11426 lines
		
	
	
		
			447 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			11426 lines
		
	
	
		
			447 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements routines for translating from LLVM IR into SelectionDAG IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SelectionDAGBuilder.h"
 | |
| #include "SDNodeDbgValue.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/EHPersonalities.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/CodeGenCommonISel.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/GCMetadata.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineInstrBundleIterator.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/RuntimeLibcalls.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/CodeGen/SwiftErrorValueTracking.h"
 | |
| #include "llvm/CodeGen/TargetFrameLowering.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/CodeGen/WinEHFuncInfo.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/IntrinsicsAArch64.h"
 | |
| #include "llvm/IR/IntrinsicsWebAssembly.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/Support/AtomicOrdering.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetIntrinsicInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <cstddef>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <tuple>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| using namespace SwitchCG;
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| 
 | |
| /// LimitFloatPrecision - Generate low-precision inline sequences for
 | |
| /// some float libcalls (6, 8 or 12 bits).
 | |
| static unsigned LimitFloatPrecision;
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     InsertAssertAlign("insert-assert-align", cl::init(true),
 | |
|                       cl::desc("Insert the experimental `assertalign` node."),
 | |
|                       cl::ReallyHidden);
 | |
| 
 | |
| static cl::opt<unsigned, true>
 | |
|     LimitFPPrecision("limit-float-precision",
 | |
|                      cl::desc("Generate low-precision inline sequences "
 | |
|                               "for some float libcalls"),
 | |
|                      cl::location(LimitFloatPrecision), cl::Hidden,
 | |
|                      cl::init(0));
 | |
| 
 | |
| static cl::opt<unsigned> SwitchPeelThreshold(
 | |
|     "switch-peel-threshold", cl::Hidden, cl::init(66),
 | |
|     cl::desc("Set the case probability threshold for peeling the case from a "
 | |
|              "switch statement. A value greater than 100 will void this "
 | |
|              "optimization"));
 | |
| 
 | |
| // Limit the width of DAG chains. This is important in general to prevent
 | |
| // DAG-based analysis from blowing up. For example, alias analysis and
 | |
| // load clustering may not complete in reasonable time. It is difficult to
 | |
| // recognize and avoid this situation within each individual analysis, and
 | |
| // future analyses are likely to have the same behavior. Limiting DAG width is
 | |
| // the safe approach and will be especially important with global DAGs.
 | |
| //
 | |
| // MaxParallelChains default is arbitrarily high to avoid affecting
 | |
| // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
 | |
| // sequence over this should have been converted to llvm.memcpy by the
 | |
| // frontend. It is easy to induce this behavior with .ll code such as:
 | |
| // %buffer = alloca [4096 x i8]
 | |
| // %data = load [4096 x i8]* %argPtr
 | |
| // store [4096 x i8] %data, [4096 x i8]* %buffer
 | |
| static const unsigned MaxParallelChains = 64;
 | |
| 
 | |
| static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                                       const SDValue *Parts, unsigned NumParts,
 | |
|                                       MVT PartVT, EVT ValueVT, const Value *V,
 | |
|                                       Optional<CallingConv::ID> CC);
 | |
| 
 | |
| /// getCopyFromParts - Create a value that contains the specified legal parts
 | |
| /// combined into the value they represent.  If the parts combine to a type
 | |
| /// larger than ValueVT then AssertOp can be used to specify whether the extra
 | |
| /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
 | |
| /// (ISD::AssertSext).
 | |
| static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                                 const SDValue *Parts, unsigned NumParts,
 | |
|                                 MVT PartVT, EVT ValueVT, const Value *V,
 | |
|                                 Optional<CallingConv::ID> CC = None,
 | |
|                                 Optional<ISD::NodeType> AssertOp = None) {
 | |
|   // Let the target assemble the parts if it wants to
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
 | |
|                                                    PartVT, ValueVT, CC))
 | |
|     return Val;
 | |
| 
 | |
|   if (ValueVT.isVector())
 | |
|     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
 | |
|                                   CC);
 | |
| 
 | |
|   assert(NumParts > 0 && "No parts to assemble!");
 | |
|   SDValue Val = Parts[0];
 | |
| 
 | |
|   if (NumParts > 1) {
 | |
|     // Assemble the value from multiple parts.
 | |
|     if (ValueVT.isInteger()) {
 | |
|       unsigned PartBits = PartVT.getSizeInBits();
 | |
|       unsigned ValueBits = ValueVT.getSizeInBits();
 | |
| 
 | |
|       // Assemble the power of 2 part.
 | |
|       unsigned RoundParts =
 | |
|           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
 | |
|       unsigned RoundBits = PartBits * RoundParts;
 | |
|       EVT RoundVT = RoundBits == ValueBits ?
 | |
|         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
 | |
|       SDValue Lo, Hi;
 | |
| 
 | |
|       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
 | |
| 
 | |
|       if (RoundParts > 2) {
 | |
|         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
 | |
|                               PartVT, HalfVT, V);
 | |
|         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
 | |
|                               RoundParts / 2, PartVT, HalfVT, V);
 | |
|       } else {
 | |
|         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
 | |
|         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
 | |
|       }
 | |
| 
 | |
|       if (DAG.getDataLayout().isBigEndian())
 | |
|         std::swap(Lo, Hi);
 | |
| 
 | |
|       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
 | |
| 
 | |
|       if (RoundParts < NumParts) {
 | |
|         // Assemble the trailing non-power-of-2 part.
 | |
|         unsigned OddParts = NumParts - RoundParts;
 | |
|         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
 | |
|         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
 | |
|                               OddVT, V, CC);
 | |
| 
 | |
|         // Combine the round and odd parts.
 | |
|         Lo = Val;
 | |
|         if (DAG.getDataLayout().isBigEndian())
 | |
|           std::swap(Lo, Hi);
 | |
|         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
 | |
|         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
 | |
|                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
 | |
|                                          TLI.getShiftAmountTy(
 | |
|                                              TotalVT, DAG.getDataLayout())));
 | |
|         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
 | |
|         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
 | |
|       }
 | |
|     } else if (PartVT.isFloatingPoint()) {
 | |
|       // FP split into multiple FP parts (for ppcf128)
 | |
|       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
 | |
|              "Unexpected split");
 | |
|       SDValue Lo, Hi;
 | |
|       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
 | |
|       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
 | |
|       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
 | |
|         std::swap(Lo, Hi);
 | |
|       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
 | |
|     } else {
 | |
|       // FP split into integer parts (soft fp)
 | |
|       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
 | |
|              !PartVT.isVector() && "Unexpected split");
 | |
|       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
 | |
|       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // There is now one part, held in Val.  Correct it to match ValueVT.
 | |
|   // PartEVT is the type of the register class that holds the value.
 | |
|   // ValueVT is the type of the inline asm operation.
 | |
|   EVT PartEVT = Val.getValueType();
 | |
| 
 | |
|   if (PartEVT == ValueVT)
 | |
|     return Val;
 | |
| 
 | |
|   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
 | |
|       ValueVT.bitsLT(PartEVT)) {
 | |
|     // For an FP value in an integer part, we need to truncate to the right
 | |
|     // width first.
 | |
|     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
 | |
|     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
 | |
|   }
 | |
| 
 | |
|   // Handle types that have the same size.
 | |
|   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
 | |
|     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
 | |
| 
 | |
|   // Handle types with different sizes.
 | |
|   if (PartEVT.isInteger() && ValueVT.isInteger()) {
 | |
|     if (ValueVT.bitsLT(PartEVT)) {
 | |
|       // For a truncate, see if we have any information to
 | |
|       // indicate whether the truncated bits will always be
 | |
|       // zero or sign-extension.
 | |
|       if (AssertOp.hasValue())
 | |
|         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
 | |
|                           DAG.getValueType(ValueVT));
 | |
|       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
 | |
|     }
 | |
|     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
 | |
|   }
 | |
| 
 | |
|   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
 | |
|     // FP_ROUND's are always exact here.
 | |
|     if (ValueVT.bitsLT(Val.getValueType()))
 | |
|       return DAG.getNode(
 | |
|           ISD::FP_ROUND, DL, ValueVT, Val,
 | |
|           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
 | |
| 
 | |
|     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
 | |
|   }
 | |
| 
 | |
|   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
 | |
|   // then truncating.
 | |
|   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
 | |
|       ValueVT.bitsLT(PartEVT)) {
 | |
|     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
 | |
|     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
 | |
|   }
 | |
| 
 | |
|   report_fatal_error("Unknown mismatch in getCopyFromParts!");
 | |
| }
 | |
| 
 | |
| static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
 | |
|                                               const Twine &ErrMsg) {
 | |
|   const Instruction *I = dyn_cast_or_null<Instruction>(V);
 | |
|   if (!V)
 | |
|     return Ctx.emitError(ErrMsg);
 | |
| 
 | |
|   const char *AsmError = ", possible invalid constraint for vector type";
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     if (CI->isInlineAsm())
 | |
|       return Ctx.emitError(I, ErrMsg + AsmError);
 | |
| 
 | |
|   return Ctx.emitError(I, ErrMsg);
 | |
| }
 | |
| 
 | |
| /// getCopyFromPartsVector - Create a value that contains the specified legal
 | |
| /// parts combined into the value they represent.  If the parts combine to a
 | |
| /// type larger than ValueVT then AssertOp can be used to specify whether the
 | |
| /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
 | |
| /// ValueVT (ISD::AssertSext).
 | |
| static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                                       const SDValue *Parts, unsigned NumParts,
 | |
|                                       MVT PartVT, EVT ValueVT, const Value *V,
 | |
|                                       Optional<CallingConv::ID> CallConv) {
 | |
|   assert(ValueVT.isVector() && "Not a vector value");
 | |
|   assert(NumParts > 0 && "No parts to assemble!");
 | |
|   const bool IsABIRegCopy = CallConv.hasValue();
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue Val = Parts[0];
 | |
| 
 | |
|   // Handle a multi-element vector.
 | |
|   if (NumParts > 1) {
 | |
|     EVT IntermediateVT;
 | |
|     MVT RegisterVT;
 | |
|     unsigned NumIntermediates;
 | |
|     unsigned NumRegs;
 | |
| 
 | |
|     if (IsABIRegCopy) {
 | |
|       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
 | |
|           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
 | |
|           NumIntermediates, RegisterVT);
 | |
|     } else {
 | |
|       NumRegs =
 | |
|           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
 | |
|                                      NumIntermediates, RegisterVT);
 | |
|     }
 | |
| 
 | |
|     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
 | |
|     NumParts = NumRegs; // Silence a compiler warning.
 | |
|     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
 | |
|     assert(RegisterVT.getSizeInBits() ==
 | |
|            Parts[0].getSimpleValueType().getSizeInBits() &&
 | |
|            "Part type sizes don't match!");
 | |
| 
 | |
|     // Assemble the parts into intermediate operands.
 | |
|     SmallVector<SDValue, 8> Ops(NumIntermediates);
 | |
|     if (NumIntermediates == NumParts) {
 | |
|       // If the register was not expanded, truncate or copy the value,
 | |
|       // as appropriate.
 | |
|       for (unsigned i = 0; i != NumParts; ++i)
 | |
|         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
 | |
|                                   PartVT, IntermediateVT, V, CallConv);
 | |
|     } else if (NumParts > 0) {
 | |
|       // If the intermediate type was expanded, build the intermediate
 | |
|       // operands from the parts.
 | |
|       assert(NumParts % NumIntermediates == 0 &&
 | |
|              "Must expand into a divisible number of parts!");
 | |
|       unsigned Factor = NumParts / NumIntermediates;
 | |
|       for (unsigned i = 0; i != NumIntermediates; ++i)
 | |
|         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
 | |
|                                   PartVT, IntermediateVT, V, CallConv);
 | |
|     }
 | |
| 
 | |
|     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
 | |
|     // intermediate operands.
 | |
|     EVT BuiltVectorTy =
 | |
|         IntermediateVT.isVector()
 | |
|             ? EVT::getVectorVT(
 | |
|                   *DAG.getContext(), IntermediateVT.getScalarType(),
 | |
|                   IntermediateVT.getVectorElementCount() * NumParts)
 | |
|             : EVT::getVectorVT(*DAG.getContext(),
 | |
|                                IntermediateVT.getScalarType(),
 | |
|                                NumIntermediates);
 | |
|     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
 | |
|                                                 : ISD::BUILD_VECTOR,
 | |
|                       DL, BuiltVectorTy, Ops);
 | |
|   }
 | |
| 
 | |
|   // There is now one part, held in Val.  Correct it to match ValueVT.
 | |
|   EVT PartEVT = Val.getValueType();
 | |
| 
 | |
|   if (PartEVT == ValueVT)
 | |
|     return Val;
 | |
| 
 | |
|   if (PartEVT.isVector()) {
 | |
|     // Vector/Vector bitcast.
 | |
|     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
 | |
|       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
 | |
| 
 | |
|     // If the element type of the source/dest vectors are the same, but the
 | |
|     // parts vector has more elements than the value vector, then we have a
 | |
|     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
 | |
|     // elements we want.
 | |
|     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
 | |
|       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
 | |
|               ValueVT.getVectorElementCount().getKnownMinValue()) &&
 | |
|              (PartEVT.getVectorElementCount().isScalable() ==
 | |
|               ValueVT.getVectorElementCount().isScalable()) &&
 | |
|              "Cannot narrow, it would be a lossy transformation");
 | |
|       PartEVT =
 | |
|           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
 | |
|                            ValueVT.getVectorElementCount());
 | |
|       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
 | |
|                         DAG.getVectorIdxConstant(0, DL));
 | |
|       if (PartEVT == ValueVT)
 | |
|         return Val;
 | |
|     }
 | |
| 
 | |
|     // Promoted vector extract
 | |
|     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
 | |
|   }
 | |
| 
 | |
|   // Trivial bitcast if the types are the same size and the destination
 | |
|   // vector type is legal.
 | |
|   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
 | |
|       TLI.isTypeLegal(ValueVT))
 | |
|     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
 | |
| 
 | |
|   if (ValueVT.getVectorNumElements() != 1) {
 | |
|      // Certain ABIs require that vectors are passed as integers. For vectors
 | |
|      // are the same size, this is an obvious bitcast.
 | |
|      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
 | |
|        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
 | |
|      } else if (ValueVT.bitsLT(PartEVT)) {
 | |
|        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
 | |
|        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
 | |
|        // Drop the extra bits.
 | |
|        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
 | |
|        return DAG.getBitcast(ValueVT, Val);
 | |
|      }
 | |
| 
 | |
|      diagnosePossiblyInvalidConstraint(
 | |
|          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
 | |
|      return DAG.getUNDEF(ValueVT);
 | |
|   }
 | |
| 
 | |
|   // Handle cases such as i8 -> <1 x i1>
 | |
|   EVT ValueSVT = ValueVT.getVectorElementType();
 | |
|   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
 | |
|     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
 | |
|       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
 | |
|     else
 | |
|       Val = ValueVT.isFloatingPoint()
 | |
|                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
 | |
|                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
 | |
|   }
 | |
| 
 | |
|   return DAG.getBuildVector(ValueVT, DL, Val);
 | |
| }
 | |
| 
 | |
| static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
 | |
|                                  SDValue Val, SDValue *Parts, unsigned NumParts,
 | |
|                                  MVT PartVT, const Value *V,
 | |
|                                  Optional<CallingConv::ID> CallConv);
 | |
| 
 | |
| /// getCopyToParts - Create a series of nodes that contain the specified value
 | |
| /// split into legal parts.  If the parts contain more bits than Val, then, for
 | |
| /// integers, ExtendKind can be used to specify how to generate the extra bits.
 | |
| static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
 | |
|                            SDValue *Parts, unsigned NumParts, MVT PartVT,
 | |
|                            const Value *V,
 | |
|                            Optional<CallingConv::ID> CallConv = None,
 | |
|                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
 | |
|   // Let the target split the parts if it wants to
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
 | |
|                                       CallConv))
 | |
|     return;
 | |
|   EVT ValueVT = Val.getValueType();
 | |
| 
 | |
|   // Handle the vector case separately.
 | |
|   if (ValueVT.isVector())
 | |
|     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
 | |
|                                 CallConv);
 | |
| 
 | |
|   unsigned PartBits = PartVT.getSizeInBits();
 | |
|   unsigned OrigNumParts = NumParts;
 | |
|   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
 | |
|          "Copying to an illegal type!");
 | |
| 
 | |
|   if (NumParts == 0)
 | |
|     return;
 | |
| 
 | |
|   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
 | |
|   EVT PartEVT = PartVT;
 | |
|   if (PartEVT == ValueVT) {
 | |
|     assert(NumParts == 1 && "No-op copy with multiple parts!");
 | |
|     Parts[0] = Val;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
 | |
|     // If the parts cover more bits than the value has, promote the value.
 | |
|     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
 | |
|       assert(NumParts == 1 && "Do not know what to promote to!");
 | |
|       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
 | |
|     } else {
 | |
|       if (ValueVT.isFloatingPoint()) {
 | |
|         // FP values need to be bitcast, then extended if they are being put
 | |
|         // into a larger container.
 | |
|         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
 | |
|         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
 | |
|       }
 | |
|       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
 | |
|              ValueVT.isInteger() &&
 | |
|              "Unknown mismatch!");
 | |
|       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
 | |
|       if (PartVT == MVT::x86mmx)
 | |
|         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
 | |
|     }
 | |
|   } else if (PartBits == ValueVT.getSizeInBits()) {
 | |
|     // Different types of the same size.
 | |
|     assert(NumParts == 1 && PartEVT != ValueVT);
 | |
|     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
 | |
|   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
 | |
|     // If the parts cover less bits than value has, truncate the value.
 | |
|     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
 | |
|            ValueVT.isInteger() &&
 | |
|            "Unknown mismatch!");
 | |
|     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
 | |
|     if (PartVT == MVT::x86mmx)
 | |
|       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
 | |
|   }
 | |
| 
 | |
|   // The value may have changed - recompute ValueVT.
 | |
|   ValueVT = Val.getValueType();
 | |
|   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
 | |
|          "Failed to tile the value with PartVT!");
 | |
| 
 | |
|   if (NumParts == 1) {
 | |
|     if (PartEVT != ValueVT) {
 | |
|       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
 | |
|                                         "scalar-to-vector conversion failed");
 | |
|       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
 | |
|     }
 | |
| 
 | |
|     Parts[0] = Val;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Expand the value into multiple parts.
 | |
|   if (NumParts & (NumParts - 1)) {
 | |
|     // The number of parts is not a power of 2.  Split off and copy the tail.
 | |
|     assert(PartVT.isInteger() && ValueVT.isInteger() &&
 | |
|            "Do not know what to expand to!");
 | |
|     unsigned RoundParts = 1 << Log2_32(NumParts);
 | |
|     unsigned RoundBits = RoundParts * PartBits;
 | |
|     unsigned OddParts = NumParts - RoundParts;
 | |
|     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
 | |
|       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
 | |
| 
 | |
|     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
 | |
|                    CallConv);
 | |
| 
 | |
|     if (DAG.getDataLayout().isBigEndian())
 | |
|       // The odd parts were reversed by getCopyToParts - unreverse them.
 | |
|       std::reverse(Parts + RoundParts, Parts + NumParts);
 | |
| 
 | |
|     NumParts = RoundParts;
 | |
|     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
 | |
|   }
 | |
| 
 | |
|   // The number of parts is a power of 2.  Repeatedly bisect the value using
 | |
|   // EXTRACT_ELEMENT.
 | |
|   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
 | |
|                          EVT::getIntegerVT(*DAG.getContext(),
 | |
|                                            ValueVT.getSizeInBits()),
 | |
|                          Val);
 | |
| 
 | |
|   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
 | |
|     for (unsigned i = 0; i < NumParts; i += StepSize) {
 | |
|       unsigned ThisBits = StepSize * PartBits / 2;
 | |
|       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
 | |
|       SDValue &Part0 = Parts[i];
 | |
|       SDValue &Part1 = Parts[i+StepSize/2];
 | |
| 
 | |
|       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
 | |
|                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
 | |
|       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
 | |
|                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
 | |
| 
 | |
|       if (ThisBits == PartBits && ThisVT != PartVT) {
 | |
|         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
 | |
|         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (DAG.getDataLayout().isBigEndian())
 | |
|     std::reverse(Parts, Parts + OrigNumParts);
 | |
| }
 | |
| 
 | |
| static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
 | |
|                                      const SDLoc &DL, EVT PartVT) {
 | |
|   if (!PartVT.isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT ValueVT = Val.getValueType();
 | |
|   ElementCount PartNumElts = PartVT.getVectorElementCount();
 | |
|   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
 | |
| 
 | |
|   // We only support widening vectors with equivalent element types and
 | |
|   // fixed/scalable properties. If a target needs to widen a fixed-length type
 | |
|   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
 | |
|   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
 | |
|       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
 | |
|       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Widening a scalable vector to another scalable vector is done by inserting
 | |
|   // the vector into a larger undef one.
 | |
|   if (PartNumElts.isScalable())
 | |
|     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
 | |
|                        Val, DAG.getVectorIdxConstant(0, DL));
 | |
| 
 | |
|   EVT ElementVT = PartVT.getVectorElementType();
 | |
|   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
 | |
|   // undef elements.
 | |
|   SmallVector<SDValue, 16> Ops;
 | |
|   DAG.ExtractVectorElements(Val, Ops);
 | |
|   SDValue EltUndef = DAG.getUNDEF(ElementVT);
 | |
|   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
 | |
| 
 | |
|   // FIXME: Use CONCAT for 2x -> 4x.
 | |
|   return DAG.getBuildVector(PartVT, DL, Ops);
 | |
| }
 | |
| 
 | |
| /// getCopyToPartsVector - Create a series of nodes that contain the specified
 | |
| /// value split into legal parts.
 | |
| static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                                  SDValue Val, SDValue *Parts, unsigned NumParts,
 | |
|                                  MVT PartVT, const Value *V,
 | |
|                                  Optional<CallingConv::ID> CallConv) {
 | |
|   EVT ValueVT = Val.getValueType();
 | |
|   assert(ValueVT.isVector() && "Not a vector");
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const bool IsABIRegCopy = CallConv.hasValue();
 | |
| 
 | |
|   if (NumParts == 1) {
 | |
|     EVT PartEVT = PartVT;
 | |
|     if (PartEVT == ValueVT) {
 | |
|       // Nothing to do.
 | |
|     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
 | |
|       // Bitconvert vector->vector case.
 | |
|       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
 | |
|     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
 | |
|       Val = Widened;
 | |
|     } else if (PartVT.isVector() &&
 | |
|                PartEVT.getVectorElementType().bitsGE(
 | |
|                    ValueVT.getVectorElementType()) &&
 | |
|                PartEVT.getVectorElementCount() ==
 | |
|                    ValueVT.getVectorElementCount()) {
 | |
| 
 | |
|       // Promoted vector extract
 | |
|       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
 | |
|     } else if (PartEVT.isVector() &&
 | |
|                PartEVT.getVectorElementType() !=
 | |
|                    ValueVT.getVectorElementType() &&
 | |
|                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
 | |
|                    TargetLowering::TypeWidenVector) {
 | |
|       // Combination of widening and promotion.
 | |
|       EVT WidenVT =
 | |
|           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
 | |
|                            PartVT.getVectorElementCount());
 | |
|       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
 | |
|       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
 | |
|     } else {
 | |
|       if (ValueVT.getVectorElementCount().isScalar()) {
 | |
|         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
 | |
|                           DAG.getVectorIdxConstant(0, DL));
 | |
|       } else {
 | |
|         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
 | |
|         assert(PartVT.getFixedSizeInBits() > ValueSize &&
 | |
|                "lossy conversion of vector to scalar type");
 | |
|         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
 | |
|         Val = DAG.getBitcast(IntermediateType, Val);
 | |
|         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
 | |
|     Parts[0] = Val;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle a multi-element vector.
 | |
|   EVT IntermediateVT;
 | |
|   MVT RegisterVT;
 | |
|   unsigned NumIntermediates;
 | |
|   unsigned NumRegs;
 | |
|   if (IsABIRegCopy) {
 | |
|     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
 | |
|         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
 | |
|         NumIntermediates, RegisterVT);
 | |
|   } else {
 | |
|     NumRegs =
 | |
|         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
 | |
|                                    NumIntermediates, RegisterVT);
 | |
|   }
 | |
| 
 | |
|   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
 | |
|   NumParts = NumRegs; // Silence a compiler warning.
 | |
|   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
 | |
| 
 | |
|   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
 | |
|          "Mixing scalable and fixed vectors when copying in parts");
 | |
| 
 | |
|   Optional<ElementCount> DestEltCnt;
 | |
| 
 | |
|   if (IntermediateVT.isVector())
 | |
|     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
 | |
|   else
 | |
|     DestEltCnt = ElementCount::getFixed(NumIntermediates);
 | |
| 
 | |
|   EVT BuiltVectorTy = EVT::getVectorVT(
 | |
|       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
 | |
| 
 | |
|   if (ValueVT == BuiltVectorTy) {
 | |
|     // Nothing to do.
 | |
|   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
 | |
|     // Bitconvert vector->vector case.
 | |
|     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
 | |
|   } else {
 | |
|     if (BuiltVectorTy.getVectorElementType().bitsGT(
 | |
|             ValueVT.getVectorElementType())) {
 | |
|       // Integer promotion.
 | |
|       ValueVT = EVT::getVectorVT(*DAG.getContext(),
 | |
|                                  BuiltVectorTy.getVectorElementType(),
 | |
|                                  ValueVT.getVectorElementCount());
 | |
|       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
 | |
|     }
 | |
| 
 | |
|     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
 | |
|       Val = Widened;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
 | |
| 
 | |
|   // Split the vector into intermediate operands.
 | |
|   SmallVector<SDValue, 8> Ops(NumIntermediates);
 | |
|   for (unsigned i = 0; i != NumIntermediates; ++i) {
 | |
|     if (IntermediateVT.isVector()) {
 | |
|       // This does something sensible for scalable vectors - see the
 | |
|       // definition of EXTRACT_SUBVECTOR for further details.
 | |
|       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
 | |
|       Ops[i] =
 | |
|           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
 | |
|                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
 | |
|     } else {
 | |
|       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
 | |
|                            DAG.getVectorIdxConstant(i, DL));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Split the intermediate operands into legal parts.
 | |
|   if (NumParts == NumIntermediates) {
 | |
|     // If the register was not expanded, promote or copy the value,
 | |
|     // as appropriate.
 | |
|     for (unsigned i = 0; i != NumParts; ++i)
 | |
|       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
 | |
|   } else if (NumParts > 0) {
 | |
|     // If the intermediate type was expanded, split each the value into
 | |
|     // legal parts.
 | |
|     assert(NumIntermediates != 0 && "division by zero");
 | |
|     assert(NumParts % NumIntermediates == 0 &&
 | |
|            "Must expand into a divisible number of parts!");
 | |
|     unsigned Factor = NumParts / NumIntermediates;
 | |
|     for (unsigned i = 0; i != NumIntermediates; ++i)
 | |
|       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
 | |
|                      CallConv);
 | |
|   }
 | |
| }
 | |
| 
 | |
| RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt,
 | |
|                            EVT valuevt, Optional<CallingConv::ID> CC)
 | |
|     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
 | |
|       RegCount(1, regs.size()), CallConv(CC) {}
 | |
| 
 | |
| RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
 | |
|                            const DataLayout &DL, unsigned Reg, Type *Ty,
 | |
|                            Optional<CallingConv::ID> CC) {
 | |
|   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
 | |
| 
 | |
|   CallConv = CC;
 | |
| 
 | |
|   for (EVT ValueVT : ValueVTs) {
 | |
|     unsigned NumRegs =
 | |
|         isABIMangled()
 | |
|             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
 | |
|             : TLI.getNumRegisters(Context, ValueVT);
 | |
|     MVT RegisterVT =
 | |
|         isABIMangled()
 | |
|             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
 | |
|             : TLI.getRegisterType(Context, ValueVT);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i)
 | |
|       Regs.push_back(Reg + i);
 | |
|     RegVTs.push_back(RegisterVT);
 | |
|     RegCount.push_back(NumRegs);
 | |
|     Reg += NumRegs;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
 | |
|                                       FunctionLoweringInfo &FuncInfo,
 | |
|                                       const SDLoc &dl, SDValue &Chain,
 | |
|                                       SDValue *Flag, const Value *V) const {
 | |
|   // A Value with type {} or [0 x %t] needs no registers.
 | |
|   if (ValueVTs.empty())
 | |
|     return SDValue();
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   // Assemble the legal parts into the final values.
 | |
|   SmallVector<SDValue, 4> Values(ValueVTs.size());
 | |
|   SmallVector<SDValue, 8> Parts;
 | |
|   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     // Copy the legal parts from the registers.
 | |
|     EVT ValueVT = ValueVTs[Value];
 | |
|     unsigned NumRegs = RegCount[Value];
 | |
|     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
 | |
|                                           *DAG.getContext(),
 | |
|                                           CallConv.getValue(), RegVTs[Value])
 | |
|                                     : RegVTs[Value];
 | |
| 
 | |
|     Parts.resize(NumRegs);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       SDValue P;
 | |
|       if (!Flag) {
 | |
|         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
 | |
|       } else {
 | |
|         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
 | |
|         *Flag = P.getValue(2);
 | |
|       }
 | |
| 
 | |
|       Chain = P.getValue(1);
 | |
|       Parts[i] = P;
 | |
| 
 | |
|       // If the source register was virtual and if we know something about it,
 | |
|       // add an assert node.
 | |
|       if (!Register::isVirtualRegister(Regs[Part + i]) ||
 | |
|           !RegisterVT.isInteger())
 | |
|         continue;
 | |
| 
 | |
|       const FunctionLoweringInfo::LiveOutInfo *LOI =
 | |
|         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
 | |
|       if (!LOI)
 | |
|         continue;
 | |
| 
 | |
|       unsigned RegSize = RegisterVT.getScalarSizeInBits();
 | |
|       unsigned NumSignBits = LOI->NumSignBits;
 | |
|       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
 | |
| 
 | |
|       if (NumZeroBits == RegSize) {
 | |
|         // The current value is a zero.
 | |
|         // Explicitly express that as it would be easier for
 | |
|         // optimizations to kick in.
 | |
|         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // FIXME: We capture more information than the dag can represent.  For
 | |
|       // now, just use the tightest assertzext/assertsext possible.
 | |
|       bool isSExt;
 | |
|       EVT FromVT(MVT::Other);
 | |
|       if (NumZeroBits) {
 | |
|         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
 | |
|         isSExt = false;
 | |
|       } else if (NumSignBits > 1) {
 | |
|         FromVT =
 | |
|             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
 | |
|         isSExt = true;
 | |
|       } else {
 | |
|         continue;
 | |
|       }
 | |
|       // Add an assertion node.
 | |
|       assert(FromVT != MVT::Other);
 | |
|       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
 | |
|                              RegisterVT, P, DAG.getValueType(FromVT));
 | |
|     }
 | |
| 
 | |
|     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
 | |
|                                      RegisterVT, ValueVT, V, CallConv);
 | |
|     Part += NumRegs;
 | |
|     Parts.clear();
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
 | |
| }
 | |
| 
 | |
| void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
 | |
|                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
 | |
|                                  const Value *V,
 | |
|                                  ISD::NodeType PreferredExtendType) const {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   ISD::NodeType ExtendKind = PreferredExtendType;
 | |
| 
 | |
|   // Get the list of the values's legal parts.
 | |
|   unsigned NumRegs = Regs.size();
 | |
|   SmallVector<SDValue, 8> Parts(NumRegs);
 | |
|   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     unsigned NumParts = RegCount[Value];
 | |
| 
 | |
|     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
 | |
|                                           *DAG.getContext(),
 | |
|                                           CallConv.getValue(), RegVTs[Value])
 | |
|                                     : RegVTs[Value];
 | |
| 
 | |
|     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
 | |
|       ExtendKind = ISD::ZERO_EXTEND;
 | |
| 
 | |
|     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
 | |
|                    NumParts, RegisterVT, V, CallConv, ExtendKind);
 | |
|     Part += NumParts;
 | |
|   }
 | |
| 
 | |
|   // Copy the parts into the registers.
 | |
|   SmallVector<SDValue, 8> Chains(NumRegs);
 | |
|   for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|     SDValue Part;
 | |
|     if (!Flag) {
 | |
|       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
 | |
|     } else {
 | |
|       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
 | |
|       *Flag = Part.getValue(1);
 | |
|     }
 | |
| 
 | |
|     Chains[i] = Part.getValue(0);
 | |
|   }
 | |
| 
 | |
|   if (NumRegs == 1 || Flag)
 | |
|     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
 | |
|     // flagged to it. That is the CopyToReg nodes and the user are considered
 | |
|     // a single scheduling unit. If we create a TokenFactor and return it as
 | |
|     // chain, then the TokenFactor is both a predecessor (operand) of the
 | |
|     // user as well as a successor (the TF operands are flagged to the user).
 | |
|     // c1, f1 = CopyToReg
 | |
|     // c2, f2 = CopyToReg
 | |
|     // c3     = TokenFactor c1, c2
 | |
|     // ...
 | |
|     //        = op c3, ..., f2
 | |
|     Chain = Chains[NumRegs-1];
 | |
|   else
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
 | |
| }
 | |
| 
 | |
| void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
 | |
|                                         unsigned MatchingIdx, const SDLoc &dl,
 | |
|                                         SelectionDAG &DAG,
 | |
|                                         std::vector<SDValue> &Ops) const {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
 | |
|   if (HasMatching)
 | |
|     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
 | |
|   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
 | |
|     // Put the register class of the virtual registers in the flag word.  That
 | |
|     // way, later passes can recompute register class constraints for inline
 | |
|     // assembly as well as normal instructions.
 | |
|     // Don't do this for tied operands that can use the regclass information
 | |
|     // from the def.
 | |
|     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
 | |
|     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
 | |
|     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
 | |
|   }
 | |
| 
 | |
|   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
 | |
|   Ops.push_back(Res);
 | |
| 
 | |
|   if (Code == InlineAsm::Kind_Clobber) {
 | |
|     // Clobbers should always have a 1:1 mapping with registers, and may
 | |
|     // reference registers that have illegal (e.g. vector) types. Hence, we
 | |
|     // shouldn't try to apply any sort of splitting logic to them.
 | |
|     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
 | |
|            "No 1:1 mapping from clobbers to regs?");
 | |
|     Register SP = TLI.getStackPointerRegisterToSaveRestore();
 | |
|     (void)SP;
 | |
|     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
 | |
|       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
 | |
|       assert(
 | |
|           (Regs[I] != SP ||
 | |
|            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
 | |
|           "If we clobbered the stack pointer, MFI should know about it.");
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     MVT RegisterVT = RegVTs[Value];
 | |
|     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
 | |
|                                            RegisterVT);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       assert(Reg < Regs.size() && "Mismatch in # registers expected");
 | |
|       unsigned TheReg = Regs[Reg++];
 | |
|       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SmallVector<std::pair<unsigned, TypeSize>, 4>
 | |
| RegsForValue::getRegsAndSizes() const {
 | |
|   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
 | |
|   unsigned I = 0;
 | |
|   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
 | |
|     unsigned RegCount = std::get<0>(CountAndVT);
 | |
|     MVT RegisterVT = std::get<1>(CountAndVT);
 | |
|     TypeSize RegisterSize = RegisterVT.getSizeInBits();
 | |
|     for (unsigned E = I + RegCount; I != E; ++I)
 | |
|       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
 | |
|   }
 | |
|   return OutVec;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
 | |
|                                const TargetLibraryInfo *li) {
 | |
|   AA = aa;
 | |
|   GFI = gfi;
 | |
|   LibInfo = li;
 | |
|   Context = DAG.getContext();
 | |
|   LPadToCallSiteMap.clear();
 | |
|   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::clear() {
 | |
|   NodeMap.clear();
 | |
|   UnusedArgNodeMap.clear();
 | |
|   PendingLoads.clear();
 | |
|   PendingExports.clear();
 | |
|   PendingConstrainedFP.clear();
 | |
|   PendingConstrainedFPStrict.clear();
 | |
|   CurInst = nullptr;
 | |
|   HasTailCall = false;
 | |
|   SDNodeOrder = LowestSDNodeOrder;
 | |
|   StatepointLowering.clear();
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::clearDanglingDebugInfo() {
 | |
|   DanglingDebugInfoMap.clear();
 | |
| }
 | |
| 
 | |
| // Update DAG root to include dependencies on Pending chains.
 | |
| SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
 | |
|   SDValue Root = DAG.getRoot();
 | |
| 
 | |
|   if (Pending.empty())
 | |
|     return Root;
 | |
| 
 | |
|   // Add current root to PendingChains, unless we already indirectly
 | |
|   // depend on it.
 | |
|   if (Root.getOpcode() != ISD::EntryToken) {
 | |
|     unsigned i = 0, e = Pending.size();
 | |
|     for (; i != e; ++i) {
 | |
|       assert(Pending[i].getNode()->getNumOperands() > 1);
 | |
|       if (Pending[i].getNode()->getOperand(0) == Root)
 | |
|         break;  // Don't add the root if we already indirectly depend on it.
 | |
|     }
 | |
| 
 | |
|     if (i == e)
 | |
|       Pending.push_back(Root);
 | |
|   }
 | |
| 
 | |
|   if (Pending.size() == 1)
 | |
|     Root = Pending[0];
 | |
|   else
 | |
|     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
 | |
| 
 | |
|   DAG.setRoot(Root);
 | |
|   Pending.clear();
 | |
|   return Root;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGBuilder::getMemoryRoot() {
 | |
|   return updateRoot(PendingLoads);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGBuilder::getRoot() {
 | |
|   // Chain up all pending constrained intrinsics together with all
 | |
|   // pending loads, by simply appending them to PendingLoads and
 | |
|   // then calling getMemoryRoot().
 | |
|   PendingLoads.reserve(PendingLoads.size() +
 | |
|                        PendingConstrainedFP.size() +
 | |
|                        PendingConstrainedFPStrict.size());
 | |
|   PendingLoads.append(PendingConstrainedFP.begin(),
 | |
|                       PendingConstrainedFP.end());
 | |
|   PendingLoads.append(PendingConstrainedFPStrict.begin(),
 | |
|                       PendingConstrainedFPStrict.end());
 | |
|   PendingConstrainedFP.clear();
 | |
|   PendingConstrainedFPStrict.clear();
 | |
|   return getMemoryRoot();
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGBuilder::getControlRoot() {
 | |
|   // We need to emit pending fpexcept.strict constrained intrinsics,
 | |
|   // so append them to the PendingExports list.
 | |
|   PendingExports.append(PendingConstrainedFPStrict.begin(),
 | |
|                         PendingConstrainedFPStrict.end());
 | |
|   PendingConstrainedFPStrict.clear();
 | |
|   return updateRoot(PendingExports);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visit(const Instruction &I) {
 | |
|   // Set up outgoing PHI node register values before emitting the terminator.
 | |
|   if (I.isTerminator()) {
 | |
|     HandlePHINodesInSuccessorBlocks(I.getParent());
 | |
|   }
 | |
| 
 | |
|   // Increase the SDNodeOrder if dealing with a non-debug instruction.
 | |
|   if (!isa<DbgInfoIntrinsic>(I))
 | |
|     ++SDNodeOrder;
 | |
| 
 | |
|   CurInst = &I;
 | |
| 
 | |
|   visit(I.getOpcode(), I);
 | |
| 
 | |
|   if (!I.isTerminator() && !HasTailCall &&
 | |
|       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
 | |
|     CopyToExportRegsIfNeeded(&I);
 | |
| 
 | |
|   CurInst = nullptr;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitPHI(const PHINode &) {
 | |
|   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
 | |
|   // Note: this doesn't use InstVisitor, because it has to work with
 | |
|   // ConstantExpr's in addition to instructions.
 | |
|   switch (Opcode) {
 | |
|   default: llvm_unreachable("Unknown instruction type encountered!");
 | |
|     // Build the switch statement using the Instruction.def file.
 | |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \
 | |
|     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
 | |
| #include "llvm/IR/Instruction.def"
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
 | |
|                                                DebugLoc DL, unsigned Order) {
 | |
|   // We treat variadic dbg_values differently at this stage.
 | |
|   if (DI->hasArgList()) {
 | |
|     // For variadic dbg_values we will now insert an undef.
 | |
|     // FIXME: We can potentially recover these!
 | |
|     SmallVector<SDDbgOperand, 2> Locs;
 | |
|     for (const Value *V : DI->getValues()) {
 | |
|       auto Undef = UndefValue::get(V->getType());
 | |
|       Locs.push_back(SDDbgOperand::fromConst(Undef));
 | |
|     }
 | |
|     SDDbgValue *SDV = DAG.getDbgValueList(
 | |
|         DI->getVariable(), DI->getExpression(), Locs, {},
 | |
|         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
 | |
|     DAG.AddDbgValue(SDV, /*isParameter=*/false);
 | |
|   } else {
 | |
|     // TODO: Dangling debug info will eventually either be resolved or produce
 | |
|     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
 | |
|     // between the original dbg.value location and its resolved DBG_VALUE,
 | |
|     // which we should ideally fill with an extra Undef DBG_VALUE.
 | |
|     assert(DI->getNumVariableLocationOps() == 1 &&
 | |
|            "DbgValueInst without an ArgList should have a single location "
 | |
|            "operand.");
 | |
|     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
 | |
|                                                 const DIExpression *Expr) {
 | |
|   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
 | |
|     const DbgValueInst *DI = DDI.getDI();
 | |
|     DIVariable *DanglingVariable = DI->getVariable();
 | |
|     DIExpression *DanglingExpr = DI->getExpression();
 | |
|     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
 | |
|       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   for (auto &DDIMI : DanglingDebugInfoMap) {
 | |
|     DanglingDebugInfoVector &DDIV = DDIMI.second;
 | |
| 
 | |
|     // If debug info is to be dropped, run it through final checks to see
 | |
|     // whether it can be salvaged.
 | |
|     for (auto &DDI : DDIV)
 | |
|       if (isMatchingDbgValue(DDI))
 | |
|         salvageUnresolvedDbgValue(DDI);
 | |
| 
 | |
|     erase_if(DDIV, isMatchingDbgValue);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
 | |
| // generate the debug data structures now that we've seen its definition.
 | |
| void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
 | |
|                                                    SDValue Val) {
 | |
|   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
 | |
|   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
 | |
|     return;
 | |
| 
 | |
|   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
 | |
|   for (auto &DDI : DDIV) {
 | |
|     const DbgValueInst *DI = DDI.getDI();
 | |
|     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
 | |
|     assert(DI && "Ill-formed DanglingDebugInfo");
 | |
|     DebugLoc dl = DDI.getdl();
 | |
|     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
 | |
|     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
 | |
|     DILocalVariable *Variable = DI->getVariable();
 | |
|     DIExpression *Expr = DI->getExpression();
 | |
|     assert(Variable->isValidLocationForIntrinsic(dl) &&
 | |
|            "Expected inlined-at fields to agree");
 | |
|     SDDbgValue *SDV;
 | |
|     if (Val.getNode()) {
 | |
|       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
 | |
|       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
 | |
|       // we couldn't resolve it directly when examining the DbgValue intrinsic
 | |
|       // in the first place we should not be more successful here). Unless we
 | |
|       // have some test case that prove this to be correct we should avoid
 | |
|       // calling EmitFuncArgumentDbgValue here.
 | |
|       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
 | |
|                                     FuncArgumentDbgValueKind::Value, Val)) {
 | |
|         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
 | |
|                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
 | |
|         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
 | |
|         // Increase the SDNodeOrder for the DbgValue here to make sure it is
 | |
|         // inserted after the definition of Val when emitting the instructions
 | |
|         // after ISel. An alternative could be to teach
 | |
|         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
 | |
|         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
 | |
|                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
 | |
|                    << ValSDNodeOrder << "\n");
 | |
|         SDV = getDbgValue(Val, Variable, Expr, dl,
 | |
|                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
 | |
|         DAG.AddDbgValue(SDV, false);
 | |
|       } else
 | |
|         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
 | |
|                           << "in EmitFuncArgumentDbgValue\n");
 | |
|     } else {
 | |
|       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
 | |
|       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
 | |
|       auto SDV =
 | |
|           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
 | |
|       DAG.AddDbgValue(SDV, false);
 | |
|     }
 | |
|   }
 | |
|   DDIV.clear();
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
 | |
|   // TODO: For the variadic implementation, instead of only checking the fail
 | |
|   // state of `handleDebugValue`, we need know specifically which values were
 | |
|   // invalid, so that we attempt to salvage only those values when processing
 | |
|   // a DIArgList.
 | |
|   assert(!DDI.getDI()->hasArgList() &&
 | |
|          "Not implemented for variadic dbg_values");
 | |
|   Value *V = DDI.getDI()->getValue(0);
 | |
|   DILocalVariable *Var = DDI.getDI()->getVariable();
 | |
|   DIExpression *Expr = DDI.getDI()->getExpression();
 | |
|   DebugLoc DL = DDI.getdl();
 | |
|   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
 | |
|   unsigned SDOrder = DDI.getSDNodeOrder();
 | |
|   // Currently we consider only dbg.value intrinsics -- we tell the salvager
 | |
|   // that DW_OP_stack_value is desired.
 | |
|   assert(isa<DbgValueInst>(DDI.getDI()));
 | |
|   bool StackValue = true;
 | |
| 
 | |
|   // Can this Value can be encoded without any further work?
 | |
|   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
 | |
|     return;
 | |
| 
 | |
|   // Attempt to salvage back through as many instructions as possible. Bail if
 | |
|   // a non-instruction is seen, such as a constant expression or global
 | |
|   // variable. FIXME: Further work could recover those too.
 | |
|   while (isa<Instruction>(V)) {
 | |
|     Instruction &VAsInst = *cast<Instruction>(V);
 | |
|     // Temporary "0", awaiting real implementation.
 | |
|     SmallVector<uint64_t, 16> Ops;
 | |
|     SmallVector<Value *, 4> AdditionalValues;
 | |
|     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
 | |
|                              AdditionalValues);
 | |
|     // If we cannot salvage any further, and haven't yet found a suitable debug
 | |
|     // expression, bail out.
 | |
|     if (!V)
 | |
|       break;
 | |
| 
 | |
|     // TODO: If AdditionalValues isn't empty, then the salvage can only be
 | |
|     // represented with a DBG_VALUE_LIST, so we give up. When we have support
 | |
|     // here for variadic dbg_values, remove that condition.
 | |
|     if (!AdditionalValues.empty())
 | |
|       break;
 | |
| 
 | |
|     // New value and expr now represent this debuginfo.
 | |
|     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
 | |
| 
 | |
|     // Some kind of simplification occurred: check whether the operand of the
 | |
|     // salvaged debug expression can be encoded in this DAG.
 | |
|     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
 | |
|                          /*IsVariadic=*/false)) {
 | |
|       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
 | |
|                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This was the final opportunity to salvage this debug information, and it
 | |
|   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
 | |
|   // any earlier variable location.
 | |
|   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
 | |
|   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
 | |
|   DAG.AddDbgValue(SDV, false);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
 | |
|                     << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
 | |
|                     << "\n");
 | |
| }
 | |
| 
 | |
| bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
 | |
|                                            DILocalVariable *Var,
 | |
|                                            DIExpression *Expr, DebugLoc dl,
 | |
|                                            DebugLoc InstDL, unsigned Order,
 | |
|                                            bool IsVariadic) {
 | |
|   if (Values.empty())
 | |
|     return true;
 | |
|   SmallVector<SDDbgOperand> LocationOps;
 | |
|   SmallVector<SDNode *> Dependencies;
 | |
|   for (const Value *V : Values) {
 | |
|     // Constant value.
 | |
|     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
 | |
|         isa<ConstantPointerNull>(V)) {
 | |
|       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If the Value is a frame index, we can create a FrameIndex debug value
 | |
|     // without relying on the DAG at all.
 | |
|     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|       auto SI = FuncInfo.StaticAllocaMap.find(AI);
 | |
|       if (SI != FuncInfo.StaticAllocaMap.end()) {
 | |
|         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Do not use getValue() in here; we don't want to generate code at
 | |
|     // this point if it hasn't been done yet.
 | |
|     SDValue N = NodeMap[V];
 | |
|     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
 | |
|       N = UnusedArgNodeMap[V];
 | |
|     if (N.getNode()) {
 | |
|       // Only emit func arg dbg value for non-variadic dbg.values for now.
 | |
|       if (!IsVariadic &&
 | |
|           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
 | |
|                                    FuncArgumentDbgValueKind::Value, N))
 | |
|         return true;
 | |
|       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
 | |
|         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
 | |
|         // describe stack slot locations.
 | |
|         //
 | |
|         // Consider "int x = 0; int *px = &x;". There are two kinds of
 | |
|         // interesting debug values here after optimization:
 | |
|         //
 | |
|         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
 | |
|         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
 | |
|         //
 | |
|         // Both describe the direct values of their associated variables.
 | |
|         Dependencies.push_back(N.getNode());
 | |
|         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
 | |
|         continue;
 | |
|       }
 | |
|       LocationOps.emplace_back(
 | |
|           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     // Special rules apply for the first dbg.values of parameter variables in a
 | |
|     // function. Identify them by the fact they reference Argument Values, that
 | |
|     // they're parameters, and they are parameters of the current function. We
 | |
|     // need to let them dangle until they get an SDNode.
 | |
|     bool IsParamOfFunc =
 | |
|         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
 | |
|     if (IsParamOfFunc)
 | |
|       return false;
 | |
| 
 | |
|     // The value is not used in this block yet (or it would have an SDNode).
 | |
|     // We still want the value to appear for the user if possible -- if it has
 | |
|     // an associated VReg, we can refer to that instead.
 | |
|     auto VMI = FuncInfo.ValueMap.find(V);
 | |
|     if (VMI != FuncInfo.ValueMap.end()) {
 | |
|       unsigned Reg = VMI->second;
 | |
|       // If this is a PHI node, it may be split up into several MI PHI nodes
 | |
|       // (in FunctionLoweringInfo::set).
 | |
|       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
 | |
|                        V->getType(), None);
 | |
|       if (RFV.occupiesMultipleRegs()) {
 | |
|         // FIXME: We could potentially support variadic dbg_values here.
 | |
|         if (IsVariadic)
 | |
|           return false;
 | |
|         unsigned Offset = 0;
 | |
|         unsigned BitsToDescribe = 0;
 | |
|         if (auto VarSize = Var->getSizeInBits())
 | |
|           BitsToDescribe = *VarSize;
 | |
|         if (auto Fragment = Expr->getFragmentInfo())
 | |
|           BitsToDescribe = Fragment->SizeInBits;
 | |
|         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
 | |
|           // Bail out if all bits are described already.
 | |
|           if (Offset >= BitsToDescribe)
 | |
|             break;
 | |
|           // TODO: handle scalable vectors.
 | |
|           unsigned RegisterSize = RegAndSize.second;
 | |
|           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
 | |
|                                       ? BitsToDescribe - Offset
 | |
|                                       : RegisterSize;
 | |
|           auto FragmentExpr = DIExpression::createFragmentExpression(
 | |
|               Expr, Offset, FragmentSize);
 | |
|           if (!FragmentExpr)
 | |
|             continue;
 | |
|           SDDbgValue *SDV = DAG.getVRegDbgValue(
 | |
|               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
 | |
|           DAG.AddDbgValue(SDV, false);
 | |
|           Offset += RegisterSize;
 | |
|         }
 | |
|         return true;
 | |
|       }
 | |
|       // We can use simple vreg locations for variadic dbg_values as well.
 | |
|       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
 | |
|       continue;
 | |
|     }
 | |
|     // We failed to create a SDDbgOperand for V.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We have created a SDDbgOperand for each Value in Values.
 | |
|   // Should use Order instead of SDNodeOrder?
 | |
|   assert(!LocationOps.empty());
 | |
|   SDDbgValue *SDV =
 | |
|       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
 | |
|                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
 | |
|   DAG.AddDbgValue(SDV, /*isParameter=*/false);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::resolveOrClearDbgInfo() {
 | |
|   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
 | |
|   for (auto &Pair : DanglingDebugInfoMap)
 | |
|     for (auto &DDI : Pair.second)
 | |
|       salvageUnresolvedDbgValue(DDI);
 | |
|   clearDanglingDebugInfo();
 | |
| }
 | |
| 
 | |
| /// getCopyFromRegs - If there was virtual register allocated for the value V
 | |
| /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
 | |
| SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
 | |
|   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
 | |
|   SDValue Result;
 | |
| 
 | |
|   if (It != FuncInfo.ValueMap.end()) {
 | |
|     Register InReg = It->second;
 | |
| 
 | |
|     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
 | |
|                      DAG.getDataLayout(), InReg, Ty,
 | |
|                      None); // This is not an ABI copy.
 | |
|     SDValue Chain = DAG.getEntryNode();
 | |
|     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
 | |
|                                  V);
 | |
|     resolveDanglingDebugInfo(V, Result);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// getValue - Return an SDValue for the given Value.
 | |
| SDValue SelectionDAGBuilder::getValue(const Value *V) {
 | |
|   // If we already have an SDValue for this value, use it. It's important
 | |
|   // to do this first, so that we don't create a CopyFromReg if we already
 | |
|   // have a regular SDValue.
 | |
|   SDValue &N = NodeMap[V];
 | |
|   if (N.getNode()) return N;
 | |
| 
 | |
|   // If there's a virtual register allocated and initialized for this
 | |
|   // value, use it.
 | |
|   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
 | |
|     return copyFromReg;
 | |
| 
 | |
|   // Otherwise create a new SDValue and remember it.
 | |
|   SDValue Val = getValueImpl(V);
 | |
|   NodeMap[V] = Val;
 | |
|   resolveDanglingDebugInfo(V, Val);
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| /// getNonRegisterValue - Return an SDValue for the given Value, but
 | |
| /// don't look in FuncInfo.ValueMap for a virtual register.
 | |
| SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
 | |
|   // If we already have an SDValue for this value, use it.
 | |
|   SDValue &N = NodeMap[V];
 | |
|   if (N.getNode()) {
 | |
|     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
 | |
|       // Remove the debug location from the node as the node is about to be used
 | |
|       // in a location which may differ from the original debug location.  This
 | |
|       // is relevant to Constant and ConstantFP nodes because they can appear
 | |
|       // as constant expressions inside PHI nodes.
 | |
|       N->setDebugLoc(DebugLoc());
 | |
|     }
 | |
|     return N;
 | |
|   }
 | |
| 
 | |
|   // Otherwise create a new SDValue and remember it.
 | |
|   SDValue Val = getValueImpl(V);
 | |
|   NodeMap[V] = Val;
 | |
|   resolveDanglingDebugInfo(V, Val);
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| /// getValueImpl - Helper function for getValue and getNonRegisterValue.
 | |
| /// Create an SDValue for the given value.
 | |
| SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   if (const Constant *C = dyn_cast<Constant>(V)) {
 | |
|     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
 | |
| 
 | |
|     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
 | |
|       return DAG.getConstant(*CI, getCurSDLoc(), VT);
 | |
| 
 | |
|     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
 | |
| 
 | |
|     if (isa<ConstantPointerNull>(C)) {
 | |
|       unsigned AS = V->getType()->getPointerAddressSpace();
 | |
|       return DAG.getConstant(0, getCurSDLoc(),
 | |
|                              TLI.getPointerTy(DAG.getDataLayout(), AS));
 | |
|     }
 | |
| 
 | |
|     if (match(C, m_VScale(DAG.getDataLayout())))
 | |
|       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
 | |
| 
 | |
|     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
 | |
|       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
 | |
| 
 | |
|     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
 | |
|       return DAG.getUNDEF(VT);
 | |
| 
 | |
|     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|       visit(CE->getOpcode(), *CE);
 | |
|       SDValue N1 = NodeMap[V];
 | |
|       assert(N1.getNode() && "visit didn't populate the NodeMap!");
 | |
|       return N1;
 | |
|     }
 | |
| 
 | |
|     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
 | |
|       SmallVector<SDValue, 4> Constants;
 | |
|       for (const Use &U : C->operands()) {
 | |
|         SDNode *Val = getValue(U).getNode();
 | |
|         // If the operand is an empty aggregate, there are no values.
 | |
|         if (!Val) continue;
 | |
|         // Add each leaf value from the operand to the Constants list
 | |
|         // to form a flattened list of all the values.
 | |
|         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
 | |
|           Constants.push_back(SDValue(Val, i));
 | |
|       }
 | |
| 
 | |
|       return DAG.getMergeValues(Constants, getCurSDLoc());
 | |
|     }
 | |
| 
 | |
|     if (const ConstantDataSequential *CDS =
 | |
|           dyn_cast<ConstantDataSequential>(C)) {
 | |
|       SmallVector<SDValue, 4> Ops;
 | |
|       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
 | |
|         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
 | |
|         // Add each leaf value from the operand to the Constants list
 | |
|         // to form a flattened list of all the values.
 | |
|         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
 | |
|           Ops.push_back(SDValue(Val, i));
 | |
|       }
 | |
| 
 | |
|       if (isa<ArrayType>(CDS->getType()))
 | |
|         return DAG.getMergeValues(Ops, getCurSDLoc());
 | |
|       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
 | |
|     }
 | |
| 
 | |
|     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
 | |
|       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
 | |
|              "Unknown struct or array constant!");
 | |
| 
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
 | |
|       unsigned NumElts = ValueVTs.size();
 | |
|       if (NumElts == 0)
 | |
|         return SDValue(); // empty struct
 | |
|       SmallVector<SDValue, 4> Constants(NumElts);
 | |
|       for (unsigned i = 0; i != NumElts; ++i) {
 | |
|         EVT EltVT = ValueVTs[i];
 | |
|         if (isa<UndefValue>(C))
 | |
|           Constants[i] = DAG.getUNDEF(EltVT);
 | |
|         else if (EltVT.isFloatingPoint())
 | |
|           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
 | |
|         else
 | |
|           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
 | |
|       }
 | |
| 
 | |
|       return DAG.getMergeValues(Constants, getCurSDLoc());
 | |
|     }
 | |
| 
 | |
|     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
 | |
|       return DAG.getBlockAddress(BA, VT);
 | |
| 
 | |
|     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
 | |
|       return getValue(Equiv->getGlobalValue());
 | |
| 
 | |
|     if (const auto *NC = dyn_cast<NoCFIValue>(C))
 | |
|       return getValue(NC->getGlobalValue());
 | |
| 
 | |
|     VectorType *VecTy = cast<VectorType>(V->getType());
 | |
| 
 | |
|     // Now that we know the number and type of the elements, get that number of
 | |
|     // elements into the Ops array based on what kind of constant it is.
 | |
|     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
 | |
|       SmallVector<SDValue, 16> Ops;
 | |
|       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
 | |
|       for (unsigned i = 0; i != NumElements; ++i)
 | |
|         Ops.push_back(getValue(CV->getOperand(i)));
 | |
| 
 | |
|       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
 | |
|     }
 | |
| 
 | |
|     if (isa<ConstantAggregateZero>(C)) {
 | |
|       EVT EltVT =
 | |
|           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
 | |
| 
 | |
|       SDValue Op;
 | |
|       if (EltVT.isFloatingPoint())
 | |
|         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
 | |
|       else
 | |
|         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
 | |
| 
 | |
|       if (isa<ScalableVectorType>(VecTy))
 | |
|         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
 | |
| 
 | |
|       SmallVector<SDValue, 16> Ops;
 | |
|       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
 | |
|       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("Unknown vector constant");
 | |
|   }
 | |
| 
 | |
|   // If this is a static alloca, generate it as the frameindex instead of
 | |
|   // computation.
 | |
|   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|     DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|       FuncInfo.StaticAllocaMap.find(AI);
 | |
|     if (SI != FuncInfo.StaticAllocaMap.end())
 | |
|       return DAG.getFrameIndex(SI->second,
 | |
|                                TLI.getFrameIndexTy(DAG.getDataLayout()));
 | |
|   }
 | |
| 
 | |
|   // If this is an instruction which fast-isel has deferred, select it now.
 | |
|   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
 | |
|     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
 | |
| 
 | |
|     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
 | |
|                      Inst->getType(), None);
 | |
|     SDValue Chain = DAG.getEntryNode();
 | |
|     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
 | |
|   }
 | |
| 
 | |
|   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
 | |
|     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
 | |
| 
 | |
|   if (const auto *BB = dyn_cast<BasicBlock>(V))
 | |
|     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
 | |
| 
 | |
|   llvm_unreachable("Can't get register for value!");
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
 | |
|   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
 | |
|   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
 | |
|   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
 | |
|   bool IsSEH = isAsynchronousEHPersonality(Pers);
 | |
|   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
 | |
|   if (!IsSEH)
 | |
|     CatchPadMBB->setIsEHScopeEntry();
 | |
|   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
 | |
|   if (IsMSVCCXX || IsCoreCLR)
 | |
|     CatchPadMBB->setIsEHFuncletEntry();
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
 | |
|   // Update machine-CFG edge.
 | |
|   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
 | |
|   FuncInfo.MBB->addSuccessor(TargetMBB);
 | |
|   TargetMBB->setIsEHCatchretTarget(true);
 | |
|   DAG.getMachineFunction().setHasEHCatchret(true);
 | |
| 
 | |
|   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
 | |
|   bool IsSEH = isAsynchronousEHPersonality(Pers);
 | |
|   if (IsSEH) {
 | |
|     // If this is not a fall-through branch or optimizations are switched off,
 | |
|     // emit the branch.
 | |
|     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
 | |
|         TM.getOptLevel() == CodeGenOpt::None)
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
 | |
|                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Figure out the funclet membership for the catchret's successor.
 | |
|   // This will be used by the FuncletLayout pass to determine how to order the
 | |
|   // BB's.
 | |
|   // A 'catchret' returns to the outer scope's color.
 | |
|   Value *ParentPad = I.getCatchSwitchParentPad();
 | |
|   const BasicBlock *SuccessorColor;
 | |
|   if (isa<ConstantTokenNone>(ParentPad))
 | |
|     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
 | |
|   else
 | |
|     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
 | |
|   assert(SuccessorColor && "No parent funclet for catchret!");
 | |
|   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
 | |
|   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
 | |
| 
 | |
|   // Create the terminator node.
 | |
|   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
 | |
|                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
 | |
|                             DAG.getBasicBlock(SuccessorColorMBB));
 | |
|   DAG.setRoot(Ret);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
 | |
|   // Don't emit any special code for the cleanuppad instruction. It just marks
 | |
|   // the start of an EH scope/funclet.
 | |
|   FuncInfo.MBB->setIsEHScopeEntry();
 | |
|   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
 | |
|   if (Pers != EHPersonality::Wasm_CXX) {
 | |
|     FuncInfo.MBB->setIsEHFuncletEntry();
 | |
|     FuncInfo.MBB->setIsCleanupFuncletEntry();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // In wasm EH, even though a catchpad may not catch an exception if a tag does
 | |
| // not match, it is OK to add only the first unwind destination catchpad to the
 | |
| // successors, because there will be at least one invoke instruction within the
 | |
| // catch scope that points to the next unwind destination, if one exists, so
 | |
| // CFGSort cannot mess up with BB sorting order.
 | |
| // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
 | |
| // call within them, and catchpads only consisting of 'catch (...)' have a
 | |
| // '__cxa_end_catch' call within them, both of which generate invokes in case
 | |
| // the next unwind destination exists, i.e., the next unwind destination is not
 | |
| // the caller.)
 | |
| //
 | |
| // Having at most one EH pad successor is also simpler and helps later
 | |
| // transformations.
 | |
| //
 | |
| // For example,
 | |
| // current:
 | |
| //   invoke void @foo to ... unwind label %catch.dispatch
 | |
| // catch.dispatch:
 | |
| //   %0 = catchswitch within ... [label %catch.start] unwind label %next
 | |
| // catch.start:
 | |
| //   ...
 | |
| //   ... in this BB or some other child BB dominated by this BB there will be an
 | |
| //   invoke that points to 'next' BB as an unwind destination
 | |
| //
 | |
| // next: ; We don't need to add this to 'current' BB's successor
 | |
| //   ...
 | |
| static void findWasmUnwindDestinations(
 | |
|     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
 | |
|     BranchProbability Prob,
 | |
|     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
 | |
|         &UnwindDests) {
 | |
|   while (EHPadBB) {
 | |
|     const Instruction *Pad = EHPadBB->getFirstNonPHI();
 | |
|     if (isa<CleanupPadInst>(Pad)) {
 | |
|       // Stop on cleanup pads.
 | |
|       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
 | |
|       UnwindDests.back().first->setIsEHScopeEntry();
 | |
|       break;
 | |
|     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
 | |
|       // Add the catchpad handlers to the possible destinations. We don't
 | |
|       // continue to the unwind destination of the catchswitch for wasm.
 | |
|       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
 | |
|         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
 | |
|         UnwindDests.back().first->setIsEHScopeEntry();
 | |
|       }
 | |
|       break;
 | |
|     } else {
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// When an invoke or a cleanupret unwinds to the next EH pad, there are
 | |
| /// many places it could ultimately go. In the IR, we have a single unwind
 | |
| /// destination, but in the machine CFG, we enumerate all the possible blocks.
 | |
| /// This function skips over imaginary basic blocks that hold catchswitch
 | |
| /// instructions, and finds all the "real" machine
 | |
| /// basic block destinations. As those destinations may not be successors of
 | |
| /// EHPadBB, here we also calculate the edge probability to those destinations.
 | |
| /// The passed-in Prob is the edge probability to EHPadBB.
 | |
| static void findUnwindDestinations(
 | |
|     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
 | |
|     BranchProbability Prob,
 | |
|     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
 | |
|         &UnwindDests) {
 | |
|   EHPersonality Personality =
 | |
|     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
 | |
|   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
 | |
|   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
 | |
|   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
 | |
|   bool IsSEH = isAsynchronousEHPersonality(Personality);
 | |
| 
 | |
|   if (IsWasmCXX) {
 | |
|     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
 | |
|     assert(UnwindDests.size() <= 1 &&
 | |
|            "There should be at most one unwind destination for wasm");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   while (EHPadBB) {
 | |
|     const Instruction *Pad = EHPadBB->getFirstNonPHI();
 | |
|     BasicBlock *NewEHPadBB = nullptr;
 | |
|     if (isa<LandingPadInst>(Pad)) {
 | |
|       // Stop on landingpads. They are not funclets.
 | |
|       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
 | |
|       break;
 | |
|     } else if (isa<CleanupPadInst>(Pad)) {
 | |
|       // Stop on cleanup pads. Cleanups are always funclet entries for all known
 | |
|       // personalities.
 | |
|       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
 | |
|       UnwindDests.back().first->setIsEHScopeEntry();
 | |
|       UnwindDests.back().first->setIsEHFuncletEntry();
 | |
|       break;
 | |
|     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
 | |
|       // Add the catchpad handlers to the possible destinations.
 | |
|       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
 | |
|         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
 | |
|         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
 | |
|         if (IsMSVCCXX || IsCoreCLR)
 | |
|           UnwindDests.back().first->setIsEHFuncletEntry();
 | |
|         if (!IsSEH)
 | |
|           UnwindDests.back().first->setIsEHScopeEntry();
 | |
|       }
 | |
|       NewEHPadBB = CatchSwitch->getUnwindDest();
 | |
|     } else {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     BranchProbabilityInfo *BPI = FuncInfo.BPI;
 | |
|     if (BPI && NewEHPadBB)
 | |
|       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
 | |
|     EHPadBB = NewEHPadBB;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
 | |
|   // Update successor info.
 | |
|   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
 | |
|   auto UnwindDest = I.getUnwindDest();
 | |
|   BranchProbabilityInfo *BPI = FuncInfo.BPI;
 | |
|   BranchProbability UnwindDestProb =
 | |
|       (BPI && UnwindDest)
 | |
|           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
 | |
|           : BranchProbability::getZero();
 | |
|   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
 | |
|   for (auto &UnwindDest : UnwindDests) {
 | |
|     UnwindDest.first->setIsEHPad();
 | |
|     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
 | |
|   }
 | |
|   FuncInfo.MBB->normalizeSuccProbs();
 | |
| 
 | |
|   // Create the terminator node.
 | |
|   SDValue Ret =
 | |
|       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
 | |
|   DAG.setRoot(Ret);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
 | |
|   report_fatal_error("visitCatchSwitch not yet implemented!");
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   auto &DL = DAG.getDataLayout();
 | |
|   SDValue Chain = getControlRoot();
 | |
|   SmallVector<ISD::OutputArg, 8> Outs;
 | |
|   SmallVector<SDValue, 8> OutVals;
 | |
| 
 | |
|   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
 | |
|   // lower
 | |
|   //
 | |
|   //   %val = call <ty> @llvm.experimental.deoptimize()
 | |
|   //   ret <ty> %val
 | |
|   //
 | |
|   // differently.
 | |
|   if (I.getParent()->getTerminatingDeoptimizeCall()) {
 | |
|     LowerDeoptimizingReturn();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!FuncInfo.CanLowerReturn) {
 | |
|     unsigned DemoteReg = FuncInfo.DemoteRegister;
 | |
|     const Function *F = I.getParent()->getParent();
 | |
| 
 | |
|     // Emit a store of the return value through the virtual register.
 | |
|     // Leave Outs empty so that LowerReturn won't try to load return
 | |
|     // registers the usual way.
 | |
|     SmallVector<EVT, 1> PtrValueVTs;
 | |
|     ComputeValueVTs(TLI, DL,
 | |
|                     F->getReturnType()->getPointerTo(
 | |
|                         DAG.getDataLayout().getAllocaAddrSpace()),
 | |
|                     PtrValueVTs);
 | |
| 
 | |
|     SDValue RetPtr =
 | |
|         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
 | |
|     SDValue RetOp = getValue(I.getOperand(0));
 | |
| 
 | |
|     SmallVector<EVT, 4> ValueVTs, MemVTs;
 | |
|     SmallVector<uint64_t, 4> Offsets;
 | |
|     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
 | |
|                     &Offsets);
 | |
|     unsigned NumValues = ValueVTs.size();
 | |
| 
 | |
|     SmallVector<SDValue, 4> Chains(NumValues);
 | |
|     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
 | |
|     for (unsigned i = 0; i != NumValues; ++i) {
 | |
|       // An aggregate return value cannot wrap around the address space, so
 | |
|       // offsets to its parts don't wrap either.
 | |
|       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
 | |
|                                            TypeSize::Fixed(Offsets[i]));
 | |
| 
 | |
|       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
 | |
|       if (MemVTs[i] != ValueVTs[i])
 | |
|         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
 | |
|       Chains[i] = DAG.getStore(
 | |
|           Chain, getCurSDLoc(), Val,
 | |
|           // FIXME: better loc info would be nice.
 | |
|           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
 | |
|           commonAlignment(BaseAlign, Offsets[i]));
 | |
|     }
 | |
| 
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
 | |
|                         MVT::Other, Chains);
 | |
|   } else if (I.getNumOperands() != 0) {
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
 | |
|     unsigned NumValues = ValueVTs.size();
 | |
|     if (NumValues) {
 | |
|       SDValue RetOp = getValue(I.getOperand(0));
 | |
| 
 | |
|       const Function *F = I.getParent()->getParent();
 | |
| 
 | |
|       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
 | |
|           I.getOperand(0)->getType(), F->getCallingConv(),
 | |
|           /*IsVarArg*/ false, DL);
 | |
| 
 | |
|       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
|       if (F->getAttributes().hasRetAttr(Attribute::SExt))
 | |
|         ExtendKind = ISD::SIGN_EXTEND;
 | |
|       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
 | |
|         ExtendKind = ISD::ZERO_EXTEND;
 | |
| 
 | |
|       LLVMContext &Context = F->getContext();
 | |
|       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
 | |
| 
 | |
|       for (unsigned j = 0; j != NumValues; ++j) {
 | |
|         EVT VT = ValueVTs[j];
 | |
| 
 | |
|         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
 | |
|           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
 | |
| 
 | |
|         CallingConv::ID CC = F->getCallingConv();
 | |
| 
 | |
|         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
 | |
|         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
 | |
|         SmallVector<SDValue, 4> Parts(NumParts);
 | |
|         getCopyToParts(DAG, getCurSDLoc(),
 | |
|                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
 | |
|                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
 | |
| 
 | |
|         // 'inreg' on function refers to return value
 | |
|         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
 | |
|         if (RetInReg)
 | |
|           Flags.setInReg();
 | |
| 
 | |
|         if (I.getOperand(0)->getType()->isPointerTy()) {
 | |
|           Flags.setPointer();
 | |
|           Flags.setPointerAddrSpace(
 | |
|               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
 | |
|         }
 | |
| 
 | |
|         if (NeedsRegBlock) {
 | |
|           Flags.setInConsecutiveRegs();
 | |
|           if (j == NumValues - 1)
 | |
|             Flags.setInConsecutiveRegsLast();
 | |
|         }
 | |
| 
 | |
|         // Propagate extension type if any
 | |
|         if (ExtendKind == ISD::SIGN_EXTEND)
 | |
|           Flags.setSExt();
 | |
|         else if (ExtendKind == ISD::ZERO_EXTEND)
 | |
|           Flags.setZExt();
 | |
| 
 | |
|         for (unsigned i = 0; i < NumParts; ++i) {
 | |
|           Outs.push_back(ISD::OutputArg(Flags,
 | |
|                                         Parts[i].getValueType().getSimpleVT(),
 | |
|                                         VT, /*isfixed=*/true, 0, 0));
 | |
|           OutVals.push_back(Parts[i]);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Push in swifterror virtual register as the last element of Outs. This makes
 | |
|   // sure swifterror virtual register will be returned in the swifterror
 | |
|   // physical register.
 | |
|   const Function *F = I.getParent()->getParent();
 | |
|   if (TLI.supportSwiftError() &&
 | |
|       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
 | |
|     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
 | |
|     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
 | |
|     Flags.setSwiftError();
 | |
|     Outs.push_back(ISD::OutputArg(
 | |
|         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
 | |
|         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
 | |
|     // Create SDNode for the swifterror virtual register.
 | |
|     OutVals.push_back(
 | |
|         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
 | |
|                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
 | |
|                         EVT(TLI.getPointerTy(DL))));
 | |
|   }
 | |
| 
 | |
|   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
 | |
|   CallingConv::ID CallConv =
 | |
|     DAG.getMachineFunction().getFunction().getCallingConv();
 | |
|   Chain = DAG.getTargetLoweringInfo().LowerReturn(
 | |
|       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
 | |
| 
 | |
|   // Verify that the target's LowerReturn behaved as expected.
 | |
|   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
 | |
|          "LowerReturn didn't return a valid chain!");
 | |
| 
 | |
|   // Update the DAG with the new chain value resulting from return lowering.
 | |
|   DAG.setRoot(Chain);
 | |
| }
 | |
| 
 | |
| /// CopyToExportRegsIfNeeded - If the given value has virtual registers
 | |
| /// created for it, emit nodes to copy the value into the virtual
 | |
| /// registers.
 | |
| void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
 | |
|   // Skip empty types
 | |
|   if (V->getType()->isEmptyTy())
 | |
|     return;
 | |
| 
 | |
|   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
 | |
|   if (VMI != FuncInfo.ValueMap.end()) {
 | |
|     assert(!V->use_empty() && "Unused value assigned virtual registers!");
 | |
|     CopyValueToVirtualRegister(V, VMI->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ExportFromCurrentBlock - If this condition isn't known to be exported from
 | |
| /// the current basic block, add it to ValueMap now so that we'll get a
 | |
| /// CopyTo/FromReg.
 | |
| void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
 | |
|   // No need to export constants.
 | |
|   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
 | |
| 
 | |
|   // Already exported?
 | |
|   if (FuncInfo.isExportedInst(V)) return;
 | |
| 
 | |
|   unsigned Reg = FuncInfo.InitializeRegForValue(V);
 | |
|   CopyValueToVirtualRegister(V, Reg);
 | |
| }
 | |
| 
 | |
| bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
 | |
|                                                      const BasicBlock *FromBB) {
 | |
|   // The operands of the setcc have to be in this block.  We don't know
 | |
|   // how to export them from some other block.
 | |
|   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
 | |
|     // Can export from current BB.
 | |
|     if (VI->getParent() == FromBB)
 | |
|       return true;
 | |
| 
 | |
|     // Is already exported, noop.
 | |
|     return FuncInfo.isExportedInst(V);
 | |
|   }
 | |
| 
 | |
|   // If this is an argument, we can export it if the BB is the entry block or
 | |
|   // if it is already exported.
 | |
|   if (isa<Argument>(V)) {
 | |
|     if (FromBB->isEntryBlock())
 | |
|       return true;
 | |
| 
 | |
|     // Otherwise, can only export this if it is already exported.
 | |
|     return FuncInfo.isExportedInst(V);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, constants can always be exported.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
 | |
| BranchProbability
 | |
| SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
 | |
|                                         const MachineBasicBlock *Dst) const {
 | |
|   BranchProbabilityInfo *BPI = FuncInfo.BPI;
 | |
|   const BasicBlock *SrcBB = Src->getBasicBlock();
 | |
|   const BasicBlock *DstBB = Dst->getBasicBlock();
 | |
|   if (!BPI) {
 | |
|     // If BPI is not available, set the default probability as 1 / N, where N is
 | |
|     // the number of successors.
 | |
|     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
 | |
|     return BranchProbability(1, SuccSize);
 | |
|   }
 | |
|   return BPI->getEdgeProbability(SrcBB, DstBB);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
 | |
|                                                MachineBasicBlock *Dst,
 | |
|                                                BranchProbability Prob) {
 | |
|   if (!FuncInfo.BPI)
 | |
|     Src->addSuccessorWithoutProb(Dst);
 | |
|   else {
 | |
|     if (Prob.isUnknown())
 | |
|       Prob = getEdgeProbability(Src, Dst);
 | |
|     Src->addSuccessor(Dst, Prob);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool InBlock(const Value *V, const BasicBlock *BB) {
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return I->getParent() == BB;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
 | |
| /// This function emits a branch and is used at the leaves of an OR or an
 | |
| /// AND operator tree.
 | |
| void
 | |
| SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
 | |
|                                                   MachineBasicBlock *TBB,
 | |
|                                                   MachineBasicBlock *FBB,
 | |
|                                                   MachineBasicBlock *CurBB,
 | |
|                                                   MachineBasicBlock *SwitchBB,
 | |
|                                                   BranchProbability TProb,
 | |
|                                                   BranchProbability FProb,
 | |
|                                                   bool InvertCond) {
 | |
|   const BasicBlock *BB = CurBB->getBasicBlock();
 | |
| 
 | |
|   // If the leaf of the tree is a comparison, merge the condition into
 | |
|   // the caseblock.
 | |
|   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
 | |
|     // The operands of the cmp have to be in this block.  We don't know
 | |
|     // how to export them from some other block.  If this is the first block
 | |
|     // of the sequence, no exporting is needed.
 | |
|     if (CurBB == SwitchBB ||
 | |
|         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
 | |
|          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
 | |
|       ISD::CondCode Condition;
 | |
|       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
 | |
|         ICmpInst::Predicate Pred =
 | |
|             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
 | |
|         Condition = getICmpCondCode(Pred);
 | |
|       } else {
 | |
|         const FCmpInst *FC = cast<FCmpInst>(Cond);
 | |
|         FCmpInst::Predicate Pred =
 | |
|             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
 | |
|         Condition = getFCmpCondCode(Pred);
 | |
|         if (TM.Options.NoNaNsFPMath)
 | |
|           Condition = getFCmpCodeWithoutNaN(Condition);
 | |
|       }
 | |
| 
 | |
|       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
 | |
|                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
 | |
|       SL->SwitchCases.push_back(CB);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a CaseBlock record representing this branch.
 | |
|   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
 | |
|   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
 | |
|                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
 | |
|   SL->SwitchCases.push_back(CB);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
 | |
|                                                MachineBasicBlock *TBB,
 | |
|                                                MachineBasicBlock *FBB,
 | |
|                                                MachineBasicBlock *CurBB,
 | |
|                                                MachineBasicBlock *SwitchBB,
 | |
|                                                Instruction::BinaryOps Opc,
 | |
|                                                BranchProbability TProb,
 | |
|                                                BranchProbability FProb,
 | |
|                                                bool InvertCond) {
 | |
|   // Skip over not part of the tree and remember to invert op and operands at
 | |
|   // next level.
 | |
|   Value *NotCond;
 | |
|   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
 | |
|       InBlock(NotCond, CurBB->getBasicBlock())) {
 | |
|     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
 | |
|                          !InvertCond);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const Instruction *BOp = dyn_cast<Instruction>(Cond);
 | |
|   const Value *BOpOp0, *BOpOp1;
 | |
|   // Compute the effective opcode for Cond, taking into account whether it needs
 | |
|   // to be inverted, e.g.
 | |
|   //   and (not (or A, B)), C
 | |
|   // gets lowered as
 | |
|   //   and (and (not A, not B), C)
 | |
|   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
 | |
|   if (BOp) {
 | |
|     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
 | |
|                ? Instruction::And
 | |
|                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
 | |
|                       ? Instruction::Or
 | |
|                       : (Instruction::BinaryOps)0);
 | |
|     if (InvertCond) {
 | |
|       if (BOpc == Instruction::And)
 | |
|         BOpc = Instruction::Or;
 | |
|       else if (BOpc == Instruction::Or)
 | |
|         BOpc = Instruction::And;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this node is not part of the or/and tree, emit it as a branch.
 | |
|   // Note that all nodes in the tree should have same opcode.
 | |
|   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
 | |
|   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
 | |
|       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
 | |
|       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
 | |
|     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
 | |
|                                  TProb, FProb, InvertCond);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //  Create TmpBB after CurBB.
 | |
|   MachineFunction::iterator BBI(CurBB);
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
 | |
|   CurBB->getParent()->insert(++BBI, TmpBB);
 | |
| 
 | |
|   if (Opc == Instruction::Or) {
 | |
|     // Codegen X | Y as:
 | |
|     // BB1:
 | |
|     //   jmp_if_X TBB
 | |
|     //   jmp TmpBB
 | |
|     // TmpBB:
 | |
|     //   jmp_if_Y TBB
 | |
|     //   jmp FBB
 | |
|     //
 | |
| 
 | |
|     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
 | |
|     // The requirement is that
 | |
|     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
 | |
|     //     = TrueProb for original BB.
 | |
|     // Assuming the original probabilities are A and B, one choice is to set
 | |
|     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
 | |
|     // A/(1+B) and 2B/(1+B). This choice assumes that
 | |
|     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
 | |
|     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
 | |
|     // TmpBB, but the math is more complicated.
 | |
| 
 | |
|     auto NewTrueProb = TProb / 2;
 | |
|     auto NewFalseProb = TProb / 2 + FProb;
 | |
|     // Emit the LHS condition.
 | |
|     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
 | |
|                          NewFalseProb, InvertCond);
 | |
| 
 | |
|     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
 | |
|     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
 | |
|     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
 | |
|     // Emit the RHS condition into TmpBB.
 | |
|     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
 | |
|                          Probs[1], InvertCond);
 | |
|   } else {
 | |
|     assert(Opc == Instruction::And && "Unknown merge op!");
 | |
|     // Codegen X & Y as:
 | |
|     // BB1:
 | |
|     //   jmp_if_X TmpBB
 | |
|     //   jmp FBB
 | |
|     // TmpBB:
 | |
|     //   jmp_if_Y TBB
 | |
|     //   jmp FBB
 | |
|     //
 | |
|     //  This requires creation of TmpBB after CurBB.
 | |
| 
 | |
|     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
 | |
|     // The requirement is that
 | |
|     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
 | |
|     //     = FalseProb for original BB.
 | |
|     // Assuming the original probabilities are A and B, one choice is to set
 | |
|     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
 | |
|     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
 | |
|     // TrueProb for BB1 * FalseProb for TmpBB.
 | |
| 
 | |
|     auto NewTrueProb = TProb + FProb / 2;
 | |
|     auto NewFalseProb = FProb / 2;
 | |
|     // Emit the LHS condition.
 | |
|     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
 | |
|                          NewFalseProb, InvertCond);
 | |
| 
 | |
|     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
 | |
|     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
 | |
|     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
 | |
|     // Emit the RHS condition into TmpBB.
 | |
|     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
 | |
|                          Probs[1], InvertCond);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If the set of cases should be emitted as a series of branches, return true.
 | |
| /// If we should emit this as a bunch of and/or'd together conditions, return
 | |
| /// false.
 | |
| bool
 | |
| SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
 | |
|   if (Cases.size() != 2) return true;
 | |
| 
 | |
|   // If this is two comparisons of the same values or'd or and'd together, they
 | |
|   // will get folded into a single comparison, so don't emit two blocks.
 | |
|   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
 | |
|        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
 | |
|       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
 | |
|        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
 | |
|   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
 | |
|   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
 | |
|       Cases[0].CC == Cases[1].CC &&
 | |
|       isa<Constant>(Cases[0].CmpRHS) &&
 | |
|       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
 | |
|     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
 | |
|       return false;
 | |
|     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitBr(const BranchInst &I) {
 | |
|   MachineBasicBlock *BrMBB = FuncInfo.MBB;
 | |
| 
 | |
|   // Update machine-CFG edges.
 | |
|   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
 | |
| 
 | |
|   if (I.isUnconditional()) {
 | |
|     // Update machine-CFG edges.
 | |
|     BrMBB->addSuccessor(Succ0MBB);
 | |
| 
 | |
|     // If this is not a fall-through branch or optimizations are switched off,
 | |
|     // emit the branch.
 | |
|     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
 | |
|                               MVT::Other, getControlRoot(),
 | |
|                               DAG.getBasicBlock(Succ0MBB)));
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this condition is one of the special cases we handle, do special stuff
 | |
|   // now.
 | |
|   const Value *CondVal = I.getCondition();
 | |
|   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
 | |
| 
 | |
|   // If this is a series of conditions that are or'd or and'd together, emit
 | |
|   // this as a sequence of branches instead of setcc's with and/or operations.
 | |
|   // As long as jumps are not expensive (exceptions for multi-use logic ops,
 | |
|   // unpredictable branches, and vector extracts because those jumps are likely
 | |
|   // expensive for any target), this should improve performance.
 | |
|   // For example, instead of something like:
 | |
|   //     cmp A, B
 | |
|   //     C = seteq
 | |
|   //     cmp D, E
 | |
|   //     F = setle
 | |
|   //     or C, F
 | |
|   //     jnz foo
 | |
|   // Emit:
 | |
|   //     cmp A, B
 | |
|   //     je foo
 | |
|   //     cmp D, E
 | |
|   //     jle foo
 | |
|   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
 | |
|   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
 | |
|       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
 | |
|     Value *Vec;
 | |
|     const Value *BOp0, *BOp1;
 | |
|     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
 | |
|     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
 | |
|       Opcode = Instruction::And;
 | |
|     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
 | |
|       Opcode = Instruction::Or;
 | |
| 
 | |
|     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
 | |
|                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
 | |
|       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
 | |
|                            getEdgeProbability(BrMBB, Succ0MBB),
 | |
|                            getEdgeProbability(BrMBB, Succ1MBB),
 | |
|                            /*InvertCond=*/false);
 | |
|       // If the compares in later blocks need to use values not currently
 | |
|       // exported from this block, export them now.  This block should always
 | |
|       // be the first entry.
 | |
|       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
 | |
| 
 | |
|       // Allow some cases to be rejected.
 | |
|       if (ShouldEmitAsBranches(SL->SwitchCases)) {
 | |
|         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
 | |
|           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
 | |
|           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
 | |
|         }
 | |
| 
 | |
|         // Emit the branch for this block.
 | |
|         visitSwitchCase(SL->SwitchCases[0], BrMBB);
 | |
|         SL->SwitchCases.erase(SL->SwitchCases.begin());
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Okay, we decided not to do this, remove any inserted MBB's and clear
 | |
|       // SwitchCases.
 | |
|       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
 | |
|         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
 | |
| 
 | |
|       SL->SwitchCases.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a CaseBlock record representing this branch.
 | |
|   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
 | |
|                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
 | |
| 
 | |
|   // Use visitSwitchCase to actually insert the fast branch sequence for this
 | |
|   // cond branch.
 | |
|   visitSwitchCase(CB, BrMBB);
 | |
| }
 | |
| 
 | |
| /// visitSwitchCase - Emits the necessary code to represent a single node in
 | |
| /// the binary search tree resulting from lowering a switch instruction.
 | |
| void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
 | |
|                                           MachineBasicBlock *SwitchBB) {
 | |
|   SDValue Cond;
 | |
|   SDValue CondLHS = getValue(CB.CmpLHS);
 | |
|   SDLoc dl = CB.DL;
 | |
| 
 | |
|   if (CB.CC == ISD::SETTRUE) {
 | |
|     // Branch or fall through to TrueBB.
 | |
|     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
 | |
|     SwitchBB->normalizeSuccProbs();
 | |
|     if (CB.TrueBB != NextBlock(SwitchBB)) {
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
 | |
|                               DAG.getBasicBlock(CB.TrueBB)));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
 | |
| 
 | |
|   // Build the setcc now.
 | |
|   if (!CB.CmpMHS) {
 | |
|     // Fold "(X == true)" to X and "(X == false)" to !X to
 | |
|     // handle common cases produced by branch lowering.
 | |
|     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
 | |
|         CB.CC == ISD::SETEQ)
 | |
|       Cond = CondLHS;
 | |
|     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
 | |
|              CB.CC == ISD::SETEQ) {
 | |
|       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
 | |
|       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
 | |
|     } else {
 | |
|       SDValue CondRHS = getValue(CB.CmpRHS);
 | |
| 
 | |
|       // If a pointer's DAG type is larger than its memory type then the DAG
 | |
|       // values are zero-extended. This breaks signed comparisons so truncate
 | |
|       // back to the underlying type before doing the compare.
 | |
|       if (CondLHS.getValueType() != MemVT) {
 | |
|         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
 | |
|         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
 | |
|       }
 | |
|       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
 | |
|     }
 | |
|   } else {
 | |
|     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
 | |
| 
 | |
|     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
 | |
|     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
 | |
| 
 | |
|     SDValue CmpOp = getValue(CB.CmpMHS);
 | |
|     EVT VT = CmpOp.getValueType();
 | |
| 
 | |
|     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
 | |
|       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
 | |
|                           ISD::SETLE);
 | |
|     } else {
 | |
|       SDValue SUB = DAG.getNode(ISD::SUB, dl,
 | |
|                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
 | |
|       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
 | |
|                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update successor info
 | |
|   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
 | |
|   // TrueBB and FalseBB are always different unless the incoming IR is
 | |
|   // degenerate. This only happens when running llc on weird IR.
 | |
|   if (CB.TrueBB != CB.FalseBB)
 | |
|     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
 | |
|   SwitchBB->normalizeSuccProbs();
 | |
| 
 | |
|   // If the lhs block is the next block, invert the condition so that we can
 | |
|   // fall through to the lhs instead of the rhs block.
 | |
|   if (CB.TrueBB == NextBlock(SwitchBB)) {
 | |
|     std::swap(CB.TrueBB, CB.FalseBB);
 | |
|     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
 | |
|     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
 | |
|   }
 | |
| 
 | |
|   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
 | |
|                                MVT::Other, getControlRoot(), Cond,
 | |
|                                DAG.getBasicBlock(CB.TrueBB));
 | |
| 
 | |
|   // Insert the false branch. Do this even if it's a fall through branch,
 | |
|   // this makes it easier to do DAG optimizations which require inverting
 | |
|   // the branch condition.
 | |
|   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
 | |
|                        DAG.getBasicBlock(CB.FalseBB));
 | |
| 
 | |
|   DAG.setRoot(BrCond);
 | |
| }
 | |
| 
 | |
| /// visitJumpTable - Emit JumpTable node in the current MBB
 | |
| void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
 | |
|   // Emit the code for the jump table
 | |
|   assert(JT.Reg != -1U && "Should lower JT Header first!");
 | |
|   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
 | |
|   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
 | |
|                                      JT.Reg, PTy);
 | |
|   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
 | |
|   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
 | |
|                                     MVT::Other, Index.getValue(1),
 | |
|                                     Table, Index);
 | |
|   DAG.setRoot(BrJumpTable);
 | |
| }
 | |
| 
 | |
| /// visitJumpTableHeader - This function emits necessary code to produce index
 | |
| /// in the JumpTable from switch case.
 | |
| void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
 | |
|                                                JumpTableHeader &JTH,
 | |
|                                                MachineBasicBlock *SwitchBB) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   // Subtract the lowest switch case value from the value being switched on.
 | |
|   SDValue SwitchOp = getValue(JTH.SValue);
 | |
|   EVT VT = SwitchOp.getValueType();
 | |
|   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
 | |
|                             DAG.getConstant(JTH.First, dl, VT));
 | |
| 
 | |
|   // The SDNode we just created, which holds the value being switched on minus
 | |
|   // the smallest case value, needs to be copied to a virtual register so it
 | |
|   // can be used as an index into the jump table in a subsequent basic block.
 | |
|   // This value may be smaller or larger than the target's pointer type, and
 | |
|   // therefore require extension or truncating.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|   unsigned JumpTableReg =
 | |
|       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
 | |
|   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
 | |
|                                     JumpTableReg, SwitchOp);
 | |
|   JT.Reg = JumpTableReg;
 | |
| 
 | |
|   if (!JTH.FallthroughUnreachable) {
 | |
|     // Emit the range check for the jump table, and branch to the default block
 | |
|     // for the switch statement if the value being switched on exceeds the
 | |
|     // largest case in the switch.
 | |
|     SDValue CMP = DAG.getSetCC(
 | |
|         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
 | |
|                                    Sub.getValueType()),
 | |
|         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
 | |
| 
 | |
|     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
 | |
|                                  MVT::Other, CopyTo, CMP,
 | |
|                                  DAG.getBasicBlock(JT.Default));
 | |
| 
 | |
|     // Avoid emitting unnecessary branches to the next block.
 | |
|     if (JT.MBB != NextBlock(SwitchBB))
 | |
|       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
 | |
|                            DAG.getBasicBlock(JT.MBB));
 | |
| 
 | |
|     DAG.setRoot(BrCond);
 | |
|   } else {
 | |
|     // Avoid emitting unnecessary branches to the next block.
 | |
|     if (JT.MBB != NextBlock(SwitchBB))
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
 | |
|                               DAG.getBasicBlock(JT.MBB)));
 | |
|     else
 | |
|       DAG.setRoot(CopyTo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
 | |
| /// variable if there exists one.
 | |
| static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                                  SDValue &Chain) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
 | |
|   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
 | |
|   MachineSDNode *Node =
 | |
|       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
 | |
|   if (Global) {
 | |
|     MachinePointerInfo MPInfo(Global);
 | |
|     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
 | |
|                  MachineMemOperand::MODereferenceable;
 | |
|     MachineMemOperand *MemRef = MF.getMachineMemOperand(
 | |
|         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
 | |
|     DAG.setNodeMemRefs(Node, {MemRef});
 | |
|   }
 | |
|   if (PtrTy != PtrMemTy)
 | |
|     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
 | |
|   return SDValue(Node, 0);
 | |
| }
 | |
| 
 | |
| /// Codegen a new tail for a stack protector check ParentMBB which has had its
 | |
| /// tail spliced into a stack protector check success bb.
 | |
| ///
 | |
| /// For a high level explanation of how this fits into the stack protector
 | |
| /// generation see the comment on the declaration of class
 | |
| /// StackProtectorDescriptor.
 | |
| void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
 | |
|                                                   MachineBasicBlock *ParentBB) {
 | |
| 
 | |
|   // First create the loads to the guard/stack slot for the comparison.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
 | |
|   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
 | |
| 
 | |
|   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
 | |
|   int FI = MFI.getStackProtectorIndex();
 | |
| 
 | |
|   SDValue Guard;
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
 | |
|   const Module &M = *ParentBB->getParent()->getFunction().getParent();
 | |
|   Align Align =
 | |
|       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
 | |
| 
 | |
|   // Generate code to load the content of the guard slot.
 | |
|   SDValue GuardVal = DAG.getLoad(
 | |
|       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
 | |
|       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
 | |
|       MachineMemOperand::MOVolatile);
 | |
| 
 | |
|   if (TLI.useStackGuardXorFP())
 | |
|     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
 | |
| 
 | |
|   // Retrieve guard check function, nullptr if instrumentation is inlined.
 | |
|   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
 | |
|     // The target provides a guard check function to validate the guard value.
 | |
|     // Generate a call to that function with the content of the guard slot as
 | |
|     // argument.
 | |
|     FunctionType *FnTy = GuardCheckFn->getFunctionType();
 | |
|     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
 | |
| 
 | |
|     TargetLowering::ArgListTy Args;
 | |
|     TargetLowering::ArgListEntry Entry;
 | |
|     Entry.Node = GuardVal;
 | |
|     Entry.Ty = FnTy->getParamType(0);
 | |
|     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
 | |
|       Entry.IsInReg = true;
 | |
|     Args.push_back(Entry);
 | |
| 
 | |
|     TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|     CLI.setDebugLoc(getCurSDLoc())
 | |
|         .setChain(DAG.getEntryNode())
 | |
|         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
 | |
|                    getValue(GuardCheckFn), std::move(Args));
 | |
| 
 | |
|     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
 | |
|     DAG.setRoot(Result.second);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
 | |
|   // Otherwise, emit a volatile load to retrieve the stack guard value.
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   if (TLI.useLoadStackGuardNode()) {
 | |
|     Guard = getLoadStackGuard(DAG, dl, Chain);
 | |
|   } else {
 | |
|     const Value *IRGuard = TLI.getSDagStackGuard(M);
 | |
|     SDValue GuardPtr = getValue(IRGuard);
 | |
| 
 | |
|     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
 | |
|                         MachinePointerInfo(IRGuard, 0), Align,
 | |
|                         MachineMemOperand::MOVolatile);
 | |
|   }
 | |
| 
 | |
|   // Perform the comparison via a getsetcc.
 | |
|   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
 | |
|                                                         *DAG.getContext(),
 | |
|                                                         Guard.getValueType()),
 | |
|                              Guard, GuardVal, ISD::SETNE);
 | |
| 
 | |
|   // If the guard/stackslot do not equal, branch to failure MBB.
 | |
|   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
 | |
|                                MVT::Other, GuardVal.getOperand(0),
 | |
|                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
 | |
|   // Otherwise branch to success MBB.
 | |
|   SDValue Br = DAG.getNode(ISD::BR, dl,
 | |
|                            MVT::Other, BrCond,
 | |
|                            DAG.getBasicBlock(SPD.getSuccessMBB()));
 | |
| 
 | |
|   DAG.setRoot(Br);
 | |
| }
 | |
| 
 | |
| /// Codegen the failure basic block for a stack protector check.
 | |
| ///
 | |
| /// A failure stack protector machine basic block consists simply of a call to
 | |
| /// __stack_chk_fail().
 | |
| ///
 | |
| /// For a high level explanation of how this fits into the stack protector
 | |
| /// generation see the comment on the declaration of class
 | |
| /// StackProtectorDescriptor.
 | |
| void
 | |
| SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   TargetLowering::MakeLibCallOptions CallOptions;
 | |
|   CallOptions.setDiscardResult(true);
 | |
|   SDValue Chain =
 | |
|       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
 | |
|                       None, CallOptions, getCurSDLoc()).second;
 | |
|   // On PS4/PS5, the "return address" must still be within the calling
 | |
|   // function, even if it's at the very end, so emit an explicit TRAP here.
 | |
|   // Passing 'true' for doesNotReturn above won't generate the trap for us.
 | |
|   if (TM.getTargetTriple().isPS())
 | |
|     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
 | |
|   // WebAssembly needs an unreachable instruction after a non-returning call,
 | |
|   // because the function return type can be different from __stack_chk_fail's
 | |
|   // return type (void).
 | |
|   if (TM.getTargetTriple().isWasm())
 | |
|     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
 | |
| 
 | |
|   DAG.setRoot(Chain);
 | |
| }
 | |
| 
 | |
| /// visitBitTestHeader - This function emits necessary code to produce value
 | |
| /// suitable for "bit tests"
 | |
| void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
 | |
|                                              MachineBasicBlock *SwitchBB) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   // Subtract the minimum value.
 | |
|   SDValue SwitchOp = getValue(B.SValue);
 | |
|   EVT VT = SwitchOp.getValueType();
 | |
|   SDValue RangeSub =
 | |
|       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
 | |
| 
 | |
|   // Determine the type of the test operands.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   bool UsePtrType = false;
 | |
|   if (!TLI.isTypeLegal(VT)) {
 | |
|     UsePtrType = true;
 | |
|   } else {
 | |
|     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
 | |
|       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
 | |
|         // Switch table case range are encoded into series of masks.
 | |
|         // Just use pointer type, it's guaranteed to fit.
 | |
|         UsePtrType = true;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   SDValue Sub = RangeSub;
 | |
|   if (UsePtrType) {
 | |
|     VT = TLI.getPointerTy(DAG.getDataLayout());
 | |
|     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
 | |
|   }
 | |
| 
 | |
|   B.RegVT = VT.getSimpleVT();
 | |
|   B.Reg = FuncInfo.CreateReg(B.RegVT);
 | |
|   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
 | |
| 
 | |
|   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
 | |
| 
 | |
|   if (!B.FallthroughUnreachable)
 | |
|     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
 | |
|   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
 | |
|   SwitchBB->normalizeSuccProbs();
 | |
| 
 | |
|   SDValue Root = CopyTo;
 | |
|   if (!B.FallthroughUnreachable) {
 | |
|     // Conditional branch to the default block.
 | |
|     SDValue RangeCmp = DAG.getSetCC(dl,
 | |
|         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
 | |
|                                RangeSub.getValueType()),
 | |
|         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
 | |
|         ISD::SETUGT);
 | |
| 
 | |
|     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
 | |
|                        DAG.getBasicBlock(B.Default));
 | |
|   }
 | |
| 
 | |
|   // Avoid emitting unnecessary branches to the next block.
 | |
|   if (MBB != NextBlock(SwitchBB))
 | |
|     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
 | |
| 
 | |
|   DAG.setRoot(Root);
 | |
| }
 | |
| 
 | |
| /// visitBitTestCase - this function produces one "bit test"
 | |
| void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
 | |
|                                            MachineBasicBlock* NextMBB,
 | |
|                                            BranchProbability BranchProbToNext,
 | |
|                                            unsigned Reg,
 | |
|                                            BitTestCase &B,
 | |
|                                            MachineBasicBlock *SwitchBB) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   MVT VT = BB.RegVT;
 | |
|   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
 | |
|   SDValue Cmp;
 | |
|   unsigned PopCount = countPopulation(B.Mask);
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   if (PopCount == 1) {
 | |
|     // Testing for a single bit; just compare the shift count with what it
 | |
|     // would need to be to shift a 1 bit in that position.
 | |
|     Cmp = DAG.getSetCC(
 | |
|         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
 | |
|         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
 | |
|         ISD::SETEQ);
 | |
|   } else if (PopCount == BB.Range) {
 | |
|     // There is only one zero bit in the range, test for it directly.
 | |
|     Cmp = DAG.getSetCC(
 | |
|         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
 | |
|         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
 | |
|         ISD::SETNE);
 | |
|   } else {
 | |
|     // Make desired shift
 | |
|     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
 | |
|                                     DAG.getConstant(1, dl, VT), ShiftOp);
 | |
| 
 | |
|     // Emit bit tests and jumps
 | |
|     SDValue AndOp = DAG.getNode(ISD::AND, dl,
 | |
|                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
 | |
|     Cmp = DAG.getSetCC(
 | |
|         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
 | |
|         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
 | |
|   }
 | |
| 
 | |
|   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
 | |
|   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
 | |
|   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
 | |
|   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
 | |
|   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
 | |
|   // one as they are relative probabilities (and thus work more like weights),
 | |
|   // and hence we need to normalize them to let the sum of them become one.
 | |
|   SwitchBB->normalizeSuccProbs();
 | |
| 
 | |
|   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
 | |
|                               MVT::Other, getControlRoot(),
 | |
|                               Cmp, DAG.getBasicBlock(B.TargetBB));
 | |
| 
 | |
|   // Avoid emitting unnecessary branches to the next block.
 | |
|   if (NextMBB != NextBlock(SwitchBB))
 | |
|     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
 | |
|                         DAG.getBasicBlock(NextMBB));
 | |
| 
 | |
|   DAG.setRoot(BrAnd);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
 | |
|   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
 | |
| 
 | |
|   // Retrieve successors. Look through artificial IR level blocks like
 | |
|   // catchswitch for successors.
 | |
|   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
 | |
|   const BasicBlock *EHPadBB = I.getSuccessor(1);
 | |
| 
 | |
|   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
 | |
|   // have to do anything here to lower funclet bundles.
 | |
|   assert(!I.hasOperandBundlesOtherThan(
 | |
|              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
 | |
|               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
 | |
|               LLVMContext::OB_cfguardtarget,
 | |
|               LLVMContext::OB_clang_arc_attachedcall}) &&
 | |
|          "Cannot lower invokes with arbitrary operand bundles yet!");
 | |
| 
 | |
|   const Value *Callee(I.getCalledOperand());
 | |
|   const Function *Fn = dyn_cast<Function>(Callee);
 | |
|   if (isa<InlineAsm>(Callee))
 | |
|     visitInlineAsm(I, EHPadBB);
 | |
|   else if (Fn && Fn->isIntrinsic()) {
 | |
|     switch (Fn->getIntrinsicID()) {
 | |
|     default:
 | |
|       llvm_unreachable("Cannot invoke this intrinsic");
 | |
|     case Intrinsic::donothing:
 | |
|       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
 | |
|     case Intrinsic::seh_try_begin:
 | |
|     case Intrinsic::seh_scope_begin:
 | |
|     case Intrinsic::seh_try_end:
 | |
|     case Intrinsic::seh_scope_end:
 | |
|       break;
 | |
|     case Intrinsic::experimental_patchpoint_void:
 | |
|     case Intrinsic::experimental_patchpoint_i64:
 | |
|       visitPatchpoint(I, EHPadBB);
 | |
|       break;
 | |
|     case Intrinsic::experimental_gc_statepoint:
 | |
|       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
 | |
|       break;
 | |
|     case Intrinsic::wasm_rethrow: {
 | |
|       // This is usually done in visitTargetIntrinsic, but this intrinsic is
 | |
|       // special because it can be invoked, so we manually lower it to a DAG
 | |
|       // node here.
 | |
|       SmallVector<SDValue, 8> Ops;
 | |
|       Ops.push_back(getRoot()); // inchain
 | |
|       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|       Ops.push_back(
 | |
|           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
 | |
|                                 TLI.getPointerTy(DAG.getDataLayout())));
 | |
|       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
 | |
|       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
 | |
|     // Currently we do not lower any intrinsic calls with deopt operand bundles.
 | |
|     // Eventually we will support lowering the @llvm.experimental.deoptimize
 | |
|     // intrinsic, and right now there are no plans to support other intrinsics
 | |
|     // with deopt state.
 | |
|     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
 | |
|   } else {
 | |
|     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
 | |
|   }
 | |
| 
 | |
|   // If the value of the invoke is used outside of its defining block, make it
 | |
|   // available as a virtual register.
 | |
|   // We already took care of the exported value for the statepoint instruction
 | |
|   // during call to the LowerStatepoint.
 | |
|   if (!isa<GCStatepointInst>(I)) {
 | |
|     CopyToExportRegsIfNeeded(&I);
 | |
|   }
 | |
| 
 | |
|   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
 | |
|   BranchProbabilityInfo *BPI = FuncInfo.BPI;
 | |
|   BranchProbability EHPadBBProb =
 | |
|       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
 | |
|           : BranchProbability::getZero();
 | |
|   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
 | |
| 
 | |
|   // Update successor info.
 | |
|   addSuccessorWithProb(InvokeMBB, Return);
 | |
|   for (auto &UnwindDest : UnwindDests) {
 | |
|     UnwindDest.first->setIsEHPad();
 | |
|     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
 | |
|   }
 | |
|   InvokeMBB->normalizeSuccProbs();
 | |
| 
 | |
|   // Drop into normal successor.
 | |
|   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
 | |
|                           DAG.getBasicBlock(Return)));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
 | |
|   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
 | |
| 
 | |
|   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
 | |
|   // have to do anything here to lower funclet bundles.
 | |
|   assert(!I.hasOperandBundlesOtherThan(
 | |
|              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
 | |
|          "Cannot lower callbrs with arbitrary operand bundles yet!");
 | |
| 
 | |
|   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
 | |
|   visitInlineAsm(I);
 | |
|   CopyToExportRegsIfNeeded(&I);
 | |
| 
 | |
|   // Retrieve successors.
 | |
|   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
 | |
| 
 | |
|   // Update successor info.
 | |
|   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
 | |
|   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
 | |
|     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
 | |
|     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
 | |
|     Target->setIsInlineAsmBrIndirectTarget();
 | |
|   }
 | |
|   CallBrMBB->normalizeSuccProbs();
 | |
| 
 | |
|   // Drop into default successor.
 | |
|   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
 | |
|                           MVT::Other, getControlRoot(),
 | |
|                           DAG.getBasicBlock(Return)));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
 | |
|   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
 | |
|   assert(FuncInfo.MBB->isEHPad() &&
 | |
|          "Call to landingpad not in landing pad!");
 | |
| 
 | |
|   // If there aren't registers to copy the values into (e.g., during SjLj
 | |
|   // exceptions), then don't bother to create these DAG nodes.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
 | |
|   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
 | |
|       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
 | |
|     return;
 | |
| 
 | |
|   // If landingpad's return type is token type, we don't create DAG nodes
 | |
|   // for its exception pointer and selector value. The extraction of exception
 | |
|   // pointer or selector value from token type landingpads is not currently
 | |
|   // supported.
 | |
|   if (LP.getType()->isTokenTy())
 | |
|     return;
 | |
| 
 | |
|   SmallVector<EVT, 2> ValueVTs;
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
 | |
|   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
 | |
| 
 | |
|   // Get the two live-in registers as SDValues. The physregs have already been
 | |
|   // copied into virtual registers.
 | |
|   SDValue Ops[2];
 | |
|   if (FuncInfo.ExceptionPointerVirtReg) {
 | |
|     Ops[0] = DAG.getZExtOrTrunc(
 | |
|         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
 | |
|                            FuncInfo.ExceptionPointerVirtReg,
 | |
|                            TLI.getPointerTy(DAG.getDataLayout())),
 | |
|         dl, ValueVTs[0]);
 | |
|   } else {
 | |
|     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
 | |
|   }
 | |
|   Ops[1] = DAG.getZExtOrTrunc(
 | |
|       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
 | |
|                          FuncInfo.ExceptionSelectorVirtReg,
 | |
|                          TLI.getPointerTy(DAG.getDataLayout())),
 | |
|       dl, ValueVTs[1]);
 | |
| 
 | |
|   // Merge into one.
 | |
|   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
 | |
|                             DAG.getVTList(ValueVTs), Ops);
 | |
|   setValue(&LP, Res);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
 | |
|                                            MachineBasicBlock *Last) {
 | |
|   // Update JTCases.
 | |
|   for (JumpTableBlock &JTB : SL->JTCases)
 | |
|     if (JTB.first.HeaderBB == First)
 | |
|       JTB.first.HeaderBB = Last;
 | |
| 
 | |
|   // Update BitTestCases.
 | |
|   for (BitTestBlock &BTB : SL->BitTestCases)
 | |
|     if (BTB.Parent == First)
 | |
|       BTB.Parent = Last;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
 | |
|   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
 | |
| 
 | |
|   // Update machine-CFG edges with unique successors.
 | |
|   SmallSet<BasicBlock*, 32> Done;
 | |
|   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
 | |
|     BasicBlock *BB = I.getSuccessor(i);
 | |
|     bool Inserted = Done.insert(BB).second;
 | |
|     if (!Inserted)
 | |
|         continue;
 | |
| 
 | |
|     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
 | |
|     addSuccessorWithProb(IndirectBrMBB, Succ);
 | |
|   }
 | |
|   IndirectBrMBB->normalizeSuccProbs();
 | |
| 
 | |
|   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
 | |
|                           MVT::Other, getControlRoot(),
 | |
|                           getValue(I.getAddress())));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
 | |
|   if (!DAG.getTarget().Options.TrapUnreachable)
 | |
|     return;
 | |
| 
 | |
|   // We may be able to ignore unreachable behind a noreturn call.
 | |
|   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
 | |
|     const BasicBlock &BB = *I.getParent();
 | |
|     if (&I != &BB.front()) {
 | |
|       BasicBlock::const_iterator PredI =
 | |
|         std::prev(BasicBlock::const_iterator(&I));
 | |
|       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
 | |
|         if (Call->doesNotReturn())
 | |
|           return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
 | |
|   SDNodeFlags Flags;
 | |
|   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
 | |
|     Flags.copyFMF(*FPOp);
 | |
| 
 | |
|   SDValue Op = getValue(I.getOperand(0));
 | |
|   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
 | |
|                                     Op, Flags);
 | |
|   setValue(&I, UnNodeValue);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
 | |
|   SDNodeFlags Flags;
 | |
|   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
 | |
|     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
 | |
|     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
 | |
|   }
 | |
|   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
 | |
|     Flags.setExact(ExactOp->isExact());
 | |
|   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
 | |
|     Flags.copyFMF(*FPOp);
 | |
| 
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
|   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
 | |
|                                      Op1, Op2, Flags);
 | |
|   setValue(&I, BinNodeValue);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
| 
 | |
|   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
 | |
|       Op1.getValueType(), DAG.getDataLayout());
 | |
| 
 | |
|   // Coerce the shift amount to the right type if we can. This exposes the
 | |
|   // truncate or zext to optimization early.
 | |
|   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
 | |
|     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
 | |
|            "Unexpected shift type");
 | |
|     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
 | |
|   }
 | |
| 
 | |
|   bool nuw = false;
 | |
|   bool nsw = false;
 | |
|   bool exact = false;
 | |
| 
 | |
|   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
 | |
| 
 | |
|     if (const OverflowingBinaryOperator *OFBinOp =
 | |
|             dyn_cast<const OverflowingBinaryOperator>(&I)) {
 | |
|       nuw = OFBinOp->hasNoUnsignedWrap();
 | |
|       nsw = OFBinOp->hasNoSignedWrap();
 | |
|     }
 | |
|     if (const PossiblyExactOperator *ExactOp =
 | |
|             dyn_cast<const PossiblyExactOperator>(&I))
 | |
|       exact = ExactOp->isExact();
 | |
|   }
 | |
|   SDNodeFlags Flags;
 | |
|   Flags.setExact(exact);
 | |
|   Flags.setNoSignedWrap(nsw);
 | |
|   Flags.setNoUnsignedWrap(nuw);
 | |
|   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
 | |
|                             Flags);
 | |
|   setValue(&I, Res);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitSDiv(const User &I) {
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
| 
 | |
|   SDNodeFlags Flags;
 | |
|   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
 | |
|                  cast<PossiblyExactOperator>(&I)->isExact());
 | |
|   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
 | |
|                            Op2, Flags));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitICmp(const User &I) {
 | |
|   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
 | |
|   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
 | |
|     predicate = IC->getPredicate();
 | |
|   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
 | |
|     predicate = ICmpInst::Predicate(IC->getPredicate());
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
|   ISD::CondCode Opcode = getICmpCondCode(predicate);
 | |
| 
 | |
|   auto &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT MemVT =
 | |
|       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
 | |
| 
 | |
|   // If a pointer's DAG type is larger than its memory type then the DAG values
 | |
|   // are zero-extended. This breaks signed comparisons so truncate back to the
 | |
|   // underlying type before doing the compare.
 | |
|   if (Op1.getValueType() != MemVT) {
 | |
|     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
 | |
|     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
 | |
|   }
 | |
| 
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
|   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFCmp(const User &I) {
 | |
|   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
 | |
|   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
 | |
|     predicate = FC->getPredicate();
 | |
|   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
 | |
|     predicate = FCmpInst::Predicate(FC->getPredicate());
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
| 
 | |
|   ISD::CondCode Condition = getFCmpCondCode(predicate);
 | |
|   auto *FPMO = cast<FPMathOperator>(&I);
 | |
|   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
 | |
|     Condition = getFCmpCodeWithoutNaN(Condition);
 | |
| 
 | |
|   SDNodeFlags Flags;
 | |
|   Flags.copyFMF(*FPMO);
 | |
|   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
 | |
| 
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
|   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
 | |
| }
 | |
| 
 | |
| // Check if the condition of the select has one use or two users that are both
 | |
| // selects with the same condition.
 | |
| static bool hasOnlySelectUsers(const Value *Cond) {
 | |
|   return llvm::all_of(Cond->users(), [](const Value *V) {
 | |
|     return isa<SelectInst>(V);
 | |
|   });
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitSelect(const User &I) {
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
 | |
|                   ValueVTs);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues == 0) return;
 | |
| 
 | |
|   SmallVector<SDValue, 4> Values(NumValues);
 | |
|   SDValue Cond     = getValue(I.getOperand(0));
 | |
|   SDValue LHSVal   = getValue(I.getOperand(1));
 | |
|   SDValue RHSVal   = getValue(I.getOperand(2));
 | |
|   SmallVector<SDValue, 1> BaseOps(1, Cond);
 | |
|   ISD::NodeType OpCode =
 | |
|       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
 | |
| 
 | |
|   bool IsUnaryAbs = false;
 | |
|   bool Negate = false;
 | |
| 
 | |
|   SDNodeFlags Flags;
 | |
|   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
 | |
|     Flags.copyFMF(*FPOp);
 | |
| 
 | |
|   // Min/max matching is only viable if all output VTs are the same.
 | |
|   if (is_splat(ValueVTs)) {
 | |
|     EVT VT = ValueVTs[0];
 | |
|     LLVMContext &Ctx = *DAG.getContext();
 | |
|     auto &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|     // We care about the legality of the operation after it has been type
 | |
|     // legalized.
 | |
|     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
 | |
|       VT = TLI.getTypeToTransformTo(Ctx, VT);
 | |
| 
 | |
|     // If the vselect is legal, assume we want to leave this as a vector setcc +
 | |
|     // vselect. Otherwise, if this is going to be scalarized, we want to see if
 | |
|     // min/max is legal on the scalar type.
 | |
|     bool UseScalarMinMax = VT.isVector() &&
 | |
|       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
 | |
| 
 | |
|     Value *LHS, *RHS;
 | |
|     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
 | |
|     ISD::NodeType Opc = ISD::DELETED_NODE;
 | |
|     switch (SPR.Flavor) {
 | |
|     case SPF_UMAX:    Opc = ISD::UMAX; break;
 | |
|     case SPF_UMIN:    Opc = ISD::UMIN; break;
 | |
|     case SPF_SMAX:    Opc = ISD::SMAX; break;
 | |
|     case SPF_SMIN:    Opc = ISD::SMIN; break;
 | |
|     case SPF_FMINNUM:
 | |
|       switch (SPR.NaNBehavior) {
 | |
|       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
 | |
|       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
 | |
|       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
 | |
|       case SPNB_RETURNS_ANY: {
 | |
|         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
 | |
|           Opc = ISD::FMINNUM;
 | |
|         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
 | |
|           Opc = ISD::FMINIMUM;
 | |
|         else if (UseScalarMinMax)
 | |
|           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
 | |
|             ISD::FMINNUM : ISD::FMINIMUM;
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
|       break;
 | |
|     case SPF_FMAXNUM:
 | |
|       switch (SPR.NaNBehavior) {
 | |
|       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
 | |
|       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
 | |
|       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
 | |
|       case SPNB_RETURNS_ANY:
 | |
| 
 | |
|         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
 | |
|           Opc = ISD::FMAXNUM;
 | |
|         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
 | |
|           Opc = ISD::FMAXIMUM;
 | |
|         else if (UseScalarMinMax)
 | |
|           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
 | |
|             ISD::FMAXNUM : ISD::FMAXIMUM;
 | |
|         break;
 | |
|       }
 | |
|       break;
 | |
|     case SPF_NABS:
 | |
|       Negate = true;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case SPF_ABS:
 | |
|       IsUnaryAbs = true;
 | |
|       Opc = ISD::ABS;
 | |
|       break;
 | |
|     default: break;
 | |
|     }
 | |
| 
 | |
|     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
 | |
|         (TLI.isOperationLegalOrCustom(Opc, VT) ||
 | |
|          (UseScalarMinMax &&
 | |
|           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
 | |
|         // If the underlying comparison instruction is used by any other
 | |
|         // instruction, the consumed instructions won't be destroyed, so it is
 | |
|         // not profitable to convert to a min/max.
 | |
|         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
 | |
|       OpCode = Opc;
 | |
|       LHSVal = getValue(LHS);
 | |
|       RHSVal = getValue(RHS);
 | |
|       BaseOps.clear();
 | |
|     }
 | |
| 
 | |
|     if (IsUnaryAbs) {
 | |
|       OpCode = Opc;
 | |
|       LHSVal = getValue(LHS);
 | |
|       BaseOps.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IsUnaryAbs) {
 | |
|     for (unsigned i = 0; i != NumValues; ++i) {
 | |
|       SDLoc dl = getCurSDLoc();
 | |
|       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
 | |
|       Values[i] =
 | |
|           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
 | |
|       if (Negate)
 | |
|         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
 | |
|                                 Values[i]);
 | |
|     }
 | |
|   } else {
 | |
|     for (unsigned i = 0; i != NumValues; ++i) {
 | |
|       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
 | |
|       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
 | |
|       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
 | |
|       Values[i] = DAG.getNode(
 | |
|           OpCode, getCurSDLoc(),
 | |
|           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
 | |
|                            DAG.getVTList(ValueVTs), Values));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitTrunc(const User &I) {
 | |
|   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitZExt(const User &I) {
 | |
|   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
 | |
|   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitSExt(const User &I) {
 | |
|   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
 | |
|   // SExt also can't be a cast to bool for same reason. So, nothing much to do
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFPTrunc(const User &I) {
 | |
|   // FPTrunc is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
 | |
|                            DAG.getTargetConstant(
 | |
|                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFPExt(const User &I) {
 | |
|   // FPExt is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFPToUI(const User &I) {
 | |
|   // FPToUI is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFPToSI(const User &I) {
 | |
|   // FPToSI is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitUIToFP(const User &I) {
 | |
|   // UIToFP is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitSIToFP(const User &I) {
 | |
|   // SIToFP is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitPtrToInt(const User &I) {
 | |
|   // What to do depends on the size of the integer and the size of the pointer.
 | |
|   // We can either truncate, zero extend, or no-op, accordingly.
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   auto &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
|   EVT PtrMemVT =
 | |
|       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
 | |
|   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
 | |
|   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
 | |
|   setValue(&I, N);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitIntToPtr(const User &I) {
 | |
|   // What to do depends on the size of the integer and the size of the pointer.
 | |
|   // We can either truncate, zero extend, or no-op, accordingly.
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   auto &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
 | |
|   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
 | |
|   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
 | |
|   setValue(&I, N);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitBitCast(const User &I) {
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         I.getType());
 | |
| 
 | |
|   // BitCast assures us that source and destination are the same size so this is
 | |
|   // either a BITCAST or a no-op.
 | |
|   if (DestVT != N.getValueType())
 | |
|     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
 | |
|                              DestVT, N)); // convert types.
 | |
|   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
 | |
|   // might fold any kind of constant expression to an integer constant and that
 | |
|   // is not what we are looking for. Only recognize a bitcast of a genuine
 | |
|   // constant integer as an opaque constant.
 | |
|   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
 | |
|     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
 | |
|                                  /*isOpaque*/true));
 | |
|   else
 | |
|     setValue(&I, N);            // noop cast.
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const Value *SV = I.getOperand(0);
 | |
|   SDValue N = getValue(SV);
 | |
|   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
| 
 | |
|   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
 | |
|   unsigned DestAS = I.getType()->getPointerAddressSpace();
 | |
| 
 | |
|   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
 | |
|     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
 | |
| 
 | |
|   setValue(&I, N);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitInsertElement(const User &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue InVec = getValue(I.getOperand(0));
 | |
|   SDValue InVal = getValue(I.getOperand(1));
 | |
|   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
 | |
|                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
 | |
|   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
 | |
|                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
 | |
|                            InVec, InVal, InIdx));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitExtractElement(const User &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue InVec = getValue(I.getOperand(0));
 | |
|   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
 | |
|                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
 | |
|   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
 | |
|                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
 | |
|                            InVec, InIdx));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitShuffleVector(const User &I) {
 | |
|   SDValue Src1 = getValue(I.getOperand(0));
 | |
|   SDValue Src2 = getValue(I.getOperand(1));
 | |
|   ArrayRef<int> Mask;
 | |
|   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
 | |
|     Mask = SVI->getShuffleMask();
 | |
|   else
 | |
|     Mask = cast<ConstantExpr>(I).getShuffleMask();
 | |
|   SDLoc DL = getCurSDLoc();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|   EVT SrcVT = Src1.getValueType();
 | |
| 
 | |
|   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
 | |
|       VT.isScalableVector()) {
 | |
|     // Canonical splat form of first element of first input vector.
 | |
|     SDValue FirstElt =
 | |
|         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
 | |
|                     DAG.getVectorIdxConstant(0, DL));
 | |
|     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // For now, we only handle splats for scalable vectors.
 | |
|   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
 | |
|   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
 | |
|   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
 | |
| 
 | |
|   unsigned SrcNumElts = SrcVT.getVectorNumElements();
 | |
|   unsigned MaskNumElts = Mask.size();
 | |
| 
 | |
|   if (SrcNumElts == MaskNumElts) {
 | |
|     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Normalize the shuffle vector since mask and vector length don't match.
 | |
|   if (SrcNumElts < MaskNumElts) {
 | |
|     // Mask is longer than the source vectors. We can use concatenate vector to
 | |
|     // make the mask and vectors lengths match.
 | |
| 
 | |
|     if (MaskNumElts % SrcNumElts == 0) {
 | |
|       // Mask length is a multiple of the source vector length.
 | |
|       // Check if the shuffle is some kind of concatenation of the input
 | |
|       // vectors.
 | |
|       unsigned NumConcat = MaskNumElts / SrcNumElts;
 | |
|       bool IsConcat = true;
 | |
|       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
 | |
|       for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|         int Idx = Mask[i];
 | |
|         if (Idx < 0)
 | |
|           continue;
 | |
|         // Ensure the indices in each SrcVT sized piece are sequential and that
 | |
|         // the same source is used for the whole piece.
 | |
|         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
 | |
|             (ConcatSrcs[i / SrcNumElts] >= 0 &&
 | |
|              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
 | |
|           IsConcat = false;
 | |
|           break;
 | |
|         }
 | |
|         // Remember which source this index came from.
 | |
|         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
 | |
|       }
 | |
| 
 | |
|       // The shuffle is concatenating multiple vectors together. Just emit
 | |
|       // a CONCAT_VECTORS operation.
 | |
|       if (IsConcat) {
 | |
|         SmallVector<SDValue, 8> ConcatOps;
 | |
|         for (auto Src : ConcatSrcs) {
 | |
|           if (Src < 0)
 | |
|             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
 | |
|           else if (Src == 0)
 | |
|             ConcatOps.push_back(Src1);
 | |
|           else
 | |
|             ConcatOps.push_back(Src2);
 | |
|         }
 | |
|         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
 | |
|     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
 | |
|     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
 | |
|                                     PaddedMaskNumElts);
 | |
| 
 | |
|     // Pad both vectors with undefs to make them the same length as the mask.
 | |
|     SDValue UndefVal = DAG.getUNDEF(SrcVT);
 | |
| 
 | |
|     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
 | |
|     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
 | |
|     MOps1[0] = Src1;
 | |
|     MOps2[0] = Src2;
 | |
| 
 | |
|     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
 | |
|     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
 | |
| 
 | |
|     // Readjust mask for new input vector length.
 | |
|     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
 | |
|     for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|       int Idx = Mask[i];
 | |
|       if (Idx >= (int)SrcNumElts)
 | |
|         Idx -= SrcNumElts - PaddedMaskNumElts;
 | |
|       MappedOps[i] = Idx;
 | |
|     }
 | |
| 
 | |
|     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
 | |
| 
 | |
|     // If the concatenated vector was padded, extract a subvector with the
 | |
|     // correct number of elements.
 | |
|     if (MaskNumElts != PaddedMaskNumElts)
 | |
|       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
 | |
|                            DAG.getVectorIdxConstant(0, DL));
 | |
| 
 | |
|     setValue(&I, Result);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (SrcNumElts > MaskNumElts) {
 | |
|     // Analyze the access pattern of the vector to see if we can extract
 | |
|     // two subvectors and do the shuffle.
 | |
|     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
 | |
|     bool CanExtract = true;
 | |
|     for (int Idx : Mask) {
 | |
|       unsigned Input = 0;
 | |
|       if (Idx < 0)
 | |
|         continue;
 | |
| 
 | |
|       if (Idx >= (int)SrcNumElts) {
 | |
|         Input = 1;
 | |
|         Idx -= SrcNumElts;
 | |
|       }
 | |
| 
 | |
|       // If all the indices come from the same MaskNumElts sized portion of
 | |
|       // the sources we can use extract. Also make sure the extract wouldn't
 | |
|       // extract past the end of the source.
 | |
|       int NewStartIdx = alignDown(Idx, MaskNumElts);
 | |
|       if (NewStartIdx + MaskNumElts > SrcNumElts ||
 | |
|           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
 | |
|         CanExtract = false;
 | |
|       // Make sure we always update StartIdx as we use it to track if all
 | |
|       // elements are undef.
 | |
|       StartIdx[Input] = NewStartIdx;
 | |
|     }
 | |
| 
 | |
|     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
 | |
|       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
 | |
|       return;
 | |
|     }
 | |
|     if (CanExtract) {
 | |
|       // Extract appropriate subvector and generate a vector shuffle
 | |
|       for (unsigned Input = 0; Input < 2; ++Input) {
 | |
|         SDValue &Src = Input == 0 ? Src1 : Src2;
 | |
|         if (StartIdx[Input] < 0)
 | |
|           Src = DAG.getUNDEF(VT);
 | |
|         else {
 | |
|           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
 | |
|                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Calculate new mask.
 | |
|       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
 | |
|       for (int &Idx : MappedOps) {
 | |
|         if (Idx >= (int)SrcNumElts)
 | |
|           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
 | |
|         else if (Idx >= 0)
 | |
|           Idx -= StartIdx[0];
 | |
|       }
 | |
| 
 | |
|       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We can't use either concat vectors or extract subvectors so fall back to
 | |
|   // replacing the shuffle with extract and build vector.
 | |
|   // to insert and build vector.
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   SmallVector<SDValue,8> Ops;
 | |
|   for (int Idx : Mask) {
 | |
|     SDValue Res;
 | |
| 
 | |
|     if (Idx < 0) {
 | |
|       Res = DAG.getUNDEF(EltVT);
 | |
|     } else {
 | |
|       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
 | |
|       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
 | |
| 
 | |
|       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
 | |
|                         DAG.getVectorIdxConstant(Idx, DL));
 | |
|     }
 | |
| 
 | |
|     Ops.push_back(Res);
 | |
|   }
 | |
| 
 | |
|   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitInsertValue(const User &I) {
 | |
|   ArrayRef<unsigned> Indices;
 | |
|   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
 | |
|     Indices = IV->getIndices();
 | |
|   else
 | |
|     Indices = cast<ConstantExpr>(&I)->getIndices();
 | |
| 
 | |
|   const Value *Op0 = I.getOperand(0);
 | |
|   const Value *Op1 = I.getOperand(1);
 | |
|   Type *AggTy = I.getType();
 | |
|   Type *ValTy = Op1->getType();
 | |
|   bool IntoUndef = isa<UndefValue>(Op0);
 | |
|   bool FromUndef = isa<UndefValue>(Op1);
 | |
| 
 | |
|   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SmallVector<EVT, 4> AggValueVTs;
 | |
|   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
 | |
|   SmallVector<EVT, 4> ValValueVTs;
 | |
|   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
 | |
| 
 | |
|   unsigned NumAggValues = AggValueVTs.size();
 | |
|   unsigned NumValValues = ValValueVTs.size();
 | |
|   SmallVector<SDValue, 4> Values(NumAggValues);
 | |
| 
 | |
|   // Ignore an insertvalue that produces an empty object
 | |
|   if (!NumAggValues) {
 | |
|     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SDValue Agg = getValue(Op0);
 | |
|   unsigned i = 0;
 | |
|   // Copy the beginning value(s) from the original aggregate.
 | |
|   for (; i != LinearIndex; ++i)
 | |
|     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
 | |
|                 SDValue(Agg.getNode(), Agg.getResNo() + i);
 | |
|   // Copy values from the inserted value(s).
 | |
|   if (NumValValues) {
 | |
|     SDValue Val = getValue(Op1);
 | |
|     for (; i != LinearIndex + NumValValues; ++i)
 | |
|       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
 | |
|                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
 | |
|   }
 | |
|   // Copy remaining value(s) from the original aggregate.
 | |
|   for (; i != NumAggValues; ++i)
 | |
|     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
 | |
|                 SDValue(Agg.getNode(), Agg.getResNo() + i);
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
 | |
|                            DAG.getVTList(AggValueVTs), Values));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitExtractValue(const User &I) {
 | |
|   ArrayRef<unsigned> Indices;
 | |
|   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
 | |
|     Indices = EV->getIndices();
 | |
|   else
 | |
|     Indices = cast<ConstantExpr>(&I)->getIndices();
 | |
| 
 | |
|   const Value *Op0 = I.getOperand(0);
 | |
|   Type *AggTy = Op0->getType();
 | |
|   Type *ValTy = I.getType();
 | |
|   bool OutOfUndef = isa<UndefValue>(Op0);
 | |
| 
 | |
|   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SmallVector<EVT, 4> ValValueVTs;
 | |
|   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
 | |
| 
 | |
|   unsigned NumValValues = ValValueVTs.size();
 | |
| 
 | |
|   // Ignore a extractvalue that produces an empty object
 | |
|   if (!NumValValues) {
 | |
|     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SmallVector<SDValue, 4> Values(NumValValues);
 | |
| 
 | |
|   SDValue Agg = getValue(Op0);
 | |
|   // Copy out the selected value(s).
 | |
|   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
 | |
|     Values[i - LinearIndex] =
 | |
|       OutOfUndef ?
 | |
|         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
 | |
|         SDValue(Agg.getNode(), Agg.getResNo() + i);
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
 | |
|                            DAG.getVTList(ValValueVTs), Values));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
 | |
|   Value *Op0 = I.getOperand(0);
 | |
|   // Note that the pointer operand may be a vector of pointers. Take the scalar
 | |
|   // element which holds a pointer.
 | |
|   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
 | |
|   SDValue N = getValue(Op0);
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   auto &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   // Normalize Vector GEP - all scalar operands should be converted to the
 | |
|   // splat vector.
 | |
|   bool IsVectorGEP = I.getType()->isVectorTy();
 | |
|   ElementCount VectorElementCount =
 | |
|       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
 | |
|                   : ElementCount::getFixed(0);
 | |
| 
 | |
|   if (IsVectorGEP && !N.getValueType().isVector()) {
 | |
|     LLVMContext &Context = *DAG.getContext();
 | |
|     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
 | |
|     if (VectorElementCount.isScalable())
 | |
|       N = DAG.getSplatVector(VT, dl, N);
 | |
|     else
 | |
|       N = DAG.getSplatBuildVector(VT, dl, N);
 | |
|   }
 | |
| 
 | |
|   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
 | |
|        GTI != E; ++GTI) {
 | |
|     const Value *Idx = GTI.getOperand();
 | |
|     if (StructType *StTy = GTI.getStructTypeOrNull()) {
 | |
|       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
 | |
|       if (Field) {
 | |
|         // N = N + Offset
 | |
|         uint64_t Offset =
 | |
|             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
 | |
| 
 | |
|         // In an inbounds GEP with an offset that is nonnegative even when
 | |
|         // interpreted as signed, assume there is no unsigned overflow.
 | |
|         SDNodeFlags Flags;
 | |
|         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
 | |
|           Flags.setNoUnsignedWrap(true);
 | |
| 
 | |
|         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
 | |
|                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
 | |
|       }
 | |
|     } else {
 | |
|       // IdxSize is the width of the arithmetic according to IR semantics.
 | |
|       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
 | |
|       // (and fix up the result later).
 | |
|       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
 | |
|       MVT IdxTy = MVT::getIntegerVT(IdxSize);
 | |
|       TypeSize ElementSize =
 | |
|           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
 | |
|       // We intentionally mask away the high bits here; ElementSize may not
 | |
|       // fit in IdxTy.
 | |
|       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
 | |
|       bool ElementScalable = ElementSize.isScalable();
 | |
| 
 | |
|       // If this is a scalar constant or a splat vector of constants,
 | |
|       // handle it quickly.
 | |
|       const auto *C = dyn_cast<Constant>(Idx);
 | |
|       if (C && isa<VectorType>(C->getType()))
 | |
|         C = C->getSplatValue();
 | |
| 
 | |
|       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
 | |
|       if (CI && CI->isZero())
 | |
|         continue;
 | |
|       if (CI && !ElementScalable) {
 | |
|         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
 | |
|         LLVMContext &Context = *DAG.getContext();
 | |
|         SDValue OffsVal;
 | |
|         if (IsVectorGEP)
 | |
|           OffsVal = DAG.getConstant(
 | |
|               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
 | |
|         else
 | |
|           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
 | |
| 
 | |
|         // In an inbounds GEP with an offset that is nonnegative even when
 | |
|         // interpreted as signed, assume there is no unsigned overflow.
 | |
|         SDNodeFlags Flags;
 | |
|         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
 | |
|           Flags.setNoUnsignedWrap(true);
 | |
| 
 | |
|         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
 | |
| 
 | |
|         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // N = N + Idx * ElementMul;
 | |
|       SDValue IdxN = getValue(Idx);
 | |
| 
 | |
|       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
 | |
|         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
 | |
|                                   VectorElementCount);
 | |
|         if (VectorElementCount.isScalable())
 | |
|           IdxN = DAG.getSplatVector(VT, dl, IdxN);
 | |
|         else
 | |
|           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
 | |
|       }
 | |
| 
 | |
|       // If the index is smaller or larger than intptr_t, truncate or extend
 | |
|       // it.
 | |
|       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
 | |
| 
 | |
|       if (ElementScalable) {
 | |
|         EVT VScaleTy = N.getValueType().getScalarType();
 | |
|         SDValue VScale = DAG.getNode(
 | |
|             ISD::VSCALE, dl, VScaleTy,
 | |
|             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
 | |
|         if (IsVectorGEP)
 | |
|           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
 | |
|         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
 | |
|       } else {
 | |
|         // If this is a multiply by a power of two, turn it into a shl
 | |
|         // immediately.  This is a very common case.
 | |
|         if (ElementMul != 1) {
 | |
|           if (ElementMul.isPowerOf2()) {
 | |
|             unsigned Amt = ElementMul.logBase2();
 | |
|             IdxN = DAG.getNode(ISD::SHL, dl,
 | |
|                                N.getValueType(), IdxN,
 | |
|                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
 | |
|           } else {
 | |
|             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
 | |
|                                             IdxN.getValueType());
 | |
|             IdxN = DAG.getNode(ISD::MUL, dl,
 | |
|                                N.getValueType(), IdxN, Scale);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       N = DAG.getNode(ISD::ADD, dl,
 | |
|                       N.getValueType(), N, IdxN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
 | |
|   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
 | |
|   if (IsVectorGEP) {
 | |
|     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
 | |
|     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
 | |
|   }
 | |
| 
 | |
|   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
 | |
|     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
 | |
| 
 | |
|   setValue(&I, N);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
 | |
|   // If this is a fixed sized alloca in the entry block of the function,
 | |
|   // allocate it statically on the stack.
 | |
|   if (FuncInfo.StaticAllocaMap.count(&I))
 | |
|     return;   // getValue will auto-populate this.
 | |
| 
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   Type *Ty = I.getAllocatedType();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   auto &DL = DAG.getDataLayout();
 | |
|   TypeSize TySize = DL.getTypeAllocSize(Ty);
 | |
|   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
 | |
| 
 | |
|   SDValue AllocSize = getValue(I.getArraySize());
 | |
| 
 | |
|   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
 | |
|   if (AllocSize.getValueType() != IntPtr)
 | |
|     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
 | |
| 
 | |
|   if (TySize.isScalable())
 | |
|     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
 | |
|                             DAG.getVScale(dl, IntPtr,
 | |
|                                           APInt(IntPtr.getScalarSizeInBits(),
 | |
|                                                 TySize.getKnownMinValue())));
 | |
|   else
 | |
|     AllocSize =
 | |
|         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
 | |
|                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
 | |
| 
 | |
|   // Handle alignment.  If the requested alignment is less than or equal to
 | |
|   // the stack alignment, ignore it.  If the size is greater than or equal to
 | |
|   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
 | |
|   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
 | |
|   if (*Alignment <= StackAlign)
 | |
|     Alignment = None;
 | |
| 
 | |
|   const uint64_t StackAlignMask = StackAlign.value() - 1U;
 | |
|   // Round the size of the allocation up to the stack alignment size
 | |
|   // by add SA-1 to the size. This doesn't overflow because we're computing
 | |
|   // an address inside an alloca.
 | |
|   SDNodeFlags Flags;
 | |
|   Flags.setNoUnsignedWrap(true);
 | |
|   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
 | |
|                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
 | |
| 
 | |
|   // Mask out the low bits for alignment purposes.
 | |
|   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
 | |
|                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
 | |
| 
 | |
|   SDValue Ops[] = {
 | |
|       getRoot(), AllocSize,
 | |
|       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
 | |
|   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
 | |
|   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
 | |
|   setValue(&I, DSA);
 | |
|   DAG.setRoot(DSA.getValue(1));
 | |
| 
 | |
|   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
 | |
|   if (I.isAtomic())
 | |
|     return visitAtomicLoad(I);
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const Value *SV = I.getOperand(0);
 | |
|   if (TLI.supportSwiftError()) {
 | |
|     // Swifterror values can come from either a function parameter with
 | |
|     // swifterror attribute or an alloca with swifterror attribute.
 | |
|     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
 | |
|       if (Arg->hasSwiftErrorAttr())
 | |
|         return visitLoadFromSwiftError(I);
 | |
|     }
 | |
| 
 | |
|     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
 | |
|       if (Alloca->isSwiftError())
 | |
|         return visitLoadFromSwiftError(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue Ptr = getValue(SV);
 | |
| 
 | |
|   Type *Ty = I.getType();
 | |
|   Align Alignment = I.getAlign();
 | |
| 
 | |
|   AAMDNodes AAInfo = I.getAAMetadata();
 | |
|   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs, MemVTs;
 | |
|   SmallVector<uint64_t, 4> Offsets;
 | |
|   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues == 0)
 | |
|     return;
 | |
| 
 | |
|   bool isVolatile = I.isVolatile();
 | |
| 
 | |
|   SDValue Root;
 | |
|   bool ConstantMemory = false;
 | |
|   if (isVolatile)
 | |
|     // Serialize volatile loads with other side effects.
 | |
|     Root = getRoot();
 | |
|   else if (NumValues > MaxParallelChains)
 | |
|     Root = getMemoryRoot();
 | |
|   else if (AA &&
 | |
|            AA->pointsToConstantMemory(MemoryLocation(
 | |
|                SV,
 | |
|                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
 | |
|                AAInfo))) {
 | |
|     // Do not serialize (non-volatile) loads of constant memory with anything.
 | |
|     Root = DAG.getEntryNode();
 | |
|     ConstantMemory = true;
 | |
|   } else {
 | |
|     // Do not serialize non-volatile loads against each other.
 | |
|     Root = DAG.getRoot();
 | |
|   }
 | |
| 
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   if (isVolatile)
 | |
|     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
 | |
| 
 | |
|   // An aggregate load cannot wrap around the address space, so offsets to its
 | |
|   // parts don't wrap either.
 | |
|   SDNodeFlags Flags;
 | |
|   Flags.setNoUnsignedWrap(true);
 | |
| 
 | |
|   SmallVector<SDValue, 4> Values(NumValues);
 | |
|   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
 | |
|   EVT PtrVT = Ptr.getValueType();
 | |
| 
 | |
|   MachineMemOperand::Flags MMOFlags
 | |
|     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
 | |
| 
 | |
|   unsigned ChainI = 0;
 | |
|   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
 | |
|     // Serializing loads here may result in excessive register pressure, and
 | |
|     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
 | |
|     // could recover a bit by hoisting nodes upward in the chain by recognizing
 | |
|     // they are side-effect free or do not alias. The optimizer should really
 | |
|     // avoid this case by converting large object/array copies to llvm.memcpy
 | |
|     // (MaxParallelChains should always remain as failsafe).
 | |
|     if (ChainI == MaxParallelChains) {
 | |
|       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
 | |
|       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                                   makeArrayRef(Chains.data(), ChainI));
 | |
|       Root = Chain;
 | |
|       ChainI = 0;
 | |
|     }
 | |
|     SDValue A = DAG.getNode(ISD::ADD, dl,
 | |
|                             PtrVT, Ptr,
 | |
|                             DAG.getConstant(Offsets[i], dl, PtrVT),
 | |
|                             Flags);
 | |
| 
 | |
|     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
 | |
|                             MachinePointerInfo(SV, Offsets[i]), Alignment,
 | |
|                             MMOFlags, AAInfo, Ranges);
 | |
|     Chains[ChainI] = L.getValue(1);
 | |
| 
 | |
|     if (MemVTs[i] != ValueVTs[i])
 | |
|       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
 | |
| 
 | |
|     Values[i] = L;
 | |
|   }
 | |
| 
 | |
|   if (!ConstantMemory) {
 | |
|     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                                 makeArrayRef(Chains.data(), ChainI));
 | |
|     if (isVolatile)
 | |
|       DAG.setRoot(Chain);
 | |
|     else
 | |
|       PendingLoads.push_back(Chain);
 | |
|   }
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
 | |
|                            DAG.getVTList(ValueVTs), Values));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
 | |
|   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
 | |
|          "call visitStoreToSwiftError when backend supports swifterror");
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   SmallVector<uint64_t, 4> Offsets;
 | |
|   const Value *SrcV = I.getOperand(0);
 | |
|   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
 | |
|                   SrcV->getType(), ValueVTs, &Offsets);
 | |
|   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
 | |
|          "expect a single EVT for swifterror");
 | |
| 
 | |
|   SDValue Src = getValue(SrcV);
 | |
|   // Create a virtual register, then update the virtual register.
 | |
|   Register VReg =
 | |
|       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
 | |
|   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
 | |
|   // Chain can be getRoot or getControlRoot.
 | |
|   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
 | |
|                                       SDValue(Src.getNode(), Src.getResNo()));
 | |
|   DAG.setRoot(CopyNode);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
 | |
|   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
 | |
|          "call visitLoadFromSwiftError when backend supports swifterror");
 | |
| 
 | |
|   assert(!I.isVolatile() &&
 | |
|          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
 | |
|          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
 | |
|          "Support volatile, non temporal, invariant for load_from_swift_error");
 | |
| 
 | |
|   const Value *SV = I.getOperand(0);
 | |
|   Type *Ty = I.getType();
 | |
|   assert(
 | |
|       (!AA ||
 | |
|        !AA->pointsToConstantMemory(MemoryLocation(
 | |
|            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
 | |
|            I.getAAMetadata()))) &&
 | |
|       "load_from_swift_error should not be constant memory");
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   SmallVector<uint64_t, 4> Offsets;
 | |
|   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
 | |
|                   ValueVTs, &Offsets);
 | |
|   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
 | |
|          "expect a single EVT for swifterror");
 | |
| 
 | |
|   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
 | |
|   SDValue L = DAG.getCopyFromReg(
 | |
|       getRoot(), getCurSDLoc(),
 | |
|       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
 | |
| 
 | |
|   setValue(&I, L);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitStore(const StoreInst &I) {
 | |
|   if (I.isAtomic())
 | |
|     return visitAtomicStore(I);
 | |
| 
 | |
|   const Value *SrcV = I.getOperand(0);
 | |
|   const Value *PtrV = I.getOperand(1);
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   if (TLI.supportSwiftError()) {
 | |
|     // Swifterror values can come from either a function parameter with
 | |
|     // swifterror attribute or an alloca with swifterror attribute.
 | |
|     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
 | |
|       if (Arg->hasSwiftErrorAttr())
 | |
|         return visitStoreToSwiftError(I);
 | |
|     }
 | |
| 
 | |
|     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
 | |
|       if (Alloca->isSwiftError())
 | |
|         return visitStoreToSwiftError(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs, MemVTs;
 | |
|   SmallVector<uint64_t, 4> Offsets;
 | |
|   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
 | |
|                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues == 0)
 | |
|     return;
 | |
| 
 | |
|   // Get the lowered operands. Note that we do this after
 | |
|   // checking if NumResults is zero, because with zero results
 | |
|   // the operands won't have values in the map.
 | |
|   SDValue Src = getValue(SrcV);
 | |
|   SDValue Ptr = getValue(PtrV);
 | |
| 
 | |
|   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
 | |
|   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   Align Alignment = I.getAlign();
 | |
|   AAMDNodes AAInfo = I.getAAMetadata();
 | |
| 
 | |
|   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
 | |
| 
 | |
|   // An aggregate load cannot wrap around the address space, so offsets to its
 | |
|   // parts don't wrap either.
 | |
|   SDNodeFlags Flags;
 | |
|   Flags.setNoUnsignedWrap(true);
 | |
| 
 | |
|   unsigned ChainI = 0;
 | |
|   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
 | |
|     // See visitLoad comments.
 | |
|     if (ChainI == MaxParallelChains) {
 | |
|       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                                   makeArrayRef(Chains.data(), ChainI));
 | |
|       Root = Chain;
 | |
|       ChainI = 0;
 | |
|     }
 | |
|     SDValue Add =
 | |
|         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
 | |
|     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
 | |
|     if (MemVTs[i] != ValueVTs[i])
 | |
|       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
 | |
|     SDValue St =
 | |
|         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
 | |
|                      Alignment, MMOFlags, AAInfo);
 | |
|     Chains[ChainI] = St;
 | |
|   }
 | |
| 
 | |
|   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                                   makeArrayRef(Chains.data(), ChainI));
 | |
|   DAG.setRoot(StoreNode);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
 | |
|                                            bool IsCompressing) {
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
| 
 | |
|   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
 | |
|                                MaybeAlign &Alignment) {
 | |
|     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
 | |
|     Src0 = I.getArgOperand(0);
 | |
|     Ptr = I.getArgOperand(1);
 | |
|     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
 | |
|     Mask = I.getArgOperand(3);
 | |
|   };
 | |
|   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
 | |
|                                     MaybeAlign &Alignment) {
 | |
|     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
 | |
|     Src0 = I.getArgOperand(0);
 | |
|     Ptr = I.getArgOperand(1);
 | |
|     Mask = I.getArgOperand(2);
 | |
|     Alignment = None;
 | |
|   };
 | |
| 
 | |
|   Value  *PtrOperand, *MaskOperand, *Src0Operand;
 | |
|   MaybeAlign Alignment;
 | |
|   if (IsCompressing)
 | |
|     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
 | |
|   else
 | |
|     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
 | |
| 
 | |
|   SDValue Ptr = getValue(PtrOperand);
 | |
|   SDValue Src0 = getValue(Src0Operand);
 | |
|   SDValue Mask = getValue(MaskOperand);
 | |
|   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
 | |
| 
 | |
|   EVT VT = Src0.getValueType();
 | |
|   if (!Alignment)
 | |
|     Alignment = DAG.getEVTAlign(VT);
 | |
| 
 | |
|   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | |
|       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
 | |
|       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
 | |
|   SDValue StoreNode =
 | |
|       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
 | |
|                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
 | |
|   DAG.setRoot(StoreNode);
 | |
|   setValue(&I, StoreNode);
 | |
| }
 | |
| 
 | |
| // Get a uniform base for the Gather/Scatter intrinsic.
 | |
| // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
 | |
| // We try to represent it as a base pointer + vector of indices.
 | |
| // Usually, the vector of pointers comes from a 'getelementptr' instruction.
 | |
| // The first operand of the GEP may be a single pointer or a vector of pointers
 | |
| // Example:
 | |
| //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
 | |
| //  or
 | |
| //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
 | |
| // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
 | |
| //
 | |
| // When the first GEP operand is a single pointer - it is the uniform base we
 | |
| // are looking for. If first operand of the GEP is a splat vector - we
 | |
| // extract the splat value and use it as a uniform base.
 | |
| // In all other cases the function returns 'false'.
 | |
| static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
 | |
|                            ISD::MemIndexType &IndexType, SDValue &Scale,
 | |
|                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
 | |
|                            uint64_t ElemSize) {
 | |
|   SelectionDAG& DAG = SDB->DAG;
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const DataLayout &DL = DAG.getDataLayout();
 | |
| 
 | |
|   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
 | |
| 
 | |
|   // Handle splat constant pointer.
 | |
|   if (auto *C = dyn_cast<Constant>(Ptr)) {
 | |
|     C = C->getSplatValue();
 | |
|     if (!C)
 | |
|       return false;
 | |
| 
 | |
|     Base = SDB->getValue(C);
 | |
| 
 | |
|     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
 | |
|     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
 | |
|     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
 | |
|     IndexType = ISD::SIGNED_SCALED;
 | |
|     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
 | |
|   if (!GEP || GEP->getParent() != CurBB)
 | |
|     return false;
 | |
| 
 | |
|   if (GEP->getNumOperands() != 2)
 | |
|     return false;
 | |
| 
 | |
|   const Value *BasePtr = GEP->getPointerOperand();
 | |
|   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
 | |
| 
 | |
|   // Make sure the base is scalar and the index is a vector.
 | |
|   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
 | |
|     return false;
 | |
| 
 | |
|   Base = SDB->getValue(BasePtr);
 | |
|   Index = SDB->getValue(IndexVal);
 | |
|   IndexType = ISD::SIGNED_SCALED;
 | |
| 
 | |
|   // MGATHER/MSCATTER are only required to support scaling by one or by the
 | |
|   // element size. Other scales may be produced using target-specific DAG
 | |
|   // combines.
 | |
|   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
 | |
|   if (ScaleVal != ElemSize && ScaleVal != 1)
 | |
|     return false;
 | |
| 
 | |
|   Scale =
 | |
|       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
| 
 | |
|   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
 | |
|   const Value *Ptr = I.getArgOperand(1);
 | |
|   SDValue Src0 = getValue(I.getArgOperand(0));
 | |
|   SDValue Mask = getValue(I.getArgOperand(3));
 | |
|   EVT VT = Src0.getValueType();
 | |
|   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
 | |
|                         ->getMaybeAlignValue()
 | |
|                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   SDValue Base;
 | |
|   SDValue Index;
 | |
|   ISD::MemIndexType IndexType;
 | |
|   SDValue Scale;
 | |
|   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
 | |
|                                     I.getParent(), VT.getScalarStoreSize());
 | |
| 
 | |
|   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
 | |
|   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | |
|       MachinePointerInfo(AS), MachineMemOperand::MOStore,
 | |
|       // TODO: Make MachineMemOperands aware of scalable
 | |
|       // vectors.
 | |
|       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
 | |
|   if (!UniformBase) {
 | |
|     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
 | |
|     Index = getValue(Ptr);
 | |
|     IndexType = ISD::SIGNED_SCALED;
 | |
|     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
 | |
|   }
 | |
| 
 | |
|   EVT IdxVT = Index.getValueType();
 | |
|   EVT EltTy = IdxVT.getVectorElementType();
 | |
|   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
 | |
|     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
 | |
|     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
 | |
|   }
 | |
| 
 | |
|   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
 | |
|   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
 | |
|                                          Ops, MMO, IndexType, false);
 | |
|   DAG.setRoot(Scatter);
 | |
|   setValue(&I, Scatter);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
| 
 | |
|   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
 | |
|                               MaybeAlign &Alignment) {
 | |
|     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
 | |
|     Ptr = I.getArgOperand(0);
 | |
|     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
 | |
|     Mask = I.getArgOperand(2);
 | |
|     Src0 = I.getArgOperand(3);
 | |
|   };
 | |
|   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
 | |
|                                  MaybeAlign &Alignment) {
 | |
|     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
 | |
|     Ptr = I.getArgOperand(0);
 | |
|     Alignment = None;
 | |
|     Mask = I.getArgOperand(1);
 | |
|     Src0 = I.getArgOperand(2);
 | |
|   };
 | |
| 
 | |
|   Value  *PtrOperand, *MaskOperand, *Src0Operand;
 | |
|   MaybeAlign Alignment;
 | |
|   if (IsExpanding)
 | |
|     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
 | |
|   else
 | |
|     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
 | |
| 
 | |
|   SDValue Ptr = getValue(PtrOperand);
 | |
|   SDValue Src0 = getValue(Src0Operand);
 | |
|   SDValue Mask = getValue(MaskOperand);
 | |
|   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
 | |
| 
 | |
|   EVT VT = Src0.getValueType();
 | |
|   if (!Alignment)
 | |
|     Alignment = DAG.getEVTAlign(VT);
 | |
| 
 | |
|   AAMDNodes AAInfo = I.getAAMetadata();
 | |
|   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
 | |
| 
 | |
|   // Do not serialize masked loads of constant memory with anything.
 | |
|   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
 | |
|   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
 | |
| 
 | |
|   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
 | |
| 
 | |
|   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | |
|       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
 | |
|       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
 | |
| 
 | |
|   SDValue Load =
 | |
|       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
 | |
|                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
 | |
|   if (AddToChain)
 | |
|     PendingLoads.push_back(Load.getValue(1));
 | |
|   setValue(&I, Load);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
| 
 | |
|   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
 | |
|   const Value *Ptr = I.getArgOperand(0);
 | |
|   SDValue Src0 = getValue(I.getArgOperand(3));
 | |
|   SDValue Mask = getValue(I.getArgOperand(2));
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
 | |
|                         ->getMaybeAlignValue()
 | |
|                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
 | |
| 
 | |
|   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
 | |
| 
 | |
|   SDValue Root = DAG.getRoot();
 | |
|   SDValue Base;
 | |
|   SDValue Index;
 | |
|   ISD::MemIndexType IndexType;
 | |
|   SDValue Scale;
 | |
|   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
 | |
|                                     I.getParent(), VT.getScalarStoreSize());
 | |
|   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
 | |
|   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | |
|       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
 | |
|       // TODO: Make MachineMemOperands aware of scalable
 | |
|       // vectors.
 | |
|       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
 | |
| 
 | |
|   if (!UniformBase) {
 | |
|     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
 | |
|     Index = getValue(Ptr);
 | |
|     IndexType = ISD::SIGNED_SCALED;
 | |
|     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
 | |
|   }
 | |
| 
 | |
|   EVT IdxVT = Index.getValueType();
 | |
|   EVT EltTy = IdxVT.getVectorElementType();
 | |
|   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
 | |
|     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
 | |
|     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
 | |
|   }
 | |
| 
 | |
|   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
 | |
|   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
 | |
|                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
 | |
| 
 | |
|   PendingLoads.push_back(Gather.getValue(1));
 | |
|   setValue(&I, Gather);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
 | |
|   AtomicOrdering FailureOrdering = I.getFailureOrdering();
 | |
|   SyncScope::ID SSID = I.getSyncScopeID();
 | |
| 
 | |
|   SDValue InChain = getRoot();
 | |
| 
 | |
|   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
 | |
|   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
 | |
|       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
 | |
|       FailureOrdering);
 | |
| 
 | |
|   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
 | |
|                                    dl, MemVT, VTs, InChain,
 | |
|                                    getValue(I.getPointerOperand()),
 | |
|                                    getValue(I.getCompareOperand()),
 | |
|                                    getValue(I.getNewValOperand()), MMO);
 | |
| 
 | |
|   SDValue OutChain = L.getValue(2);
 | |
| 
 | |
|   setValue(&I, L);
 | |
|   DAG.setRoot(OutChain);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   ISD::NodeType NT;
 | |
|   switch (I.getOperation()) {
 | |
|   default: llvm_unreachable("Unknown atomicrmw operation");
 | |
|   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
 | |
|   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
 | |
|   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
 | |
|   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
 | |
|   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
 | |
|   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
 | |
|   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
 | |
|   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
 | |
|   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
 | |
|   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
 | |
|   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
 | |
|   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
 | |
|   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
 | |
|   }
 | |
|   AtomicOrdering Ordering = I.getOrdering();
 | |
|   SyncScope::ID SSID = I.getSyncScopeID();
 | |
| 
 | |
|   SDValue InChain = getRoot();
 | |
| 
 | |
|   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
 | |
|       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
 | |
| 
 | |
|   SDValue L =
 | |
|     DAG.getAtomic(NT, dl, MemVT, InChain,
 | |
|                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
 | |
|                   MMO);
 | |
| 
 | |
|   SDValue OutChain = L.getValue(1);
 | |
| 
 | |
|   setValue(&I, L);
 | |
|   DAG.setRoot(OutChain);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFence(const FenceInst &I) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue Ops[3];
 | |
|   Ops[0] = getRoot();
 | |
|   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
 | |
|                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
 | |
|   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
 | |
|                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
 | |
|   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   AtomicOrdering Order = I.getOrdering();
 | |
|   SyncScope::ID SSID = I.getSyncScopeID();
 | |
| 
 | |
|   SDValue InChain = getRoot();
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
 | |
| 
 | |
|   if (!TLI.supportsUnalignedAtomics() &&
 | |
|       I.getAlign().value() < MemVT.getSizeInBits() / 8)
 | |
|     report_fatal_error("Cannot generate unaligned atomic load");
 | |
| 
 | |
|   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
 | |
| 
 | |
|   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | |
|       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
 | |
|       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
 | |
| 
 | |
|   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
 | |
| 
 | |
|   SDValue Ptr = getValue(I.getPointerOperand());
 | |
| 
 | |
|   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
 | |
|     // TODO: Once this is better exercised by tests, it should be merged with
 | |
|     // the normal path for loads to prevent future divergence.
 | |
|     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
 | |
|     if (MemVT != VT)
 | |
|       L = DAG.getPtrExtOrTrunc(L, dl, VT);
 | |
| 
 | |
|     setValue(&I, L);
 | |
|     SDValue OutChain = L.getValue(1);
 | |
|     if (!I.isUnordered())
 | |
|       DAG.setRoot(OutChain);
 | |
|     else
 | |
|       PendingLoads.push_back(OutChain);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
 | |
|                             Ptr, MMO);
 | |
| 
 | |
|   SDValue OutChain = L.getValue(1);
 | |
|   if (MemVT != VT)
 | |
|     L = DAG.getPtrExtOrTrunc(L, dl, VT);
 | |
| 
 | |
|   setValue(&I, L);
 | |
|   DAG.setRoot(OutChain);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   AtomicOrdering Ordering = I.getOrdering();
 | |
|   SyncScope::ID SSID = I.getSyncScopeID();
 | |
| 
 | |
|   SDValue InChain = getRoot();
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT MemVT =
 | |
|       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
 | |
| 
 | |
|   if (I.getAlign().value() < MemVT.getSizeInBits() / 8)
 | |
|     report_fatal_error("Cannot generate unaligned atomic store");
 | |
| 
 | |
|   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
 | |
|       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
 | |
| 
 | |
|   SDValue Val = getValue(I.getValueOperand());
 | |
|   if (Val.getValueType() != MemVT)
 | |
|     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
 | |
|   SDValue Ptr = getValue(I.getPointerOperand());
 | |
| 
 | |
|   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
 | |
|     // TODO: Once this is better exercised by tests, it should be merged with
 | |
|     // the normal path for stores to prevent future divergence.
 | |
|     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
 | |
|     DAG.setRoot(S);
 | |
|     return;
 | |
|   }
 | |
|   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
 | |
|                                    Ptr, Val, MMO);
 | |
| 
 | |
| 
 | |
|   DAG.setRoot(OutChain);
 | |
| }
 | |
| 
 | |
| /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
 | |
| /// node.
 | |
| void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
 | |
|                                                unsigned Intrinsic) {
 | |
|   // Ignore the callsite's attributes. A specific call site may be marked with
 | |
|   // readnone, but the lowering code will expect the chain based on the
 | |
|   // definition.
 | |
|   const Function *F = I.getCalledFunction();
 | |
|   bool HasChain = !F->doesNotAccessMemory();
 | |
|   bool OnlyLoad = HasChain && F->onlyReadsMemory();
 | |
| 
 | |
|   // Build the operand list.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
 | |
|     if (OnlyLoad) {
 | |
|       // We don't need to serialize loads against other loads.
 | |
|       Ops.push_back(DAG.getRoot());
 | |
|     } else {
 | |
|       Ops.push_back(getRoot());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Info is set by getTgtMemIntrinsic
 | |
|   TargetLowering::IntrinsicInfo Info;
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
 | |
|                                                DAG.getMachineFunction(),
 | |
|                                                Intrinsic);
 | |
| 
 | |
|   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
 | |
|   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
 | |
|       Info.opc == ISD::INTRINSIC_W_CHAIN)
 | |
|     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
 | |
|                                         TLI.getPointerTy(DAG.getDataLayout())));
 | |
| 
 | |
|   // Add all operands of the call to the operand list.
 | |
|   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
 | |
|     const Value *Arg = I.getArgOperand(i);
 | |
|     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
 | |
|       Ops.push_back(getValue(Arg));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Use TargetConstant instead of a regular constant for immarg.
 | |
|     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
 | |
|     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
 | |
|       assert(CI->getBitWidth() <= 64 &&
 | |
|              "large intrinsic immediates not handled");
 | |
|       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
 | |
|     } else {
 | |
|       Ops.push_back(
 | |
|           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
 | |
| 
 | |
|   if (HasChain)
 | |
|     ValueVTs.push_back(MVT::Other);
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(ValueVTs);
 | |
| 
 | |
|   // Propagate fast-math-flags from IR to node(s).
 | |
|   SDNodeFlags Flags;
 | |
|   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
 | |
|     Flags.copyFMF(*FPMO);
 | |
|   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
 | |
| 
 | |
|   // Create the node.
 | |
|   SDValue Result;
 | |
|   if (IsTgtIntrinsic) {
 | |
|     // This is target intrinsic that touches memory
 | |
|     Result =
 | |
|         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
 | |
|                                 MachinePointerInfo(Info.ptrVal, Info.offset),
 | |
|                                 Info.align, Info.flags, Info.size,
 | |
|                                 I.getAAMetadata());
 | |
|   } else if (!HasChain) {
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
 | |
|   } else if (!I.getType()->isVoidTy()) {
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
 | |
|   } else {
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
 | |
|   }
 | |
| 
 | |
|   if (HasChain) {
 | |
|     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
 | |
|     if (OnlyLoad)
 | |
|       PendingLoads.push_back(Chain);
 | |
|     else
 | |
|       DAG.setRoot(Chain);
 | |
|   }
 | |
| 
 | |
|   if (!I.getType()->isVoidTy()) {
 | |
|     if (!isa<VectorType>(I.getType()))
 | |
|       Result = lowerRangeToAssertZExt(DAG, I, Result);
 | |
| 
 | |
|     MaybeAlign Alignment = I.getRetAlign();
 | |
|     if (!Alignment)
 | |
|       Alignment = F->getAttributes().getRetAlignment();
 | |
|     // Insert `assertalign` node if there's an alignment.
 | |
|     if (InsertAssertAlign && Alignment) {
 | |
|       Result =
 | |
|           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
 | |
|     }
 | |
| 
 | |
|     setValue(&I, Result);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetSignificand - Get the significand and build it into a floating-point
 | |
| /// number with exponent of 1:
 | |
| ///
 | |
| ///   Op = (Op & 0x007fffff) | 0x3f800000;
 | |
| ///
 | |
| /// where Op is the hexadecimal representation of floating point value.
 | |
| static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
 | |
|   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
 | |
|                            DAG.getConstant(0x007fffff, dl, MVT::i32));
 | |
|   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
 | |
|                            DAG.getConstant(0x3f800000, dl, MVT::i32));
 | |
|   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
 | |
| }
 | |
| 
 | |
| /// GetExponent - Get the exponent:
 | |
| ///
 | |
| ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
 | |
| ///
 | |
| /// where Op is the hexadecimal representation of floating point value.
 | |
| static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
 | |
|                            const TargetLowering &TLI, const SDLoc &dl) {
 | |
|   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
 | |
|                            DAG.getConstant(0x7f800000, dl, MVT::i32));
 | |
|   SDValue t1 = DAG.getNode(
 | |
|       ISD::SRL, dl, MVT::i32, t0,
 | |
|       DAG.getConstant(23, dl,
 | |
|                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
 | |
|   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
 | |
|                            DAG.getConstant(127, dl, MVT::i32));
 | |
|   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
 | |
| }
 | |
| 
 | |
| /// getF32Constant - Get 32-bit floating point constant.
 | |
| static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
 | |
|                               const SDLoc &dl) {
 | |
|   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
 | |
|                            MVT::f32);
 | |
| }
 | |
| 
 | |
| static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
 | |
|                                        SelectionDAG &DAG) {
 | |
|   // TODO: What fast-math-flags should be set on the floating-point nodes?
 | |
| 
 | |
|   //   IntegerPartOfX = ((int32_t)(t0);
 | |
|   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
 | |
| 
 | |
|   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
 | |
|   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
 | |
|   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
 | |
| 
 | |
|   //   IntegerPartOfX <<= 23;
 | |
|   IntegerPartOfX =
 | |
|       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
 | |
|                   DAG.getConstant(23, dl,
 | |
|                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
 | |
|                                       MVT::i32, DAG.getDataLayout())));
 | |
| 
 | |
|   SDValue TwoToFractionalPartOfX;
 | |
|   if (LimitFloatPrecision <= 6) {
 | |
|     // For floating-point precision of 6:
 | |
|     //
 | |
|     //   TwoToFractionalPartOfX =
 | |
|     //     0.997535578f +
 | |
|     //       (0.735607626f + 0.252464424f * x) * x;
 | |
|     //
 | |
|     // error 0.0144103317, which is 6 bits
 | |
|     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                              getF32Constant(DAG, 0x3e814304, dl));
 | |
|     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                              getF32Constant(DAG, 0x3f3c50c8, dl));
 | |
|     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
 | |
|   } else if (LimitFloatPrecision <= 12) {
 | |
|     // For floating-point precision of 12:
 | |
|     //
 | |
|     //   TwoToFractionalPartOfX =
 | |
|     //     0.999892986f +
 | |
|     //       (0.696457318f +
 | |
|     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
 | |
|     //
 | |
|     // error 0.000107046256, which is 13 to 14 bits
 | |
|     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                              getF32Constant(DAG, 0x3da235e3, dl));
 | |
|     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                              getF32Constant(DAG, 0x3e65b8f3, dl));
 | |
|     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                              getF32Constant(DAG, 0x3f324b07, dl));
 | |
|     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
 | |
|   } else { // LimitFloatPrecision <= 18
 | |
|     // For floating-point precision of 18:
 | |
|     //
 | |
|     //   TwoToFractionalPartOfX =
 | |
|     //     0.999999982f +
 | |
|     //       (0.693148872f +
 | |
|     //         (0.240227044f +
 | |
|     //           (0.554906021e-1f +
 | |
|     //             (0.961591928e-2f +
 | |
|     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
 | |
|     // error 2.47208000*10^(-7), which is better than 18 bits
 | |
|     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                              getF32Constant(DAG, 0x3924b03e, dl));
 | |
|     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                              getF32Constant(DAG, 0x3ab24b87, dl));
 | |
|     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                              getF32Constant(DAG, 0x3c1d8c17, dl));
 | |
|     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                              getF32Constant(DAG, 0x3d634a1d, dl));
 | |
|     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
 | |
|                              getF32Constant(DAG, 0x3e75fe14, dl));
 | |
|     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
 | |
|     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
 | |
|                               getF32Constant(DAG, 0x3f317234, dl));
 | |
|     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
 | |
|     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
 | |
|                                          getF32Constant(DAG, 0x3f800000, dl));
 | |
|   }
 | |
| 
 | |
|   // Add the exponent into the result in integer domain.
 | |
|   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
 | |
|   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
 | |
|                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
 | |
| }
 | |
| 
 | |
| /// expandExp - Lower an exp intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
 | |
|                          const TargetLowering &TLI, SDNodeFlags Flags) {
 | |
|   if (Op.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
| 
 | |
|     // Put the exponent in the right bit position for later addition to the
 | |
|     // final result:
 | |
|     //
 | |
|     // t0 = Op * log2(e)
 | |
| 
 | |
|     // TODO: What fast-math-flags should be set here?
 | |
|     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
 | |
|                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
 | |
|     return getLimitedPrecisionExp2(t0, dl, DAG);
 | |
|   }
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
 | |
| }
 | |
| 
 | |
| /// expandLog - Lower a log intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
 | |
|                          const TargetLowering &TLI, SDNodeFlags Flags) {
 | |
|   // TODO: What fast-math-flags should be set on the floating-point nodes?
 | |
| 
 | |
|   if (Op.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
 | |
| 
 | |
|     // Scale the exponent by log(2).
 | |
|     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
 | |
|     SDValue LogOfExponent =
 | |
|         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
 | |
|                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
 | |
| 
 | |
|     // Get the significand and build it into a floating-point number with
 | |
|     // exponent of 1.
 | |
|     SDValue X = GetSignificand(DAG, Op1, dl);
 | |
| 
 | |
|     SDValue LogOfMantissa;
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   LogofMantissa =
 | |
|       //     -1.1609546f +
 | |
|       //       (1.4034025f - 0.23903021f * x) * x;
 | |
|       //
 | |
|       // error 0.0034276066, which is better than 8 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbe74c456, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3fb3a2b1, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                   getF32Constant(DAG, 0x3f949a29, dl));
 | |
|     } else if (LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   LogOfMantissa =
 | |
|       //     -1.7417939f +
 | |
|       //       (2.8212026f +
 | |
|       //         (-1.4699568f +
 | |
|       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.000061011436, which is 14 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbd67b6d6, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3ee4f4b8, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3fbc278b, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x40348e95, dl));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                   getF32Constant(DAG, 0x3fdef31a, dl));
 | |
|     } else { // LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   LogOfMantissa =
 | |
|       //     -2.1072184f +
 | |
|       //       (4.2372794f +
 | |
|       //         (-3.7029485f +
 | |
|       //           (2.2781945f +
 | |
|       //             (-0.87823314f +
 | |
|       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
 | |
|       //
 | |
|       // error 0.0000023660568, which is better than 18 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbc91e5ac, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3e4350aa, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3f60d3e3, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x4011cdf0, dl));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x406cfd1c, dl));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
 | |
|                                getF32Constant(DAG, 0x408797cb, dl));
 | |
|       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
 | |
|       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
 | |
|                                   getF32Constant(DAG, 0x4006dcab, dl));
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
 | |
|   }
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
 | |
| }
 | |
| 
 | |
| /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
 | |
|                           const TargetLowering &TLI, SDNodeFlags Flags) {
 | |
|   // TODO: What fast-math-flags should be set on the floating-point nodes?
 | |
| 
 | |
|   if (Op.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
 | |
| 
 | |
|     // Get the exponent.
 | |
|     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
 | |
| 
 | |
|     // Get the significand and build it into a floating-point number with
 | |
|     // exponent of 1.
 | |
|     SDValue X = GetSignificand(DAG, Op1, dl);
 | |
| 
 | |
|     // Different possible minimax approximations of significand in
 | |
|     // floating-point for various degrees of accuracy over [1,2].
 | |
|     SDValue Log2ofMantissa;
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
 | |
|       //
 | |
|       // error 0.0049451742, which is more than 7 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbeb08fe0, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x40019463, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                    getF32Constant(DAG, 0x3fd6633d, dl));
 | |
|     } else if (LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   Log2ofMantissa =
 | |
|       //     -2.51285454f +
 | |
|       //       (4.07009056f +
 | |
|       //         (-2.12067489f +
 | |
|       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.0000876136000, which is better than 13 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbda7262e, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3f25280b, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x4007b923, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x40823e2f, dl));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                    getF32Constant(DAG, 0x4020d29c, dl));
 | |
|     } else { // LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   Log2ofMantissa =
 | |
|       //     -3.0400495f +
 | |
|       //       (6.1129976f +
 | |
|       //         (-5.3420409f +
 | |
|       //           (3.2865683f +
 | |
|       //             (-1.2669343f +
 | |
|       //               (0.27515199f -
 | |
|       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.0000018516, which is better than 18 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbcd2769e, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3e8ce0b9, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3fa22ae7, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x40525723, dl));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x40aaf200, dl));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
 | |
|                                getF32Constant(DAG, 0x40c39dad, dl));
 | |
|       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
 | |
|       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
 | |
|                                    getF32Constant(DAG, 0x4042902c, dl));
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
 | |
|   }
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
 | |
| }
 | |
| 
 | |
| /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
 | |
|                            const TargetLowering &TLI, SDNodeFlags Flags) {
 | |
|   // TODO: What fast-math-flags should be set on the floating-point nodes?
 | |
| 
 | |
|   if (Op.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
 | |
| 
 | |
|     // Scale the exponent by log10(2) [0.30102999f].
 | |
|     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
 | |
|     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
 | |
|                                         getF32Constant(DAG, 0x3e9a209a, dl));
 | |
| 
 | |
|     // Get the significand and build it into a floating-point number with
 | |
|     // exponent of 1.
 | |
|     SDValue X = GetSignificand(DAG, Op1, dl);
 | |
| 
 | |
|     SDValue Log10ofMantissa;
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   Log10ofMantissa =
 | |
|       //     -0.50419619f +
 | |
|       //       (0.60948995f - 0.10380950f * x) * x;
 | |
|       //
 | |
|       // error 0.0014886165, which is 6 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbdd49a13, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3f1c0789, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                     getF32Constant(DAG, 0x3f011300, dl));
 | |
|     } else if (LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   Log10ofMantissa =
 | |
|       //     -0.64831180f +
 | |
|       //       (0.91751397f +
 | |
|       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
 | |
|       //
 | |
|       // error 0.00019228036, which is better than 12 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3d431f31, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3ea21fb2, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3f6ae232, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
 | |
|                                     getF32Constant(DAG, 0x3f25f7c3, dl));
 | |
|     } else { // LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   Log10ofMantissa =
 | |
|       //     -0.84299375f +
 | |
|       //       (1.5327582f +
 | |
|       //         (-1.0688956f +
 | |
|       //           (0.49102474f +
 | |
|       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.0000037995730, which is better than 18 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3c5d51ce, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3e00685a, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3efb6798, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3f88d192, dl));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x3fc4316c, dl));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
 | |
|                                     getF32Constant(DAG, 0x3f57ce70, dl));
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
 | |
|   }
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
 | |
| }
 | |
| 
 | |
| /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
 | |
|                           const TargetLowering &TLI, SDNodeFlags Flags) {
 | |
|   if (Op.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
 | |
|     return getLimitedPrecisionExp2(Op, dl, DAG);
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
 | |
| }
 | |
| 
 | |
| /// visitPow - Lower a pow intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode with x == 10.0f.
 | |
| static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
 | |
|                          SelectionDAG &DAG, const TargetLowering &TLI,
 | |
|                          SDNodeFlags Flags) {
 | |
|   bool IsExp10 = false;
 | |
|   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
 | |
|       APFloat Ten(10.0f);
 | |
|       IsExp10 = LHSC->isExactlyValue(Ten);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: What fast-math-flags should be set on the FMUL node?
 | |
|   if (IsExp10) {
 | |
|     // Put the exponent in the right bit position for later addition to the
 | |
|     // final result:
 | |
|     //
 | |
|     //   #define LOG2OF10 3.3219281f
 | |
|     //   t0 = Op * LOG2OF10;
 | |
|     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
 | |
|                              getF32Constant(DAG, 0x40549a78, dl));
 | |
|     return getLimitedPrecisionExp2(t0, dl, DAG);
 | |
|   }
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
 | |
| }
 | |
| 
 | |
| /// ExpandPowI - Expand a llvm.powi intrinsic.
 | |
| static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
 | |
|                           SelectionDAG &DAG) {
 | |
|   // If RHS is a constant, we can expand this out to a multiplication tree,
 | |
|   // otherwise we end up lowering to a call to __powidf2 (for example).  When
 | |
|   // optimizing for size, we only want to do this if the expansion would produce
 | |
|   // a small number of multiplies, otherwise we do the full expansion.
 | |
|   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
 | |
|     // Get the exponent as a positive value.
 | |
|     unsigned Val = RHSC->getSExtValue();
 | |
|     if ((int)Val < 0) Val = -Val;
 | |
| 
 | |
|     // powi(x, 0) -> 1.0
 | |
|     if (Val == 0)
 | |
|       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
 | |
| 
 | |
|     bool OptForSize = DAG.shouldOptForSize();
 | |
|     if (!OptForSize ||
 | |
|         // If optimizing for size, don't insert too many multiplies.
 | |
|         // This inserts up to 5 multiplies.
 | |
|         countPopulation(Val) + Log2_32(Val) < 7) {
 | |
|       // We use the simple binary decomposition method to generate the multiply
 | |
|       // sequence.  There are more optimal ways to do this (for example,
 | |
|       // powi(x,15) generates one more multiply than it should), but this has
 | |
|       // the benefit of being both really simple and much better than a libcall.
 | |
|       SDValue Res;  // Logically starts equal to 1.0
 | |
|       SDValue CurSquare = LHS;
 | |
|       // TODO: Intrinsics should have fast-math-flags that propagate to these
 | |
|       // nodes.
 | |
|       while (Val) {
 | |
|         if (Val & 1) {
 | |
|           if (Res.getNode())
 | |
|             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
 | |
|           else
 | |
|             Res = CurSquare;  // 1.0*CurSquare.
 | |
|         }
 | |
| 
 | |
|         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
 | |
|                                 CurSquare, CurSquare);
 | |
|         Val >>= 1;
 | |
|       }
 | |
| 
 | |
|       // If the original was negative, invert the result, producing 1/(x*x*x).
 | |
|       if (RHSC->getSExtValue() < 0)
 | |
|         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
 | |
|                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
 | |
|       return Res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, expand to a libcall.
 | |
|   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
 | |
| }
 | |
| 
 | |
| static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
 | |
|                             SDValue LHS, SDValue RHS, SDValue Scale,
 | |
|                             SelectionDAG &DAG, const TargetLowering &TLI) {
 | |
|   EVT VT = LHS.getValueType();
 | |
|   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
 | |
|   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
 | |
|   LLVMContext &Ctx = *DAG.getContext();
 | |
| 
 | |
|   // If the type is legal but the operation isn't, this node might survive all
 | |
|   // the way to operation legalization. If we end up there and we do not have
 | |
|   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
 | |
|   // node.
 | |
| 
 | |
|   // Coax the legalizer into expanding the node during type legalization instead
 | |
|   // by bumping the size by one bit. This will force it to Promote, enabling the
 | |
|   // early expansion and avoiding the need to expand later.
 | |
| 
 | |
|   // We don't have to do this if Scale is 0; that can always be expanded, unless
 | |
|   // it's a saturating signed operation. Those can experience true integer
 | |
|   // division overflow, a case which we must avoid.
 | |
| 
 | |
|   // FIXME: We wouldn't have to do this (or any of the early
 | |
|   // expansion/promotion) if it was possible to expand a libcall of an
 | |
|   // illegal type during operation legalization. But it's not, so things
 | |
|   // get a bit hacky.
 | |
|   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
 | |
|   if ((ScaleInt > 0 || (Saturating && Signed)) &&
 | |
|       (TLI.isTypeLegal(VT) ||
 | |
|        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
 | |
|     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
 | |
|         Opcode, VT, ScaleInt);
 | |
|     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
 | |
|       EVT PromVT;
 | |
|       if (VT.isScalarInteger())
 | |
|         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
 | |
|       else if (VT.isVector()) {
 | |
|         PromVT = VT.getVectorElementType();
 | |
|         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
 | |
|         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
 | |
|       } else
 | |
|         llvm_unreachable("Wrong VT for DIVFIX?");
 | |
|       if (Signed) {
 | |
|         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
 | |
|         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
 | |
|       } else {
 | |
|         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
 | |
|         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
 | |
|       }
 | |
|       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
 | |
|       // For saturating operations, we need to shift up the LHS to get the
 | |
|       // proper saturation width, and then shift down again afterwards.
 | |
|       if (Saturating)
 | |
|         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
 | |
|                           DAG.getConstant(1, DL, ShiftTy));
 | |
|       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
 | |
|       if (Saturating)
 | |
|         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
 | |
|                           DAG.getConstant(1, DL, ShiftTy));
 | |
|       return DAG.getZExtOrTrunc(Res, DL, VT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
 | |
| }
 | |
| 
 | |
| // getUnderlyingArgRegs - Find underlying registers used for a truncated,
 | |
| // bitcasted, or split argument. Returns a list of <Register, size in bits>
 | |
| static void
 | |
| getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
 | |
|                      const SDValue &N) {
 | |
|   switch (N.getOpcode()) {
 | |
|   case ISD::CopyFromReg: {
 | |
|     SDValue Op = N.getOperand(1);
 | |
|     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
 | |
|                       Op.getValueType().getSizeInBits());
 | |
|     return;
 | |
|   }
 | |
|   case ISD::BITCAST:
 | |
|   case ISD::AssertZext:
 | |
|   case ISD::AssertSext:
 | |
|   case ISD::TRUNCATE:
 | |
|     getUnderlyingArgRegs(Regs, N.getOperand(0));
 | |
|     return;
 | |
|   case ISD::BUILD_PAIR:
 | |
|   case ISD::BUILD_VECTOR:
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     for (SDValue Op : N->op_values())
 | |
|       getUnderlyingArgRegs(Regs, Op);
 | |
|     return;
 | |
|   default:
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If the DbgValueInst is a dbg_value of a function argument, create the
 | |
| /// corresponding DBG_VALUE machine instruction for it now.  At the end of
 | |
| /// instruction selection, they will be inserted to the entry BB.
 | |
| /// We don't currently support this for variadic dbg_values, as they shouldn't
 | |
| /// appear for function arguments or in the prologue.
 | |
| bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
 | |
|     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
 | |
|     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
 | |
|   const Argument *Arg = dyn_cast<Argument>(V);
 | |
|   if (!Arg)
 | |
|     return false;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
 | |
| 
 | |
|   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
 | |
|   // we've been asked to pursue.
 | |
|   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
 | |
|                               bool Indirect) {
 | |
|     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
 | |
|       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
 | |
|       // pointing at the VReg, which will be patched up later.
 | |
|       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
 | |
|       auto MIB = BuildMI(MF, DL, Inst);
 | |
|       MIB.addReg(Reg);
 | |
|       MIB.addImm(0);
 | |
|       MIB.addMetadata(Variable);
 | |
|       auto *NewDIExpr = FragExpr;
 | |
|       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
 | |
|       // the DIExpression.
 | |
|       if (Indirect)
 | |
|         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
 | |
|       MIB.addMetadata(NewDIExpr);
 | |
|       return MIB;
 | |
|     } else {
 | |
|       // Create a completely standard DBG_VALUE.
 | |
|       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
 | |
|       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   if (Kind == FuncArgumentDbgValueKind::Value) {
 | |
|     // ArgDbgValues are hoisted to the beginning of the entry block. So we
 | |
|     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
 | |
|     // the entry block.
 | |
|     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
 | |
|     if (!IsInEntryBlock)
 | |
|       return false;
 | |
| 
 | |
|     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
 | |
|     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
 | |
|     // variable that also is a param.
 | |
|     //
 | |
|     // Although, if we are at the top of the entry block already, we can still
 | |
|     // emit using ArgDbgValue. This might catch some situations when the
 | |
|     // dbg.value refers to an argument that isn't used in the entry block, so
 | |
|     // any CopyToReg node would be optimized out and the only way to express
 | |
|     // this DBG_VALUE is by using the physical reg (or FI) as done in this
 | |
|     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
 | |
|     // we should only emit as ArgDbgValue if the Variable is an argument to the
 | |
|     // current function, and the dbg.value intrinsic is found in the entry
 | |
|     // block.
 | |
|     bool VariableIsFunctionInputArg = Variable->isParameter() &&
 | |
|         !DL->getInlinedAt();
 | |
|     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
 | |
|     if (!IsInPrologue && !VariableIsFunctionInputArg)
 | |
|       return false;
 | |
| 
 | |
|     // Here we assume that a function argument on IR level only can be used to
 | |
|     // describe one input parameter on source level. If we for example have
 | |
|     // source code like this
 | |
|     //
 | |
|     //    struct A { long x, y; };
 | |
|     //    void foo(struct A a, long b) {
 | |
|     //      ...
 | |
|     //      b = a.x;
 | |
|     //      ...
 | |
|     //    }
 | |
|     //
 | |
|     // and IR like this
 | |
|     //
 | |
|     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
 | |
|     //  entry:
 | |
|     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
 | |
|     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
 | |
|     //    call void @llvm.dbg.value(metadata i32 %b, "b",
 | |
|     //    ...
 | |
|     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
 | |
|     //    ...
 | |
|     //
 | |
|     // then the last dbg.value is describing a parameter "b" using a value that
 | |
|     // is an argument. But since we already has used %a1 to describe a parameter
 | |
|     // we should not handle that last dbg.value here (that would result in an
 | |
|     // incorrect hoisting of the DBG_VALUE to the function entry).
 | |
|     // Notice that we allow one dbg.value per IR level argument, to accommodate
 | |
|     // for the situation with fragments above.
 | |
|     if (VariableIsFunctionInputArg) {
 | |
|       unsigned ArgNo = Arg->getArgNo();
 | |
|       if (ArgNo >= FuncInfo.DescribedArgs.size())
 | |
|         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
 | |
|       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
 | |
|         return false;
 | |
|       FuncInfo.DescribedArgs.set(ArgNo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool IsIndirect = false;
 | |
|   Optional<MachineOperand> Op;
 | |
|   // Some arguments' frame index is recorded during argument lowering.
 | |
|   int FI = FuncInfo.getArgumentFrameIndex(Arg);
 | |
|   if (FI != std::numeric_limits<int>::max())
 | |
|     Op = MachineOperand::CreateFI(FI);
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
 | |
|   if (!Op && N.getNode()) {
 | |
|     getUnderlyingArgRegs(ArgRegsAndSizes, N);
 | |
|     Register Reg;
 | |
|     if (ArgRegsAndSizes.size() == 1)
 | |
|       Reg = ArgRegsAndSizes.front().first;
 | |
| 
 | |
|     if (Reg && Reg.isVirtual()) {
 | |
|       MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|       Register PR = RegInfo.getLiveInPhysReg(Reg);
 | |
|       if (PR)
 | |
|         Reg = PR;
 | |
|     }
 | |
|     if (Reg) {
 | |
|       Op = MachineOperand::CreateReg(Reg, false);
 | |
|       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Op && N.getNode()) {
 | |
|     // Check if frame index is available.
 | |
|     SDValue LCandidate = peekThroughBitcasts(N);
 | |
|     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
 | |
|       if (FrameIndexSDNode *FINode =
 | |
|           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
 | |
|         Op = MachineOperand::CreateFI(FINode->getIndex());
 | |
|   }
 | |
| 
 | |
|   if (!Op) {
 | |
|     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
 | |
|     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
 | |
|                                          SplitRegs) {
 | |
|       unsigned Offset = 0;
 | |
|       for (const auto &RegAndSize : SplitRegs) {
 | |
|         // If the expression is already a fragment, the current register
 | |
|         // offset+size might extend beyond the fragment. In this case, only
 | |
|         // the register bits that are inside the fragment are relevant.
 | |
|         int RegFragmentSizeInBits = RegAndSize.second;
 | |
|         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
 | |
|           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
 | |
|           // The register is entirely outside the expression fragment,
 | |
|           // so is irrelevant for debug info.
 | |
|           if (Offset >= ExprFragmentSizeInBits)
 | |
|             break;
 | |
|           // The register is partially outside the expression fragment, only
 | |
|           // the low bits within the fragment are relevant for debug info.
 | |
|           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
 | |
|             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         auto FragmentExpr = DIExpression::createFragmentExpression(
 | |
|             Expr, Offset, RegFragmentSizeInBits);
 | |
|         Offset += RegAndSize.second;
 | |
|         // If a valid fragment expression cannot be created, the variable's
 | |
|         // correct value cannot be determined and so it is set as Undef.
 | |
|         if (!FragmentExpr) {
 | |
|           SDDbgValue *SDV = DAG.getConstantDbgValue(
 | |
|               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
 | |
|           DAG.AddDbgValue(SDV, false);
 | |
|           continue;
 | |
|         }
 | |
|         MachineInstr *NewMI =
 | |
|             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
 | |
|                              Kind != FuncArgumentDbgValueKind::Value);
 | |
|         FuncInfo.ArgDbgValues.push_back(NewMI);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     // Check if ValueMap has reg number.
 | |
|     DenseMap<const Value *, Register>::const_iterator
 | |
|       VMI = FuncInfo.ValueMap.find(V);
 | |
|     if (VMI != FuncInfo.ValueMap.end()) {
 | |
|       const auto &TLI = DAG.getTargetLoweringInfo();
 | |
|       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
 | |
|                        V->getType(), None);
 | |
|       if (RFV.occupiesMultipleRegs()) {
 | |
|         splitMultiRegDbgValue(RFV.getRegsAndSizes());
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       Op = MachineOperand::CreateReg(VMI->second, false);
 | |
|       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
 | |
|     } else if (ArgRegsAndSizes.size() > 1) {
 | |
|       // This was split due to the calling convention, and no virtual register
 | |
|       // mapping exists for the value.
 | |
|       splitMultiRegDbgValue(ArgRegsAndSizes);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Op)
 | |
|     return false;
 | |
| 
 | |
|   assert(Variable->isValidLocationForIntrinsic(DL) &&
 | |
|          "Expected inlined-at fields to agree");
 | |
|   MachineInstr *NewMI = nullptr;
 | |
| 
 | |
|   if (Op->isReg())
 | |
|     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
 | |
|   else
 | |
|     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
 | |
|                     Variable, Expr);
 | |
| 
 | |
|   // Otherwise, use ArgDbgValues.
 | |
|   FuncInfo.ArgDbgValues.push_back(NewMI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return the appropriate SDDbgValue based on N.
 | |
| SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
 | |
|                                              DILocalVariable *Variable,
 | |
|                                              DIExpression *Expr,
 | |
|                                              const DebugLoc &dl,
 | |
|                                              unsigned DbgSDNodeOrder) {
 | |
|   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
 | |
|     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
 | |
|     // stack slot locations.
 | |
|     //
 | |
|     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
 | |
|     // debug values here after optimization:
 | |
|     //
 | |
|     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
 | |
|     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
 | |
|     //
 | |
|     // Both describe the direct values of their associated variables.
 | |
|     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
 | |
|                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
 | |
|   }
 | |
|   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
 | |
|                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
 | |
| }
 | |
| 
 | |
| static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
 | |
|   switch (Intrinsic) {
 | |
|   case Intrinsic::smul_fix:
 | |
|     return ISD::SMULFIX;
 | |
|   case Intrinsic::umul_fix:
 | |
|     return ISD::UMULFIX;
 | |
|   case Intrinsic::smul_fix_sat:
 | |
|     return ISD::SMULFIXSAT;
 | |
|   case Intrinsic::umul_fix_sat:
 | |
|     return ISD::UMULFIXSAT;
 | |
|   case Intrinsic::sdiv_fix:
 | |
|     return ISD::SDIVFIX;
 | |
|   case Intrinsic::udiv_fix:
 | |
|     return ISD::UDIVFIX;
 | |
|   case Intrinsic::sdiv_fix_sat:
 | |
|     return ISD::SDIVFIXSAT;
 | |
|   case Intrinsic::udiv_fix_sat:
 | |
|     return ISD::UDIVFIXSAT;
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled fixed point intrinsic");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
 | |
|                                            const char *FunctionName) {
 | |
|   assert(FunctionName && "FunctionName must not be nullptr");
 | |
|   SDValue Callee = DAG.getExternalSymbol(
 | |
|       FunctionName,
 | |
|       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
 | |
|   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
 | |
| }
 | |
| 
 | |
| /// Given a @llvm.call.preallocated.setup, return the corresponding
 | |
| /// preallocated call.
 | |
| static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
 | |
|   assert(cast<CallBase>(PreallocatedSetup)
 | |
|                  ->getCalledFunction()
 | |
|                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
 | |
|          "expected call_preallocated_setup Value");
 | |
|   for (auto *U : PreallocatedSetup->users()) {
 | |
|     auto *UseCall = cast<CallBase>(U);
 | |
|     const Function *Fn = UseCall->getCalledFunction();
 | |
|     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
 | |
|       return UseCall;
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("expected corresponding call to preallocated setup/arg");
 | |
| }
 | |
| 
 | |
| /// Lower the call to the specified intrinsic function.
 | |
| void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
 | |
|                                              unsigned Intrinsic) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
|   DebugLoc dl = getCurDebugLoc();
 | |
|   SDValue Res;
 | |
| 
 | |
|   SDNodeFlags Flags;
 | |
|   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
 | |
|     Flags.copyFMF(*FPOp);
 | |
| 
 | |
|   switch (Intrinsic) {
 | |
|   default:
 | |
|     // By default, turn this into a target intrinsic node.
 | |
|     visitTargetIntrinsic(I, Intrinsic);
 | |
|     return;
 | |
|   case Intrinsic::vscale: {
 | |
|     match(&I, m_VScale(DAG.getDataLayout()));
 | |
|     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::vastart:  visitVAStart(I); return;
 | |
|   case Intrinsic::vaend:    visitVAEnd(I); return;
 | |
|   case Intrinsic::vacopy:   visitVACopy(I); return;
 | |
|   case Intrinsic::returnaddress:
 | |
|     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
 | |
|                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return;
 | |
|   case Intrinsic::addressofreturnaddress:
 | |
|     setValue(&I,
 | |
|              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
 | |
|                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
 | |
|     return;
 | |
|   case Intrinsic::sponentry:
 | |
|     setValue(&I,
 | |
|              DAG.getNode(ISD::SPONENTRY, sdl,
 | |
|                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
 | |
|     return;
 | |
|   case Intrinsic::frameaddress:
 | |
|     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
 | |
|                              TLI.getFrameIndexTy(DAG.getDataLayout()),
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return;
 | |
|   case Intrinsic::read_volatile_register:
 | |
|   case Intrinsic::read_register: {
 | |
|     Value *Reg = I.getArgOperand(0);
 | |
|     SDValue Chain = getRoot();
 | |
|     SDValue RegName =
 | |
|         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
 | |
|     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
 | |
|       DAG.getVTList(VT, MVT::Other), Chain, RegName);
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res.getValue(1));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::write_register: {
 | |
|     Value *Reg = I.getArgOperand(0);
 | |
|     Value *RegValue = I.getArgOperand(1);
 | |
|     SDValue Chain = getRoot();
 | |
|     SDValue RegName =
 | |
|         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
 | |
|     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
 | |
|                             RegName, getValue(RegValue)));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::memcpy: {
 | |
|     const auto &MCI = cast<MemCpyInst>(I);
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     SDValue Op3 = getValue(I.getArgOperand(2));
 | |
|     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
 | |
|     Align DstAlign = MCI.getDestAlign().valueOrOne();
 | |
|     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
 | |
|     Align Alignment = commonAlignment(DstAlign, SrcAlign);
 | |
|     bool isVol = MCI.isVolatile();
 | |
|     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
 | |
|     // FIXME: Support passing different dest/src alignments to the memcpy DAG
 | |
|     // node.
 | |
|     SDValue Root = isVol ? getRoot() : getMemoryRoot();
 | |
|     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
 | |
|                                /* AlwaysInline */ false, isTC,
 | |
|                                MachinePointerInfo(I.getArgOperand(0)),
 | |
|                                MachinePointerInfo(I.getArgOperand(1)),
 | |
|                                I.getAAMetadata());
 | |
|     updateDAGForMaybeTailCall(MC);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::memcpy_inline: {
 | |
|     const auto &MCI = cast<MemCpyInlineInst>(I);
 | |
|     SDValue Dst = getValue(I.getArgOperand(0));
 | |
|     SDValue Src = getValue(I.getArgOperand(1));
 | |
|     SDValue Size = getValue(I.getArgOperand(2));
 | |
|     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
 | |
|     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
 | |
|     Align DstAlign = MCI.getDestAlign().valueOrOne();
 | |
|     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
 | |
|     Align Alignment = commonAlignment(DstAlign, SrcAlign);
 | |
|     bool isVol = MCI.isVolatile();
 | |
|     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
 | |
|     // FIXME: Support passing different dest/src alignments to the memcpy DAG
 | |
|     // node.
 | |
|     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
 | |
|                                /* AlwaysInline */ true, isTC,
 | |
|                                MachinePointerInfo(I.getArgOperand(0)),
 | |
|                                MachinePointerInfo(I.getArgOperand(1)),
 | |
|                                I.getAAMetadata());
 | |
|     updateDAGForMaybeTailCall(MC);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::memset: {
 | |
|     const auto &MSI = cast<MemSetInst>(I);
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     SDValue Op3 = getValue(I.getArgOperand(2));
 | |
|     // @llvm.memset defines 0 and 1 to both mean no alignment.
 | |
|     Align Alignment = MSI.getDestAlign().valueOrOne();
 | |
|     bool isVol = MSI.isVolatile();
 | |
|     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
 | |
|     SDValue Root = isVol ? getRoot() : getMemoryRoot();
 | |
|     SDValue MS = DAG.getMemset(
 | |
|         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
 | |
|         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
 | |
|     updateDAGForMaybeTailCall(MS);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::memset_inline: {
 | |
|     const auto &MSII = cast<MemSetInlineInst>(I);
 | |
|     SDValue Dst = getValue(I.getArgOperand(0));
 | |
|     SDValue Value = getValue(I.getArgOperand(1));
 | |
|     SDValue Size = getValue(I.getArgOperand(2));
 | |
|     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
 | |
|     // @llvm.memset defines 0 and 1 to both mean no alignment.
 | |
|     Align DstAlign = MSII.getDestAlign().valueOrOne();
 | |
|     bool isVol = MSII.isVolatile();
 | |
|     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
 | |
|     SDValue Root = isVol ? getRoot() : getMemoryRoot();
 | |
|     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
 | |
|                                /* AlwaysInline */ true, isTC,
 | |
|                                MachinePointerInfo(I.getArgOperand(0)),
 | |
|                                I.getAAMetadata());
 | |
|     updateDAGForMaybeTailCall(MC);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::memmove: {
 | |
|     const auto &MMI = cast<MemMoveInst>(I);
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     SDValue Op3 = getValue(I.getArgOperand(2));
 | |
|     // @llvm.memmove defines 0 and 1 to both mean no alignment.
 | |
|     Align DstAlign = MMI.getDestAlign().valueOrOne();
 | |
|     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
 | |
|     Align Alignment = commonAlignment(DstAlign, SrcAlign);
 | |
|     bool isVol = MMI.isVolatile();
 | |
|     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
 | |
|     // FIXME: Support passing different dest/src alignments to the memmove DAG
 | |
|     // node.
 | |
|     SDValue Root = isVol ? getRoot() : getMemoryRoot();
 | |
|     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
 | |
|                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
 | |
|                                 MachinePointerInfo(I.getArgOperand(1)),
 | |
|                                 I.getAAMetadata());
 | |
|     updateDAGForMaybeTailCall(MM);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::memcpy_element_unordered_atomic: {
 | |
|     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
 | |
|     SDValue Dst = getValue(MI.getRawDest());
 | |
|     SDValue Src = getValue(MI.getRawSource());
 | |
|     SDValue Length = getValue(MI.getLength());
 | |
| 
 | |
|     Type *LengthTy = MI.getLength()->getType();
 | |
|     unsigned ElemSz = MI.getElementSizeInBytes();
 | |
|     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
 | |
|     SDValue MC =
 | |
|         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
 | |
|                             isTC, MachinePointerInfo(MI.getRawDest()),
 | |
|                             MachinePointerInfo(MI.getRawSource()));
 | |
|     updateDAGForMaybeTailCall(MC);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::memmove_element_unordered_atomic: {
 | |
|     auto &MI = cast<AtomicMemMoveInst>(I);
 | |
|     SDValue Dst = getValue(MI.getRawDest());
 | |
|     SDValue Src = getValue(MI.getRawSource());
 | |
|     SDValue Length = getValue(MI.getLength());
 | |
| 
 | |
|     Type *LengthTy = MI.getLength()->getType();
 | |
|     unsigned ElemSz = MI.getElementSizeInBytes();
 | |
|     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
 | |
|     SDValue MC =
 | |
|         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
 | |
|                              isTC, MachinePointerInfo(MI.getRawDest()),
 | |
|                              MachinePointerInfo(MI.getRawSource()));
 | |
|     updateDAGForMaybeTailCall(MC);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::memset_element_unordered_atomic: {
 | |
|     auto &MI = cast<AtomicMemSetInst>(I);
 | |
|     SDValue Dst = getValue(MI.getRawDest());
 | |
|     SDValue Val = getValue(MI.getValue());
 | |
|     SDValue Length = getValue(MI.getLength());
 | |
| 
 | |
|     Type *LengthTy = MI.getLength()->getType();
 | |
|     unsigned ElemSz = MI.getElementSizeInBytes();
 | |
|     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
 | |
|     SDValue MC =
 | |
|         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
 | |
|                             isTC, MachinePointerInfo(MI.getRawDest()));
 | |
|     updateDAGForMaybeTailCall(MC);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::call_preallocated_setup: {
 | |
|     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
 | |
|     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
 | |
|     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
 | |
|                               getRoot(), SrcValue);
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::call_preallocated_arg: {
 | |
|     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
 | |
|     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
 | |
|     SDValue Ops[3];
 | |
|     Ops[0] = getRoot();
 | |
|     Ops[1] = SrcValue;
 | |
|     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
 | |
|                                    MVT::i32); // arg index
 | |
|     SDValue Res = DAG.getNode(
 | |
|         ISD::PREALLOCATED_ARG, sdl,
 | |
|         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res.getValue(1));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::dbg_addr:
 | |
|   case Intrinsic::dbg_declare: {
 | |
|     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
 | |
|     // they are non-variadic.
 | |
|     const auto &DI = cast<DbgVariableIntrinsic>(I);
 | |
|     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
 | |
|     DILocalVariable *Variable = DI.getVariable();
 | |
|     DIExpression *Expression = DI.getExpression();
 | |
|     dropDanglingDebugInfo(Variable, Expression);
 | |
|     assert(Variable && "Missing variable");
 | |
|     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
 | |
|                       << "\n");
 | |
|     // Check if address has undef value.
 | |
|     const Value *Address = DI.getVariableLocationOp(0);
 | |
|     if (!Address || isa<UndefValue>(Address) ||
 | |
|         (Address->use_empty() && !isa<Argument>(Address))) {
 | |
|       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
 | |
|                         << " (bad/undef/unused-arg address)\n");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
 | |
| 
 | |
|     // Check if this variable can be described by a frame index, typically
 | |
|     // either as a static alloca or a byval parameter.
 | |
|     int FI = std::numeric_limits<int>::max();
 | |
|     if (const auto *AI =
 | |
|             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
 | |
|       if (AI->isStaticAlloca()) {
 | |
|         auto I = FuncInfo.StaticAllocaMap.find(AI);
 | |
|         if (I != FuncInfo.StaticAllocaMap.end())
 | |
|           FI = I->second;
 | |
|       }
 | |
|     } else if (const auto *Arg = dyn_cast<Argument>(
 | |
|                    Address->stripInBoundsConstantOffsets())) {
 | |
|       FI = FuncInfo.getArgumentFrameIndex(Arg);
 | |
|     }
 | |
| 
 | |
|     // llvm.dbg.addr is control dependent and always generates indirect
 | |
|     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
 | |
|     // the MachineFunction variable table.
 | |
|     if (FI != std::numeric_limits<int>::max()) {
 | |
|       if (Intrinsic == Intrinsic::dbg_addr) {
 | |
|         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
 | |
|             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
 | |
|             dl, SDNodeOrder);
 | |
|         DAG.AddDbgValue(SDV, isParameter);
 | |
|       } else {
 | |
|         LLVM_DEBUG(dbgs() << "Skipping " << DI
 | |
|                           << " (variable info stashed in MF side table)\n");
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     SDValue &N = NodeMap[Address];
 | |
|     if (!N.getNode() && isa<Argument>(Address))
 | |
|       // Check unused arguments map.
 | |
|       N = UnusedArgNodeMap[Address];
 | |
|     SDDbgValue *SDV;
 | |
|     if (N.getNode()) {
 | |
|       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
 | |
|         Address = BCI->getOperand(0);
 | |
|       // Parameters are handled specially.
 | |
|       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
 | |
|       if (isParameter && FINode) {
 | |
|         // Byval parameter. We have a frame index at this point.
 | |
|         SDV =
 | |
|             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
 | |
|                                       /*IsIndirect*/ true, dl, SDNodeOrder);
 | |
|       } else if (isa<Argument>(Address)) {
 | |
|         // Address is an argument, so try to emit its dbg value using
 | |
|         // virtual register info from the FuncInfo.ValueMap.
 | |
|         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
 | |
|                                  FuncArgumentDbgValueKind::Declare, N);
 | |
|         return;
 | |
|       } else {
 | |
|         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
 | |
|                               true, dl, SDNodeOrder);
 | |
|       }
 | |
|       DAG.AddDbgValue(SDV, isParameter);
 | |
|     } else {
 | |
|       // If Address is an argument then try to emit its dbg value using
 | |
|       // virtual register info from the FuncInfo.ValueMap.
 | |
|       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
 | |
|                                     FuncArgumentDbgValueKind::Declare, N)) {
 | |
|         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
 | |
|                           << " (could not emit func-arg dbg_value)\n");
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::dbg_label: {
 | |
|     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
 | |
|     DILabel *Label = DI.getLabel();
 | |
|     assert(Label && "Missing label");
 | |
| 
 | |
|     SDDbgLabel *SDV;
 | |
|     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
 | |
|     DAG.AddDbgLabel(SDV);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::dbg_value: {
 | |
|     const DbgValueInst &DI = cast<DbgValueInst>(I);
 | |
|     assert(DI.getVariable() && "Missing variable");
 | |
| 
 | |
|     DILocalVariable *Variable = DI.getVariable();
 | |
|     DIExpression *Expression = DI.getExpression();
 | |
|     dropDanglingDebugInfo(Variable, Expression);
 | |
|     SmallVector<Value *, 4> Values(DI.getValues());
 | |
|     if (Values.empty())
 | |
|       return;
 | |
| 
 | |
|     if (llvm::is_contained(Values, nullptr))
 | |
|       return;
 | |
| 
 | |
|     bool IsVariadic = DI.hasArgList();
 | |
|     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
 | |
|                           SDNodeOrder, IsVariadic))
 | |
|       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::eh_typeid_for: {
 | |
|     // Find the type id for the given typeinfo.
 | |
|     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
 | |
|     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
 | |
|     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
 | |
|     setValue(&I, Res);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::eh_return_i32:
 | |
|   case Intrinsic::eh_return_i64:
 | |
|     DAG.getMachineFunction().setCallsEHReturn(true);
 | |
|     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
 | |
|                             MVT::Other,
 | |
|                             getControlRoot(),
 | |
|                             getValue(I.getArgOperand(0)),
 | |
|                             getValue(I.getArgOperand(1))));
 | |
|     return;
 | |
|   case Intrinsic::eh_unwind_init:
 | |
|     DAG.getMachineFunction().setCallsUnwindInit(true);
 | |
|     return;
 | |
|   case Intrinsic::eh_dwarf_cfa:
 | |
|     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
 | |
|                              TLI.getPointerTy(DAG.getDataLayout()),
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return;
 | |
|   case Intrinsic::eh_sjlj_callsite: {
 | |
|     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
 | |
|     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
 | |
|     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
 | |
| 
 | |
|     MMI.setCurrentCallSite(CI->getZExtValue());
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::eh_sjlj_functioncontext: {
 | |
|     // Get and store the index of the function context.
 | |
|     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|     AllocaInst *FnCtx =
 | |
|       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
 | |
|     int FI = FuncInfo.StaticAllocaMap[FnCtx];
 | |
|     MFI.setFunctionContextIndex(FI);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::eh_sjlj_setjmp: {
 | |
|     SDValue Ops[2];
 | |
|     Ops[0] = getRoot();
 | |
|     Ops[1] = getValue(I.getArgOperand(0));
 | |
|     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
 | |
|                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
 | |
|     setValue(&I, Op.getValue(0));
 | |
|     DAG.setRoot(Op.getValue(1));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::eh_sjlj_longjmp:
 | |
|     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
 | |
|                             getRoot(), getValue(I.getArgOperand(0))));
 | |
|     return;
 | |
|   case Intrinsic::eh_sjlj_setup_dispatch:
 | |
|     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
 | |
|                             getRoot()));
 | |
|     return;
 | |
|   case Intrinsic::masked_gather:
 | |
|     visitMaskedGather(I);
 | |
|     return;
 | |
|   case Intrinsic::masked_load:
 | |
|     visitMaskedLoad(I);
 | |
|     return;
 | |
|   case Intrinsic::masked_scatter:
 | |
|     visitMaskedScatter(I);
 | |
|     return;
 | |
|   case Intrinsic::masked_store:
 | |
|     visitMaskedStore(I);
 | |
|     return;
 | |
|   case Intrinsic::masked_expandload:
 | |
|     visitMaskedLoad(I, true /* IsExpanding */);
 | |
|     return;
 | |
|   case Intrinsic::masked_compressstore:
 | |
|     visitMaskedStore(I, true /* IsCompressing */);
 | |
|     return;
 | |
|   case Intrinsic::powi:
 | |
|     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
 | |
|                             getValue(I.getArgOperand(1)), DAG));
 | |
|     return;
 | |
|   case Intrinsic::log:
 | |
|     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
 | |
|     return;
 | |
|   case Intrinsic::log2:
 | |
|     setValue(&I,
 | |
|              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
 | |
|     return;
 | |
|   case Intrinsic::log10:
 | |
|     setValue(&I,
 | |
|              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
 | |
|     return;
 | |
|   case Intrinsic::exp:
 | |
|     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
 | |
|     return;
 | |
|   case Intrinsic::exp2:
 | |
|     setValue(&I,
 | |
|              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
 | |
|     return;
 | |
|   case Intrinsic::pow:
 | |
|     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
 | |
|                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
 | |
|     return;
 | |
|   case Intrinsic::sqrt:
 | |
|   case Intrinsic::fabs:
 | |
|   case Intrinsic::sin:
 | |
|   case Intrinsic::cos:
 | |
|   case Intrinsic::floor:
 | |
|   case Intrinsic::ceil:
 | |
|   case Intrinsic::trunc:
 | |
|   case Intrinsic::rint:
 | |
|   case Intrinsic::nearbyint:
 | |
|   case Intrinsic::round:
 | |
|   case Intrinsic::roundeven:
 | |
|   case Intrinsic::canonicalize: {
 | |
|     unsigned Opcode;
 | |
|     switch (Intrinsic) {
 | |
|     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
 | |
|     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
 | |
|     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
 | |
|     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
 | |
|     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
 | |
|     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
 | |
|     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
 | |
|     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
 | |
|     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
 | |
|     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
 | |
|     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
 | |
|     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
 | |
|     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
 | |
|     }
 | |
| 
 | |
|     setValue(&I, DAG.getNode(Opcode, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0)), Flags));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::lround:
 | |
|   case Intrinsic::llround:
 | |
|   case Intrinsic::lrint:
 | |
|   case Intrinsic::llrint: {
 | |
|     unsigned Opcode;
 | |
|     switch (Intrinsic) {
 | |
|     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
 | |
|     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
 | |
|     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
 | |
|     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
 | |
|     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
 | |
|     }
 | |
| 
 | |
|     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::minnum:
 | |
|     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0)),
 | |
|                              getValue(I.getArgOperand(1)), Flags));
 | |
|     return;
 | |
|   case Intrinsic::maxnum:
 | |
|     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0)),
 | |
|                              getValue(I.getArgOperand(1)), Flags));
 | |
|     return;
 | |
|   case Intrinsic::minimum:
 | |
|     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0)),
 | |
|                              getValue(I.getArgOperand(1)), Flags));
 | |
|     return;
 | |
|   case Intrinsic::maximum:
 | |
|     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0)),
 | |
|                              getValue(I.getArgOperand(1)), Flags));
 | |
|     return;
 | |
|   case Intrinsic::copysign:
 | |
|     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0)),
 | |
|                              getValue(I.getArgOperand(1)), Flags));
 | |
|     return;
 | |
|   case Intrinsic::arithmetic_fence: {
 | |
|     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0)), Flags));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::fma:
 | |
|     setValue(&I, DAG.getNode(
 | |
|                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
 | |
|                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
 | |
|                      getValue(I.getArgOperand(2)), Flags));
 | |
|     return;
 | |
| #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
 | |
|   case Intrinsic::INTRINSIC:
 | |
| #include "llvm/IR/ConstrainedOps.def"
 | |
|     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
 | |
|     return;
 | |
| #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
 | |
| #include "llvm/IR/VPIntrinsics.def"
 | |
|     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
 | |
|     return;
 | |
|   case Intrinsic::fptrunc_round: {
 | |
|     // Get the last argument, the metadata and convert it to an integer in the
 | |
|     // call
 | |
|     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
 | |
|     Optional<RoundingMode> RoundMode =
 | |
|         convertStrToRoundingMode(cast<MDString>(MD)->getString());
 | |
| 
 | |
|     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
| 
 | |
|     // Propagate fast-math-flags from IR to node(s).
 | |
|     SDNodeFlags Flags;
 | |
|     Flags.copyFMF(*cast<FPMathOperator>(&I));
 | |
|     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
 | |
| 
 | |
|     SDValue Result;
 | |
|     Result = DAG.getNode(
 | |
|         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
 | |
|         DAG.getTargetConstant((int)RoundMode.getValue(), sdl,
 | |
|                               TLI.getPointerTy(DAG.getDataLayout())));
 | |
|     setValue(&I, Result);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::fmuladd: {
 | |
|     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
 | |
|         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
 | |
|       setValue(&I, DAG.getNode(ISD::FMA, sdl,
 | |
|                                getValue(I.getArgOperand(0)).getValueType(),
 | |
|                                getValue(I.getArgOperand(0)),
 | |
|                                getValue(I.getArgOperand(1)),
 | |
|                                getValue(I.getArgOperand(2)), Flags));
 | |
|     } else {
 | |
|       // TODO: Intrinsic calls should have fast-math-flags.
 | |
|       SDValue Mul = DAG.getNode(
 | |
|           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
 | |
|           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
 | |
|       SDValue Add = DAG.getNode(ISD::FADD, sdl,
 | |
|                                 getValue(I.getArgOperand(0)).getValueType(),
 | |
|                                 Mul, getValue(I.getArgOperand(2)), Flags);
 | |
|       setValue(&I, Add);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::convert_to_fp16:
 | |
|     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
 | |
|                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
 | |
|                                          getValue(I.getArgOperand(0)),
 | |
|                                          DAG.getTargetConstant(0, sdl,
 | |
|                                                                MVT::i32))));
 | |
|     return;
 | |
|   case Intrinsic::convert_from_fp16:
 | |
|     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
 | |
|                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
 | |
|                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
 | |
|                                          getValue(I.getArgOperand(0)))));
 | |
|     return;
 | |
|   case Intrinsic::fptosi_sat: {
 | |
|     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
 | |
|                              getValue(I.getArgOperand(0)),
 | |
|                              DAG.getValueType(VT.getScalarType())));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::fptoui_sat: {
 | |
|     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
 | |
|                              getValue(I.getArgOperand(0)),
 | |
|                              DAG.getValueType(VT.getScalarType())));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::set_rounding:
 | |
|     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
 | |
|                       {getRoot(), getValue(I.getArgOperand(0))});
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res.getValue(0));
 | |
|     return;
 | |
|   case Intrinsic::is_fpclass: {
 | |
|     const DataLayout DLayout = DAG.getDataLayout();
 | |
|     EVT DestVT = TLI.getValueType(DLayout, I.getType());
 | |
|     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
 | |
|     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     const Function &F = MF.getFunction();
 | |
|     SDValue Op = getValue(I.getArgOperand(0));
 | |
|     SDNodeFlags Flags;
 | |
|     Flags.setNoFPExcept(
 | |
|         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
 | |
|     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
 | |
|     // expansion can use illegal types. Making expansion early allows
 | |
|     // legalizing these types prior to selection.
 | |
|     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
 | |
|       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
 | |
|       setValue(&I, Result);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
 | |
|     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
 | |
|     setValue(&I, V);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::pcmarker: {
 | |
|     SDValue Tmp = getValue(I.getArgOperand(0));
 | |
|     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::readcyclecounter: {
 | |
|     SDValue Op = getRoot();
 | |
|     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
 | |
|                       DAG.getVTList(MVT::i64, MVT::Other), Op);
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res.getValue(1));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::bitreverse:
 | |
|     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return;
 | |
|   case Intrinsic::bswap:
 | |
|     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return;
 | |
|   case Intrinsic::cttz: {
 | |
|     SDValue Arg = getValue(I.getArgOperand(0));
 | |
|     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
 | |
|     EVT Ty = Arg.getValueType();
 | |
|     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
 | |
|                              sdl, Ty, Arg));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::ctlz: {
 | |
|     SDValue Arg = getValue(I.getArgOperand(0));
 | |
|     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
 | |
|     EVT Ty = Arg.getValueType();
 | |
|     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
 | |
|                              sdl, Ty, Arg));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::ctpop: {
 | |
|     SDValue Arg = getValue(I.getArgOperand(0));
 | |
|     EVT Ty = Arg.getValueType();
 | |
|     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::fshl:
 | |
|   case Intrinsic::fshr: {
 | |
|     bool IsFSHL = Intrinsic == Intrinsic::fshl;
 | |
|     SDValue X = getValue(I.getArgOperand(0));
 | |
|     SDValue Y = getValue(I.getArgOperand(1));
 | |
|     SDValue Z = getValue(I.getArgOperand(2));
 | |
|     EVT VT = X.getValueType();
 | |
| 
 | |
|     if (X == Y) {
 | |
|       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
 | |
|       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
 | |
|     } else {
 | |
|       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
 | |
|       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::sadd_sat: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::uadd_sat: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::ssub_sat: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::usub_sat: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::sshl_sat: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::ushl_sat: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::smul_fix:
 | |
|   case Intrinsic::umul_fix:
 | |
|   case Intrinsic::smul_fix_sat:
 | |
|   case Intrinsic::umul_fix_sat: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     SDValue Op3 = getValue(I.getArgOperand(2));
 | |
|     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
 | |
|                              Op1.getValueType(), Op1, Op2, Op3));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::sdiv_fix:
 | |
|   case Intrinsic::udiv_fix:
 | |
|   case Intrinsic::sdiv_fix_sat:
 | |
|   case Intrinsic::udiv_fix_sat: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     SDValue Op3 = getValue(I.getArgOperand(2));
 | |
|     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
 | |
|                               Op1, Op2, Op3, DAG, TLI));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::smax: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::smin: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::umax: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::umin: {
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::abs: {
 | |
|     // TODO: Preserve "int min is poison" arg in SDAG?
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::stacksave: {
 | |
|     SDValue Op = getRoot();
 | |
|     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res.getValue(1));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::stackrestore:
 | |
|     Res = getValue(I.getArgOperand(0));
 | |
|     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
 | |
|     return;
 | |
|   case Intrinsic::get_dynamic_area_offset: {
 | |
|     SDValue Op = getRoot();
 | |
|     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
 | |
|     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
 | |
|     // target.
 | |
|     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
 | |
|       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
 | |
|                          " intrinsic!");
 | |
|     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
 | |
|                       Op);
 | |
|     DAG.setRoot(Op);
 | |
|     setValue(&I, Res);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::stackguard: {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     const Module &M = *MF.getFunction().getParent();
 | |
|     SDValue Chain = getRoot();
 | |
|     if (TLI.useLoadStackGuardNode()) {
 | |
|       Res = getLoadStackGuard(DAG, sdl, Chain);
 | |
|     } else {
 | |
|       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|       const Value *Global = TLI.getSDagStackGuard(M);
 | |
|       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
 | |
|       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
 | |
|                         MachinePointerInfo(Global, 0), Align,
 | |
|                         MachineMemOperand::MOVolatile);
 | |
|     }
 | |
|     if (TLI.useStackGuardXorFP())
 | |
|       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
 | |
|     DAG.setRoot(Chain);
 | |
|     setValue(&I, Res);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::stackprotector: {
 | |
|     // Emit code into the DAG to store the stack guard onto the stack.
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|     SDValue Src, Chain = getRoot();
 | |
| 
 | |
|     if (TLI.useLoadStackGuardNode())
 | |
|       Src = getLoadStackGuard(DAG, sdl, Chain);
 | |
|     else
 | |
|       Src = getValue(I.getArgOperand(0));   // The guard's value.
 | |
| 
 | |
|     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
 | |
| 
 | |
|     int FI = FuncInfo.StaticAllocaMap[Slot];
 | |
|     MFI.setStackProtectorIndex(FI);
 | |
|     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
 | |
| 
 | |
|     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
 | |
| 
 | |
|     // Store the stack protector onto the stack.
 | |
|     Res = DAG.getStore(
 | |
|         Chain, sdl, Src, FIN,
 | |
|         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
 | |
|         MaybeAlign(), MachineMemOperand::MOVolatile);
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::objectsize:
 | |
|     llvm_unreachable("llvm.objectsize.* should have been lowered already");
 | |
| 
 | |
|   case Intrinsic::is_constant:
 | |
|     llvm_unreachable("llvm.is.constant.* should have been lowered already");
 | |
| 
 | |
|   case Intrinsic::annotation:
 | |
|   case Intrinsic::ptr_annotation:
 | |
|   case Intrinsic::launder_invariant_group:
 | |
|   case Intrinsic::strip_invariant_group:
 | |
|     // Drop the intrinsic, but forward the value
 | |
|     setValue(&I, getValue(I.getOperand(0)));
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::assume:
 | |
|   case Intrinsic::experimental_noalias_scope_decl:
 | |
|   case Intrinsic::var_annotation:
 | |
|   case Intrinsic::sideeffect:
 | |
|     // Discard annotate attributes, noalias scope declarations, assumptions, and
 | |
|     // artificial side-effects.
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::codeview_annotation: {
 | |
|     // Emit a label associated with this metadata.
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     MCSymbol *Label =
 | |
|         MF.getMMI().getContext().createTempSymbol("annotation", true);
 | |
|     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
 | |
|     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
 | |
|     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
 | |
|     DAG.setRoot(Res);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::init_trampoline: {
 | |
|     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
 | |
| 
 | |
|     SDValue Ops[6];
 | |
|     Ops[0] = getRoot();
 | |
|     Ops[1] = getValue(I.getArgOperand(0));
 | |
|     Ops[2] = getValue(I.getArgOperand(1));
 | |
|     Ops[3] = getValue(I.getArgOperand(2));
 | |
|     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
 | |
|     Ops[5] = DAG.getSrcValue(F);
 | |
| 
 | |
|     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
 | |
| 
 | |
|     DAG.setRoot(Res);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::adjust_trampoline:
 | |
|     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
 | |
|                              TLI.getPointerTy(DAG.getDataLayout()),
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return;
 | |
|   case Intrinsic::gcroot: {
 | |
|     assert(DAG.getMachineFunction().getFunction().hasGC() &&
 | |
|            "only valid in functions with gc specified, enforced by Verifier");
 | |
|     assert(GFI && "implied by previous");
 | |
|     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
 | |
|     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
 | |
| 
 | |
|     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
 | |
|     GFI->addStackRoot(FI->getIndex(), TypeMap);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::gcread:
 | |
|   case Intrinsic::gcwrite:
 | |
|     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
 | |
|   case Intrinsic::flt_rounds:
 | |
|     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res.getValue(1));
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::expect:
 | |
|     // Just replace __builtin_expect(exp, c) with EXP.
 | |
|     setValue(&I, getValue(I.getArgOperand(0)));
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::ubsantrap:
 | |
|   case Intrinsic::debugtrap:
 | |
|   case Intrinsic::trap: {
 | |
|     StringRef TrapFuncName =
 | |
|         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
 | |
|     if (TrapFuncName.empty()) {
 | |
|       switch (Intrinsic) {
 | |
|       case Intrinsic::trap:
 | |
|         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
 | |
|         break;
 | |
|       case Intrinsic::debugtrap:
 | |
|         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
 | |
|         break;
 | |
|       case Intrinsic::ubsantrap:
 | |
|         DAG.setRoot(DAG.getNode(
 | |
|             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
 | |
|             DAG.getTargetConstant(
 | |
|                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
 | |
|                 MVT::i32)));
 | |
|         break;
 | |
|       default: llvm_unreachable("unknown trap intrinsic");
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     TargetLowering::ArgListTy Args;
 | |
|     if (Intrinsic == Intrinsic::ubsantrap) {
 | |
|       Args.push_back(TargetLoweringBase::ArgListEntry());
 | |
|       Args[0].Val = I.getArgOperand(0);
 | |
|       Args[0].Node = getValue(Args[0].Val);
 | |
|       Args[0].Ty = Args[0].Val->getType();
 | |
|     }
 | |
| 
 | |
|     TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
 | |
|         CallingConv::C, I.getType(),
 | |
|         DAG.getExternalSymbol(TrapFuncName.data(),
 | |
|                               TLI.getPointerTy(DAG.getDataLayout())),
 | |
|         std::move(Args));
 | |
| 
 | |
|     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
 | |
|     DAG.setRoot(Result.second);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow: {
 | |
|     ISD::NodeType Op;
 | |
|     switch (Intrinsic) {
 | |
|     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
 | |
|     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
 | |
|     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
 | |
|     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
 | |
|     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
 | |
|     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
 | |
|     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
 | |
|     }
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
| 
 | |
|     EVT ResultVT = Op1.getValueType();
 | |
|     EVT OverflowVT = MVT::i1;
 | |
|     if (ResultVT.isVector())
 | |
|       OverflowVT = EVT::getVectorVT(
 | |
|           *Context, OverflowVT, ResultVT.getVectorElementCount());
 | |
| 
 | |
|     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
 | |
|     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::prefetch: {
 | |
|     SDValue Ops[5];
 | |
|     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
 | |
|     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
 | |
|     Ops[0] = DAG.getRoot();
 | |
|     Ops[1] = getValue(I.getArgOperand(0));
 | |
|     Ops[2] = getValue(I.getArgOperand(1));
 | |
|     Ops[3] = getValue(I.getArgOperand(2));
 | |
|     Ops[4] = getValue(I.getArgOperand(3));
 | |
|     SDValue Result = DAG.getMemIntrinsicNode(
 | |
|         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
 | |
|         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
 | |
|         /* align */ None, Flags);
 | |
| 
 | |
|     // Chain the prefetch in parallell with any pending loads, to stay out of
 | |
|     // the way of later optimizations.
 | |
|     PendingLoads.push_back(Result);
 | |
|     Result = getRoot();
 | |
|     DAG.setRoot(Result);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::lifetime_start:
 | |
|   case Intrinsic::lifetime_end: {
 | |
|     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
 | |
|     // Stack coloring is not enabled in O0, discard region information.
 | |
|     if (TM.getOptLevel() == CodeGenOpt::None)
 | |
|       return;
 | |
| 
 | |
|     const int64_t ObjectSize =
 | |
|         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
 | |
|     Value *const ObjectPtr = I.getArgOperand(1);
 | |
|     SmallVector<const Value *, 4> Allocas;
 | |
|     getUnderlyingObjects(ObjectPtr, Allocas);
 | |
| 
 | |
|     for (const Value *Alloca : Allocas) {
 | |
|       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
 | |
| 
 | |
|       // Could not find an Alloca.
 | |
|       if (!LifetimeObject)
 | |
|         continue;
 | |
| 
 | |
|       // First check that the Alloca is static, otherwise it won't have a
 | |
|       // valid frame index.
 | |
|       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
 | |
|       if (SI == FuncInfo.StaticAllocaMap.end())
 | |
|         return;
 | |
| 
 | |
|       const int FrameIndex = SI->second;
 | |
|       int64_t Offset;
 | |
|       if (GetPointerBaseWithConstantOffset(
 | |
|               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
 | |
|         Offset = -1; // Cannot determine offset from alloca to lifetime object.
 | |
|       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
 | |
|                                 Offset);
 | |
|       DAG.setRoot(Res);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::pseudoprobe: {
 | |
|     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
 | |
|     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
 | |
|     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
 | |
|     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
 | |
|     DAG.setRoot(Res);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::invariant_start:
 | |
|     // Discard region information.
 | |
|     setValue(&I,
 | |
|              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
 | |
|     return;
 | |
|   case Intrinsic::invariant_end:
 | |
|     // Discard region information.
 | |
|     return;
 | |
|   case Intrinsic::clear_cache:
 | |
|     /// FunctionName may be null.
 | |
|     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
 | |
|       lowerCallToExternalSymbol(I, FunctionName);
 | |
|     return;
 | |
|   case Intrinsic::donothing:
 | |
|   case Intrinsic::seh_try_begin:
 | |
|   case Intrinsic::seh_scope_begin:
 | |
|   case Intrinsic::seh_try_end:
 | |
|   case Intrinsic::seh_scope_end:
 | |
|     // ignore
 | |
|     return;
 | |
|   case Intrinsic::experimental_stackmap:
 | |
|     visitStackmap(I);
 | |
|     return;
 | |
|   case Intrinsic::experimental_patchpoint_void:
 | |
|   case Intrinsic::experimental_patchpoint_i64:
 | |
|     visitPatchpoint(I);
 | |
|     return;
 | |
|   case Intrinsic::experimental_gc_statepoint:
 | |
|     LowerStatepoint(cast<GCStatepointInst>(I));
 | |
|     return;
 | |
|   case Intrinsic::experimental_gc_result:
 | |
|     visitGCResult(cast<GCResultInst>(I));
 | |
|     return;
 | |
|   case Intrinsic::experimental_gc_relocate:
 | |
|     visitGCRelocate(cast<GCRelocateInst>(I));
 | |
|     return;
 | |
|   case Intrinsic::instrprof_cover:
 | |
|     llvm_unreachable("instrprof failed to lower a cover");
 | |
|   case Intrinsic::instrprof_increment:
 | |
|     llvm_unreachable("instrprof failed to lower an increment");
 | |
|   case Intrinsic::instrprof_value_profile:
 | |
|     llvm_unreachable("instrprof failed to lower a value profiling call");
 | |
|   case Intrinsic::localescape: {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
 | |
| 
 | |
|     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
 | |
|     // is the same on all targets.
 | |
|     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
 | |
|       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
 | |
|       if (isa<ConstantPointerNull>(Arg))
 | |
|         continue; // Skip null pointers. They represent a hole in index space.
 | |
|       AllocaInst *Slot = cast<AllocaInst>(Arg);
 | |
|       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
 | |
|              "can only escape static allocas");
 | |
|       int FI = FuncInfo.StaticAllocaMap[Slot];
 | |
|       MCSymbol *FrameAllocSym =
 | |
|           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
 | |
|               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
 | |
|               TII->get(TargetOpcode::LOCAL_ESCAPE))
 | |
|           .addSym(FrameAllocSym)
 | |
|           .addFrameIndex(FI);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::localrecover: {
 | |
|     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|     // Get the symbol that defines the frame offset.
 | |
|     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
 | |
|     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
 | |
|     unsigned IdxVal =
 | |
|         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
 | |
|     MCSymbol *FrameAllocSym =
 | |
|         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
 | |
|             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
 | |
| 
 | |
|     Value *FP = I.getArgOperand(1);
 | |
|     SDValue FPVal = getValue(FP);
 | |
|     EVT PtrVT = FPVal.getValueType();
 | |
| 
 | |
|     // Create a MCSymbol for the label to avoid any target lowering
 | |
|     // that would make this PC relative.
 | |
|     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
 | |
|     SDValue OffsetVal =
 | |
|         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
 | |
| 
 | |
|     // Add the offset to the FP.
 | |
|     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
 | |
|     setValue(&I, Add);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::eh_exceptionpointer:
 | |
|   case Intrinsic::eh_exceptioncode: {
 | |
|     // Get the exception pointer vreg, copy from it, and resize it to fit.
 | |
|     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
 | |
|     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
 | |
|     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
 | |
|     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
 | |
|     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
 | |
|     if (Intrinsic == Intrinsic::eh_exceptioncode)
 | |
|       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
 | |
|     setValue(&I, N);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::xray_customevent: {
 | |
|     // Here we want to make sure that the intrinsic behaves as if it has a
 | |
|     // specific calling convention, and only for x86_64.
 | |
|     // FIXME: Support other platforms later.
 | |
|     const auto &Triple = DAG.getTarget().getTargetTriple();
 | |
|     if (Triple.getArch() != Triple::x86_64)
 | |
|       return;
 | |
| 
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
| 
 | |
|     // We want to say that we always want the arguments in registers.
 | |
|     SDValue LogEntryVal = getValue(I.getArgOperand(0));
 | |
|     SDValue StrSizeVal = getValue(I.getArgOperand(1));
 | |
|     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|     SDValue Chain = getRoot();
 | |
|     Ops.push_back(LogEntryVal);
 | |
|     Ops.push_back(StrSizeVal);
 | |
|     Ops.push_back(Chain);
 | |
| 
 | |
|     // We need to enforce the calling convention for the callsite, so that
 | |
|     // argument ordering is enforced correctly, and that register allocation can
 | |
|     // see that some registers may be assumed clobbered and have to preserve
 | |
|     // them across calls to the intrinsic.
 | |
|     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
 | |
|                                            sdl, NodeTys, Ops);
 | |
|     SDValue patchableNode = SDValue(MN, 0);
 | |
|     DAG.setRoot(patchableNode);
 | |
|     setValue(&I, patchableNode);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::xray_typedevent: {
 | |
|     // Here we want to make sure that the intrinsic behaves as if it has a
 | |
|     // specific calling convention, and only for x86_64.
 | |
|     // FIXME: Support other platforms later.
 | |
|     const auto &Triple = DAG.getTarget().getTargetTriple();
 | |
|     if (Triple.getArch() != Triple::x86_64)
 | |
|       return;
 | |
| 
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
| 
 | |
|     // We want to say that we always want the arguments in registers.
 | |
|     // It's unclear to me how manipulating the selection DAG here forces callers
 | |
|     // to provide arguments in registers instead of on the stack.
 | |
|     SDValue LogTypeId = getValue(I.getArgOperand(0));
 | |
|     SDValue LogEntryVal = getValue(I.getArgOperand(1));
 | |
|     SDValue StrSizeVal = getValue(I.getArgOperand(2));
 | |
|     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|     SDValue Chain = getRoot();
 | |
|     Ops.push_back(LogTypeId);
 | |
|     Ops.push_back(LogEntryVal);
 | |
|     Ops.push_back(StrSizeVal);
 | |
|     Ops.push_back(Chain);
 | |
| 
 | |
|     // We need to enforce the calling convention for the callsite, so that
 | |
|     // argument ordering is enforced correctly, and that register allocation can
 | |
|     // see that some registers may be assumed clobbered and have to preserve
 | |
|     // them across calls to the intrinsic.
 | |
|     MachineSDNode *MN = DAG.getMachineNode(
 | |
|         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
 | |
|     SDValue patchableNode = SDValue(MN, 0);
 | |
|     DAG.setRoot(patchableNode);
 | |
|     setValue(&I, patchableNode);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::experimental_deoptimize:
 | |
|     LowerDeoptimizeCall(&I);
 | |
|     return;
 | |
|   case Intrinsic::experimental_stepvector:
 | |
|     visitStepVector(I);
 | |
|     return;
 | |
|   case Intrinsic::vector_reduce_fadd:
 | |
|   case Intrinsic::vector_reduce_fmul:
 | |
|   case Intrinsic::vector_reduce_add:
 | |
|   case Intrinsic::vector_reduce_mul:
 | |
|   case Intrinsic::vector_reduce_and:
 | |
|   case Intrinsic::vector_reduce_or:
 | |
|   case Intrinsic::vector_reduce_xor:
 | |
|   case Intrinsic::vector_reduce_smax:
 | |
|   case Intrinsic::vector_reduce_smin:
 | |
|   case Intrinsic::vector_reduce_umax:
 | |
|   case Intrinsic::vector_reduce_umin:
 | |
|   case Intrinsic::vector_reduce_fmax:
 | |
|   case Intrinsic::vector_reduce_fmin:
 | |
|     visitVectorReduce(I, Intrinsic);
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::icall_branch_funnel: {
 | |
|     SmallVector<SDValue, 16> Ops;
 | |
|     Ops.push_back(getValue(I.getArgOperand(0)));
 | |
| 
 | |
|     int64_t Offset;
 | |
|     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
 | |
|         I.getArgOperand(1), Offset, DAG.getDataLayout()));
 | |
|     if (!Base)
 | |
|       report_fatal_error(
 | |
|           "llvm.icall.branch.funnel operand must be a GlobalValue");
 | |
|     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
 | |
| 
 | |
|     struct BranchFunnelTarget {
 | |
|       int64_t Offset;
 | |
|       SDValue Target;
 | |
|     };
 | |
|     SmallVector<BranchFunnelTarget, 8> Targets;
 | |
| 
 | |
|     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
 | |
|       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
 | |
|           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
 | |
|       if (ElemBase != Base)
 | |
|         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
 | |
|                            "to the same GlobalValue");
 | |
| 
 | |
|       SDValue Val = getValue(I.getArgOperand(Op + 1));
 | |
|       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
 | |
|       if (!GA)
 | |
|         report_fatal_error(
 | |
|             "llvm.icall.branch.funnel operand must be a GlobalValue");
 | |
|       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
 | |
|                                      GA->getGlobal(), sdl, Val.getValueType(),
 | |
|                                      GA->getOffset())});
 | |
|     }
 | |
|     llvm::sort(Targets,
 | |
|                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
 | |
|                  return T1.Offset < T2.Offset;
 | |
|                });
 | |
| 
 | |
|     for (auto &T : Targets) {
 | |
|       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
 | |
|       Ops.push_back(T.Target);
 | |
|     }
 | |
| 
 | |
|     Ops.push_back(DAG.getRoot()); // Chain
 | |
|     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
 | |
|                                  MVT::Other, Ops),
 | |
|               0);
 | |
|     DAG.setRoot(N);
 | |
|     setValue(&I, N);
 | |
|     HasTailCall = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::wasm_landingpad_index:
 | |
|     // Information this intrinsic contained has been transferred to
 | |
|     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
 | |
|     // delete it now.
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::aarch64_settag:
 | |
|   case Intrinsic::aarch64_settag_zero: {
 | |
|     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
 | |
|     SDValue Val = TSI.EmitTargetCodeForSetTag(
 | |
|         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
 | |
|         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
 | |
|         ZeroMemory);
 | |
|     DAG.setRoot(Val);
 | |
|     setValue(&I, Val);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::ptrmask: {
 | |
|     SDValue Ptr = getValue(I.getOperand(0));
 | |
|     SDValue Const = getValue(I.getOperand(1));
 | |
| 
 | |
|     EVT PtrVT = Ptr.getValueType();
 | |
|     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
 | |
|                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::get_active_lane_mask: {
 | |
|     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|     SDValue Index = getValue(I.getOperand(0));
 | |
|     EVT ElementVT = Index.getValueType();
 | |
| 
 | |
|     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
 | |
|       visitTargetIntrinsic(I, Intrinsic);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     SDValue TripCount = getValue(I.getOperand(1));
 | |
|     auto VecTy = CCVT.changeVectorElementType(ElementVT);
 | |
| 
 | |
|     SDValue VectorIndex, VectorTripCount;
 | |
|     if (VecTy.isScalableVector()) {
 | |
|       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
 | |
|       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
 | |
|     } else {
 | |
|       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
 | |
|       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
 | |
|     }
 | |
|     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
 | |
|     SDValue VectorInduction = DAG.getNode(
 | |
|         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
 | |
|     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
 | |
|                                  VectorTripCount, ISD::CondCode::SETULT);
 | |
|     setValue(&I, SetCC);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::experimental_vector_insert: {
 | |
|     SDValue Vec = getValue(I.getOperand(0));
 | |
|     SDValue SubVec = getValue(I.getOperand(1));
 | |
|     SDValue Index = getValue(I.getOperand(2));
 | |
| 
 | |
|     // The intrinsic's index type is i64, but the SDNode requires an index type
 | |
|     // suitable for the target. Convert the index as required.
 | |
|     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
 | |
|     if (Index.getValueType() != VectorIdxTy)
 | |
|       Index = DAG.getVectorIdxConstant(
 | |
|           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
 | |
| 
 | |
|     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
 | |
|                              Index));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::experimental_vector_extract: {
 | |
|     SDValue Vec = getValue(I.getOperand(0));
 | |
|     SDValue Index = getValue(I.getOperand(1));
 | |
|     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
| 
 | |
|     // The intrinsic's index type is i64, but the SDNode requires an index type
 | |
|     // suitable for the target. Convert the index as required.
 | |
|     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
 | |
|     if (Index.getValueType() != VectorIdxTy)
 | |
|       Index = DAG.getVectorIdxConstant(
 | |
|           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
 | |
| 
 | |
|     setValue(&I,
 | |
|              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::experimental_vector_reverse:
 | |
|     visitVectorReverse(I);
 | |
|     return;
 | |
|   case Intrinsic::experimental_vector_splice:
 | |
|     visitVectorSplice(I);
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
 | |
|     const ConstrainedFPIntrinsic &FPI) {
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
 | |
|   ValueVTs.push_back(MVT::Other); // Out chain
 | |
| 
 | |
|   // We do not need to serialize constrained FP intrinsics against
 | |
|   // each other or against (nonvolatile) loads, so they can be
 | |
|   // chained like loads.
 | |
|   SDValue Chain = DAG.getRoot();
 | |
|   SmallVector<SDValue, 4> Opers;
 | |
|   Opers.push_back(Chain);
 | |
|   if (FPI.isUnaryOp()) {
 | |
|     Opers.push_back(getValue(FPI.getArgOperand(0)));
 | |
|   } else if (FPI.isTernaryOp()) {
 | |
|     Opers.push_back(getValue(FPI.getArgOperand(0)));
 | |
|     Opers.push_back(getValue(FPI.getArgOperand(1)));
 | |
|     Opers.push_back(getValue(FPI.getArgOperand(2)));
 | |
|   } else {
 | |
|     Opers.push_back(getValue(FPI.getArgOperand(0)));
 | |
|     Opers.push_back(getValue(FPI.getArgOperand(1)));
 | |
|   }
 | |
| 
 | |
|   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
 | |
|     assert(Result.getNode()->getNumValues() == 2);
 | |
| 
 | |
|     // Push node to the appropriate list so that future instructions can be
 | |
|     // chained up correctly.
 | |
|     SDValue OutChain = Result.getValue(1);
 | |
|     switch (EB) {
 | |
|     case fp::ExceptionBehavior::ebIgnore:
 | |
|       // The only reason why ebIgnore nodes still need to be chained is that
 | |
|       // they might depend on the current rounding mode, and therefore must
 | |
|       // not be moved across instruction that may change that mode.
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case fp::ExceptionBehavior::ebMayTrap:
 | |
|       // These must not be moved across calls or instructions that may change
 | |
|       // floating-point exception masks.
 | |
|       PendingConstrainedFP.push_back(OutChain);
 | |
|       break;
 | |
|     case fp::ExceptionBehavior::ebStrict:
 | |
|       // These must not be moved across calls or instructions that may change
 | |
|       // floating-point exception masks or read floating-point exception flags.
 | |
|       // In addition, they cannot be optimized out even if unused.
 | |
|       PendingConstrainedFPStrict.push_back(OutChain);
 | |
|       break;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(ValueVTs);
 | |
|   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
 | |
| 
 | |
|   SDNodeFlags Flags;
 | |
|   if (EB == fp::ExceptionBehavior::ebIgnore)
 | |
|     Flags.setNoFPExcept(true);
 | |
| 
 | |
|   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
 | |
|     Flags.copyFMF(*FPOp);
 | |
| 
 | |
|   unsigned Opcode;
 | |
|   switch (FPI.getIntrinsicID()) {
 | |
|   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
 | |
| #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
 | |
|   case Intrinsic::INTRINSIC:                                                   \
 | |
|     Opcode = ISD::STRICT_##DAGN;                                               \
 | |
|     break;
 | |
| #include "llvm/IR/ConstrainedOps.def"
 | |
|   case Intrinsic::experimental_constrained_fmuladd: {
 | |
|     Opcode = ISD::STRICT_FMA;
 | |
|     // Break fmuladd into fmul and fadd.
 | |
|     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
 | |
|         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
 | |
|                                         ValueVTs[0])) {
 | |
|       Opers.pop_back();
 | |
|       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
 | |
|       pushOutChain(Mul, EB);
 | |
|       Opcode = ISD::STRICT_FADD;
 | |
|       Opers.clear();
 | |
|       Opers.push_back(Mul.getValue(1));
 | |
|       Opers.push_back(Mul.getValue(0));
 | |
|       Opers.push_back(getValue(FPI.getArgOperand(2)));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // A few strict DAG nodes carry additional operands that are not
 | |
|   // set up by the default code above.
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case ISD::STRICT_FP_ROUND:
 | |
|     Opers.push_back(
 | |
|         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
 | |
|     break;
 | |
|   case ISD::STRICT_FSETCC:
 | |
|   case ISD::STRICT_FSETCCS: {
 | |
|     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
 | |
|     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
 | |
|     if (TM.Options.NoNaNsFPMath)
 | |
|       Condition = getFCmpCodeWithoutNaN(Condition);
 | |
|     Opers.push_back(DAG.getCondCode(Condition));
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
 | |
|   pushOutChain(Result, EB);
 | |
| 
 | |
|   SDValue FPResult = Result.getValue(0);
 | |
|   setValue(&FPI, FPResult);
 | |
| }
 | |
| 
 | |
| static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
 | |
|   Optional<unsigned> ResOPC;
 | |
|   switch (VPIntrin.getIntrinsicID()) {
 | |
| #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
 | |
|   case Intrinsic::VPID:                                                        \
 | |
|     ResOPC = ISD::VPSD;                                                        \
 | |
|     break;
 | |
| #include "llvm/IR/VPIntrinsics.def"
 | |
|   }
 | |
| 
 | |
|   if (!ResOPC.hasValue())
 | |
|     llvm_unreachable(
 | |
|         "Inconsistency: no SDNode available for this VPIntrinsic!");
 | |
| 
 | |
|   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
 | |
|       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
 | |
|     if (VPIntrin.getFastMathFlags().allowReassoc())
 | |
|       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
 | |
|                                                 : ISD::VP_REDUCE_FMUL;
 | |
|   }
 | |
| 
 | |
|   return ResOPC.getValue();
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
 | |
|                                             SmallVector<SDValue, 7> &OpValues,
 | |
|                                             bool IsGather) {
 | |
|   SDLoc DL = getCurSDLoc();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   Value *PtrOperand = VPIntrin.getArgOperand(0);
 | |
|   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
 | |
|   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
 | |
|   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
 | |
|   SDValue LD;
 | |
|   bool AddToChain = true;
 | |
|   if (!IsGather) {
 | |
|     // Do not serialize variable-length loads of constant memory with
 | |
|     // anything.
 | |
|     if (!Alignment)
 | |
|       Alignment = DAG.getEVTAlign(VT);
 | |
|     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
 | |
|     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
 | |
|     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
 | |
|     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | |
|         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
 | |
|         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
 | |
|     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
 | |
|                        MMO, false /*IsExpanding */);
 | |
|   } else {
 | |
|     if (!Alignment)
 | |
|       Alignment = DAG.getEVTAlign(VT.getScalarType());
 | |
|     unsigned AS =
 | |
|         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
 | |
|     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | |
|         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
 | |
|         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
 | |
|     SDValue Base, Index, Scale;
 | |
|     ISD::MemIndexType IndexType;
 | |
|     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
 | |
|                                       this, VPIntrin.getParent(),
 | |
|                                       VT.getScalarStoreSize());
 | |
|     if (!UniformBase) {
 | |
|       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
 | |
|       Index = getValue(PtrOperand);
 | |
|       IndexType = ISD::SIGNED_SCALED;
 | |
|       Scale =
 | |
|           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
 | |
|     }
 | |
|     EVT IdxVT = Index.getValueType();
 | |
|     EVT EltTy = IdxVT.getVectorElementType();
 | |
|     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
 | |
|       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
 | |
|       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
 | |
|     }
 | |
|     LD = DAG.getGatherVP(
 | |
|         DAG.getVTList(VT, MVT::Other), VT, DL,
 | |
|         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
 | |
|         IndexType);
 | |
|   }
 | |
|   if (AddToChain)
 | |
|     PendingLoads.push_back(LD.getValue(1));
 | |
|   setValue(&VPIntrin, LD);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
 | |
|                                               SmallVector<SDValue, 7> &OpValues,
 | |
|                                               bool IsScatter) {
 | |
|   SDLoc DL = getCurSDLoc();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   Value *PtrOperand = VPIntrin.getArgOperand(1);
 | |
|   EVT VT = OpValues[0].getValueType();
 | |
|   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
 | |
|   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
 | |
|   SDValue ST;
 | |
|   if (!IsScatter) {
 | |
|     if (!Alignment)
 | |
|       Alignment = DAG.getEVTAlign(VT);
 | |
|     SDValue Ptr = OpValues[1];
 | |
|     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
 | |
|     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | |
|         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
 | |
|         MemoryLocation::UnknownSize, *Alignment, AAInfo);
 | |
|     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
 | |
|                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
 | |
|                         /* IsTruncating */ false, /*IsCompressing*/ false);
 | |
|   } else {
 | |
|     if (!Alignment)
 | |
|       Alignment = DAG.getEVTAlign(VT.getScalarType());
 | |
|     unsigned AS =
 | |
|         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
 | |
|     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | |
|         MachinePointerInfo(AS), MachineMemOperand::MOStore,
 | |
|         MemoryLocation::UnknownSize, *Alignment, AAInfo);
 | |
|     SDValue Base, Index, Scale;
 | |
|     ISD::MemIndexType IndexType;
 | |
|     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
 | |
|                                       this, VPIntrin.getParent(),
 | |
|                                       VT.getScalarStoreSize());
 | |
|     if (!UniformBase) {
 | |
|       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
 | |
|       Index = getValue(PtrOperand);
 | |
|       IndexType = ISD::SIGNED_SCALED;
 | |
|       Scale =
 | |
|           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
 | |
|     }
 | |
|     EVT IdxVT = Index.getValueType();
 | |
|     EVT EltTy = IdxVT.getVectorElementType();
 | |
|     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
 | |
|       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
 | |
|       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
 | |
|     }
 | |
|     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
 | |
|                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
 | |
|                            OpValues[2], OpValues[3]},
 | |
|                           MMO, IndexType);
 | |
|   }
 | |
|   DAG.setRoot(ST);
 | |
|   setValue(&VPIntrin, ST);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVPStridedLoad(
 | |
|     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
 | |
|   SDLoc DL = getCurSDLoc();
 | |
|   Value *PtrOperand = VPIntrin.getArgOperand(0);
 | |
|   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
 | |
|   if (!Alignment)
 | |
|     Alignment = DAG.getEVTAlign(VT.getScalarType());
 | |
|   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
 | |
|   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
 | |
|   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
 | |
|   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
 | |
|   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
 | |
|   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | |
|       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
 | |
|       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
 | |
| 
 | |
|   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
 | |
|                                     OpValues[2], OpValues[3], MMO,
 | |
|                                     false /*IsExpanding*/);
 | |
| 
 | |
|   if (AddToChain)
 | |
|     PendingLoads.push_back(LD.getValue(1));
 | |
|   setValue(&VPIntrin, LD);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVPStridedStore(
 | |
|     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
 | |
|   SDLoc DL = getCurSDLoc();
 | |
|   Value *PtrOperand = VPIntrin.getArgOperand(1);
 | |
|   EVT VT = OpValues[0].getValueType();
 | |
|   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
 | |
|   if (!Alignment)
 | |
|     Alignment = DAG.getEVTAlign(VT.getScalarType());
 | |
|   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
 | |
|   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | |
|       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
 | |
|       MemoryLocation::UnknownSize, *Alignment, AAInfo);
 | |
| 
 | |
|   SDValue ST = DAG.getStridedStoreVP(
 | |
|       getMemoryRoot(), DL, OpValues[0], OpValues[1],
 | |
|       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
 | |
|       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
 | |
|       /*IsCompressing*/ false);
 | |
| 
 | |
|   DAG.setRoot(ST);
 | |
|   setValue(&VPIntrin, ST);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDLoc DL = getCurSDLoc();
 | |
| 
 | |
|   ISD::CondCode Condition;
 | |
|   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
 | |
|   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
 | |
|   if (IsFP) {
 | |
|     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
 | |
|     // flags, but calls that don't return floating-point types can't be
 | |
|     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
 | |
|     Condition = getFCmpCondCode(CondCode);
 | |
|     if (TM.Options.NoNaNsFPMath)
 | |
|       Condition = getFCmpCodeWithoutNaN(Condition);
 | |
|   } else {
 | |
|     Condition = getICmpCondCode(CondCode);
 | |
|   }
 | |
| 
 | |
|   SDValue Op1 = getValue(VPIntrin.getOperand(0));
 | |
|   SDValue Op2 = getValue(VPIntrin.getOperand(1));
 | |
|   // #2 is the condition code
 | |
|   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
 | |
|   SDValue EVL = getValue(VPIntrin.getOperand(4));
 | |
|   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
 | |
|   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
 | |
|          "Unexpected target EVL type");
 | |
|   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
 | |
| 
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                         VPIntrin.getType());
 | |
|   setValue(&VPIntrin,
 | |
|            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
 | |
|     const VPIntrinsic &VPIntrin) {
 | |
|   SDLoc DL = getCurSDLoc();
 | |
|   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
 | |
| 
 | |
|   auto IID = VPIntrin.getIntrinsicID();
 | |
| 
 | |
|   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
 | |
|     return visitVPCmp(*CmpI);
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
 | |
|   SDVTList VTs = DAG.getVTList(ValueVTs);
 | |
| 
 | |
|   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
 | |
| 
 | |
|   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
 | |
|   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
 | |
|          "Unexpected target EVL type");
 | |
| 
 | |
|   // Request operands.
 | |
|   SmallVector<SDValue, 7> OpValues;
 | |
|   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
 | |
|     auto Op = getValue(VPIntrin.getArgOperand(I));
 | |
|     if (I == EVLParamPos)
 | |
|       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
 | |
|     OpValues.push_back(Op);
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: {
 | |
|     SDNodeFlags SDFlags;
 | |
|     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
 | |
|       SDFlags.copyFMF(*FPMO);
 | |
|     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
 | |
|     setValue(&VPIntrin, Result);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::VP_LOAD:
 | |
|   case ISD::VP_GATHER:
 | |
|     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
 | |
|                       Opcode == ISD::VP_GATHER);
 | |
|     break;
 | |
|   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
 | |
|     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
 | |
|     break;
 | |
|   case ISD::VP_STORE:
 | |
|   case ISD::VP_SCATTER:
 | |
|     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
 | |
|     break;
 | |
|   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
 | |
|     visitVPStridedStore(VPIntrin, OpValues);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
 | |
|                                           const BasicBlock *EHPadBB,
 | |
|                                           MCSymbol *&BeginLabel) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineModuleInfo &MMI = MF.getMMI();
 | |
| 
 | |
|   // Insert a label before the invoke call to mark the try range.  This can be
 | |
|   // used to detect deletion of the invoke via the MachineModuleInfo.
 | |
|   BeginLabel = MMI.getContext().createTempSymbol();
 | |
| 
 | |
|   // For SjLj, keep track of which landing pads go with which invokes
 | |
|   // so as to maintain the ordering of pads in the LSDA.
 | |
|   unsigned CallSiteIndex = MMI.getCurrentCallSite();
 | |
|   if (CallSiteIndex) {
 | |
|     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
 | |
|     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
 | |
| 
 | |
|     // Now that the call site is handled, stop tracking it.
 | |
|     MMI.setCurrentCallSite(0);
 | |
|   }
 | |
| 
 | |
|   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
 | |
|                                         const BasicBlock *EHPadBB,
 | |
|                                         MCSymbol *BeginLabel) {
 | |
|   assert(BeginLabel && "BeginLabel should've been set");
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineModuleInfo &MMI = MF.getMMI();
 | |
| 
 | |
|   // Insert a label at the end of the invoke call to mark the try range.  This
 | |
|   // can be used to detect deletion of the invoke via the MachineModuleInfo.
 | |
|   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
 | |
|   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
 | |
| 
 | |
|   // Inform MachineModuleInfo of range.
 | |
|   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
 | |
|   // There is a platform (e.g. wasm) that uses funclet style IR but does not
 | |
|   // actually use outlined funclets and their LSDA info style.
 | |
|   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
 | |
|     assert(II && "II should've been set");
 | |
|     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
 | |
|     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
 | |
|   } else if (!isScopedEHPersonality(Pers)) {
 | |
|     assert(EHPadBB);
 | |
|     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| std::pair<SDValue, SDValue>
 | |
| SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
 | |
|                                     const BasicBlock *EHPadBB) {
 | |
|   MCSymbol *BeginLabel = nullptr;
 | |
| 
 | |
|   if (EHPadBB) {
 | |
|     // Both PendingLoads and PendingExports must be flushed here;
 | |
|     // this call might not return.
 | |
|     (void)getRoot();
 | |
|     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
 | |
|     CLI.setChain(getRoot());
 | |
|   }
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
 | |
| 
 | |
|   assert((CLI.IsTailCall || Result.second.getNode()) &&
 | |
|          "Non-null chain expected with non-tail call!");
 | |
|   assert((Result.second.getNode() || !Result.first.getNode()) &&
 | |
|          "Null value expected with tail call!");
 | |
| 
 | |
|   if (!Result.second.getNode()) {
 | |
|     // As a special case, a null chain means that a tail call has been emitted
 | |
|     // and the DAG root is already updated.
 | |
|     HasTailCall = true;
 | |
| 
 | |
|     // Since there's no actual continuation from this block, nothing can be
 | |
|     // relying on us setting vregs for them.
 | |
|     PendingExports.clear();
 | |
|   } else {
 | |
|     DAG.setRoot(Result.second);
 | |
|   }
 | |
| 
 | |
|   if (EHPadBB) {
 | |
|     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
 | |
|                            BeginLabel));
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
 | |
|                                       bool isTailCall,
 | |
|                                       bool isMustTailCall,
 | |
|                                       const BasicBlock *EHPadBB) {
 | |
|   auto &DL = DAG.getDataLayout();
 | |
|   FunctionType *FTy = CB.getFunctionType();
 | |
|   Type *RetTy = CB.getType();
 | |
| 
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   Args.reserve(CB.arg_size());
 | |
| 
 | |
|   const Value *SwiftErrorVal = nullptr;
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   if (isTailCall) {
 | |
|     // Avoid emitting tail calls in functions with the disable-tail-calls
 | |
|     // attribute.
 | |
|     auto *Caller = CB.getParent()->getParent();
 | |
|     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
 | |
|         "true" && !isMustTailCall)
 | |
|       isTailCall = false;
 | |
| 
 | |
|     // We can't tail call inside a function with a swifterror argument. Lowering
 | |
|     // does not support this yet. It would have to move into the swifterror
 | |
|     // register before the call.
 | |
|     if (TLI.supportSwiftError() &&
 | |
|         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
 | |
|       isTailCall = false;
 | |
|   }
 | |
| 
 | |
|   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
 | |
|     TargetLowering::ArgListEntry Entry;
 | |
|     const Value *V = *I;
 | |
| 
 | |
|     // Skip empty types
 | |
|     if (V->getType()->isEmptyTy())
 | |
|       continue;
 | |
| 
 | |
|     SDValue ArgNode = getValue(V);
 | |
|     Entry.Node = ArgNode; Entry.Ty = V->getType();
 | |
| 
 | |
|     Entry.setAttributes(&CB, I - CB.arg_begin());
 | |
| 
 | |
|     // Use swifterror virtual register as input to the call.
 | |
|     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
 | |
|       SwiftErrorVal = V;
 | |
|       // We find the virtual register for the actual swifterror argument.
 | |
|       // Instead of using the Value, we use the virtual register instead.
 | |
|       Entry.Node =
 | |
|           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
 | |
|                           EVT(TLI.getPointerTy(DL)));
 | |
|     }
 | |
| 
 | |
|     Args.push_back(Entry);
 | |
| 
 | |
|     // If we have an explicit sret argument that is an Instruction, (i.e., it
 | |
|     // might point to function-local memory), we can't meaningfully tail-call.
 | |
|     if (Entry.IsSRet && isa<Instruction>(V))
 | |
|       isTailCall = false;
 | |
|   }
 | |
| 
 | |
|   // If call site has a cfguardtarget operand bundle, create and add an
 | |
|   // additional ArgListEntry.
 | |
|   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
 | |
|     TargetLowering::ArgListEntry Entry;
 | |
|     Value *V = Bundle->Inputs[0];
 | |
|     SDValue ArgNode = getValue(V);
 | |
|     Entry.Node = ArgNode;
 | |
|     Entry.Ty = V->getType();
 | |
|     Entry.IsCFGuardTarget = true;
 | |
|     Args.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   // Check if target-independent constraints permit a tail call here.
 | |
|   // Target-dependent constraints are checked within TLI->LowerCallTo.
 | |
|   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
 | |
|     isTailCall = false;
 | |
| 
 | |
|   // Disable tail calls if there is an swifterror argument. Targets have not
 | |
|   // been updated to support tail calls.
 | |
|   if (TLI.supportSwiftError() && SwiftErrorVal)
 | |
|     isTailCall = false;
 | |
| 
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(getCurSDLoc())
 | |
|       .setChain(getRoot())
 | |
|       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
 | |
|       .setTailCall(isTailCall)
 | |
|       .setConvergent(CB.isConvergent())
 | |
|       .setIsPreallocated(
 | |
|           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
 | |
|   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
 | |
| 
 | |
|   if (Result.first.getNode()) {
 | |
|     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
 | |
|     setValue(&CB, Result.first);
 | |
|   }
 | |
| 
 | |
|   // The last element of CLI.InVals has the SDValue for swifterror return.
 | |
|   // Here we copy it to a virtual register and update SwiftErrorMap for
 | |
|   // book-keeping.
 | |
|   if (SwiftErrorVal && TLI.supportSwiftError()) {
 | |
|     // Get the last element of InVals.
 | |
|     SDValue Src = CLI.InVals.back();
 | |
|     Register VReg =
 | |
|         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
 | |
|     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
 | |
|     DAG.setRoot(CopyNode);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
 | |
|                              SelectionDAGBuilder &Builder) {
 | |
|   // Check to see if this load can be trivially constant folded, e.g. if the
 | |
|   // input is from a string literal.
 | |
|   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
 | |
|     // Cast pointer to the type we really want to load.
 | |
|     Type *LoadTy =
 | |
|         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
 | |
|     if (LoadVT.isVector())
 | |
|       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
 | |
| 
 | |
|     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
 | |
|                                          PointerType::getUnqual(LoadTy));
 | |
| 
 | |
|     if (const Constant *LoadCst =
 | |
|             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
 | |
|                                          LoadTy, Builder.DAG.getDataLayout()))
 | |
|       return Builder.getValue(LoadCst);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
 | |
|   // still constant memory, the input chain can be the entry node.
 | |
|   SDValue Root;
 | |
|   bool ConstantMemory = false;
 | |
| 
 | |
|   // Do not serialize (non-volatile) loads of constant memory with anything.
 | |
|   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
 | |
|     Root = Builder.DAG.getEntryNode();
 | |
|     ConstantMemory = true;
 | |
|   } else {
 | |
|     // Do not serialize non-volatile loads against each other.
 | |
|     Root = Builder.DAG.getRoot();
 | |
|   }
 | |
| 
 | |
|   SDValue Ptr = Builder.getValue(PtrVal);
 | |
|   SDValue LoadVal =
 | |
|       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
 | |
|                           MachinePointerInfo(PtrVal), Align(1));
 | |
| 
 | |
|   if (!ConstantMemory)
 | |
|     Builder.PendingLoads.push_back(LoadVal.getValue(1));
 | |
|   return LoadVal;
 | |
| }
 | |
| 
 | |
| /// Record the value for an instruction that produces an integer result,
 | |
| /// converting the type where necessary.
 | |
| void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
 | |
|                                                   SDValue Value,
 | |
|                                                   bool IsSigned) {
 | |
|   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                     I.getType(), true);
 | |
|   if (IsSigned)
 | |
|     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
 | |
|   else
 | |
|     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
 | |
|   setValue(&I, Value);
 | |
| }
 | |
| 
 | |
| /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
 | |
| /// true and lower it. Otherwise return false, and it will be lowered like a
 | |
| /// normal call.
 | |
| /// The caller already checked that \p I calls the appropriate LibFunc with a
 | |
| /// correct prototype.
 | |
| bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
 | |
|   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
 | |
|   const Value *Size = I.getArgOperand(2);
 | |
|   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
 | |
|   if (CSize && CSize->getZExtValue() == 0) {
 | |
|     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                           I.getType(), true);
 | |
|     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
 | |
|       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
 | |
|       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
 | |
|   if (Res.first.getNode()) {
 | |
|     processIntegerCallValue(I, Res.first, true);
 | |
|     PendingLoads.push_back(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
 | |
|   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
 | |
|   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
 | |
|     return false;
 | |
| 
 | |
|   // If the target has a fast compare for the given size, it will return a
 | |
|   // preferred load type for that size. Require that the load VT is legal and
 | |
|   // that the target supports unaligned loads of that type. Otherwise, return
 | |
|   // INVALID.
 | |
|   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
 | |
|     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
 | |
|       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
 | |
|       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
 | |
|       // TODO: Check alignment of src and dest ptrs.
 | |
|       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
 | |
|       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
 | |
|       if (!TLI.isTypeLegal(LVT) ||
 | |
|           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
 | |
|           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
 | |
|         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
 | |
|     }
 | |
| 
 | |
|     return LVT;
 | |
|   };
 | |
| 
 | |
|   // This turns into unaligned loads. We only do this if the target natively
 | |
|   // supports the MVT we'll be loading or if it is small enough (<= 4) that
 | |
|   // we'll only produce a small number of byte loads.
 | |
|   MVT LoadVT;
 | |
|   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
 | |
|   switch (NumBitsToCompare) {
 | |
|   default:
 | |
|     return false;
 | |
|   case 16:
 | |
|     LoadVT = MVT::i16;
 | |
|     break;
 | |
|   case 32:
 | |
|     LoadVT = MVT::i32;
 | |
|     break;
 | |
|   case 64:
 | |
|   case 128:
 | |
|   case 256:
 | |
|     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
 | |
|     return false;
 | |
| 
 | |
|   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
 | |
|   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
 | |
| 
 | |
|   // Bitcast to a wide integer type if the loads are vectors.
 | |
|   if (LoadVT.isVector()) {
 | |
|     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
 | |
|     LoadL = DAG.getBitcast(CmpVT, LoadL);
 | |
|     LoadR = DAG.getBitcast(CmpVT, LoadR);
 | |
|   }
 | |
| 
 | |
|   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
 | |
|   processIntegerCallValue(I, Cmp, false);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// See if we can lower a memchr call into an optimized form. If so, return
 | |
| /// true and lower it. Otherwise return false, and it will be lowered like a
 | |
| /// normal call.
 | |
| /// The caller already checked that \p I calls the appropriate LibFunc with a
 | |
| /// correct prototype.
 | |
| bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
 | |
|   const Value *Src = I.getArgOperand(0);
 | |
|   const Value *Char = I.getArgOperand(1);
 | |
|   const Value *Length = I.getArgOperand(2);
 | |
| 
 | |
|   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res =
 | |
|     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
 | |
|                                 getValue(Src), getValue(Char), getValue(Length),
 | |
|                                 MachinePointerInfo(Src));
 | |
|   if (Res.first.getNode()) {
 | |
|     setValue(&I, Res.first);
 | |
|     PendingLoads.push_back(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// See if we can lower a mempcpy call into an optimized form. If so, return
 | |
| /// true and lower it. Otherwise return false, and it will be lowered like a
 | |
| /// normal call.
 | |
| /// The caller already checked that \p I calls the appropriate LibFunc with a
 | |
| /// correct prototype.
 | |
| bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
 | |
|   SDValue Dst = getValue(I.getArgOperand(0));
 | |
|   SDValue Src = getValue(I.getArgOperand(1));
 | |
|   SDValue Size = getValue(I.getArgOperand(2));
 | |
| 
 | |
|   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
 | |
|   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
 | |
|   // DAG::getMemcpy needs Alignment to be defined.
 | |
|   Align Alignment = std::min(DstAlign, SrcAlign);
 | |
| 
 | |
|   bool isVol = false;
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
| 
 | |
|   // In the mempcpy context we need to pass in a false value for isTailCall
 | |
|   // because the return pointer needs to be adjusted by the size of
 | |
|   // the copied memory.
 | |
|   SDValue Root = isVol ? getRoot() : getMemoryRoot();
 | |
|   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
 | |
|                              /*isTailCall=*/false,
 | |
|                              MachinePointerInfo(I.getArgOperand(0)),
 | |
|                              MachinePointerInfo(I.getArgOperand(1)),
 | |
|                              I.getAAMetadata());
 | |
|   assert(MC.getNode() != nullptr &&
 | |
|          "** memcpy should not be lowered as TailCall in mempcpy context **");
 | |
|   DAG.setRoot(MC);
 | |
| 
 | |
|   // Check if Size needs to be truncated or extended.
 | |
|   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
 | |
| 
 | |
|   // Adjust return pointer to point just past the last dst byte.
 | |
|   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
 | |
|                                     Dst, Size);
 | |
|   setValue(&I, DstPlusSize);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// See if we can lower a strcpy call into an optimized form.  If so, return
 | |
| /// true and lower it, otherwise return false and it will be lowered like a
 | |
| /// normal call.
 | |
| /// The caller already checked that \p I calls the appropriate LibFunc with a
 | |
| /// correct prototype.
 | |
| bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
 | |
|   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
 | |
| 
 | |
|   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res =
 | |
|     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
 | |
|                                 getValue(Arg0), getValue(Arg1),
 | |
|                                 MachinePointerInfo(Arg0),
 | |
|                                 MachinePointerInfo(Arg1), isStpcpy);
 | |
|   if (Res.first.getNode()) {
 | |
|     setValue(&I, Res.first);
 | |
|     DAG.setRoot(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// See if we can lower a strcmp call into an optimized form.  If so, return
 | |
| /// true and lower it, otherwise return false and it will be lowered like a
 | |
| /// normal call.
 | |
| /// The caller already checked that \p I calls the appropriate LibFunc with a
 | |
| /// correct prototype.
 | |
| bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
 | |
|   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
 | |
| 
 | |
|   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res =
 | |
|     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
 | |
|                                 getValue(Arg0), getValue(Arg1),
 | |
|                                 MachinePointerInfo(Arg0),
 | |
|                                 MachinePointerInfo(Arg1));
 | |
|   if (Res.first.getNode()) {
 | |
|     processIntegerCallValue(I, Res.first, true);
 | |
|     PendingLoads.push_back(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// See if we can lower a strlen call into an optimized form.  If so, return
 | |
| /// true and lower it, otherwise return false and it will be lowered like a
 | |
| /// normal call.
 | |
| /// The caller already checked that \p I calls the appropriate LibFunc with a
 | |
| /// correct prototype.
 | |
| bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
 | |
|   const Value *Arg0 = I.getArgOperand(0);
 | |
| 
 | |
|   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res =
 | |
|     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
 | |
|                                 getValue(Arg0), MachinePointerInfo(Arg0));
 | |
|   if (Res.first.getNode()) {
 | |
|     processIntegerCallValue(I, Res.first, false);
 | |
|     PendingLoads.push_back(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// See if we can lower a strnlen call into an optimized form.  If so, return
 | |
| /// true and lower it, otherwise return false and it will be lowered like a
 | |
| /// normal call.
 | |
| /// The caller already checked that \p I calls the appropriate LibFunc with a
 | |
| /// correct prototype.
 | |
| bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
 | |
|   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
 | |
| 
 | |
|   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res =
 | |
|     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
 | |
|                                  getValue(Arg0), getValue(Arg1),
 | |
|                                  MachinePointerInfo(Arg0));
 | |
|   if (Res.first.getNode()) {
 | |
|     processIntegerCallValue(I, Res.first, false);
 | |
|     PendingLoads.push_back(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// See if we can lower a unary floating-point operation into an SDNode with
 | |
| /// the specified Opcode.  If so, return true and lower it, otherwise return
 | |
| /// false and it will be lowered like a normal call.
 | |
| /// The caller already checked that \p I calls the appropriate LibFunc with a
 | |
| /// correct prototype.
 | |
| bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
 | |
|                                               unsigned Opcode) {
 | |
|   // We already checked this call's prototype; verify it doesn't modify errno.
 | |
|   if (!I.onlyReadsMemory())
 | |
|     return false;
 | |
| 
 | |
|   SDNodeFlags Flags;
 | |
|   Flags.copyFMF(cast<FPMathOperator>(I));
 | |
| 
 | |
|   SDValue Tmp = getValue(I.getArgOperand(0));
 | |
|   setValue(&I,
 | |
|            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// See if we can lower a binary floating-point operation into an SDNode with
 | |
| /// the specified Opcode. If so, return true and lower it. Otherwise return
 | |
| /// false, and it will be lowered like a normal call.
 | |
| /// The caller already checked that \p I calls the appropriate LibFunc with a
 | |
| /// correct prototype.
 | |
| bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
 | |
|                                                unsigned Opcode) {
 | |
|   // We already checked this call's prototype; verify it doesn't modify errno.
 | |
|   if (!I.onlyReadsMemory())
 | |
|     return false;
 | |
| 
 | |
|   SDNodeFlags Flags;
 | |
|   Flags.copyFMF(cast<FPMathOperator>(I));
 | |
| 
 | |
|   SDValue Tmp0 = getValue(I.getArgOperand(0));
 | |
|   SDValue Tmp1 = getValue(I.getArgOperand(1));
 | |
|   EVT VT = Tmp0.getValueType();
 | |
|   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitCall(const CallInst &I) {
 | |
|   // Handle inline assembly differently.
 | |
|   if (I.isInlineAsm()) {
 | |
|     visitInlineAsm(I);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Function *F = I.getCalledFunction()) {
 | |
|     diagnoseDontCall(I);
 | |
| 
 | |
|     if (F->isDeclaration()) {
 | |
|       // Is this an LLVM intrinsic or a target-specific intrinsic?
 | |
|       unsigned IID = F->getIntrinsicID();
 | |
|       if (!IID)
 | |
|         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
 | |
|           IID = II->getIntrinsicID(F);
 | |
| 
 | |
|       if (IID) {
 | |
|         visitIntrinsicCall(I, IID);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check for well-known libc/libm calls.  If the function is internal, it
 | |
|     // can't be a library call.  Don't do the check if marked as nobuiltin for
 | |
|     // some reason or the call site requires strict floating point semantics.
 | |
|     LibFunc Func;
 | |
|     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
 | |
|         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
 | |
|         LibInfo->hasOptimizedCodeGen(Func)) {
 | |
|       switch (Func) {
 | |
|       default: break;
 | |
|       case LibFunc_bcmp:
 | |
|         if (visitMemCmpBCmpCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_copysign:
 | |
|       case LibFunc_copysignf:
 | |
|       case LibFunc_copysignl:
 | |
|         // We already checked this call's prototype; verify it doesn't modify
 | |
|         // errno.
 | |
|         if (I.onlyReadsMemory()) {
 | |
|           SDValue LHS = getValue(I.getArgOperand(0));
 | |
|           SDValue RHS = getValue(I.getArgOperand(1));
 | |
|           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
 | |
|                                    LHS.getValueType(), LHS, RHS));
 | |
|           return;
 | |
|         }
 | |
|         break;
 | |
|       case LibFunc_fabs:
 | |
|       case LibFunc_fabsf:
 | |
|       case LibFunc_fabsl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FABS))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_fmin:
 | |
|       case LibFunc_fminf:
 | |
|       case LibFunc_fminl:
 | |
|         if (visitBinaryFloatCall(I, ISD::FMINNUM))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_fmax:
 | |
|       case LibFunc_fmaxf:
 | |
|       case LibFunc_fmaxl:
 | |
|         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_sin:
 | |
|       case LibFunc_sinf:
 | |
|       case LibFunc_sinl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FSIN))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_cos:
 | |
|       case LibFunc_cosf:
 | |
|       case LibFunc_cosl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FCOS))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_sqrt:
 | |
|       case LibFunc_sqrtf:
 | |
|       case LibFunc_sqrtl:
 | |
|       case LibFunc_sqrt_finite:
 | |
|       case LibFunc_sqrtf_finite:
 | |
|       case LibFunc_sqrtl_finite:
 | |
|         if (visitUnaryFloatCall(I, ISD::FSQRT))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_floor:
 | |
|       case LibFunc_floorf:
 | |
|       case LibFunc_floorl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FFLOOR))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_nearbyint:
 | |
|       case LibFunc_nearbyintf:
 | |
|       case LibFunc_nearbyintl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_ceil:
 | |
|       case LibFunc_ceilf:
 | |
|       case LibFunc_ceill:
 | |
|         if (visitUnaryFloatCall(I, ISD::FCEIL))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_rint:
 | |
|       case LibFunc_rintf:
 | |
|       case LibFunc_rintl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FRINT))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_round:
 | |
|       case LibFunc_roundf:
 | |
|       case LibFunc_roundl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FROUND))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_trunc:
 | |
|       case LibFunc_truncf:
 | |
|       case LibFunc_truncl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FTRUNC))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_log2:
 | |
|       case LibFunc_log2f:
 | |
|       case LibFunc_log2l:
 | |
|         if (visitUnaryFloatCall(I, ISD::FLOG2))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_exp2:
 | |
|       case LibFunc_exp2f:
 | |
|       case LibFunc_exp2l:
 | |
|         if (visitUnaryFloatCall(I, ISD::FEXP2))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_memcmp:
 | |
|         if (visitMemCmpBCmpCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_mempcpy:
 | |
|         if (visitMemPCpyCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_memchr:
 | |
|         if (visitMemChrCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_strcpy:
 | |
|         if (visitStrCpyCall(I, false))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_stpcpy:
 | |
|         if (visitStrCpyCall(I, true))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_strcmp:
 | |
|         if (visitStrCmpCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_strlen:
 | |
|         if (visitStrLenCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc_strnlen:
 | |
|         if (visitStrNLenCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
 | |
|   // have to do anything here to lower funclet bundles.
 | |
|   // CFGuardTarget bundles are lowered in LowerCallTo.
 | |
|   assert(!I.hasOperandBundlesOtherThan(
 | |
|              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
 | |
|               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
 | |
|               LLVMContext::OB_clang_arc_attachedcall}) &&
 | |
|          "Cannot lower calls with arbitrary operand bundles!");
 | |
| 
 | |
|   SDValue Callee = getValue(I.getCalledOperand());
 | |
| 
 | |
|   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
 | |
|     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
 | |
|   else
 | |
|     // Check if we can potentially perform a tail call. More detailed checking
 | |
|     // is be done within LowerCallTo, after more information about the call is
 | |
|     // known.
 | |
|     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// AsmOperandInfo - This contains information for each constraint that we are
 | |
| /// lowering.
 | |
| class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
 | |
| public:
 | |
|   /// CallOperand - If this is the result output operand or a clobber
 | |
|   /// this is null, otherwise it is the incoming operand to the CallInst.
 | |
|   /// This gets modified as the asm is processed.
 | |
|   SDValue CallOperand;
 | |
| 
 | |
|   /// AssignedRegs - If this is a register or register class operand, this
 | |
|   /// contains the set of register corresponding to the operand.
 | |
|   RegsForValue AssignedRegs;
 | |
| 
 | |
|   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
 | |
|     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
 | |
|   }
 | |
| 
 | |
|   /// Whether or not this operand accesses memory
 | |
|   bool hasMemory(const TargetLowering &TLI) const {
 | |
|     // Indirect operand accesses access memory.
 | |
|     if (isIndirect)
 | |
|       return true;
 | |
| 
 | |
|     for (const auto &Code : Codes)
 | |
|       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
 | |
|   /// corresponds to.  If there is no Value* for this operand, it returns
 | |
|   /// MVT::Other.
 | |
|   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
 | |
|                            const DataLayout &DL,
 | |
|                            llvm::Type *ParamElemType) const {
 | |
|     if (!CallOperandVal) return MVT::Other;
 | |
| 
 | |
|     if (isa<BasicBlock>(CallOperandVal))
 | |
|       return TLI.getProgramPointerTy(DL);
 | |
| 
 | |
|     llvm::Type *OpTy = CallOperandVal->getType();
 | |
| 
 | |
|     // FIXME: code duplicated from TargetLowering::ParseConstraints().
 | |
|     // If this is an indirect operand, the operand is a pointer to the
 | |
|     // accessed type.
 | |
|     if (isIndirect) {
 | |
|       OpTy = ParamElemType;
 | |
|       assert(OpTy && "Indirect operand must have elementtype attribute");
 | |
|     }
 | |
| 
 | |
|     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
 | |
|     if (StructType *STy = dyn_cast<StructType>(OpTy))
 | |
|       if (STy->getNumElements() == 1)
 | |
|         OpTy = STy->getElementType(0);
 | |
| 
 | |
|     // If OpTy is not a single value, it may be a struct/union that we
 | |
|     // can tile with integers.
 | |
|     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
 | |
|       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
 | |
|       switch (BitSize) {
 | |
|       default: break;
 | |
|       case 1:
 | |
|       case 8:
 | |
|       case 16:
 | |
|       case 32:
 | |
|       case 64:
 | |
|       case 128:
 | |
|         OpTy = IntegerType::get(Context, BitSize);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return TLI.getAsmOperandValueType(DL, OpTy, true);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Make sure that the output operand \p OpInfo and its corresponding input
 | |
| /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
 | |
| /// out).
 | |
| static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
 | |
|                                SDISelAsmOperandInfo &MatchingOpInfo,
 | |
|                                SelectionDAG &DAG) {
 | |
|   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
 | |
|     return;
 | |
| 
 | |
|   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
 | |
|   const auto &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
 | |
|       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
 | |
|                                        OpInfo.ConstraintVT);
 | |
|   std::pair<unsigned, const TargetRegisterClass *> InputRC =
 | |
|       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
 | |
|                                        MatchingOpInfo.ConstraintVT);
 | |
|   if ((OpInfo.ConstraintVT.isInteger() !=
 | |
|        MatchingOpInfo.ConstraintVT.isInteger()) ||
 | |
|       (MatchRC.second != InputRC.second)) {
 | |
|     // FIXME: error out in a more elegant fashion
 | |
|     report_fatal_error("Unsupported asm: input constraint"
 | |
|                        " with a matching output constraint of"
 | |
|                        " incompatible type!");
 | |
|   }
 | |
|   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
 | |
| }
 | |
| 
 | |
| /// Get a direct memory input to behave well as an indirect operand.
 | |
| /// This may introduce stores, hence the need for a \p Chain.
 | |
| /// \return The (possibly updated) chain.
 | |
| static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
 | |
|                                         SDISelAsmOperandInfo &OpInfo,
 | |
|                                         SelectionDAG &DAG) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   // If we don't have an indirect input, put it in the constpool if we can,
 | |
|   // otherwise spill it to a stack slot.
 | |
|   // TODO: This isn't quite right. We need to handle these according to
 | |
|   // the addressing mode that the constraint wants. Also, this may take
 | |
|   // an additional register for the computation and we don't want that
 | |
|   // either.
 | |
| 
 | |
|   // If the operand is a float, integer, or vector constant, spill to a
 | |
|   // constant pool entry to get its address.
 | |
|   const Value *OpVal = OpInfo.CallOperandVal;
 | |
|   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
 | |
|       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
 | |
|     OpInfo.CallOperand = DAG.getConstantPool(
 | |
|         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
 | |
|     return Chain;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, create a stack slot and emit a store to it before the asm.
 | |
|   Type *Ty = OpVal->getType();
 | |
|   auto &DL = DAG.getDataLayout();
 | |
|   uint64_t TySize = DL.getTypeAllocSize(Ty);
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   int SSFI = MF.getFrameInfo().CreateStackObject(
 | |
|       TySize, DL.getPrefTypeAlign(Ty), false);
 | |
|   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
 | |
|   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
 | |
|                             MachinePointerInfo::getFixedStack(MF, SSFI),
 | |
|                             TLI.getMemValueType(DL, Ty));
 | |
|   OpInfo.CallOperand = StackSlot;
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// GetRegistersForValue - Assign registers (virtual or physical) for the
 | |
| /// specified operand.  We prefer to assign virtual registers, to allow the
 | |
| /// register allocator to handle the assignment process.  However, if the asm
 | |
| /// uses features that we can't model on machineinstrs, we have SDISel do the
 | |
| /// allocation.  This produces generally horrible, but correct, code.
 | |
| ///
 | |
| ///   OpInfo describes the operand
 | |
| ///   RefOpInfo describes the matching operand if any, the operand otherwise
 | |
| static llvm::Optional<unsigned>
 | |
| getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                      SDISelAsmOperandInfo &OpInfo,
 | |
|                      SDISelAsmOperandInfo &RefOpInfo) {
 | |
|   LLVMContext &Context = *DAG.getContext();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   SmallVector<unsigned, 4> Regs;
 | |
|   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
 | |
| 
 | |
|   // No work to do for memory/address operands.
 | |
|   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
 | |
|       OpInfo.ConstraintType == TargetLowering::C_Address)
 | |
|     return None;
 | |
| 
 | |
|   // If this is a constraint for a single physreg, or a constraint for a
 | |
|   // register class, find it.
 | |
|   unsigned AssignedReg;
 | |
|   const TargetRegisterClass *RC;
 | |
|   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
 | |
|       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
 | |
|   // RC is unset only on failure. Return immediately.
 | |
|   if (!RC)
 | |
|     return None;
 | |
| 
 | |
|   // Get the actual register value type.  This is important, because the user
 | |
|   // may have asked for (e.g.) the AX register in i32 type.  We need to
 | |
|   // remember that AX is actually i16 to get the right extension.
 | |
|   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
 | |
| 
 | |
|   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
 | |
|     // If this is an FP operand in an integer register (or visa versa), or more
 | |
|     // generally if the operand value disagrees with the register class we plan
 | |
|     // to stick it in, fix the operand type.
 | |
|     //
 | |
|     // If this is an input value, the bitcast to the new type is done now.
 | |
|     // Bitcast for output value is done at the end of visitInlineAsm().
 | |
|     if ((OpInfo.Type == InlineAsm::isOutput ||
 | |
|          OpInfo.Type == InlineAsm::isInput) &&
 | |
|         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
 | |
|       // Try to convert to the first EVT that the reg class contains.  If the
 | |
|       // types are identical size, use a bitcast to convert (e.g. two differing
 | |
|       // vector types).  Note: output bitcast is done at the end of
 | |
|       // visitInlineAsm().
 | |
|       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
 | |
|         // Exclude indirect inputs while they are unsupported because the code
 | |
|         // to perform the load is missing and thus OpInfo.CallOperand still
 | |
|         // refers to the input address rather than the pointed-to value.
 | |
|         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
 | |
|           OpInfo.CallOperand =
 | |
|               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
 | |
|         OpInfo.ConstraintVT = RegVT;
 | |
|         // If the operand is an FP value and we want it in integer registers,
 | |
|         // use the corresponding integer type. This turns an f64 value into
 | |
|         // i64, which can be passed with two i32 values on a 32-bit machine.
 | |
|       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
 | |
|         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
 | |
|         if (OpInfo.Type == InlineAsm::isInput)
 | |
|           OpInfo.CallOperand =
 | |
|               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
 | |
|         OpInfo.ConstraintVT = VT;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // No need to allocate a matching input constraint since the constraint it's
 | |
|   // matching to has already been allocated.
 | |
|   if (OpInfo.isMatchingInputConstraint())
 | |
|     return None;
 | |
| 
 | |
|   EVT ValueVT = OpInfo.ConstraintVT;
 | |
|   if (OpInfo.ConstraintVT == MVT::Other)
 | |
|     ValueVT = RegVT;
 | |
| 
 | |
|   // Initialize NumRegs.
 | |
|   unsigned NumRegs = 1;
 | |
|   if (OpInfo.ConstraintVT != MVT::Other)
 | |
|     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
 | |
| 
 | |
|   // If this is a constraint for a specific physical register, like {r17},
 | |
|   // assign it now.
 | |
| 
 | |
|   // If this associated to a specific register, initialize iterator to correct
 | |
|   // place. If virtual, make sure we have enough registers
 | |
| 
 | |
|   // Initialize iterator if necessary
 | |
|   TargetRegisterClass::iterator I = RC->begin();
 | |
|   MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
| 
 | |
|   // Do not check for single registers.
 | |
|   if (AssignedReg) {
 | |
|     I = std::find(I, RC->end(), AssignedReg);
 | |
|     if (I == RC->end()) {
 | |
|       // RC does not contain the selected register, which indicates a
 | |
|       // mismatch between the register and the required type/bitwidth.
 | |
|       return {AssignedReg};
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (; NumRegs; --NumRegs, ++I) {
 | |
|     assert(I != RC->end() && "Ran out of registers to allocate!");
 | |
|     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
 | |
|     Regs.push_back(R);
 | |
|   }
 | |
| 
 | |
|   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| findMatchingInlineAsmOperand(unsigned OperandNo,
 | |
|                              const std::vector<SDValue> &AsmNodeOperands) {
 | |
|   // Scan until we find the definition we already emitted of this operand.
 | |
|   unsigned CurOp = InlineAsm::Op_FirstOperand;
 | |
|   for (; OperandNo; --OperandNo) {
 | |
|     // Advance to the next operand.
 | |
|     unsigned OpFlag =
 | |
|         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
 | |
|     assert((InlineAsm::isRegDefKind(OpFlag) ||
 | |
|             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
 | |
|             InlineAsm::isMemKind(OpFlag)) &&
 | |
|            "Skipped past definitions?");
 | |
|     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
 | |
|   }
 | |
|   return CurOp;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class ExtraFlags {
 | |
|   unsigned Flags = 0;
 | |
| 
 | |
| public:
 | |
|   explicit ExtraFlags(const CallBase &Call) {
 | |
|     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
 | |
|     if (IA->hasSideEffects())
 | |
|       Flags |= InlineAsm::Extra_HasSideEffects;
 | |
|     if (IA->isAlignStack())
 | |
|       Flags |= InlineAsm::Extra_IsAlignStack;
 | |
|     if (Call.isConvergent())
 | |
|       Flags |= InlineAsm::Extra_IsConvergent;
 | |
|     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
 | |
|   }
 | |
| 
 | |
|   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
 | |
|     // Ideally, we would only check against memory constraints.  However, the
 | |
|     // meaning of an Other constraint can be target-specific and we can't easily
 | |
|     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
 | |
|     // for Other constraints as well.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
 | |
|         OpInfo.ConstraintType == TargetLowering::C_Other) {
 | |
|       if (OpInfo.Type == InlineAsm::isInput)
 | |
|         Flags |= InlineAsm::Extra_MayLoad;
 | |
|       else if (OpInfo.Type == InlineAsm::isOutput)
 | |
|         Flags |= InlineAsm::Extra_MayStore;
 | |
|       else if (OpInfo.Type == InlineAsm::isClobber)
 | |
|         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned get() const { return Flags; }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// visitInlineAsm - Handle a call to an InlineAsm object.
 | |
| void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
 | |
|                                          const BasicBlock *EHPadBB) {
 | |
|   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
 | |
| 
 | |
|   /// ConstraintOperands - Information about all of the constraints.
 | |
|   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
 | |
|       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
 | |
| 
 | |
|   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
 | |
|   // AsmDialect, MayLoad, MayStore).
 | |
|   bool HasSideEffect = IA->hasSideEffects();
 | |
|   ExtraFlags ExtraInfo(Call);
 | |
| 
 | |
|   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
 | |
|   unsigned ResNo = 0;   // ResNo - The result number of the next output.
 | |
|   for (auto &T : TargetConstraints) {
 | |
|     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
 | |
|     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
 | |
| 
 | |
|     // Compute the value type for each operand.
 | |
|     if (OpInfo.hasArg()) {
 | |
|       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
 | |
|       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
 | |
|       Type *ParamElemTy = Call.getParamElementType(ArgNo);
 | |
|       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
 | |
|                                            DAG.getDataLayout(), ParamElemTy);
 | |
|       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
 | |
|       ArgNo++;
 | |
|     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
 | |
|       // The return value of the call is this value.  As such, there is no
 | |
|       // corresponding argument.
 | |
|       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
 | |
|       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
 | |
|         OpInfo.ConstraintVT = TLI.getSimpleValueType(
 | |
|             DAG.getDataLayout(), STy->getElementType(ResNo));
 | |
|       } else {
 | |
|         assert(ResNo == 0 && "Asm only has one result!");
 | |
|         OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
 | |
|             DAG.getDataLayout(), Call.getType()).getSimpleVT();
 | |
|       }
 | |
|       ++ResNo;
 | |
|     } else {
 | |
|       OpInfo.ConstraintVT = MVT::Other;
 | |
|     }
 | |
| 
 | |
|     if (!HasSideEffect)
 | |
|       HasSideEffect = OpInfo.hasMemory(TLI);
 | |
| 
 | |
|     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
 | |
|     // FIXME: Could we compute this on OpInfo rather than T?
 | |
| 
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI.ComputeConstraintToUse(T, SDValue());
 | |
| 
 | |
|     if (T.ConstraintType == TargetLowering::C_Immediate &&
 | |
|         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
 | |
|       // We've delayed emitting a diagnostic like the "n" constraint because
 | |
|       // inlining could cause an integer showing up.
 | |
|       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
 | |
|                                           "' expects an integer constant "
 | |
|                                           "expression");
 | |
| 
 | |
|     ExtraInfo.update(T);
 | |
|   }
 | |
| 
 | |
|   // We won't need to flush pending loads if this asm doesn't touch
 | |
|   // memory and is nonvolatile.
 | |
|   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
 | |
| 
 | |
|   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
 | |
|   if (EmitEHLabels) {
 | |
|     assert(EHPadBB && "InvokeInst must have an EHPadBB");
 | |
|   }
 | |
|   bool IsCallBr = isa<CallBrInst>(Call);
 | |
| 
 | |
|   if (IsCallBr || EmitEHLabels) {
 | |
|     // If this is a callbr or invoke we need to flush pending exports since
 | |
|     // inlineasm_br and invoke are terminators.
 | |
|     // We need to do this before nodes are glued to the inlineasm_br node.
 | |
|     Chain = getControlRoot();
 | |
|   }
 | |
| 
 | |
|   MCSymbol *BeginLabel = nullptr;
 | |
|   if (EmitEHLabels) {
 | |
|     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
 | |
|   }
 | |
| 
 | |
|   // Second pass over the constraints: compute which constraint option to use.
 | |
|   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
 | |
|     // If this is an output operand with a matching input operand, look up the
 | |
|     // matching input. If their types mismatch, e.g. one is an integer, the
 | |
|     // other is floating point, or their sizes are different, flag it as an
 | |
|     // error.
 | |
|     if (OpInfo.hasMatchingInput()) {
 | |
|       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 | |
|       patchMatchingInput(OpInfo, Input, DAG);
 | |
|     }
 | |
| 
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
 | |
| 
 | |
|     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | |
|          OpInfo.Type == InlineAsm::isClobber) ||
 | |
|         OpInfo.ConstraintType == TargetLowering::C_Address)
 | |
|       continue;
 | |
| 
 | |
|     // If this is a memory input, and if the operand is not indirect, do what we
 | |
|     // need to provide an address for the memory input.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | |
|         !OpInfo.isIndirect) {
 | |
|       assert((OpInfo.isMultipleAlternative ||
 | |
|               (OpInfo.Type == InlineAsm::isInput)) &&
 | |
|              "Can only indirectify direct input operands!");
 | |
| 
 | |
|       // Memory operands really want the address of the value.
 | |
|       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
 | |
| 
 | |
|       // There is no longer a Value* corresponding to this operand.
 | |
|       OpInfo.CallOperandVal = nullptr;
 | |
| 
 | |
|       // It is now an indirect operand.
 | |
|       OpInfo.isIndirect = true;
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
 | |
|   std::vector<SDValue> AsmNodeOperands;
 | |
|   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
 | |
|   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
 | |
|       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
 | |
| 
 | |
|   // If we have a !srcloc metadata node associated with it, we want to attach
 | |
|   // this to the ultimately generated inline asm machineinstr.  To do this, we
 | |
|   // pass in the third operand as this (potentially null) inline asm MDNode.
 | |
|   const MDNode *SrcLoc = Call.getMetadata("srcloc");
 | |
|   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
 | |
| 
 | |
|   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
 | |
|   // bits as operand 3.
 | |
|   AsmNodeOperands.push_back(DAG.getTargetConstant(
 | |
|       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
 | |
| 
 | |
|   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
 | |
|   // this, assign virtual and physical registers for inputs and otput.
 | |
|   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
 | |
|     // Assign Registers.
 | |
|     SDISelAsmOperandInfo &RefOpInfo =
 | |
|         OpInfo.isMatchingInputConstraint()
 | |
|             ? ConstraintOperands[OpInfo.getMatchedOperand()]
 | |
|             : OpInfo;
 | |
|     const auto RegError =
 | |
|         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
 | |
|     if (RegError.hasValue()) {
 | |
|       const MachineFunction &MF = DAG.getMachineFunction();
 | |
|       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
 | |
|       const char *RegName = TRI.getName(RegError.getValue());
 | |
|       emitInlineAsmError(Call, "register '" + Twine(RegName) +
 | |
|                                    "' allocated for constraint '" +
 | |
|                                    Twine(OpInfo.ConstraintCode) +
 | |
|                                    "' does not match required type");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     auto DetectWriteToReservedRegister = [&]() {
 | |
|       const MachineFunction &MF = DAG.getMachineFunction();
 | |
|       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
 | |
|       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
 | |
|         if (Register::isPhysicalRegister(Reg) &&
 | |
|             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
 | |
|           const char *RegName = TRI.getName(Reg);
 | |
|           emitInlineAsmError(Call, "write to reserved register '" +
 | |
|                                        Twine(RegName) + "'");
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|       return false;
 | |
|     };
 | |
|     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
 | |
|             (OpInfo.Type == InlineAsm::isInput &&
 | |
|              !OpInfo.isMatchingInputConstraint())) &&
 | |
|            "Only address as input operand is allowed.");
 | |
| 
 | |
|     switch (OpInfo.Type) {
 | |
|     case InlineAsm::isOutput:
 | |
|       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
 | |
|         unsigned ConstraintID =
 | |
|             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
 | |
|         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
 | |
|                "Failed to convert memory constraint code to constraint id.");
 | |
| 
 | |
|         // Add information to the INLINEASM node to know about this output.
 | |
|         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
 | |
|         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
 | |
|         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
 | |
|                                                         MVT::i32));
 | |
|         AsmNodeOperands.push_back(OpInfo.CallOperand);
 | |
|       } else {
 | |
|         // Otherwise, this outputs to a register (directly for C_Register /
 | |
|         // C_RegisterClass, and a target-defined fashion for
 | |
|         // C_Immediate/C_Other). Find a register that we can use.
 | |
|         if (OpInfo.AssignedRegs.Regs.empty()) {
 | |
|           emitInlineAsmError(
 | |
|               Call, "couldn't allocate output register for constraint '" +
 | |
|                         Twine(OpInfo.ConstraintCode) + "'");
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         if (DetectWriteToReservedRegister())
 | |
|           return;
 | |
| 
 | |
|         // Add information to the INLINEASM node to know that this register is
 | |
|         // set.
 | |
|         OpInfo.AssignedRegs.AddInlineAsmOperands(
 | |
|             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
 | |
|                                   : InlineAsm::Kind_RegDef,
 | |
|             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case InlineAsm::isInput: {
 | |
|       SDValue InOperandVal = OpInfo.CallOperand;
 | |
| 
 | |
|       if (OpInfo.isMatchingInputConstraint()) {
 | |
|         // If this is required to match an output register we have already set,
 | |
|         // just use its register.
 | |
|         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
 | |
|                                                   AsmNodeOperands);
 | |
|         unsigned OpFlag =
 | |
|           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
 | |
|         if (InlineAsm::isRegDefKind(OpFlag) ||
 | |
|             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
 | |
|           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
 | |
|           if (OpInfo.isIndirect) {
 | |
|             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
 | |
|             emitInlineAsmError(Call, "inline asm not supported yet: "
 | |
|                                      "don't know how to handle tied "
 | |
|                                      "indirect register inputs");
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|           SmallVector<unsigned, 4> Regs;
 | |
|           MachineFunction &MF = DAG.getMachineFunction();
 | |
|           MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
 | |
|           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
 | |
|           Register TiedReg = R->getReg();
 | |
|           MVT RegVT = R->getSimpleValueType(0);
 | |
|           const TargetRegisterClass *RC =
 | |
|               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
 | |
|               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
 | |
|                                       : TRI.getMinimalPhysRegClass(TiedReg);
 | |
|           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
 | |
|           for (unsigned i = 0; i != NumRegs; ++i)
 | |
|             Regs.push_back(MRI.createVirtualRegister(RC));
 | |
| 
 | |
|           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
 | |
| 
 | |
|           SDLoc dl = getCurSDLoc();
 | |
|           // Use the produced MatchedRegs object to
 | |
|           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
 | |
|           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
 | |
|                                            true, OpInfo.getMatchedOperand(), dl,
 | |
|                                            DAG, AsmNodeOperands);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
 | |
|         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
 | |
|                "Unexpected number of operands");
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         // See InlineAsm.h isUseOperandTiedToDef.
 | |
|         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
 | |
|         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
 | |
|                                                     OpInfo.getMatchedOperand());
 | |
|         AsmNodeOperands.push_back(DAG.getTargetConstant(
 | |
|             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
 | |
|         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Treat indirect 'X' constraint as memory.
 | |
|       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
 | |
|           OpInfo.isIndirect)
 | |
|         OpInfo.ConstraintType = TargetLowering::C_Memory;
 | |
| 
 | |
|       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
 | |
|           OpInfo.ConstraintType == TargetLowering::C_Other) {
 | |
|         std::vector<SDValue> Ops;
 | |
|         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
 | |
|                                           Ops, DAG);
 | |
|         if (Ops.empty()) {
 | |
|           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
 | |
|             if (isa<ConstantSDNode>(InOperandVal)) {
 | |
|               emitInlineAsmError(Call, "value out of range for constraint '" +
 | |
|                                            Twine(OpInfo.ConstraintCode) + "'");
 | |
|               return;
 | |
|             }
 | |
| 
 | |
|           emitInlineAsmError(Call,
 | |
|                              "invalid operand for inline asm constraint '" +
 | |
|                                  Twine(OpInfo.ConstraintCode) + "'");
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         unsigned ResOpType =
 | |
|           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
 | |
|         AsmNodeOperands.push_back(DAG.getTargetConstant(
 | |
|             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
 | |
|         llvm::append_range(AsmNodeOperands, Ops);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
 | |
|           OpInfo.ConstraintType == TargetLowering::C_Address) {
 | |
|         assert((OpInfo.isIndirect ||
 | |
|                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
 | |
|                "Operand must be indirect to be a mem!");
 | |
|         assert(InOperandVal.getValueType() ==
 | |
|                    TLI.getPointerTy(DAG.getDataLayout()) &&
 | |
|                "Memory operands expect pointer values");
 | |
| 
 | |
|         unsigned ConstraintID =
 | |
|             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
 | |
|         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
 | |
|                "Failed to convert memory constraint code to constraint id.");
 | |
| 
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
 | |
|         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
 | |
|         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
 | |
|                                                         getCurSDLoc(),
 | |
|                                                         MVT::i32));
 | |
|         AsmNodeOperands.push_back(InOperandVal);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
 | |
|               OpInfo.ConstraintType == TargetLowering::C_Register) &&
 | |
|              "Unknown constraint type!");
 | |
| 
 | |
|       // TODO: Support this.
 | |
|       if (OpInfo.isIndirect) {
 | |
|         emitInlineAsmError(
 | |
|             Call, "Don't know how to handle indirect register inputs yet "
 | |
|                   "for constraint '" +
 | |
|                       Twine(OpInfo.ConstraintCode) + "'");
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Copy the input into the appropriate registers.
 | |
|       if (OpInfo.AssignedRegs.Regs.empty()) {
 | |
|         emitInlineAsmError(Call,
 | |
|                            "couldn't allocate input reg for constraint '" +
 | |
|                                Twine(OpInfo.ConstraintCode) + "'");
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (DetectWriteToReservedRegister())
 | |
|         return;
 | |
| 
 | |
|       SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
 | |
|                                         &Call);
 | |
| 
 | |
|       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
 | |
|                                                dl, DAG, AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     case InlineAsm::isClobber:
 | |
|       // Add the clobbered value to the operand list, so that the register
 | |
|       // allocator is aware that the physreg got clobbered.
 | |
|       if (!OpInfo.AssignedRegs.Regs.empty())
 | |
|         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
 | |
|                                                  false, 0, getCurSDLoc(), DAG,
 | |
|                                                  AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finish up input operands.  Set the input chain and add the flag last.
 | |
|   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
 | |
|   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
 | |
| 
 | |
|   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
 | |
|   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
 | |
|                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
 | |
|   Flag = Chain.getValue(1);
 | |
| 
 | |
|   // Do additional work to generate outputs.
 | |
| 
 | |
|   SmallVector<EVT, 1> ResultVTs;
 | |
|   SmallVector<SDValue, 1> ResultValues;
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
| 
 | |
|   llvm::Type *CallResultType = Call.getType();
 | |
|   ArrayRef<Type *> ResultTypes;
 | |
|   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
 | |
|     ResultTypes = StructResult->elements();
 | |
|   else if (!CallResultType->isVoidTy())
 | |
|     ResultTypes = makeArrayRef(CallResultType);
 | |
| 
 | |
|   auto CurResultType = ResultTypes.begin();
 | |
|   auto handleRegAssign = [&](SDValue V) {
 | |
|     assert(CurResultType != ResultTypes.end() && "Unexpected value");
 | |
|     assert((*CurResultType)->isSized() && "Unexpected unsized type");
 | |
|     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
 | |
|     ++CurResultType;
 | |
|     // If the type of the inline asm call site return value is different but has
 | |
|     // same size as the type of the asm output bitcast it.  One example of this
 | |
|     // is for vectors with different width / number of elements.  This can
 | |
|     // happen for register classes that can contain multiple different value
 | |
|     // types.  The preg or vreg allocated may not have the same VT as was
 | |
|     // expected.
 | |
|     //
 | |
|     // This can also happen for a return value that disagrees with the register
 | |
|     // class it is put in, eg. a double in a general-purpose register on a
 | |
|     // 32-bit machine.
 | |
|     if (ResultVT != V.getValueType() &&
 | |
|         ResultVT.getSizeInBits() == V.getValueSizeInBits())
 | |
|       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
 | |
|     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
 | |
|              V.getValueType().isInteger()) {
 | |
|       // If a result value was tied to an input value, the computed result
 | |
|       // may have a wider width than the expected result.  Extract the
 | |
|       // relevant portion.
 | |
|       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
 | |
|     }
 | |
|     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
 | |
|     ResultVTs.push_back(ResultVT);
 | |
|     ResultValues.push_back(V);
 | |
|   };
 | |
| 
 | |
|   // Deal with output operands.
 | |
|   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
 | |
|     if (OpInfo.Type == InlineAsm::isOutput) {
 | |
|       SDValue Val;
 | |
|       // Skip trivial output operands.
 | |
|       if (OpInfo.AssignedRegs.Regs.empty())
 | |
|         continue;
 | |
| 
 | |
|       switch (OpInfo.ConstraintType) {
 | |
|       case TargetLowering::C_Register:
 | |
|       case TargetLowering::C_RegisterClass:
 | |
|         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
 | |
|                                                   Chain, &Flag, &Call);
 | |
|         break;
 | |
|       case TargetLowering::C_Immediate:
 | |
|       case TargetLowering::C_Other:
 | |
|         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
 | |
|                                               OpInfo, DAG);
 | |
|         break;
 | |
|       case TargetLowering::C_Memory:
 | |
|         break; // Already handled.
 | |
|       case TargetLowering::C_Address:
 | |
|         break; // Silence warning.
 | |
|       case TargetLowering::C_Unknown:
 | |
|         assert(false && "Unexpected unknown constraint");
 | |
|       }
 | |
| 
 | |
|       // Indirect output manifest as stores. Record output chains.
 | |
|       if (OpInfo.isIndirect) {
 | |
|         const Value *Ptr = OpInfo.CallOperandVal;
 | |
|         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
 | |
|         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
 | |
|                                      MachinePointerInfo(Ptr));
 | |
|         OutChains.push_back(Store);
 | |
|       } else {
 | |
|         // generate CopyFromRegs to associated registers.
 | |
|         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
 | |
|         if (Val.getOpcode() == ISD::MERGE_VALUES) {
 | |
|           for (const SDValue &V : Val->op_values())
 | |
|             handleRegAssign(V);
 | |
|         } else
 | |
|           handleRegAssign(Val);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Set results.
 | |
|   if (!ResultValues.empty()) {
 | |
|     assert(CurResultType == ResultTypes.end() &&
 | |
|            "Mismatch in number of ResultTypes");
 | |
|     assert(ResultValues.size() == ResultTypes.size() &&
 | |
|            "Mismatch in number of output operands in asm result");
 | |
| 
 | |
|     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
 | |
|                             DAG.getVTList(ResultVTs), ResultValues);
 | |
|     setValue(&Call, V);
 | |
|   }
 | |
| 
 | |
|   // Collect store chains.
 | |
|   if (!OutChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
 | |
| 
 | |
|   if (EmitEHLabels) {
 | |
|     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
 | |
|   }
 | |
| 
 | |
|   // Only Update Root if inline assembly has a memory effect.
 | |
|   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
 | |
|       EmitEHLabels)
 | |
|     DAG.setRoot(Chain);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
 | |
|                                              const Twine &Message) {
 | |
|   LLVMContext &Ctx = *DAG.getContext();
 | |
|   Ctx.emitError(&Call, Message);
 | |
| 
 | |
|   // Make sure we leave the DAG in a valid state
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SmallVector<EVT, 1> ValueVTs;
 | |
|   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
 | |
| 
 | |
|   if (ValueVTs.empty())
 | |
|     return;
 | |
| 
 | |
|   SmallVector<SDValue, 1> Ops;
 | |
|   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
 | |
| 
 | |
|   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
 | |
|                           MVT::Other, getRoot(),
 | |
|                           getValue(I.getArgOperand(0)),
 | |
|                           DAG.getSrcValue(I.getArgOperand(0))));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const DataLayout &DL = DAG.getDataLayout();
 | |
|   SDValue V = DAG.getVAArg(
 | |
|       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
 | |
|       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
 | |
|       DL.getABITypeAlign(I.getType()).value());
 | |
|   DAG.setRoot(V.getValue(1));
 | |
| 
 | |
|   if (I.getType()->isPointerTy())
 | |
|     V = DAG.getPtrExtOrTrunc(
 | |
|         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
 | |
|   setValue(&I, V);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
 | |
|                           MVT::Other, getRoot(),
 | |
|                           getValue(I.getArgOperand(0)),
 | |
|                           DAG.getSrcValue(I.getArgOperand(0))));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
 | |
|                           MVT::Other, getRoot(),
 | |
|                           getValue(I.getArgOperand(0)),
 | |
|                           getValue(I.getArgOperand(1)),
 | |
|                           DAG.getSrcValue(I.getArgOperand(0)),
 | |
|                           DAG.getSrcValue(I.getArgOperand(1))));
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
 | |
|                                                     const Instruction &I,
 | |
|                                                     SDValue Op) {
 | |
|   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
 | |
|   if (!Range)
 | |
|     return Op;
 | |
| 
 | |
|   ConstantRange CR = getConstantRangeFromMetadata(*Range);
 | |
|   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
 | |
|     return Op;
 | |
| 
 | |
|   APInt Lo = CR.getUnsignedMin();
 | |
|   if (!Lo.isMinValue())
 | |
|     return Op;
 | |
| 
 | |
|   APInt Hi = CR.getUnsignedMax();
 | |
|   unsigned Bits = std::max(Hi.getActiveBits(),
 | |
|                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
 | |
| 
 | |
|   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
 | |
| 
 | |
|   SDLoc SL = getCurSDLoc();
 | |
| 
 | |
|   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
 | |
|                              DAG.getValueType(SmallVT));
 | |
|   unsigned NumVals = Op.getNode()->getNumValues();
 | |
|   if (NumVals == 1)
 | |
|     return ZExt;
 | |
| 
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
| 
 | |
|   Ops.push_back(ZExt);
 | |
|   for (unsigned I = 1; I != NumVals; ++I)
 | |
|     Ops.push_back(Op.getValue(I));
 | |
| 
 | |
|   return DAG.getMergeValues(Ops, SL);
 | |
| }
 | |
| 
 | |
| /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
 | |
| /// the call being lowered.
 | |
| ///
 | |
| /// This is a helper for lowering intrinsics that follow a target calling
 | |
| /// convention or require stack pointer adjustment. Only a subset of the
 | |
| /// intrinsic's operands need to participate in the calling convention.
 | |
| void SelectionDAGBuilder::populateCallLoweringInfo(
 | |
|     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
 | |
|     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
 | |
|     bool IsPatchPoint) {
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   Args.reserve(NumArgs);
 | |
| 
 | |
|   // Populate the argument list.
 | |
|   // Attributes for args start at offset 1, after the return attribute.
 | |
|   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
 | |
|        ArgI != ArgE; ++ArgI) {
 | |
|     const Value *V = Call->getOperand(ArgI);
 | |
| 
 | |
|     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
 | |
| 
 | |
|     TargetLowering::ArgListEntry Entry;
 | |
|     Entry.Node = getValue(V);
 | |
|     Entry.Ty = V->getType();
 | |
|     Entry.setAttributes(Call, ArgI);
 | |
|     Args.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   CLI.setDebugLoc(getCurSDLoc())
 | |
|       .setChain(getRoot())
 | |
|       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
 | |
|       .setDiscardResult(Call->use_empty())
 | |
|       .setIsPatchPoint(IsPatchPoint)
 | |
|       .setIsPreallocated(
 | |
|           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
 | |
| }
 | |
| 
 | |
| /// Add a stack map intrinsic call's live variable operands to a stackmap
 | |
| /// or patchpoint target node's operand list.
 | |
| ///
 | |
| /// Constants are converted to TargetConstants purely as an optimization to
 | |
| /// avoid constant materialization and register allocation.
 | |
| ///
 | |
| /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
 | |
| /// generate addess computation nodes, and so FinalizeISel can convert the
 | |
| /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
 | |
| /// address materialization and register allocation, but may also be required
 | |
| /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
 | |
| /// alloca in the entry block, then the runtime may assume that the alloca's
 | |
| /// StackMap location can be read immediately after compilation and that the
 | |
| /// location is valid at any point during execution (this is similar to the
 | |
| /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
 | |
| /// only available in a register, then the runtime would need to trap when
 | |
| /// execution reaches the StackMap in order to read the alloca's location.
 | |
| static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
 | |
|                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
 | |
|                                 SelectionDAGBuilder &Builder) {
 | |
|   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
 | |
|     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
 | |
|       Ops.push_back(
 | |
|         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
 | |
|       Ops.push_back(
 | |
|         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
 | |
|     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
 | |
|       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
 | |
|       Ops.push_back(Builder.DAG.getTargetFrameIndex(
 | |
|           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
 | |
|     } else
 | |
|       Ops.push_back(OpVal);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Lower llvm.experimental.stackmap directly to its target opcode.
 | |
| void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
 | |
|   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
 | |
|   //                                  [live variables...])
 | |
| 
 | |
|   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
 | |
| 
 | |
|   SDValue Chain, InFlag, Callee, NullPtr;
 | |
|   SmallVector<SDValue, 32> Ops;
 | |
| 
 | |
|   SDLoc DL = getCurSDLoc();
 | |
|   Callee = getValue(CI.getCalledOperand());
 | |
|   NullPtr = DAG.getIntPtrConstant(0, DL, true);
 | |
| 
 | |
|   // The stackmap intrinsic only records the live variables (the arguments
 | |
|   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
 | |
|   // intrinsic, this won't be lowered to a function call. This means we don't
 | |
|   // have to worry about calling conventions and target specific lowering code.
 | |
|   // Instead we perform the call lowering right here.
 | |
|   //
 | |
|   // chain, flag = CALLSEQ_START(chain, 0, 0)
 | |
|   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
 | |
|   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
 | |
|   //
 | |
|   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Add the <id> and <numBytes> constants.
 | |
|   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
 | |
|   Ops.push_back(DAG.getTargetConstant(
 | |
|                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
 | |
|   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
 | |
|   Ops.push_back(DAG.getTargetConstant(
 | |
|                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
 | |
|                   MVT::i32));
 | |
| 
 | |
|   // Push live variables for the stack map.
 | |
|   addStackMapLiveVars(CI, 2, DL, Ops, *this);
 | |
| 
 | |
|   // We are not pushing any register mask info here on the operands list,
 | |
|   // because the stackmap doesn't clobber anything.
 | |
| 
 | |
|   // Push the chain and the glue flag.
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(InFlag);
 | |
| 
 | |
|   // Create the STACKMAP node.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
 | |
|   Chain = SDValue(SM, 0);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
 | |
| 
 | |
|   // Stackmaps don't generate values, so nothing goes into the NodeMap.
 | |
| 
 | |
|   // Set the root to the target-lowered call chain.
 | |
|   DAG.setRoot(Chain);
 | |
| 
 | |
|   // Inform the Frame Information that we have a stackmap in this function.
 | |
|   FuncInfo.MF->getFrameInfo().setHasStackMap();
 | |
| }
 | |
| 
 | |
| /// Lower llvm.experimental.patchpoint directly to its target opcode.
 | |
| void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
 | |
|                                           const BasicBlock *EHPadBB) {
 | |
|   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
 | |
|   //                                                 i32 <numBytes>,
 | |
|   //                                                 i8* <target>,
 | |
|   //                                                 i32 <numArgs>,
 | |
|   //                                                 [Args...],
 | |
|   //                                                 [live variables...])
 | |
| 
 | |
|   CallingConv::ID CC = CB.getCallingConv();
 | |
|   bool IsAnyRegCC = CC == CallingConv::AnyReg;
 | |
|   bool HasDef = !CB.getType()->isVoidTy();
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
 | |
| 
 | |
|   // Handle immediate and symbolic callees.
 | |
|   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
 | |
|     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
 | |
|                                    /*isTarget=*/true);
 | |
|   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
 | |
|                                          SDLoc(SymbolicCallee),
 | |
|                                          SymbolicCallee->getValueType(0));
 | |
| 
 | |
|   // Get the real number of arguments participating in the call <numArgs>
 | |
|   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
 | |
|   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
 | |
| 
 | |
|   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
 | |
|   // Intrinsics include all meta-operands up to but not including CC.
 | |
|   unsigned NumMetaOpers = PatchPointOpers::CCPos;
 | |
|   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
 | |
|          "Not enough arguments provided to the patchpoint intrinsic");
 | |
| 
 | |
|   // For AnyRegCC the arguments are lowered later on manually.
 | |
|   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
 | |
|   Type *ReturnTy =
 | |
|       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
 | |
| 
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
 | |
|                            ReturnTy, true);
 | |
|   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
 | |
| 
 | |
|   SDNode *CallEnd = Result.second.getNode();
 | |
|   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
 | |
|     CallEnd = CallEnd->getOperand(0).getNode();
 | |
| 
 | |
|   /// Get a call instruction from the call sequence chain.
 | |
|   /// Tail calls are not allowed.
 | |
|   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
 | |
|          "Expected a callseq node.");
 | |
|   SDNode *Call = CallEnd->getOperand(0).getNode();
 | |
|   bool HasGlue = Call->getGluedNode();
 | |
| 
 | |
|   // Replace the target specific call node with the patchable intrinsic.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
| 
 | |
|   // Add the <id> and <numBytes> constants.
 | |
|   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
 | |
|   Ops.push_back(DAG.getTargetConstant(
 | |
|                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
 | |
|   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
 | |
|   Ops.push_back(DAG.getTargetConstant(
 | |
|                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
 | |
|                   MVT::i32));
 | |
| 
 | |
|   // Add the callee.
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Adjust <numArgs> to account for any arguments that have been passed on the
 | |
|   // stack instead.
 | |
|   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
 | |
|   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
 | |
|   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
 | |
|   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
 | |
| 
 | |
|   // Add the calling convention
 | |
|   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
 | |
| 
 | |
|   // Add the arguments we omitted previously. The register allocator should
 | |
|   // place these in any free register.
 | |
|   if (IsAnyRegCC)
 | |
|     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
 | |
|       Ops.push_back(getValue(CB.getArgOperand(i)));
 | |
| 
 | |
|   // Push the arguments from the call instruction up to the register mask.
 | |
|   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
 | |
|   Ops.append(Call->op_begin() + 2, e);
 | |
| 
 | |
|   // Push live variables for the stack map.
 | |
|   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
 | |
| 
 | |
|   // Push the register mask info.
 | |
|   if (HasGlue)
 | |
|     Ops.push_back(*(Call->op_end()-2));
 | |
|   else
 | |
|     Ops.push_back(*(Call->op_end()-1));
 | |
| 
 | |
|   // Push the chain (this is originally the first operand of the call, but
 | |
|   // becomes now the last or second to last operand).
 | |
|   Ops.push_back(*(Call->op_begin()));
 | |
| 
 | |
|   // Push the glue flag (last operand).
 | |
|   if (HasGlue)
 | |
|     Ops.push_back(*(Call->op_end()-1));
 | |
| 
 | |
|   SDVTList NodeTys;
 | |
|   if (IsAnyRegCC && HasDef) {
 | |
|     // Create the return types based on the intrinsic definition
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     SmallVector<EVT, 3> ValueVTs;
 | |
|     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
 | |
|     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
 | |
| 
 | |
|     // There is always a chain and a glue type at the end
 | |
|     ValueVTs.push_back(MVT::Other);
 | |
|     ValueVTs.push_back(MVT::Glue);
 | |
|     NodeTys = DAG.getVTList(ValueVTs);
 | |
|   } else
 | |
|     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
| 
 | |
|   // Replace the target specific call node with a PATCHPOINT node.
 | |
|   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
 | |
|                                          dl, NodeTys, Ops);
 | |
| 
 | |
|   // Update the NodeMap.
 | |
|   if (HasDef) {
 | |
|     if (IsAnyRegCC)
 | |
|       setValue(&CB, SDValue(MN, 0));
 | |
|     else
 | |
|       setValue(&CB, Result.first);
 | |
|   }
 | |
| 
 | |
|   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
 | |
|   // call sequence. Furthermore the location of the chain and glue can change
 | |
|   // when the AnyReg calling convention is used and the intrinsic returns a
 | |
|   // value.
 | |
|   if (IsAnyRegCC && HasDef) {
 | |
|     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
 | |
|     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
 | |
|     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
 | |
|   } else
 | |
|     DAG.ReplaceAllUsesWith(Call, MN);
 | |
|   DAG.DeleteNode(Call);
 | |
| 
 | |
|   // Inform the Frame Information that we have a patchpoint in this function.
 | |
|   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
 | |
|                                             unsigned Intrinsic) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|   SDValue Op2;
 | |
|   if (I.arg_size() > 1)
 | |
|     Op2 = getValue(I.getArgOperand(1));
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|   SDValue Res;
 | |
|   SDNodeFlags SDFlags;
 | |
|   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
 | |
|     SDFlags.copyFMF(*FPMO);
 | |
| 
 | |
|   switch (Intrinsic) {
 | |
|   case Intrinsic::vector_reduce_fadd:
 | |
|     if (SDFlags.hasAllowReassociation())
 | |
|       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
 | |
|                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
 | |
|                         SDFlags);
 | |
|     else
 | |
|       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_fmul:
 | |
|     if (SDFlags.hasAllowReassociation())
 | |
|       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
 | |
|                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
 | |
|                         SDFlags);
 | |
|     else
 | |
|       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_add:
 | |
|     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_mul:
 | |
|     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_and:
 | |
|     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_or:
 | |
|     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_xor:
 | |
|     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_smax:
 | |
|     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_smin:
 | |
|     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_umax:
 | |
|     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_umin:
 | |
|     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_fmax:
 | |
|     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
 | |
|     break;
 | |
|   case Intrinsic::vector_reduce_fmin:
 | |
|     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled vector reduce intrinsic");
 | |
|   }
 | |
|   setValue(&I, Res);
 | |
| }
 | |
| 
 | |
| /// Returns an AttributeList representing the attributes applied to the return
 | |
| /// value of the given call.
 | |
| static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
 | |
|   SmallVector<Attribute::AttrKind, 2> Attrs;
 | |
|   if (CLI.RetSExt)
 | |
|     Attrs.push_back(Attribute::SExt);
 | |
|   if (CLI.RetZExt)
 | |
|     Attrs.push_back(Attribute::ZExt);
 | |
|   if (CLI.IsInReg)
 | |
|     Attrs.push_back(Attribute::InReg);
 | |
| 
 | |
|   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
 | |
|                             Attrs);
 | |
| }
 | |
| 
 | |
| /// TargetLowering::LowerCallTo - This is the default LowerCallTo
 | |
| /// implementation, which just calls LowerCall.
 | |
| /// FIXME: When all targets are
 | |
| /// migrated to using LowerCall, this hook should be integrated into SDISel.
 | |
| std::pair<SDValue, SDValue>
 | |
| TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
 | |
|   // Handle the incoming return values from the call.
 | |
|   CLI.Ins.clear();
 | |
|   Type *OrigRetTy = CLI.RetTy;
 | |
|   SmallVector<EVT, 4> RetTys;
 | |
|   SmallVector<uint64_t, 4> Offsets;
 | |
|   auto &DL = CLI.DAG.getDataLayout();
 | |
|   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
 | |
| 
 | |
|   if (CLI.IsPostTypeLegalization) {
 | |
|     // If we are lowering a libcall after legalization, split the return type.
 | |
|     SmallVector<EVT, 4> OldRetTys;
 | |
|     SmallVector<uint64_t, 4> OldOffsets;
 | |
|     RetTys.swap(OldRetTys);
 | |
|     Offsets.swap(OldOffsets);
 | |
| 
 | |
|     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
 | |
|       EVT RetVT = OldRetTys[i];
 | |
|       uint64_t Offset = OldOffsets[i];
 | |
|       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
 | |
|       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
 | |
|       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
 | |
|       RetTys.append(NumRegs, RegisterVT);
 | |
|       for (unsigned j = 0; j != NumRegs; ++j)
 | |
|         Offsets.push_back(Offset + j * RegisterVTByteSZ);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<ISD::OutputArg, 4> Outs;
 | |
|   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
 | |
| 
 | |
|   bool CanLowerReturn =
 | |
|       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
 | |
|                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
 | |
| 
 | |
|   SDValue DemoteStackSlot;
 | |
|   int DemoteStackIdx = -100;
 | |
|   if (!CanLowerReturn) {
 | |
|     // FIXME: equivalent assert?
 | |
|     // assert(!CS.hasInAllocaArgument() &&
 | |
|     //        "sret demotion is incompatible with inalloca");
 | |
|     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
 | |
|     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
 | |
|     MachineFunction &MF = CLI.DAG.getMachineFunction();
 | |
|     DemoteStackIdx =
 | |
|         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
 | |
|     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
 | |
|                                               DL.getAllocaAddrSpace());
 | |
| 
 | |
|     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
 | |
|     ArgListEntry Entry;
 | |
|     Entry.Node = DemoteStackSlot;
 | |
|     Entry.Ty = StackSlotPtrType;
 | |
|     Entry.IsSExt = false;
 | |
|     Entry.IsZExt = false;
 | |
|     Entry.IsInReg = false;
 | |
|     Entry.IsSRet = true;
 | |
|     Entry.IsNest = false;
 | |
|     Entry.IsByVal = false;
 | |
|     Entry.IsByRef = false;
 | |
|     Entry.IsReturned = false;
 | |
|     Entry.IsSwiftSelf = false;
 | |
|     Entry.IsSwiftAsync = false;
 | |
|     Entry.IsSwiftError = false;
 | |
|     Entry.IsCFGuardTarget = false;
 | |
|     Entry.Alignment = Alignment;
 | |
|     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
 | |
|     CLI.NumFixedArgs += 1;
 | |
|     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
 | |
| 
 | |
|     // sret demotion isn't compatible with tail-calls, since the sret argument
 | |
|     // points into the callers stack frame.
 | |
|     CLI.IsTailCall = false;
 | |
|   } else {
 | |
|     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
 | |
|         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
 | |
|     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
 | |
|       ISD::ArgFlagsTy Flags;
 | |
|       if (NeedsRegBlock) {
 | |
|         Flags.setInConsecutiveRegs();
 | |
|         if (I == RetTys.size() - 1)
 | |
|           Flags.setInConsecutiveRegsLast();
 | |
|       }
 | |
|       EVT VT = RetTys[I];
 | |
|       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
 | |
|                                                      CLI.CallConv, VT);
 | |
|       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
 | |
|                                                        CLI.CallConv, VT);
 | |
|       for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|         ISD::InputArg MyFlags;
 | |
|         MyFlags.Flags = Flags;
 | |
|         MyFlags.VT = RegisterVT;
 | |
|         MyFlags.ArgVT = VT;
 | |
|         MyFlags.Used = CLI.IsReturnValueUsed;
 | |
|         if (CLI.RetTy->isPointerTy()) {
 | |
|           MyFlags.Flags.setPointer();
 | |
|           MyFlags.Flags.setPointerAddrSpace(
 | |
|               cast<PointerType>(CLI.RetTy)->getAddressSpace());
 | |
|         }
 | |
|         if (CLI.RetSExt)
 | |
|           MyFlags.Flags.setSExt();
 | |
|         if (CLI.RetZExt)
 | |
|           MyFlags.Flags.setZExt();
 | |
|         if (CLI.IsInReg)
 | |
|           MyFlags.Flags.setInReg();
 | |
|         CLI.Ins.push_back(MyFlags);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We push in swifterror return as the last element of CLI.Ins.
 | |
|   ArgListTy &Args = CLI.getArgs();
 | |
|   if (supportSwiftError()) {
 | |
|     for (const ArgListEntry &Arg : Args) {
 | |
|       if (Arg.IsSwiftError) {
 | |
|         ISD::InputArg MyFlags;
 | |
|         MyFlags.VT = getPointerTy(DL);
 | |
|         MyFlags.ArgVT = EVT(getPointerTy(DL));
 | |
|         MyFlags.Flags.setSwiftError();
 | |
|         CLI.Ins.push_back(MyFlags);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle all of the outgoing arguments.
 | |
|   CLI.Outs.clear();
 | |
|   CLI.OutVals.clear();
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
 | |
|     // FIXME: Split arguments if CLI.IsPostTypeLegalization
 | |
|     Type *FinalType = Args[i].Ty;
 | |
|     if (Args[i].IsByVal)
 | |
|       FinalType = Args[i].IndirectType;
 | |
|     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
 | |
|         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
 | |
|     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
 | |
|          ++Value) {
 | |
|       EVT VT = ValueVTs[Value];
 | |
|       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
 | |
|       SDValue Op = SDValue(Args[i].Node.getNode(),
 | |
|                            Args[i].Node.getResNo() + Value);
 | |
|       ISD::ArgFlagsTy Flags;
 | |
| 
 | |
|       // Certain targets (such as MIPS), may have a different ABI alignment
 | |
|       // for a type depending on the context. Give the target a chance to
 | |
|       // specify the alignment it wants.
 | |
|       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
 | |
|       Flags.setOrigAlign(OriginalAlignment);
 | |
| 
 | |
|       if (Args[i].Ty->isPointerTy()) {
 | |
|         Flags.setPointer();
 | |
|         Flags.setPointerAddrSpace(
 | |
|             cast<PointerType>(Args[i].Ty)->getAddressSpace());
 | |
|       }
 | |
|       if (Args[i].IsZExt)
 | |
|         Flags.setZExt();
 | |
|       if (Args[i].IsSExt)
 | |
|         Flags.setSExt();
 | |
|       if (Args[i].IsInReg) {
 | |
|         // If we are using vectorcall calling convention, a structure that is
 | |
|         // passed InReg - is surely an HVA
 | |
|         if (CLI.CallConv == CallingConv::X86_VectorCall &&
 | |
|             isa<StructType>(FinalType)) {
 | |
|           // The first value of a structure is marked
 | |
|           if (0 == Value)
 | |
|             Flags.setHvaStart();
 | |
|           Flags.setHva();
 | |
|         }
 | |
|         // Set InReg Flag
 | |
|         Flags.setInReg();
 | |
|       }
 | |
|       if (Args[i].IsSRet)
 | |
|         Flags.setSRet();
 | |
|       if (Args[i].IsSwiftSelf)
 | |
|         Flags.setSwiftSelf();
 | |
|       if (Args[i].IsSwiftAsync)
 | |
|         Flags.setSwiftAsync();
 | |
|       if (Args[i].IsSwiftError)
 | |
|         Flags.setSwiftError();
 | |
|       if (Args[i].IsCFGuardTarget)
 | |
|         Flags.setCFGuardTarget();
 | |
|       if (Args[i].IsByVal)
 | |
|         Flags.setByVal();
 | |
|       if (Args[i].IsByRef)
 | |
|         Flags.setByRef();
 | |
|       if (Args[i].IsPreallocated) {
 | |
|         Flags.setPreallocated();
 | |
|         // Set the byval flag for CCAssignFn callbacks that don't know about
 | |
|         // preallocated.  This way we can know how many bytes we should've
 | |
|         // allocated and how many bytes a callee cleanup function will pop.  If
 | |
|         // we port preallocated to more targets, we'll have to add custom
 | |
|         // preallocated handling in the various CC lowering callbacks.
 | |
|         Flags.setByVal();
 | |
|       }
 | |
|       if (Args[i].IsInAlloca) {
 | |
|         Flags.setInAlloca();
 | |
|         // Set the byval flag for CCAssignFn callbacks that don't know about
 | |
|         // inalloca.  This way we can know how many bytes we should've allocated
 | |
|         // and how many bytes a callee cleanup function will pop.  If we port
 | |
|         // inalloca to more targets, we'll have to add custom inalloca handling
 | |
|         // in the various CC lowering callbacks.
 | |
|         Flags.setByVal();
 | |
|       }
 | |
|       Align MemAlign;
 | |
|       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
 | |
|         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
 | |
|         Flags.setByValSize(FrameSize);
 | |
| 
 | |
|         // info is not there but there are cases it cannot get right.
 | |
|         if (auto MA = Args[i].Alignment)
 | |
|           MemAlign = *MA;
 | |
|         else
 | |
|           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
 | |
|       } else if (auto MA = Args[i].Alignment) {
 | |
|         MemAlign = *MA;
 | |
|       } else {
 | |
|         MemAlign = OriginalAlignment;
 | |
|       }
 | |
|       Flags.setMemAlign(MemAlign);
 | |
|       if (Args[i].IsNest)
 | |
|         Flags.setNest();
 | |
|       if (NeedsRegBlock)
 | |
|         Flags.setInConsecutiveRegs();
 | |
| 
 | |
|       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
 | |
|                                                  CLI.CallConv, VT);
 | |
|       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
 | |
|                                                         CLI.CallConv, VT);
 | |
|       SmallVector<SDValue, 4> Parts(NumParts);
 | |
|       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
| 
 | |
|       if (Args[i].IsSExt)
 | |
|         ExtendKind = ISD::SIGN_EXTEND;
 | |
|       else if (Args[i].IsZExt)
 | |
|         ExtendKind = ISD::ZERO_EXTEND;
 | |
| 
 | |
|       // Conservatively only handle 'returned' on non-vectors that can be lowered,
 | |
|       // for now.
 | |
|       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
 | |
|           CanLowerReturn) {
 | |
|         assert((CLI.RetTy == Args[i].Ty ||
 | |
|                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
 | |
|                  CLI.RetTy->getPointerAddressSpace() ==
 | |
|                      Args[i].Ty->getPointerAddressSpace())) &&
 | |
|                RetTys.size() == NumValues && "unexpected use of 'returned'");
 | |
|         // Before passing 'returned' to the target lowering code, ensure that
 | |
|         // either the register MVT and the actual EVT are the same size or that
 | |
|         // the return value and argument are extended in the same way; in these
 | |
|         // cases it's safe to pass the argument register value unchanged as the
 | |
|         // return register value (although it's at the target's option whether
 | |
|         // to do so)
 | |
|         // TODO: allow code generation to take advantage of partially preserved
 | |
|         // registers rather than clobbering the entire register when the
 | |
|         // parameter extension method is not compatible with the return
 | |
|         // extension method
 | |
|         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
 | |
|             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
 | |
|              CLI.RetZExt == Args[i].IsZExt))
 | |
|           Flags.setReturned();
 | |
|       }
 | |
| 
 | |
|       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
 | |
|                      CLI.CallConv, ExtendKind);
 | |
| 
 | |
|       for (unsigned j = 0; j != NumParts; ++j) {
 | |
|         // if it isn't first piece, alignment must be 1
 | |
|         // For scalable vectors the scalable part is currently handled
 | |
|         // by individual targets, so we just use the known minimum size here.
 | |
|         ISD::OutputArg MyFlags(
 | |
|             Flags, Parts[j].getValueType().getSimpleVT(), VT,
 | |
|             i < CLI.NumFixedArgs, i,
 | |
|             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
 | |
|         if (NumParts > 1 && j == 0)
 | |
|           MyFlags.Flags.setSplit();
 | |
|         else if (j != 0) {
 | |
|           MyFlags.Flags.setOrigAlign(Align(1));
 | |
|           if (j == NumParts - 1)
 | |
|             MyFlags.Flags.setSplitEnd();
 | |
|         }
 | |
| 
 | |
|         CLI.Outs.push_back(MyFlags);
 | |
|         CLI.OutVals.push_back(Parts[j]);
 | |
|       }
 | |
| 
 | |
|       if (NeedsRegBlock && Value == NumValues - 1)
 | |
|         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<SDValue, 4> InVals;
 | |
|   CLI.Chain = LowerCall(CLI, InVals);
 | |
| 
 | |
|   // Update CLI.InVals to use outside of this function.
 | |
|   CLI.InVals = InVals;
 | |
| 
 | |
|   // Verify that the target's LowerCall behaved as expected.
 | |
|   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
 | |
|          "LowerCall didn't return a valid chain!");
 | |
|   assert((!CLI.IsTailCall || InVals.empty()) &&
 | |
|          "LowerCall emitted a return value for a tail call!");
 | |
|   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
 | |
|          "LowerCall didn't emit the correct number of values!");
 | |
| 
 | |
|   // For a tail call, the return value is merely live-out and there aren't
 | |
|   // any nodes in the DAG representing it. Return a special value to
 | |
|   // indicate that a tail call has been emitted and no more Instructions
 | |
|   // should be processed in the current block.
 | |
|   if (CLI.IsTailCall) {
 | |
|     CLI.DAG.setRoot(CLI.Chain);
 | |
|     return std::make_pair(SDValue(), SDValue());
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
 | |
|     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
 | |
|     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
 | |
|            "LowerCall emitted a value with the wrong type!");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   SmallVector<SDValue, 4> ReturnValues;
 | |
|   if (!CanLowerReturn) {
 | |
|     // The instruction result is the result of loading from the
 | |
|     // hidden sret parameter.
 | |
|     SmallVector<EVT, 1> PVTs;
 | |
|     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
 | |
| 
 | |
|     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
 | |
|     assert(PVTs.size() == 1 && "Pointers should fit in one register");
 | |
|     EVT PtrVT = PVTs[0];
 | |
| 
 | |
|     unsigned NumValues = RetTys.size();
 | |
|     ReturnValues.resize(NumValues);
 | |
|     SmallVector<SDValue, 4> Chains(NumValues);
 | |
| 
 | |
|     // An aggregate return value cannot wrap around the address space, so
 | |
|     // offsets to its parts don't wrap either.
 | |
|     SDNodeFlags Flags;
 | |
|     Flags.setNoUnsignedWrap(true);
 | |
| 
 | |
|     MachineFunction &MF = CLI.DAG.getMachineFunction();
 | |
|     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
 | |
|     for (unsigned i = 0; i < NumValues; ++i) {
 | |
|       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
 | |
|                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
 | |
|                                                         PtrVT), Flags);
 | |
|       SDValue L = CLI.DAG.getLoad(
 | |
|           RetTys[i], CLI.DL, CLI.Chain, Add,
 | |
|           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
 | |
|                                             DemoteStackIdx, Offsets[i]),
 | |
|           HiddenSRetAlign);
 | |
|       ReturnValues[i] = L;
 | |
|       Chains[i] = L.getValue(1);
 | |
|     }
 | |
| 
 | |
|     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
 | |
|   } else {
 | |
|     // Collect the legal value parts into potentially illegal values
 | |
|     // that correspond to the original function's return values.
 | |
|     Optional<ISD::NodeType> AssertOp;
 | |
|     if (CLI.RetSExt)
 | |
|       AssertOp = ISD::AssertSext;
 | |
|     else if (CLI.RetZExt)
 | |
|       AssertOp = ISD::AssertZext;
 | |
|     unsigned CurReg = 0;
 | |
|     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
 | |
|       EVT VT = RetTys[I];
 | |
|       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
 | |
|                                                      CLI.CallConv, VT);
 | |
|       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
 | |
|                                                        CLI.CallConv, VT);
 | |
| 
 | |
|       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
 | |
|                                               NumRegs, RegisterVT, VT, nullptr,
 | |
|                                               CLI.CallConv, AssertOp));
 | |
|       CurReg += NumRegs;
 | |
|     }
 | |
| 
 | |
|     // For a function returning void, there is no return value. We can't create
 | |
|     // such a node, so we just return a null return value in that case. In
 | |
|     // that case, nothing will actually look at the value.
 | |
|     if (ReturnValues.empty())
 | |
|       return std::make_pair(SDValue(), CLI.Chain);
 | |
|   }
 | |
| 
 | |
|   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
 | |
|                                 CLI.DAG.getVTList(RetTys), ReturnValues);
 | |
|   return std::make_pair(Res, CLI.Chain);
 | |
| }
 | |
| 
 | |
| /// Places new result values for the node in Results (their number
 | |
| /// and types must exactly match those of the original return values of
 | |
| /// the node), or leaves Results empty, which indicates that the node is not
 | |
| /// to be custom lowered after all.
 | |
| void TargetLowering::LowerOperationWrapper(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue> &Results,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
 | |
| 
 | |
|   if (!Res.getNode())
 | |
|     return;
 | |
| 
 | |
|   // If the original node has one result, take the return value from
 | |
|   // LowerOperation as is. It might not be result number 0.
 | |
|   if (N->getNumValues() == 1) {
 | |
|     Results.push_back(Res);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the original node has multiple results, then the return node should
 | |
|   // have the same number of results.
 | |
|   assert((N->getNumValues() == Res->getNumValues()) &&
 | |
|       "Lowering returned the wrong number of results!");
 | |
| 
 | |
|   // Places new result values base on N result number.
 | |
|   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
 | |
|     Results.push_back(Res.getValue(I));
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   llvm_unreachable("LowerOperation not implemented for this target!");
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
 | |
|                                                      unsigned Reg,
 | |
|                                                      ISD::NodeType ExtendType) {
 | |
|   SDValue Op = getNonRegisterValue(V);
 | |
|   assert((Op.getOpcode() != ISD::CopyFromReg ||
 | |
|           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
 | |
|          "Copy from a reg to the same reg!");
 | |
|   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   // If this is an InlineAsm we have to match the registers required, not the
 | |
|   // notional registers required by the type.
 | |
| 
 | |
|   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
 | |
|                    None); // This is not an ABI copy.
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
| 
 | |
|   if (ExtendType == ISD::ANY_EXTEND) {
 | |
|     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
 | |
|     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
 | |
|       ExtendType = PreferredExtendIt->second;
 | |
|   }
 | |
|   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
 | |
|   PendingExports.push_back(Chain);
 | |
| }
 | |
| 
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| 
 | |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
 | |
| /// entry block, return true.  This includes arguments used by switches, since
 | |
| /// the switch may expand into multiple basic blocks.
 | |
| static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
 | |
|   // With FastISel active, we may be splitting blocks, so force creation
 | |
|   // of virtual registers for all non-dead arguments.
 | |
|   if (FastISel)
 | |
|     return A->use_empty();
 | |
| 
 | |
|   const BasicBlock &Entry = A->getParent()->front();
 | |
|   for (const User *U : A->users())
 | |
|     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
 | |
|       return false;  // Use not in entry block.
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| using ArgCopyElisionMapTy =
 | |
|     DenseMap<const Argument *,
 | |
|              std::pair<const AllocaInst *, const StoreInst *>>;
 | |
| 
 | |
| /// Scan the entry block of the function in FuncInfo for arguments that look
 | |
| /// like copies into a local alloca. Record any copied arguments in
 | |
| /// ArgCopyElisionCandidates.
 | |
| static void
 | |
| findArgumentCopyElisionCandidates(const DataLayout &DL,
 | |
|                                   FunctionLoweringInfo *FuncInfo,
 | |
|                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
 | |
|   // Record the state of every static alloca used in the entry block. Argument
 | |
|   // allocas are all used in the entry block, so we need approximately as many
 | |
|   // entries as we have arguments.
 | |
|   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
 | |
|   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
 | |
|   unsigned NumArgs = FuncInfo->Fn->arg_size();
 | |
|   StaticAllocas.reserve(NumArgs * 2);
 | |
| 
 | |
|   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
 | |
|     if (!V)
 | |
|       return nullptr;
 | |
|     V = V->stripPointerCasts();
 | |
|     const auto *AI = dyn_cast<AllocaInst>(V);
 | |
|     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
 | |
|       return nullptr;
 | |
|     auto Iter = StaticAllocas.insert({AI, Unknown});
 | |
|     return &Iter.first->second;
 | |
|   };
 | |
| 
 | |
|   // Look for stores of arguments to static allocas. Look through bitcasts and
 | |
|   // GEPs to handle type coercions, as long as the alloca is fully initialized
 | |
|   // by the store. Any non-store use of an alloca escapes it and any subsequent
 | |
|   // unanalyzed store might write it.
 | |
|   // FIXME: Handle structs initialized with multiple stores.
 | |
|   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
 | |
|     // Look for stores, and handle non-store uses conservatively.
 | |
|     const auto *SI = dyn_cast<StoreInst>(&I);
 | |
|     if (!SI) {
 | |
|       // We will look through cast uses, so ignore them completely.
 | |
|       if (I.isCast())
 | |
|         continue;
 | |
|       // Ignore debug info and pseudo op intrinsics, they don't escape or store
 | |
|       // to allocas.
 | |
|       if (I.isDebugOrPseudoInst())
 | |
|         continue;
 | |
|       // This is an unknown instruction. Assume it escapes or writes to all
 | |
|       // static alloca operands.
 | |
|       for (const Use &U : I.operands()) {
 | |
|         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
 | |
|           *Info = StaticAllocaInfo::Clobbered;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If the stored value is a static alloca, mark it as escaped.
 | |
|     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
 | |
|       *Info = StaticAllocaInfo::Clobbered;
 | |
| 
 | |
|     // Check if the destination is a static alloca.
 | |
|     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
 | |
|     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
 | |
|     if (!Info)
 | |
|       continue;
 | |
|     const AllocaInst *AI = cast<AllocaInst>(Dst);
 | |
| 
 | |
|     // Skip allocas that have been initialized or clobbered.
 | |
|     if (*Info != StaticAllocaInfo::Unknown)
 | |
|       continue;
 | |
| 
 | |
|     // Check if the stored value is an argument, and that this store fully
 | |
|     // initializes the alloca.
 | |
|     // If the argument type has padding bits we can't directly forward a pointer
 | |
|     // as the upper bits may contain garbage.
 | |
|     // Don't elide copies from the same argument twice.
 | |
|     const Value *Val = SI->getValueOperand()->stripPointerCasts();
 | |
|     const auto *Arg = dyn_cast<Argument>(Val);
 | |
|     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
 | |
|         Arg->getType()->isEmptyTy() ||
 | |
|         DL.getTypeStoreSize(Arg->getType()) !=
 | |
|             DL.getTypeAllocSize(AI->getAllocatedType()) ||
 | |
|         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
 | |
|         ArgCopyElisionCandidates.count(Arg)) {
 | |
|       *Info = StaticAllocaInfo::Clobbered;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
 | |
|                       << '\n');
 | |
| 
 | |
|     // Mark this alloca and store for argument copy elision.
 | |
|     *Info = StaticAllocaInfo::Elidable;
 | |
|     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
 | |
| 
 | |
|     // Stop scanning if we've seen all arguments. This will happen early in -O0
 | |
|     // builds, which is useful, because -O0 builds have large entry blocks and
 | |
|     // many allocas.
 | |
|     if (ArgCopyElisionCandidates.size() == NumArgs)
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Try to elide argument copies from memory into a local alloca. Succeeds if
 | |
| /// ArgVal is a load from a suitable fixed stack object.
 | |
| static void tryToElideArgumentCopy(
 | |
|     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
 | |
|     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
 | |
|     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
 | |
|     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
 | |
|     SDValue ArgVal, bool &ArgHasUses) {
 | |
|   // Check if this is a load from a fixed stack object.
 | |
|   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
 | |
|   if (!LNode)
 | |
|     return;
 | |
|   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
 | |
|   if (!FINode)
 | |
|     return;
 | |
| 
 | |
|   // Check that the fixed stack object is the right size and alignment.
 | |
|   // Look at the alignment that the user wrote on the alloca instead of looking
 | |
|   // at the stack object.
 | |
|   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
 | |
|   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
 | |
|   const AllocaInst *AI = ArgCopyIter->second.first;
 | |
|   int FixedIndex = FINode->getIndex();
 | |
|   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
 | |
|   int OldIndex = AllocaIndex;
 | |
|   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
 | |
|   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "  argument copy elision failed due to bad fixed stack "
 | |
|                   "object size\n");
 | |
|     return;
 | |
|   }
 | |
|   Align RequiredAlignment = AI->getAlign();
 | |
|   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
 | |
|     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
 | |
|                          "greater than stack argument alignment ("
 | |
|                       << DebugStr(RequiredAlignment) << " vs "
 | |
|                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Perform the elision. Delete the old stack object and replace its only use
 | |
|   // in the variable info map. Mark the stack object as mutable.
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
 | |
|            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
 | |
|            << '\n';
 | |
|   });
 | |
|   MFI.RemoveStackObject(OldIndex);
 | |
|   MFI.setIsImmutableObjectIndex(FixedIndex, false);
 | |
|   AllocaIndex = FixedIndex;
 | |
|   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
 | |
|   Chains.push_back(ArgVal.getValue(1));
 | |
| 
 | |
|   // Avoid emitting code for the store implementing the copy.
 | |
|   const StoreInst *SI = ArgCopyIter->second.second;
 | |
|   ElidedArgCopyInstrs.insert(SI);
 | |
| 
 | |
|   // Check for uses of the argument again so that we can avoid exporting ArgVal
 | |
|   // if it is't used by anything other than the store.
 | |
|   for (const Value *U : Arg.users()) {
 | |
|     if (U != SI) {
 | |
|       ArgHasUses = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::LowerArguments(const Function &F) {
 | |
|   SelectionDAG &DAG = SDB->DAG;
 | |
|   SDLoc dl = SDB->getCurSDLoc();
 | |
|   const DataLayout &DL = DAG.getDataLayout();
 | |
|   SmallVector<ISD::InputArg, 16> Ins;
 | |
| 
 | |
|   // In Naked functions we aren't going to save any registers.
 | |
|   if (F.hasFnAttribute(Attribute::Naked))
 | |
|     return;
 | |
| 
 | |
|   if (!FuncInfo->CanLowerReturn) {
 | |
|     // Put in an sret pointer parameter before all the other parameters.
 | |
|     SmallVector<EVT, 1> ValueVTs;
 | |
|     ComputeValueVTs(*TLI, DAG.getDataLayout(),
 | |
|                     F.getReturnType()->getPointerTo(
 | |
|                         DAG.getDataLayout().getAllocaAddrSpace()),
 | |
|                     ValueVTs);
 | |
| 
 | |
|     // NOTE: Assuming that a pointer will never break down to more than one VT
 | |
|     // or one register.
 | |
|     ISD::ArgFlagsTy Flags;
 | |
|     Flags.setSRet();
 | |
|     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
 | |
|     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
 | |
|                          ISD::InputArg::NoArgIndex, 0);
 | |
|     Ins.push_back(RetArg);
 | |
|   }
 | |
| 
 | |
|   // Look for stores of arguments to static allocas. Mark such arguments with a
 | |
|   // flag to ask the target to give us the memory location of that argument if
 | |
|   // available.
 | |
|   ArgCopyElisionMapTy ArgCopyElisionCandidates;
 | |
|   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
 | |
|                                     ArgCopyElisionCandidates);
 | |
| 
 | |
|   // Set up the incoming argument description vector.
 | |
|   for (const Argument &Arg : F.args()) {
 | |
|     unsigned ArgNo = Arg.getArgNo();
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
 | |
|     bool isArgValueUsed = !Arg.use_empty();
 | |
|     unsigned PartBase = 0;
 | |
|     Type *FinalType = Arg.getType();
 | |
|     if (Arg.hasAttribute(Attribute::ByVal))
 | |
|       FinalType = Arg.getParamByValType();
 | |
|     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
 | |
|         FinalType, F.getCallingConv(), F.isVarArg(), DL);
 | |
|     for (unsigned Value = 0, NumValues = ValueVTs.size();
 | |
|          Value != NumValues; ++Value) {
 | |
|       EVT VT = ValueVTs[Value];
 | |
|       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
 | |
|       ISD::ArgFlagsTy Flags;
 | |
| 
 | |
| 
 | |
|       if (Arg.getType()->isPointerTy()) {
 | |
|         Flags.setPointer();
 | |
|         Flags.setPointerAddrSpace(
 | |
|             cast<PointerType>(Arg.getType())->getAddressSpace());
 | |
|       }
 | |
|       if (Arg.hasAttribute(Attribute::ZExt))
 | |
|         Flags.setZExt();
 | |
|       if (Arg.hasAttribute(Attribute::SExt))
 | |
|         Flags.setSExt();
 | |
|       if (Arg.hasAttribute(Attribute::InReg)) {
 | |
|         // If we are using vectorcall calling convention, a structure that is
 | |
|         // passed InReg - is surely an HVA
 | |
|         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
 | |
|             isa<StructType>(Arg.getType())) {
 | |
|           // The first value of a structure is marked
 | |
|           if (0 == Value)
 | |
|             Flags.setHvaStart();
 | |
|           Flags.setHva();
 | |
|         }
 | |
|         // Set InReg Flag
 | |
|         Flags.setInReg();
 | |
|       }
 | |
|       if (Arg.hasAttribute(Attribute::StructRet))
 | |
|         Flags.setSRet();
 | |
|       if (Arg.hasAttribute(Attribute::SwiftSelf))
 | |
|         Flags.setSwiftSelf();
 | |
|       if (Arg.hasAttribute(Attribute::SwiftAsync))
 | |
|         Flags.setSwiftAsync();
 | |
|       if (Arg.hasAttribute(Attribute::SwiftError))
 | |
|         Flags.setSwiftError();
 | |
|       if (Arg.hasAttribute(Attribute::ByVal))
 | |
|         Flags.setByVal();
 | |
|       if (Arg.hasAttribute(Attribute::ByRef))
 | |
|         Flags.setByRef();
 | |
|       if (Arg.hasAttribute(Attribute::InAlloca)) {
 | |
|         Flags.setInAlloca();
 | |
|         // Set the byval flag for CCAssignFn callbacks that don't know about
 | |
|         // inalloca.  This way we can know how many bytes we should've allocated
 | |
|         // and how many bytes a callee cleanup function will pop.  If we port
 | |
|         // inalloca to more targets, we'll have to add custom inalloca handling
 | |
|         // in the various CC lowering callbacks.
 | |
|         Flags.setByVal();
 | |
|       }
 | |
|       if (Arg.hasAttribute(Attribute::Preallocated)) {
 | |
|         Flags.setPreallocated();
 | |
|         // Set the byval flag for CCAssignFn callbacks that don't know about
 | |
|         // preallocated.  This way we can know how many bytes we should've
 | |
|         // allocated and how many bytes a callee cleanup function will pop.  If
 | |
|         // we port preallocated to more targets, we'll have to add custom
 | |
|         // preallocated handling in the various CC lowering callbacks.
 | |
|         Flags.setByVal();
 | |
|       }
 | |
| 
 | |
|       // Certain targets (such as MIPS), may have a different ABI alignment
 | |
|       // for a type depending on the context. Give the target a chance to
 | |
|       // specify the alignment it wants.
 | |
|       const Align OriginalAlignment(
 | |
|           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
 | |
|       Flags.setOrigAlign(OriginalAlignment);
 | |
| 
 | |
|       Align MemAlign;
 | |
|       Type *ArgMemTy = nullptr;
 | |
|       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
 | |
|           Flags.isByRef()) {
 | |
|         if (!ArgMemTy)
 | |
|           ArgMemTy = Arg.getPointeeInMemoryValueType();
 | |
| 
 | |
|         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
 | |
| 
 | |
|         // For in-memory arguments, size and alignment should be passed from FE.
 | |
|         // BE will guess if this info is not there but there are cases it cannot
 | |
|         // get right.
 | |
|         if (auto ParamAlign = Arg.getParamStackAlign())
 | |
|           MemAlign = *ParamAlign;
 | |
|         else if ((ParamAlign = Arg.getParamAlign()))
 | |
|           MemAlign = *ParamAlign;
 | |
|         else
 | |
|           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
 | |
|         if (Flags.isByRef())
 | |
|           Flags.setByRefSize(MemSize);
 | |
|         else
 | |
|           Flags.setByValSize(MemSize);
 | |
|       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
 | |
|         MemAlign = *ParamAlign;
 | |
|       } else {
 | |
|         MemAlign = OriginalAlignment;
 | |
|       }
 | |
|       Flags.setMemAlign(MemAlign);
 | |
| 
 | |
|       if (Arg.hasAttribute(Attribute::Nest))
 | |
|         Flags.setNest();
 | |
|       if (NeedsRegBlock)
 | |
|         Flags.setInConsecutiveRegs();
 | |
|       if (ArgCopyElisionCandidates.count(&Arg))
 | |
|         Flags.setCopyElisionCandidate();
 | |
|       if (Arg.hasAttribute(Attribute::Returned))
 | |
|         Flags.setReturned();
 | |
| 
 | |
|       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
 | |
|           *CurDAG->getContext(), F.getCallingConv(), VT);
 | |
|       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
 | |
|           *CurDAG->getContext(), F.getCallingConv(), VT);
 | |
|       for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|         // For scalable vectors, use the minimum size; individual targets
 | |
|         // are responsible for handling scalable vector arguments and
 | |
|         // return values.
 | |
|         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
 | |
|                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
 | |
|         if (NumRegs > 1 && i == 0)
 | |
|           MyFlags.Flags.setSplit();
 | |
|         // if it isn't first piece, alignment must be 1
 | |
|         else if (i > 0) {
 | |
|           MyFlags.Flags.setOrigAlign(Align(1));
 | |
|           if (i == NumRegs - 1)
 | |
|             MyFlags.Flags.setSplitEnd();
 | |
|         }
 | |
|         Ins.push_back(MyFlags);
 | |
|       }
 | |
|       if (NeedsRegBlock && Value == NumValues - 1)
 | |
|         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
 | |
|       PartBase += VT.getStoreSize().getKnownMinSize();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Call the target to set up the argument values.
 | |
|   SmallVector<SDValue, 8> InVals;
 | |
|   SDValue NewRoot = TLI->LowerFormalArguments(
 | |
|       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
 | |
| 
 | |
|   // Verify that the target's LowerFormalArguments behaved as expected.
 | |
|   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
 | |
|          "LowerFormalArguments didn't return a valid chain!");
 | |
|   assert(InVals.size() == Ins.size() &&
 | |
|          "LowerFormalArguments didn't emit the correct number of values!");
 | |
|   LLVM_DEBUG({
 | |
|     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
 | |
|       assert(InVals[i].getNode() &&
 | |
|              "LowerFormalArguments emitted a null value!");
 | |
|       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
 | |
|              "LowerFormalArguments emitted a value with the wrong type!");
 | |
|     }
 | |
|   });
 | |
| 
 | |
|   // Update the DAG with the new chain value resulting from argument lowering.
 | |
|   DAG.setRoot(NewRoot);
 | |
| 
 | |
|   // Set up the argument values.
 | |
|   unsigned i = 0;
 | |
|   if (!FuncInfo->CanLowerReturn) {
 | |
|     // Create a virtual register for the sret pointer, and put in a copy
 | |
|     // from the sret argument into it.
 | |
|     SmallVector<EVT, 1> ValueVTs;
 | |
|     ComputeValueVTs(*TLI, DAG.getDataLayout(),
 | |
|                     F.getReturnType()->getPointerTo(
 | |
|                         DAG.getDataLayout().getAllocaAddrSpace()),
 | |
|                     ValueVTs);
 | |
|     MVT VT = ValueVTs[0].getSimpleVT();
 | |
|     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
 | |
|     Optional<ISD::NodeType> AssertOp = None;
 | |
|     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
 | |
|                                         nullptr, F.getCallingConv(), AssertOp);
 | |
| 
 | |
|     MachineFunction& MF = SDB->DAG.getMachineFunction();
 | |
|     MachineRegisterInfo& RegInfo = MF.getRegInfo();
 | |
|     Register SRetReg =
 | |
|         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
 | |
|     FuncInfo->DemoteRegister = SRetReg;
 | |
|     NewRoot =
 | |
|         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
 | |
|     DAG.setRoot(NewRoot);
 | |
| 
 | |
|     // i indexes lowered arguments.  Bump it past the hidden sret argument.
 | |
|     ++i;
 | |
|   }
 | |
| 
 | |
|   SmallVector<SDValue, 4> Chains;
 | |
|   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
 | |
|   for (const Argument &Arg : F.args()) {
 | |
|     SmallVector<SDValue, 4> ArgValues;
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
 | |
|     unsigned NumValues = ValueVTs.size();
 | |
|     if (NumValues == 0)
 | |
|       continue;
 | |
| 
 | |
|     bool ArgHasUses = !Arg.use_empty();
 | |
| 
 | |
|     // Elide the copying store if the target loaded this argument from a
 | |
|     // suitable fixed stack object.
 | |
|     if (Ins[i].Flags.isCopyElisionCandidate()) {
 | |
|       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
 | |
|                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
 | |
|                              InVals[i], ArgHasUses);
 | |
|     }
 | |
| 
 | |
|     // If this argument is unused then remember its value. It is used to generate
 | |
|     // debugging information.
 | |
|     bool isSwiftErrorArg =
 | |
|         TLI->supportSwiftError() &&
 | |
|         Arg.hasAttribute(Attribute::SwiftError);
 | |
|     if (!ArgHasUses && !isSwiftErrorArg) {
 | |
|       SDB->setUnusedArgValue(&Arg, InVals[i]);
 | |
| 
 | |
|       // Also remember any frame index for use in FastISel.
 | |
|       if (FrameIndexSDNode *FI =
 | |
|           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
 | |
|         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
 | |
|     }
 | |
| 
 | |
|     for (unsigned Val = 0; Val != NumValues; ++Val) {
 | |
|       EVT VT = ValueVTs[Val];
 | |
|       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
 | |
|                                                       F.getCallingConv(), VT);
 | |
|       unsigned NumParts = TLI->getNumRegistersForCallingConv(
 | |
|           *CurDAG->getContext(), F.getCallingConv(), VT);
 | |
| 
 | |
|       // Even an apparent 'unused' swifterror argument needs to be returned. So
 | |
|       // we do generate a copy for it that can be used on return from the
 | |
|       // function.
 | |
|       if (ArgHasUses || isSwiftErrorArg) {
 | |
|         Optional<ISD::NodeType> AssertOp;
 | |
|         if (Arg.hasAttribute(Attribute::SExt))
 | |
|           AssertOp = ISD::AssertSext;
 | |
|         else if (Arg.hasAttribute(Attribute::ZExt))
 | |
|           AssertOp = ISD::AssertZext;
 | |
| 
 | |
|         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
 | |
|                                              PartVT, VT, nullptr,
 | |
|                                              F.getCallingConv(), AssertOp));
 | |
|       }
 | |
| 
 | |
|       i += NumParts;
 | |
|     }
 | |
| 
 | |
|     // We don't need to do anything else for unused arguments.
 | |
|     if (ArgValues.empty())
 | |
|       continue;
 | |
| 
 | |
|     // Note down frame index.
 | |
|     if (FrameIndexSDNode *FI =
 | |
|         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
 | |
|       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
 | |
| 
 | |
|     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
 | |
|                                      SDB->getCurSDLoc());
 | |
| 
 | |
|     SDB->setValue(&Arg, Res);
 | |
|     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
 | |
|       // We want to associate the argument with the frame index, among
 | |
|       // involved operands, that correspond to the lowest address. The
 | |
|       // getCopyFromParts function, called earlier, is swapping the order of
 | |
|       // the operands to BUILD_PAIR depending on endianness. The result of
 | |
|       // that swapping is that the least significant bits of the argument will
 | |
|       // be in the first operand of the BUILD_PAIR node, and the most
 | |
|       // significant bits will be in the second operand.
 | |
|       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
 | |
|       if (LoadSDNode *LNode =
 | |
|           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
 | |
|         if (FrameIndexSDNode *FI =
 | |
|             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
 | |
|           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
 | |
|     }
 | |
| 
 | |
|     // Analyses past this point are naive and don't expect an assertion.
 | |
|     if (Res.getOpcode() == ISD::AssertZext)
 | |
|       Res = Res.getOperand(0);
 | |
| 
 | |
|     // Update the SwiftErrorVRegDefMap.
 | |
|     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
 | |
|       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
 | |
|       if (Register::isVirtualRegister(Reg))
 | |
|         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
 | |
|                                    Reg);
 | |
|     }
 | |
| 
 | |
|     // If this argument is live outside of the entry block, insert a copy from
 | |
|     // wherever we got it to the vreg that other BB's will reference it as.
 | |
|     if (Res.getOpcode() == ISD::CopyFromReg) {
 | |
|       // If we can, though, try to skip creating an unnecessary vreg.
 | |
|       // FIXME: This isn't very clean... it would be nice to make this more
 | |
|       // general.
 | |
|       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
 | |
|       if (Register::isVirtualRegister(Reg)) {
 | |
|         FuncInfo->ValueMap[&Arg] = Reg;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
 | |
|       FuncInfo->InitializeRegForValue(&Arg);
 | |
|       SDB->CopyToExportRegsIfNeeded(&Arg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Chains.empty()) {
 | |
|     Chains.push_back(NewRoot);
 | |
|     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
 | |
|   }
 | |
| 
 | |
|   DAG.setRoot(NewRoot);
 | |
| 
 | |
|   assert(i == InVals.size() && "Argument register count mismatch!");
 | |
| 
 | |
|   // If any argument copy elisions occurred and we have debug info, update the
 | |
|   // stale frame indices used in the dbg.declare variable info table.
 | |
|   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
 | |
|   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
 | |
|     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
 | |
|       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
 | |
|       if (I != ArgCopyElisionFrameIndexMap.end())
 | |
|         VI.Slot = I->second;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finally, if the target has anything special to do, allow it to do so.
 | |
|   emitFunctionEntryCode();
 | |
| }
 | |
| 
 | |
| /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
 | |
| /// ensure constants are generated when needed.  Remember the virtual registers
 | |
| /// that need to be added to the Machine PHI nodes as input.  We cannot just
 | |
| /// directly add them, because expansion might result in multiple MBB's for one
 | |
| /// BB.  As such, the start of the BB might correspond to a different MBB than
 | |
| /// the end.
 | |
| void
 | |
| SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const Instruction *TI = LLVMBB->getTerminator();
 | |
| 
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
 | |
| 
 | |
|   // Check PHI nodes in successors that expect a value to be available from this
 | |
|   // block.
 | |
|   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | |
|     const BasicBlock *SuccBB = TI->getSuccessor(succ);
 | |
|     if (!isa<PHINode>(SuccBB->begin())) continue;
 | |
|     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
 | |
| 
 | |
|     // If this terminator has multiple identical successors (common for
 | |
|     // switches), only handle each succ once.
 | |
|     if (!SuccsHandled.insert(SuccMBB).second)
 | |
|       continue;
 | |
| 
 | |
|     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
 | |
| 
 | |
|     // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | |
|     // nodes and Machine PHI nodes, but the incoming operands have not been
 | |
|     // emitted yet.
 | |
|     for (const PHINode &PN : SuccBB->phis()) {
 | |
|       // Ignore dead phi's.
 | |
|       if (PN.use_empty())
 | |
|         continue;
 | |
| 
 | |
|       // Skip empty types
 | |
|       if (PN.getType()->isEmptyTy())
 | |
|         continue;
 | |
| 
 | |
|       unsigned Reg;
 | |
|       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
 | |
| 
 | |
|       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
 | |
|         unsigned &RegOut = ConstantsOut[C];
 | |
|         if (RegOut == 0) {
 | |
|           RegOut = FuncInfo.CreateRegs(C);
 | |
|           // We need to zero/sign extend ConstantInt phi operands to match
 | |
|           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
 | |
|           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
 | |
|           if (auto *CI = dyn_cast<ConstantInt>(C))
 | |
|             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
 | |
|                                                     : ISD::ZERO_EXTEND;
 | |
|           CopyValueToVirtualRegister(C, RegOut, ExtendType);
 | |
|         }
 | |
|         Reg = RegOut;
 | |
|       } else {
 | |
|         DenseMap<const Value *, Register>::iterator I =
 | |
|           FuncInfo.ValueMap.find(PHIOp);
 | |
|         if (I != FuncInfo.ValueMap.end())
 | |
|           Reg = I->second;
 | |
|         else {
 | |
|           assert(isa<AllocaInst>(PHIOp) &&
 | |
|                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
 | |
|                  "Didn't codegen value into a register!??");
 | |
|           Reg = FuncInfo.CreateRegs(PHIOp);
 | |
|           CopyValueToVirtualRegister(PHIOp, Reg);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Remember that this register needs to added to the machine PHI node as
 | |
|       // the input for this MBB.
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
 | |
|       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
 | |
|         EVT VT = ValueVTs[vti];
 | |
|         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
 | |
|         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
 | |
|           FuncInfo.PHINodesToUpdate.push_back(
 | |
|               std::make_pair(&*MBBI++, Reg + i));
 | |
|         Reg += NumRegisters;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ConstantsOut.clear();
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
 | |
|   MachineFunction::iterator I(MBB);
 | |
|   if (++I == FuncInfo.MF->end())
 | |
|     return nullptr;
 | |
|   return &*I;
 | |
| }
 | |
| 
 | |
| /// During lowering new call nodes can be created (such as memset, etc.).
 | |
| /// Those will become new roots of the current DAG, but complications arise
 | |
| /// when they are tail calls. In such cases, the call lowering will update
 | |
| /// the root, but the builder still needs to know that a tail call has been
 | |
| /// lowered in order to avoid generating an additional return.
 | |
| void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
 | |
|   // If the node is null, we do have a tail call.
 | |
|   if (MaybeTC.getNode() != nullptr)
 | |
|     DAG.setRoot(MaybeTC);
 | |
|   else
 | |
|     HasTailCall = true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
 | |
|                                         MachineBasicBlock *SwitchMBB,
 | |
|                                         MachineBasicBlock *DefaultMBB) {
 | |
|   MachineFunction *CurMF = FuncInfo.MF;
 | |
|   MachineBasicBlock *NextMBB = nullptr;
 | |
|   MachineFunction::iterator BBI(W.MBB);
 | |
|   if (++BBI != FuncInfo.MF->end())
 | |
|     NextMBB = &*BBI;
 | |
| 
 | |
|   unsigned Size = W.LastCluster - W.FirstCluster + 1;
 | |
| 
 | |
|   BranchProbabilityInfo *BPI = FuncInfo.BPI;
 | |
| 
 | |
|   if (Size == 2 && W.MBB == SwitchMBB) {
 | |
|     // If any two of the cases has the same destination, and if one value
 | |
|     // is the same as the other, but has one bit unset that the other has set,
 | |
|     // use bit manipulation to do two compares at once.  For example:
 | |
|     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
 | |
|     // TODO: This could be extended to merge any 2 cases in switches with 3
 | |
|     // cases.
 | |
|     // TODO: Handle cases where W.CaseBB != SwitchBB.
 | |
|     CaseCluster &Small = *W.FirstCluster;
 | |
|     CaseCluster &Big = *W.LastCluster;
 | |
| 
 | |
|     if (Small.Low == Small.High && Big.Low == Big.High &&
 | |
|         Small.MBB == Big.MBB) {
 | |
|       const APInt &SmallValue = Small.Low->getValue();
 | |
|       const APInt &BigValue = Big.Low->getValue();
 | |
| 
 | |
|       // Check that there is only one bit different.
 | |
|       APInt CommonBit = BigValue ^ SmallValue;
 | |
|       if (CommonBit.isPowerOf2()) {
 | |
|         SDValue CondLHS = getValue(Cond);
 | |
|         EVT VT = CondLHS.getValueType();
 | |
|         SDLoc DL = getCurSDLoc();
 | |
| 
 | |
|         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
 | |
|                                  DAG.getConstant(CommonBit, DL, VT));
 | |
|         SDValue Cond = DAG.getSetCC(
 | |
|             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
 | |
|             ISD::SETEQ);
 | |
| 
 | |
|         // Update successor info.
 | |
|         // Both Small and Big will jump to Small.BB, so we sum up the
 | |
|         // probabilities.
 | |
|         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
 | |
|         if (BPI)
 | |
|           addSuccessorWithProb(
 | |
|               SwitchMBB, DefaultMBB,
 | |
|               // The default destination is the first successor in IR.
 | |
|               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
 | |
|         else
 | |
|           addSuccessorWithProb(SwitchMBB, DefaultMBB);
 | |
| 
 | |
|         // Insert the true branch.
 | |
|         SDValue BrCond =
 | |
|             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
 | |
|                         DAG.getBasicBlock(Small.MBB));
 | |
|         // Insert the false branch.
 | |
|         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
 | |
|                              DAG.getBasicBlock(DefaultMBB));
 | |
| 
 | |
|         DAG.setRoot(BrCond);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TM.getOptLevel() != CodeGenOpt::None) {
 | |
|     // Here, we order cases by probability so the most likely case will be
 | |
|     // checked first. However, two clusters can have the same probability in
 | |
|     // which case their relative ordering is non-deterministic. So we use Low
 | |
|     // as a tie-breaker as clusters are guaranteed to never overlap.
 | |
|     llvm::sort(W.FirstCluster, W.LastCluster + 1,
 | |
|                [](const CaseCluster &a, const CaseCluster &b) {
 | |
|       return a.Prob != b.Prob ?
 | |
|              a.Prob > b.Prob :
 | |
|              a.Low->getValue().slt(b.Low->getValue());
 | |
|     });
 | |
| 
 | |
|     // Rearrange the case blocks so that the last one falls through if possible
 | |
|     // without changing the order of probabilities.
 | |
|     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
 | |
|       --I;
 | |
|       if (I->Prob > W.LastCluster->Prob)
 | |
|         break;
 | |
|       if (I->Kind == CC_Range && I->MBB == NextMBB) {
 | |
|         std::swap(*I, *W.LastCluster);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute total probability.
 | |
|   BranchProbability DefaultProb = W.DefaultProb;
 | |
|   BranchProbability UnhandledProbs = DefaultProb;
 | |
|   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
 | |
|     UnhandledProbs += I->Prob;
 | |
| 
 | |
|   MachineBasicBlock *CurMBB = W.MBB;
 | |
|   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
 | |
|     bool FallthroughUnreachable = false;
 | |
|     MachineBasicBlock *Fallthrough;
 | |
|     if (I == W.LastCluster) {
 | |
|       // For the last cluster, fall through to the default destination.
 | |
|       Fallthrough = DefaultMBB;
 | |
|       FallthroughUnreachable = isa<UnreachableInst>(
 | |
|           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
 | |
|     } else {
 | |
|       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
 | |
|       CurMF->insert(BBI, Fallthrough);
 | |
|       // Put Cond in a virtual register to make it available from the new blocks.
 | |
|       ExportFromCurrentBlock(Cond);
 | |
|     }
 | |
|     UnhandledProbs -= I->Prob;
 | |
| 
 | |
|     switch (I->Kind) {
 | |
|       case CC_JumpTable: {
 | |
|         // FIXME: Optimize away range check based on pivot comparisons.
 | |
|         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
 | |
|         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
 | |
| 
 | |
|         // The jump block hasn't been inserted yet; insert it here.
 | |
|         MachineBasicBlock *JumpMBB = JT->MBB;
 | |
|         CurMF->insert(BBI, JumpMBB);
 | |
| 
 | |
|         auto JumpProb = I->Prob;
 | |
|         auto FallthroughProb = UnhandledProbs;
 | |
| 
 | |
|         // If the default statement is a target of the jump table, we evenly
 | |
|         // distribute the default probability to successors of CurMBB. Also
 | |
|         // update the probability on the edge from JumpMBB to Fallthrough.
 | |
|         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
 | |
|                                               SE = JumpMBB->succ_end();
 | |
|              SI != SE; ++SI) {
 | |
|           if (*SI == DefaultMBB) {
 | |
|             JumpProb += DefaultProb / 2;
 | |
|             FallthroughProb -= DefaultProb / 2;
 | |
|             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
 | |
|             JumpMBB->normalizeSuccProbs();
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (FallthroughUnreachable)
 | |
|           JTH->FallthroughUnreachable = true;
 | |
| 
 | |
|         if (!JTH->FallthroughUnreachable)
 | |
|           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
 | |
|         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
 | |
|         CurMBB->normalizeSuccProbs();
 | |
| 
 | |
|         // The jump table header will be inserted in our current block, do the
 | |
|         // range check, and fall through to our fallthrough block.
 | |
|         JTH->HeaderBB = CurMBB;
 | |
|         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
 | |
| 
 | |
|         // If we're in the right place, emit the jump table header right now.
 | |
|         if (CurMBB == SwitchMBB) {
 | |
|           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
 | |
|           JTH->Emitted = true;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case CC_BitTests: {
 | |
|         // FIXME: Optimize away range check based on pivot comparisons.
 | |
|         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
 | |
| 
 | |
|         // The bit test blocks haven't been inserted yet; insert them here.
 | |
|         for (BitTestCase &BTC : BTB->Cases)
 | |
|           CurMF->insert(BBI, BTC.ThisBB);
 | |
| 
 | |
|         // Fill in fields of the BitTestBlock.
 | |
|         BTB->Parent = CurMBB;
 | |
|         BTB->Default = Fallthrough;
 | |
| 
 | |
|         BTB->DefaultProb = UnhandledProbs;
 | |
|         // If the cases in bit test don't form a contiguous range, we evenly
 | |
|         // distribute the probability on the edge to Fallthrough to two
 | |
|         // successors of CurMBB.
 | |
|         if (!BTB->ContiguousRange) {
 | |
|           BTB->Prob += DefaultProb / 2;
 | |
|           BTB->DefaultProb -= DefaultProb / 2;
 | |
|         }
 | |
| 
 | |
|         if (FallthroughUnreachable)
 | |
|           BTB->FallthroughUnreachable = true;
 | |
| 
 | |
|         // If we're in the right place, emit the bit test header right now.
 | |
|         if (CurMBB == SwitchMBB) {
 | |
|           visitBitTestHeader(*BTB, SwitchMBB);
 | |
|           BTB->Emitted = true;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case CC_Range: {
 | |
|         const Value *RHS, *LHS, *MHS;
 | |
|         ISD::CondCode CC;
 | |
|         if (I->Low == I->High) {
 | |
|           // Check Cond == I->Low.
 | |
|           CC = ISD::SETEQ;
 | |
|           LHS = Cond;
 | |
|           RHS=I->Low;
 | |
|           MHS = nullptr;
 | |
|         } else {
 | |
|           // Check I->Low <= Cond <= I->High.
 | |
|           CC = ISD::SETLE;
 | |
|           LHS = I->Low;
 | |
|           MHS = Cond;
 | |
|           RHS = I->High;
 | |
|         }
 | |
| 
 | |
|         // If Fallthrough is unreachable, fold away the comparison.
 | |
|         if (FallthroughUnreachable)
 | |
|           CC = ISD::SETTRUE;
 | |
| 
 | |
|         // The false probability is the sum of all unhandled cases.
 | |
|         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
 | |
|                      getCurSDLoc(), I->Prob, UnhandledProbs);
 | |
| 
 | |
|         if (CurMBB == SwitchMBB)
 | |
|           visitSwitchCase(CB, SwitchMBB);
 | |
|         else
 | |
|           SL->SwitchCases.push_back(CB);
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     CurMBB = Fallthrough;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
 | |
|                                               CaseClusterIt First,
 | |
|                                               CaseClusterIt Last) {
 | |
|   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
 | |
|     if (X.Prob != CC.Prob)
 | |
|       return X.Prob > CC.Prob;
 | |
| 
 | |
|     // Ties are broken by comparing the case value.
 | |
|     return X.Low->getValue().slt(CC.Low->getValue());
 | |
|   });
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
 | |
|                                         const SwitchWorkListItem &W,
 | |
|                                         Value *Cond,
 | |
|                                         MachineBasicBlock *SwitchMBB) {
 | |
|   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
 | |
|          "Clusters not sorted?");
 | |
| 
 | |
|   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
 | |
| 
 | |
|   // Balance the tree based on branch probabilities to create a near-optimal (in
 | |
|   // terms of search time given key frequency) binary search tree. See e.g. Kurt
 | |
|   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
 | |
|   CaseClusterIt LastLeft = W.FirstCluster;
 | |
|   CaseClusterIt FirstRight = W.LastCluster;
 | |
|   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
 | |
|   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
 | |
| 
 | |
|   // Move LastLeft and FirstRight towards each other from opposite directions to
 | |
|   // find a partitioning of the clusters which balances the probability on both
 | |
|   // sides. If LeftProb and RightProb are equal, alternate which side is
 | |
|   // taken to ensure 0-probability nodes are distributed evenly.
 | |
|   unsigned I = 0;
 | |
|   while (LastLeft + 1 < FirstRight) {
 | |
|     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
 | |
|       LeftProb += (++LastLeft)->Prob;
 | |
|     else
 | |
|       RightProb += (--FirstRight)->Prob;
 | |
|     I++;
 | |
|   }
 | |
| 
 | |
|   while (true) {
 | |
|     // Our binary search tree differs from a typical BST in that ours can have up
 | |
|     // to three values in each leaf. The pivot selection above doesn't take that
 | |
|     // into account, which means the tree might require more nodes and be less
 | |
|     // efficient. We compensate for this here.
 | |
| 
 | |
|     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
 | |
|     unsigned NumRight = W.LastCluster - FirstRight + 1;
 | |
| 
 | |
|     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
 | |
|       // If one side has less than 3 clusters, and the other has more than 3,
 | |
|       // consider taking a cluster from the other side.
 | |
| 
 | |
|       if (NumLeft < NumRight) {
 | |
|         // Consider moving the first cluster on the right to the left side.
 | |
|         CaseCluster &CC = *FirstRight;
 | |
|         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
 | |
|         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
 | |
|         if (LeftSideRank <= RightSideRank) {
 | |
|           // Moving the cluster to the left does not demote it.
 | |
|           ++LastLeft;
 | |
|           ++FirstRight;
 | |
|           continue;
 | |
|         }
 | |
|       } else {
 | |
|         assert(NumRight < NumLeft);
 | |
|         // Consider moving the last element on the left to the right side.
 | |
|         CaseCluster &CC = *LastLeft;
 | |
|         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
 | |
|         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
 | |
|         if (RightSideRank <= LeftSideRank) {
 | |
|           // Moving the cluster to the right does not demot it.
 | |
|           --LastLeft;
 | |
|           --FirstRight;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   assert(LastLeft + 1 == FirstRight);
 | |
|   assert(LastLeft >= W.FirstCluster);
 | |
|   assert(FirstRight <= W.LastCluster);
 | |
| 
 | |
|   // Use the first element on the right as pivot since we will make less-than
 | |
|   // comparisons against it.
 | |
|   CaseClusterIt PivotCluster = FirstRight;
 | |
|   assert(PivotCluster > W.FirstCluster);
 | |
|   assert(PivotCluster <= W.LastCluster);
 | |
| 
 | |
|   CaseClusterIt FirstLeft = W.FirstCluster;
 | |
|   CaseClusterIt LastRight = W.LastCluster;
 | |
| 
 | |
|   const ConstantInt *Pivot = PivotCluster->Low;
 | |
| 
 | |
|   // New blocks will be inserted immediately after the current one.
 | |
|   MachineFunction::iterator BBI(W.MBB);
 | |
|   ++BBI;
 | |
| 
 | |
|   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
 | |
|   // we can branch to its destination directly if it's squeezed exactly in
 | |
|   // between the known lower bound and Pivot - 1.
 | |
|   MachineBasicBlock *LeftMBB;
 | |
|   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
 | |
|       FirstLeft->Low == W.GE &&
 | |
|       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
 | |
|     LeftMBB = FirstLeft->MBB;
 | |
|   } else {
 | |
|     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
 | |
|     FuncInfo.MF->insert(BBI, LeftMBB);
 | |
|     WorkList.push_back(
 | |
|         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
 | |
|     // Put Cond in a virtual register to make it available from the new blocks.
 | |
|     ExportFromCurrentBlock(Cond);
 | |
|   }
 | |
| 
 | |
|   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
 | |
|   // single cluster, RHS.Low == Pivot, and we can branch to its destination
 | |
|   // directly if RHS.High equals the current upper bound.
 | |
|   MachineBasicBlock *RightMBB;
 | |
|   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
 | |
|       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
 | |
|     RightMBB = FirstRight->MBB;
 | |
|   } else {
 | |
|     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
 | |
|     FuncInfo.MF->insert(BBI, RightMBB);
 | |
|     WorkList.push_back(
 | |
|         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
 | |
|     // Put Cond in a virtual register to make it available from the new blocks.
 | |
|     ExportFromCurrentBlock(Cond);
 | |
|   }
 | |
| 
 | |
|   // Create the CaseBlock record that will be used to lower the branch.
 | |
|   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
 | |
|                getCurSDLoc(), LeftProb, RightProb);
 | |
| 
 | |
|   if (W.MBB == SwitchMBB)
 | |
|     visitSwitchCase(CB, SwitchMBB);
 | |
|   else
 | |
|     SL->SwitchCases.push_back(CB);
 | |
| }
 | |
| 
 | |
| // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
 | |
| // from the swith statement.
 | |
| static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
 | |
|                                             BranchProbability PeeledCaseProb) {
 | |
|   if (PeeledCaseProb == BranchProbability::getOne())
 | |
|     return BranchProbability::getZero();
 | |
|   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
 | |
| 
 | |
|   uint32_t Numerator = CaseProb.getNumerator();
 | |
|   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
 | |
|   return BranchProbability(Numerator, std::max(Numerator, Denominator));
 | |
| }
 | |
| 
 | |
| // Try to peel the top probability case if it exceeds the threshold.
 | |
| // Return current MachineBasicBlock for the switch statement if the peeling
 | |
| // does not occur.
 | |
| // If the peeling is performed, return the newly created MachineBasicBlock
 | |
| // for the peeled switch statement. Also update Clusters to remove the peeled
 | |
| // case. PeeledCaseProb is the BranchProbability for the peeled case.
 | |
| MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
 | |
|     const SwitchInst &SI, CaseClusterVector &Clusters,
 | |
|     BranchProbability &PeeledCaseProb) {
 | |
|   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
 | |
|   // Don't perform if there is only one cluster or optimizing for size.
 | |
|   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
 | |
|       TM.getOptLevel() == CodeGenOpt::None ||
 | |
|       SwitchMBB->getParent()->getFunction().hasMinSize())
 | |
|     return SwitchMBB;
 | |
| 
 | |
|   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
 | |
|   unsigned PeeledCaseIndex = 0;
 | |
|   bool SwitchPeeled = false;
 | |
|   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
 | |
|     CaseCluster &CC = Clusters[Index];
 | |
|     if (CC.Prob < TopCaseProb)
 | |
|       continue;
 | |
|     TopCaseProb = CC.Prob;
 | |
|     PeeledCaseIndex = Index;
 | |
|     SwitchPeeled = true;
 | |
|   }
 | |
|   if (!SwitchPeeled)
 | |
|     return SwitchMBB;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
 | |
|                     << TopCaseProb << "\n");
 | |
| 
 | |
|   // Record the MBB for the peeled switch statement.
 | |
|   MachineFunction::iterator BBI(SwitchMBB);
 | |
|   ++BBI;
 | |
|   MachineBasicBlock *PeeledSwitchMBB =
 | |
|       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
 | |
|   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
 | |
| 
 | |
|   ExportFromCurrentBlock(SI.getCondition());
 | |
|   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
 | |
|   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
 | |
|                           nullptr,   nullptr,      TopCaseProb.getCompl()};
 | |
|   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
 | |
| 
 | |
|   Clusters.erase(PeeledCaseIt);
 | |
|   for (CaseCluster &CC : Clusters) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "Scale the probablity for one cluster, before scaling: "
 | |
|                << CC.Prob << "\n");
 | |
|     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
 | |
|     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
 | |
|   }
 | |
|   PeeledCaseProb = TopCaseProb;
 | |
|   return PeeledSwitchMBB;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
 | |
|   // Extract cases from the switch.
 | |
|   BranchProbabilityInfo *BPI = FuncInfo.BPI;
 | |
|   CaseClusterVector Clusters;
 | |
|   Clusters.reserve(SI.getNumCases());
 | |
|   for (auto I : SI.cases()) {
 | |
|     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
 | |
|     const ConstantInt *CaseVal = I.getCaseValue();
 | |
|     BranchProbability Prob =
 | |
|         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
 | |
|             : BranchProbability(1, SI.getNumCases() + 1);
 | |
|     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
 | |
| 
 | |
|   // Cluster adjacent cases with the same destination. We do this at all
 | |
|   // optimization levels because it's cheap to do and will make codegen faster
 | |
|   // if there are many clusters.
 | |
|   sortAndRangeify(Clusters);
 | |
| 
 | |
|   // The branch probablity of the peeled case.
 | |
|   BranchProbability PeeledCaseProb = BranchProbability::getZero();
 | |
|   MachineBasicBlock *PeeledSwitchMBB =
 | |
|       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
 | |
| 
 | |
|   // If there is only the default destination, jump there directly.
 | |
|   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
 | |
|   if (Clusters.empty()) {
 | |
|     assert(PeeledSwitchMBB == SwitchMBB);
 | |
|     SwitchMBB->addSuccessor(DefaultMBB);
 | |
|     if (DefaultMBB != NextBlock(SwitchMBB)) {
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
 | |
|                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
 | |
|   SL->findBitTestClusters(Clusters, &SI);
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Case clusters: ";
 | |
|     for (const CaseCluster &C : Clusters) {
 | |
|       if (C.Kind == CC_JumpTable)
 | |
|         dbgs() << "JT:";
 | |
|       if (C.Kind == CC_BitTests)
 | |
|         dbgs() << "BT:";
 | |
| 
 | |
|       C.Low->getValue().print(dbgs(), true);
 | |
|       if (C.Low != C.High) {
 | |
|         dbgs() << '-';
 | |
|         C.High->getValue().print(dbgs(), true);
 | |
|       }
 | |
|       dbgs() << ' ';
 | |
|     }
 | |
|     dbgs() << '\n';
 | |
|   });
 | |
| 
 | |
|   assert(!Clusters.empty());
 | |
|   SwitchWorkList WorkList;
 | |
|   CaseClusterIt First = Clusters.begin();
 | |
|   CaseClusterIt Last = Clusters.end() - 1;
 | |
|   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
 | |
|   // Scale the branchprobability for DefaultMBB if the peel occurs and
 | |
|   // DefaultMBB is not replaced.
 | |
|   if (PeeledCaseProb != BranchProbability::getZero() &&
 | |
|       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
 | |
|     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
 | |
|   WorkList.push_back(
 | |
|       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     SwitchWorkListItem W = WorkList.pop_back_val();
 | |
|     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
 | |
| 
 | |
|     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
 | |
|         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
 | |
|       // For optimized builds, lower large range as a balanced binary tree.
 | |
|       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   auto DL = getCurSDLoc();
 | |
|   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
|   setValue(&I, DAG.getStepVector(DL, ResultVT));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
| 
 | |
|   SDLoc DL = getCurSDLoc();
 | |
|   SDValue V = getValue(I.getOperand(0));
 | |
|   assert(VT == V.getValueType() && "Malformed vector.reverse!");
 | |
| 
 | |
|   if (VT.isScalableVector()) {
 | |
|     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Use VECTOR_SHUFFLE for the fixed-length vector
 | |
|   // to maintain existing behavior.
 | |
|   SmallVector<int, 8> Mask;
 | |
|   unsigned NumElts = VT.getVectorMinNumElements();
 | |
|   for (unsigned i = 0; i != NumElts; ++i)
 | |
|     Mask.push_back(NumElts - 1 - i);
 | |
| 
 | |
|   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
 | |
|                   ValueVTs);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues == 0) return;
 | |
| 
 | |
|   SmallVector<SDValue, 4> Values(NumValues);
 | |
|   SDValue Op = getValue(I.getOperand(0));
 | |
| 
 | |
|   for (unsigned i = 0; i != NumValues; ++i)
 | |
|     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
 | |
|                             SDValue(Op.getNode(), Op.getResNo() + i));
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
 | |
|                            DAG.getVTList(ValueVTs), Values));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
 | |
| 
 | |
|   SDLoc DL = getCurSDLoc();
 | |
|   SDValue V1 = getValue(I.getOperand(0));
 | |
|   SDValue V2 = getValue(I.getOperand(1));
 | |
|   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
 | |
| 
 | |
|   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
 | |
|   if (VT.isScalableVector()) {
 | |
|     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
 | |
|     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
 | |
|                              DAG.getConstant(Imm, DL, IdxVT)));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   uint64_t Idx = (NumElts + Imm) % NumElts;
 | |
| 
 | |
|   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
 | |
|   SmallVector<int, 8> Mask;
 | |
|   for (unsigned i = 0; i < NumElts; ++i)
 | |
|     Mask.push_back(Idx + i);
 | |
|   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
 | |
| }
 |