHalfDoneInstrRef(VReg);
 | |
| 
 | |
|     DefMI = &*MRI->def_instr_begin(VReg);
 | |
|   }
 | |
| 
 | |
|   // Avoid copy like instructions: they don't define values, only move them.
 | |
|   // Leave a virtual-register reference until it can be fixed up later, to find
 | |
|   // the underlying value definition.
 | |
|   if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI))
 | |
|     return EmitHalfDoneInstrRef(VReg);
 | |
| 
 | |
|   auto MIB = BuildMI(*MF, DL, RefII);
 | |
| 
 | |
|   // Find the operand number which defines the specified VReg.
 | |
|   unsigned OperandIdx = 0;
 | |
|   for (const auto &MO : DefMI->operands()) {
 | |
|     if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
 | |
|       break;
 | |
|     ++OperandIdx;
 | |
|   }
 | |
|   assert(OperandIdx < DefMI->getNumOperands());
 | |
| 
 | |
|   // Make the DBG_INSTR_REF refer to that instruction, and that operand.
 | |
|   unsigned InstrNum = DefMI->getDebugInstrNum();
 | |
|   MIB.addImm(InstrNum);
 | |
|   MIB.addImm(OperandIdx);
 | |
|   MIB.addMetadata(Var);
 | |
|   MIB.addMetadata(Expr);
 | |
|   return &*MIB;
 | |
| }
 | |
| 
 | |
| MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
 | |
|   // An invalidated SDNode must generate an undef DBG_VALUE: although the
 | |
|   // original value is no longer computed, earlier DBG_VALUEs live ranges
 | |
|   // must not leak into later code.
 | |
|   MDNode *Var = SD->getVariable();
 | |
|   MDNode *Expr = SD->getExpression();
 | |
|   DebugLoc DL = SD->getDebugLoc();
 | |
|   auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
 | |
|   MIB.addReg(0U);
 | |
|   MIB.addReg(0U);
 | |
|   MIB.addMetadata(Var);
 | |
|   MIB.addMetadata(Expr);
 | |
|   return &*MIB;
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
 | |
|                                        DenseMap<SDValue, Register> &VRBaseMap) {
 | |
|   MDNode *Var = SD->getVariable();
 | |
|   DIExpression *Expr = SD->getExpression();
 | |
|   DebugLoc DL = SD->getDebugLoc();
 | |
|   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
 | |
| 
 | |
|   assert(SD->getLocationOps().size() == 1 &&
 | |
|          "Non variadic dbg_value should have only one location op");
 | |
| 
 | |
|   // See about constant-folding the expression.
 | |
|   // Copy the location operand in case we replace it.
 | |
|   SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]);
 | |
|   if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) {
 | |
|     const Value *V = LocationOps[0].getConst();
 | |
|     if (auto *C = dyn_cast<ConstantInt>(V)) {
 | |
|       std::tie(Expr, C) = Expr->constantFold(C);
 | |
|       LocationOps[0] = SDDbgOperand::fromConst(C);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Emit non-variadic dbg_value nodes as DBG_VALUE.
 | |
|   // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
 | |
|   auto MIB = BuildMI(*MF, DL, II);
 | |
|   AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap);
 | |
| 
 | |
|   if (SD->isIndirect())
 | |
|     MIB.addImm(0U);
 | |
|   else
 | |
|     MIB.addReg(0U);
 | |
| 
 | |
|   return MIB.addMetadata(Var).addMetadata(Expr);
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
 | |
|   MDNode *Label = SD->getLabel();
 | |
|   DebugLoc DL = SD->getDebugLoc();
 | |
|   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
 | |
|          "Expected inlined-at fields to agree");
 | |
| 
 | |
|   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
 | |
|   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
 | |
|   MIB.addMetadata(Label);
 | |
| 
 | |
|   return &*MIB;
 | |
| }
 | |
| 
 | |
| /// EmitMachineNode - Generate machine code for a target-specific node and
 | |
| /// needed dependencies.
 | |
| ///
 | |
| void InstrEmitter::
 | |
| EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
 | |
|                 DenseMap<SDValue, Register> &VRBaseMap) {
 | |
|   unsigned Opc = Node->getMachineOpcode();
 | |
| 
 | |
|   // Handle subreg insert/extract specially
 | |
|   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
 | |
|       Opc == TargetOpcode::INSERT_SUBREG ||
 | |
|       Opc == TargetOpcode::SUBREG_TO_REG) {
 | |
|     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle COPY_TO_REGCLASS specially.
 | |
|   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
 | |
|     EmitCopyToRegClassNode(Node, VRBaseMap);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle REG_SEQUENCE specially.
 | |
|   if (Opc == TargetOpcode::REG_SEQUENCE) {
 | |
|     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Opc == TargetOpcode::IMPLICIT_DEF)
 | |
|     // We want a unique VR for each IMPLICIT_DEF use.
 | |
|     return;
 | |
| 
 | |
|   const MCInstrDesc &II = TII->get(Opc);
 | |
|   unsigned NumResults = CountResults(Node);
 | |
|   unsigned NumDefs = II.getNumDefs();
 | |
|   const MCPhysReg *ScratchRegs = nullptr;
 | |
| 
 | |
|   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
 | |
|   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
 | |
|     // Stackmaps do not have arguments and do not preserve their calling
 | |
|     // convention. However, to simplify runtime support, they clobber the same
 | |
|     // scratch registers as AnyRegCC.
 | |
|     unsigned CC = CallingConv::AnyReg;
 | |
|     if (Opc == TargetOpcode::PATCHPOINT) {
 | |
|       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
 | |
|       NumDefs = NumResults;
 | |
|     }
 | |
|     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
 | |
|   } else if (Opc == TargetOpcode::STATEPOINT) {
 | |
|     NumDefs = NumResults;
 | |
|   }
 | |
| 
 | |
|   unsigned NumImpUses = 0;
 | |
|   unsigned NodeOperands =
 | |
|     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
 | |
|   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
 | |
|                              II.isVariadic() && II.variadicOpsAreDefs();
 | |
|   bool HasPhysRegOuts = NumResults > NumDefs &&
 | |
|                         II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
 | |
| #ifndef NDEBUG
 | |
|   unsigned NumMIOperands = NodeOperands + NumResults;
 | |
|   if (II.isVariadic())
 | |
|     assert(NumMIOperands >= II.getNumOperands() &&
 | |
|            "Too few operands for a variadic node!");
 | |
|   else
 | |
|     assert(NumMIOperands >= II.getNumOperands() &&
 | |
|            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
 | |
|                             NumImpUses &&
 | |
|            "#operands for dag node doesn't match .td file!");
 | |
| #endif
 | |
| 
 | |
|   // Create the new machine instruction.
 | |
|   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
 | |
| 
 | |
|   // Add result register values for things that are defined by this
 | |
|   // instruction.
 | |
|   if (NumResults) {
 | |
|     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
 | |
| 
 | |
|     // Transfer any IR flags from the SDNode to the MachineInstr
 | |
|     MachineInstr *MI = MIB.getInstr();
 | |
|     const SDNodeFlags Flags = Node->getFlags();
 | |
|     if (Flags.hasNoSignedZeros())
 | |
|       MI->setFlag(MachineInstr::MIFlag::FmNsz);
 | |
| 
 | |
|     if (Flags.hasAllowReciprocal())
 | |
|       MI->setFlag(MachineInstr::MIFlag::FmArcp);
 | |
| 
 | |
|     if (Flags.hasNoNaNs())
 | |
|       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
 | |
| 
 | |
|     if (Flags.hasNoInfs())
 | |
|       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
 | |
| 
 | |
|     if (Flags.hasAllowContract())
 | |
|       MI->setFlag(MachineInstr::MIFlag::FmContract);
 | |
| 
 | |
|     if (Flags.hasApproximateFuncs())
 | |
|       MI->setFlag(MachineInstr::MIFlag::FmAfn);
 | |
| 
 | |
|     if (Flags.hasAllowReassociation())
 | |
|       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
 | |
| 
 | |
|     if (Flags.hasNoUnsignedWrap())
 | |
|       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
 | |
| 
 | |
|     if (Flags.hasNoSignedWrap())
 | |
|       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
 | |
| 
 | |
|     if (Flags.hasExact())
 | |
|       MI->setFlag(MachineInstr::MIFlag::IsExact);
 | |
| 
 | |
|     if (Flags.hasNoFPExcept())
 | |
|       MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
 | |
|   }
 | |
| 
 | |
|   // Emit all of the actual operands of this instruction, adding them to the
 | |
|   // instruction as appropriate.
 | |
|   bool HasOptPRefs = NumDefs > NumResults;
 | |
|   assert((!HasOptPRefs || !HasPhysRegOuts) &&
 | |
|          "Unable to cope with optional defs and phys regs defs!");
 | |
|   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
 | |
|   for (unsigned i = NumSkip; i != NodeOperands; ++i)
 | |
|     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
 | |
|                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
 | |
| 
 | |
|   // Add scratch registers as implicit def and early clobber
 | |
|   if (ScratchRegs)
 | |
|     for (unsigned i = 0; ScratchRegs[i]; ++i)
 | |
|       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
 | |
|                                  RegState::EarlyClobber);
 | |
| 
 | |
|   // Set the memory reference descriptions of this instruction now that it is
 | |
|   // part of the function.
 | |
|   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
 | |
| 
 | |
|   // Insert the instruction into position in the block. This needs to
 | |
|   // happen before any custom inserter hook is called so that the
 | |
|   // hook knows where in the block to insert the replacement code.
 | |
|   MBB->insert(InsertPos, MIB);
 | |
| 
 | |
|   // The MachineInstr may also define physregs instead of virtregs.  These
 | |
|   // physreg values can reach other instructions in different ways:
 | |
|   //
 | |
|   // 1. When there is a use of a Node value beyond the explicitly defined
 | |
|   //    virtual registers, we emit a CopyFromReg for one of the implicitly
 | |
|   //    defined physregs.  This only happens when HasPhysRegOuts is true.
 | |
|   //
 | |
|   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
 | |
|   //
 | |
|   // 3. A glued instruction may implicitly use a physreg.
 | |
|   //
 | |
|   // 4. A glued instruction may use a RegisterSDNode operand.
 | |
|   //
 | |
|   // Collect all the used physreg defs, and make sure that any unused physreg
 | |
|   // defs are marked as dead.
 | |
|   SmallVector<Register, 8> UsedRegs;
 | |
| 
 | |
|   // Additional results must be physical register defs.
 | |
|   if (HasPhysRegOuts) {
 | |
|     for (unsigned i = NumDefs; i < NumResults; ++i) {
 | |
|       Register Reg = II.getImplicitDefs()[i - NumDefs];
 | |
|       if (!Node->hasAnyUseOfValue(i))
 | |
|         continue;
 | |
|       // This implicitly defined physreg has a use.
 | |
|       UsedRegs.push_back(Reg);
 | |
|       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Scan the glue chain for any used physregs.
 | |
|   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
 | |
|     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
 | |
|       if (F->getOpcode() == ISD::CopyFromReg) {
 | |
|         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
 | |
|         continue;
 | |
|       } else if (F->getOpcode() == ISD::CopyToReg) {
 | |
|         // Skip CopyToReg nodes that are internal to the glue chain.
 | |
|         continue;
 | |
|       }
 | |
|       // Collect declared implicit uses.
 | |
|       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
 | |
|       UsedRegs.append(MCID.getImplicitUses(),
 | |
|                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
 | |
|       // In addition to declared implicit uses, we must also check for
 | |
|       // direct RegisterSDNode operands.
 | |
|       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
 | |
|         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
 | |
|           Register Reg = R->getReg();
 | |
|           if (Reg.isPhysical())
 | |
|             UsedRegs.push_back(Reg);
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finally mark unused registers as dead.
 | |
|   if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
 | |
|     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
 | |
| 
 | |
|   // STATEPOINT is too 'dynamic' to have meaningful machine description.
 | |
|   // We have to manually tie operands.
 | |
|   if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
 | |
|     assert(!HasPhysRegOuts && "STATEPOINT mishandled");
 | |
|     MachineInstr *MI = MIB;
 | |
|     unsigned Def = 0;
 | |
|     int First = StatepointOpers(MI).getFirstGCPtrIdx();
 | |
|     assert(First > 0 && "Statepoint has Defs but no GC ptr list");
 | |
|     unsigned Use = (unsigned)First;
 | |
|     while (Def < NumDefs) {
 | |
|       if (MI->getOperand(Use).isReg())
 | |
|         MI->tieOperands(Def++, Use);
 | |
|       Use = StackMaps::getNextMetaArgIdx(MI, Use);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Run post-isel target hook to adjust this instruction if needed.
 | |
|   if (II.hasPostISelHook())
 | |
|     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
 | |
| }
 | |
| 
 | |
| /// EmitSpecialNode - Generate machine code for a target-independent node and
 | |
| /// needed dependencies.
 | |
| void InstrEmitter::
 | |
| EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
 | |
|                 DenseMap<SDValue, Register> &VRBaseMap) {
 | |
|   switch (Node->getOpcode()) {
 | |
|   default:
 | |
| #ifndef NDEBUG
 | |
|     Node->dump();
 | |
| #endif
 | |
|     llvm_unreachable("This target-independent node should have been selected!");
 | |
|   case ISD::EntryToken:
 | |
|     llvm_unreachable("EntryToken should have been excluded from the schedule!");
 | |
|   case ISD::MERGE_VALUES:
 | |
|   case ISD::TokenFactor: // fall thru
 | |
|     break;
 | |
|   case ISD::CopyToReg: {
 | |
|     Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | |
|     SDValue SrcVal = Node->getOperand(2);
 | |
|     if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
 | |
|         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
 | |
|       // Instead building a COPY to that vreg destination, build an
 | |
|       // IMPLICIT_DEF instruction instead.
 | |
|       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
 | |
|               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
 | |
|       break;
 | |
|     }
 | |
|     Register SrcReg;
 | |
|     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
 | |
|       SrcReg = R->getReg();
 | |
|     else
 | |
|       SrcReg = getVR(SrcVal, VRBaseMap);
 | |
| 
 | |
|     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
 | |
|       break;
 | |
| 
 | |
|     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
 | |
|             DestReg).addReg(SrcReg);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::CopyFromReg: {
 | |
|     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | |
|     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EH_LABEL:
 | |
|   case ISD::ANNOTATION_LABEL: {
 | |
|     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
 | |
|                        ? TargetOpcode::EH_LABEL
 | |
|                        : TargetOpcode::ANNOTATION_LABEL;
 | |
|     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
 | |
|     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
 | |
|             TII->get(Opc)).addSym(S);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::LIFETIME_START:
 | |
|   case ISD::LIFETIME_END: {
 | |
|     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
 | |
|                          ? TargetOpcode::LIFETIME_START
 | |
|                          : TargetOpcode::LIFETIME_END;
 | |
|     auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
 | |
|     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
 | |
|     .addFrameIndex(FI->getIndex());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::PSEUDO_PROBE: {
 | |
|     unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
 | |
|     auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
 | |
|     auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
 | |
|     auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
 | |
| 
 | |
|     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
 | |
|         .addImm(Guid)
 | |
|         .addImm(Index)
 | |
|         .addImm((uint8_t)PseudoProbeType::Block)
 | |
|         .addImm(Attr);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::INLINEASM:
 | |
|   case ISD::INLINEASM_BR: {
 | |
|     unsigned NumOps = Node->getNumOperands();
 | |
|     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
 | |
|       --NumOps;  // Ignore the glue operand.
 | |
| 
 | |
|     // Create the inline asm machine instruction.
 | |
|     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
 | |
|                           ? TargetOpcode::INLINEASM_BR
 | |
|                           : TargetOpcode::INLINEASM;
 | |
|     MachineInstrBuilder MIB =
 | |
|         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
 | |
| 
 | |
|     // Add the asm string as an external symbol operand.
 | |
|     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
 | |
|     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
 | |
|     MIB.addExternalSymbol(AsmStr);
 | |
| 
 | |
|     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
 | |
|     // bits.
 | |
|     int64_t ExtraInfo =
 | |
|       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
 | |
|                           getZExtValue();
 | |
|     MIB.addImm(ExtraInfo);
 | |
| 
 | |
|     // Remember to operand index of the group flags.
 | |
|     SmallVector<unsigned, 8> GroupIdx;
 | |
| 
 | |
|     // Remember registers that are part of early-clobber defs.
 | |
|     SmallVector<unsigned, 8> ECRegs;
 | |
| 
 | |
|     // Add all of the operand registers to the instruction.
 | |
|     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
 | |
|       unsigned Flags =
 | |
|         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
 | |
|       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
 | |
| 
 | |
|       GroupIdx.push_back(MIB->getNumOperands());
 | |
|       MIB.addImm(Flags);
 | |
|       ++i;  // Skip the ID value.
 | |
| 
 | |
|       switch (InlineAsm::getKind(Flags)) {
 | |
|       default: llvm_unreachable("Bad flags!");
 | |
|         case InlineAsm::Kind_RegDef:
 | |
|         for (unsigned j = 0; j != NumVals; ++j, ++i) {
 | |
|           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | |
|           // FIXME: Add dead flags for physical and virtual registers defined.
 | |
|           // For now, mark physical register defs as implicit to help fast
 | |
|           // regalloc. This makes inline asm look a lot like calls.
 | |
|           MIB.addReg(Reg,
 | |
|                      RegState::Define |
 | |
|                          getImplRegState(Register::isPhysicalRegister(Reg)));
 | |
|         }
 | |
|         break;
 | |
|       case InlineAsm::Kind_RegDefEarlyClobber:
 | |
|       case InlineAsm::Kind_Clobber:
 | |
|         for (unsigned j = 0; j != NumVals; ++j, ++i) {
 | |
|           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | |
|           MIB.addReg(Reg,
 | |
|                      RegState::Define | RegState::EarlyClobber |
 | |
|                          getImplRegState(Register::isPhysicalRegister(Reg)));
 | |
|           ECRegs.push_back(Reg);
 | |
|         }
 | |
|         break;
 | |
|       case InlineAsm::Kind_RegUse:  // Use of register.
 | |
|       case InlineAsm::Kind_Imm:  // Immediate.
 | |
|       case InlineAsm::Kind_Mem:  // Addressing mode.
 | |
|         // The addressing mode has been selected, just add all of the
 | |
|         // operands to the machine instruction.
 | |
|         for (unsigned j = 0; j != NumVals; ++j, ++i)
 | |
|           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
 | |
|                      /*IsDebug=*/false, IsClone, IsCloned);
 | |
| 
 | |
|         // Manually set isTied bits.
 | |
|         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
 | |
|           unsigned DefGroup = 0;
 | |
|           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
 | |
|             unsigned DefIdx = GroupIdx[DefGroup] + 1;
 | |
|             unsigned UseIdx = GroupIdx.back() + 1;
 | |
|             for (unsigned j = 0; j != NumVals; ++j)
 | |
|               MIB->tieOperands(DefIdx + j, UseIdx + j);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // GCC inline assembly allows input operands to also be early-clobber
 | |
|     // output operands (so long as the operand is written only after it's
 | |
|     // used), but this does not match the semantics of our early-clobber flag.
 | |
|     // If an early-clobber operand register is also an input operand register,
 | |
|     // then remove the early-clobber flag.
 | |
|     for (unsigned Reg : ECRegs) {
 | |
|       if (MIB->readsRegister(Reg, TRI)) {
 | |
|         MachineOperand *MO =
 | |
|             MIB->findRegisterDefOperand(Reg, false, false, TRI);
 | |
|         assert(MO && "No def operand for clobbered register?");
 | |
|         MO->setIsEarlyClobber(false);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Get the mdnode from the asm if it exists and add it to the instruction.
 | |
|     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
 | |
|     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
 | |
|     if (MD)
 | |
|       MIB.addMetadata(MD);
 | |
| 
 | |
|     MBB->insert(InsertPos, MIB);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
 | |
| /// at the given position in the given block.
 | |
| InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
 | |
|                            MachineBasicBlock::iterator insertpos,
 | |
|                            bool UseInstrRefDebugInfo)
 | |
|     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
 | |
|       TII(MF->getSubtarget().getInstrInfo()),
 | |
|       TRI(MF->getSubtarget().getRegisterInfo()),
 | |
|       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
 | |
|       InsertPos(insertpos) {
 | |
|   EmitDebugInstrRefs = UseInstrRefDebugInfo;
 | |
| }
 |