3711 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3711 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the SelectionDAGISel class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "ScheduleDAGSDNodes.h"
 | |
| #include "SelectionDAGBuilder.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/EHPersonalities.h"
 | |
| #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
 | |
| #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/ProfileSummaryInfo.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/CodeGen/CodeGenCommonISel.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/GCMetadata.h"
 | |
| #include "llvm/CodeGen/ISDOpcodes.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachinePassRegistry.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/CodeGen/StackProtector.h"
 | |
| #include "llvm/CodeGen/SwiftErrorValueTracking.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/IntrinsicsWebAssembly.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CodeGen.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/MachineValueType.h"
 | |
| #include "llvm/Support/Timer.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetIntrinsicInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| 
 | |
| STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
 | |
| STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
 | |
| STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
 | |
| STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
 | |
| STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
 | |
| STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
 | |
| STATISTIC(NumFastIselFailLowerArguments,
 | |
|           "Number of entry blocks where fast isel failed to lower arguments");
 | |
| 
 | |
| static cl::opt<int> EnableFastISelAbort(
 | |
|     "fast-isel-abort", cl::Hidden,
 | |
|     cl::desc("Enable abort calls when \"fast\" instruction selection "
 | |
|              "fails to lower an instruction: 0 disable the abort, 1 will "
 | |
|              "abort but for args, calls and terminators, 2 will also "
 | |
|              "abort for argument lowering, and 3 will never fallback "
 | |
|              "to SelectionDAG."));
 | |
| 
 | |
| static cl::opt<bool> EnableFastISelFallbackReport(
 | |
|     "fast-isel-report-on-fallback", cl::Hidden,
 | |
|     cl::desc("Emit a diagnostic when \"fast\" instruction selection "
 | |
|              "falls back to SelectionDAG."));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UseMBPI("use-mbpi",
 | |
|         cl::desc("use Machine Branch Probability Info"),
 | |
|         cl::init(true), cl::Hidden);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<std::string>
 | |
| FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
 | |
|                         cl::desc("Only display the basic block whose name "
 | |
|                                  "matches this for all view-*-dags options"));
 | |
| static cl::opt<bool>
 | |
| ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before the first "
 | |
|                    "dag combine pass"));
 | |
| static cl::opt<bool>
 | |
| ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before legalize types"));
 | |
| static cl::opt<bool>
 | |
|     ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
 | |
|                      cl::desc("Pop up a window to show dags before the post "
 | |
|                               "legalize types dag combine pass"));
 | |
| static cl::opt<bool>
 | |
|     ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
 | |
|                      cl::desc("Pop up a window to show dags before legalize"));
 | |
| static cl::opt<bool>
 | |
| ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show dags before the second "
 | |
|                    "dag combine pass"));
 | |
| static cl::opt<bool>
 | |
| ViewISelDAGs("view-isel-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show isel dags as they are selected"));
 | |
| static cl::opt<bool>
 | |
| ViewSchedDAGs("view-sched-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show sched dags as they are processed"));
 | |
| static cl::opt<bool>
 | |
| ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
 | |
|       cl::desc("Pop up a window to show SUnit dags after they are processed"));
 | |
| #else
 | |
| static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
 | |
|                   ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
 | |
|                   ViewDAGCombine2 = false, ViewISelDAGs = false,
 | |
|                   ViewSchedDAGs = false, ViewSUnitDAGs = false;
 | |
| #endif
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| ///
 | |
| /// RegisterScheduler class - Track the registration of instruction schedulers.
 | |
| ///
 | |
| //===---------------------------------------------------------------------===//
 | |
| MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
 | |
|     RegisterScheduler::Registry;
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| ///
 | |
| /// ISHeuristic command line option for instruction schedulers.
 | |
| ///
 | |
| //===---------------------------------------------------------------------===//
 | |
| static cl::opt<RegisterScheduler::FunctionPassCtor, false,
 | |
|                RegisterPassParser<RegisterScheduler>>
 | |
| ISHeuristic("pre-RA-sched",
 | |
|             cl::init(&createDefaultScheduler), cl::Hidden,
 | |
|             cl::desc("Instruction schedulers available (before register"
 | |
|                      " allocation):"));
 | |
| 
 | |
| static RegisterScheduler
 | |
| defaultListDAGScheduler("default", "Best scheduler for the target",
 | |
|                         createDefaultScheduler);
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// This class is used by SelectionDAGISel to temporarily override
 | |
|   /// the optimization level on a per-function basis.
 | |
|   class OptLevelChanger {
 | |
|     SelectionDAGISel &IS;
 | |
|     CodeGenOpt::Level SavedOptLevel;
 | |
|     bool SavedFastISel;
 | |
| 
 | |
|   public:
 | |
|     OptLevelChanger(SelectionDAGISel &ISel,
 | |
|                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
 | |
|       SavedOptLevel = IS.OptLevel;
 | |
|       SavedFastISel = IS.TM.Options.EnableFastISel;
 | |
|       if (NewOptLevel == SavedOptLevel)
 | |
|         return;
 | |
|       IS.OptLevel = NewOptLevel;
 | |
|       IS.TM.setOptLevel(NewOptLevel);
 | |
|       LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
 | |
|                         << IS.MF->getFunction().getName() << "\n");
 | |
|       LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
 | |
|                         << NewOptLevel << "\n");
 | |
|       if (NewOptLevel == CodeGenOpt::None) {
 | |
|         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
 | |
|         LLVM_DEBUG(
 | |
|             dbgs() << "\tFastISel is "
 | |
|                    << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
 | |
|                    << "\n");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ~OptLevelChanger() {
 | |
|       if (IS.OptLevel == SavedOptLevel)
 | |
|         return;
 | |
|       LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
 | |
|                         << IS.MF->getFunction().getName() << "\n");
 | |
|       LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
 | |
|                         << SavedOptLevel << "\n");
 | |
|       IS.OptLevel = SavedOptLevel;
 | |
|       IS.TM.setOptLevel(SavedOptLevel);
 | |
|       IS.TM.setFastISel(SavedFastISel);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// createDefaultScheduler - This creates an instruction scheduler appropriate
 | |
|   /// for the target.
 | |
|   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
 | |
|                                              CodeGenOpt::Level OptLevel) {
 | |
|     const TargetLowering *TLI = IS->TLI;
 | |
|     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
 | |
| 
 | |
|     // Try first to see if the Target has its own way of selecting a scheduler
 | |
|     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
 | |
|       return SchedulerCtor(IS, OptLevel);
 | |
|     }
 | |
| 
 | |
|     if (OptLevel == CodeGenOpt::None ||
 | |
|         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
 | |
|         TLI->getSchedulingPreference() == Sched::Source)
 | |
|       return createSourceListDAGScheduler(IS, OptLevel);
 | |
|     if (TLI->getSchedulingPreference() == Sched::RegPressure)
 | |
|       return createBURRListDAGScheduler(IS, OptLevel);
 | |
|     if (TLI->getSchedulingPreference() == Sched::Hybrid)
 | |
|       return createHybridListDAGScheduler(IS, OptLevel);
 | |
|     if (TLI->getSchedulingPreference() == Sched::VLIW)
 | |
|       return createVLIWDAGScheduler(IS, OptLevel);
 | |
|     if (TLI->getSchedulingPreference() == Sched::Fast)
 | |
|       return createFastDAGScheduler(IS, OptLevel);
 | |
|     if (TLI->getSchedulingPreference() == Sched::Linearize)
 | |
|       return createDAGLinearizer(IS, OptLevel);
 | |
|     assert(TLI->getSchedulingPreference() == Sched::ILP &&
 | |
|            "Unknown sched type!");
 | |
|     return createILPListDAGScheduler(IS, OptLevel);
 | |
|   }
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| // EmitInstrWithCustomInserter - This method should be implemented by targets
 | |
| // that mark instructions with the 'usesCustomInserter' flag.  These
 | |
| // instructions are special in various ways, which require special support to
 | |
| // insert.  The specified MachineInstr is created but not inserted into any
 | |
| // basic blocks, and this method is called to expand it into a sequence of
 | |
| // instructions, potentially also creating new basic blocks and control flow.
 | |
| // When new basic blocks are inserted and the edges from MBB to its successors
 | |
| // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
 | |
| // DenseMap.
 | |
| MachineBasicBlock *
 | |
| TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
 | |
|                                             MachineBasicBlock *MBB) const {
 | |
| #ifndef NDEBUG
 | |
|   dbgs() << "If a target marks an instruction with "
 | |
|           "'usesCustomInserter', it must implement "
 | |
|           "TargetLowering::EmitInstrWithCustomInserter!\n";
 | |
| #endif
 | |
|   llvm_unreachable(nullptr);
 | |
| }
 | |
| 
 | |
| void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
 | |
|                                                    SDNode *Node) const {
 | |
|   assert(!MI.hasPostISelHook() &&
 | |
|          "If a target marks an instruction with 'hasPostISelHook', "
 | |
|          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SelectionDAGISel code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
 | |
|     : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
 | |
|       SwiftError(new SwiftErrorValueTracking()),
 | |
|       CurDAG(new SelectionDAG(tm, OL)),
 | |
|       SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
 | |
|                                                 OL)),
 | |
|       OptLevel(OL) {
 | |
|   initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
 | |
|   initializeBranchProbabilityInfoWrapperPassPass(
 | |
|       *PassRegistry::getPassRegistry());
 | |
|   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
|   initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| SelectionDAGISel::~SelectionDAGISel() {
 | |
|   delete CurDAG;
 | |
|   delete SwiftError;
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   if (OptLevel != CodeGenOpt::None)
 | |
|     AU.addRequired<AAResultsWrapperPass>();
 | |
|   AU.addRequired<GCModuleInfo>();
 | |
|   AU.addRequired<StackProtector>();
 | |
|   AU.addPreserved<GCModuleInfo>();
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|   AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|   if (UseMBPI && OptLevel != CodeGenOpt::None)
 | |
|     AU.addRequired<BranchProbabilityInfoWrapperPass>();
 | |
|   AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | |
|   if (OptLevel != CodeGenOpt::None)
 | |
|     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
 | |
| /// may trap on it.  In this case we have to split the edge so that the path
 | |
| /// through the predecessor block that doesn't go to the phi block doesn't
 | |
| /// execute the possibly trapping instruction. If available, we pass domtree
 | |
| /// and loop info to be updated when we split critical edges. This is because
 | |
| /// SelectionDAGISel preserves these analyses.
 | |
| /// This is required for correctness, so it must be done at -O0.
 | |
| ///
 | |
| static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
 | |
|                                          LoopInfo *LI) {
 | |
|   // Loop for blocks with phi nodes.
 | |
|   for (BasicBlock &BB : Fn) {
 | |
|     PHINode *PN = dyn_cast<PHINode>(BB.begin());
 | |
|     if (!PN) continue;
 | |
| 
 | |
|   ReprocessBlock:
 | |
|     // For each block with a PHI node, check to see if any of the input values
 | |
|     // are potentially trapping constant expressions.  Constant expressions are
 | |
|     // the only potentially trapping value that can occur as the argument to a
 | |
|     // PHI.
 | |
|     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         Constant *C = dyn_cast<Constant>(PN->getIncomingValue(i));
 | |
|         if (!C || !C->canTrap()) continue;
 | |
| 
 | |
|         // The only case we have to worry about is when the edge is critical.
 | |
|         // Since this block has a PHI Node, we assume it has multiple input
 | |
|         // edges: check to see if the pred has multiple successors.
 | |
|         BasicBlock *Pred = PN->getIncomingBlock(i);
 | |
|         if (Pred->getTerminator()->getNumSuccessors() == 1)
 | |
|           continue;
 | |
| 
 | |
|         // Okay, we have to split this edge.
 | |
|         SplitCriticalEdge(
 | |
|             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
 | |
|             CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
 | |
|         goto ReprocessBlock;
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
 | |
|                                          MachineModuleInfo &MMI) {
 | |
|   // Only needed for MSVC
 | |
|   if (!TT.isWindowsMSVCEnvironment())
 | |
|     return;
 | |
| 
 | |
|   // If it's already set, nothing to do.
 | |
|   if (MMI.usesMSVCFloatingPoint())
 | |
|     return;
 | |
| 
 | |
|   for (const Instruction &I : instructions(F)) {
 | |
|     if (I.getType()->isFPOrFPVectorTy()) {
 | |
|       MMI.setUsesMSVCFloatingPoint(true);
 | |
|       return;
 | |
|     }
 | |
|     for (const auto &Op : I.operands()) {
 | |
|       if (Op->getType()->isFPOrFPVectorTy()) {
 | |
|         MMI.setUsesMSVCFloatingPoint(true);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
 | |
|   // If we already selected that function, we do not need to run SDISel.
 | |
|   if (mf.getProperties().hasProperty(
 | |
|           MachineFunctionProperties::Property::Selected))
 | |
|     return false;
 | |
|   // Do some sanity-checking on the command-line options.
 | |
|   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
 | |
|          "-fast-isel-abort > 0 requires -fast-isel");
 | |
| 
 | |
|   const Function &Fn = mf.getFunction();
 | |
|   MF = &mf;
 | |
| 
 | |
|   // Decide what flavour of variable location debug-info will be used, before
 | |
|   // we change the optimisation level.
 | |
|   UseInstrRefDebugInfo = mf.useDebugInstrRef();
 | |
|   CurDAG->useInstrRefDebugInfo(UseInstrRefDebugInfo);
 | |
| 
 | |
|   // Reset the target options before resetting the optimization
 | |
|   // level below.
 | |
|   // FIXME: This is a horrible hack and should be processed via
 | |
|   // codegen looking at the optimization level explicitly when
 | |
|   // it wants to look at it.
 | |
|   TM.resetTargetOptions(Fn);
 | |
|   // Reset OptLevel to None for optnone functions.
 | |
|   CodeGenOpt::Level NewOptLevel = OptLevel;
 | |
|   if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
 | |
|     NewOptLevel = CodeGenOpt::None;
 | |
|   OptLevelChanger OLC(*this, NewOptLevel);
 | |
| 
 | |
|   TII = MF->getSubtarget().getInstrInfo();
 | |
|   TLI = MF->getSubtarget().getTargetLowering();
 | |
|   RegInfo = &MF->getRegInfo();
 | |
|   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
 | |
|   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
 | |
|   ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
 | |
|   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | |
|   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | |
|   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
 | |
|   LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
 | |
|   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | |
|   BlockFrequencyInfo *BFI = nullptr;
 | |
|   if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
 | |
|     BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
 | |
| 
 | |
|   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
 | |
| 
 | |
|   CurDAG->init(*MF, *ORE, this, LibInfo,
 | |
|                getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
 | |
|   FuncInfo->set(Fn, *MF, CurDAG);
 | |
|   SwiftError->setFunction(*MF);
 | |
| 
 | |
|   // Now get the optional analyzes if we want to.
 | |
|   // This is based on the possibly changed OptLevel (after optnone is taken
 | |
|   // into account).  That's unfortunate but OK because it just means we won't
 | |
|   // ask for passes that have been required anyway.
 | |
| 
 | |
|   if (UseMBPI && OptLevel != CodeGenOpt::None)
 | |
|     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
 | |
|   else
 | |
|     FuncInfo->BPI = nullptr;
 | |
| 
 | |
|   if (OptLevel != CodeGenOpt::None)
 | |
|     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   else
 | |
|     AA = nullptr;
 | |
| 
 | |
|   SDB->init(GFI, AA, LibInfo);
 | |
| 
 | |
|   MF->setHasInlineAsm(false);
 | |
| 
 | |
|   FuncInfo->SplitCSR = false;
 | |
| 
 | |
|   // We split CSR if the target supports it for the given function
 | |
|   // and the function has only return exits.
 | |
|   if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
 | |
|     FuncInfo->SplitCSR = true;
 | |
| 
 | |
|     // Collect all the return blocks.
 | |
|     for (const BasicBlock &BB : Fn) {
 | |
|       if (!succ_empty(&BB))
 | |
|         continue;
 | |
| 
 | |
|       const Instruction *Term = BB.getTerminator();
 | |
|       if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
 | |
|         continue;
 | |
| 
 | |
|       // Bail out if the exit block is not Return nor Unreachable.
 | |
|       FuncInfo->SplitCSR = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *EntryMBB = &MF->front();
 | |
|   if (FuncInfo->SplitCSR)
 | |
|     // This performs initialization so lowering for SplitCSR will be correct.
 | |
|     TLI->initializeSplitCSR(EntryMBB);
 | |
| 
 | |
|   SelectAllBasicBlocks(Fn);
 | |
|   if (FastISelFailed && EnableFastISelFallbackReport) {
 | |
|     DiagnosticInfoISelFallback DiagFallback(Fn);
 | |
|     Fn.getContext().diagnose(DiagFallback);
 | |
|   }
 | |
| 
 | |
|   // Replace forward-declared registers with the registers containing
 | |
|   // the desired value.
 | |
|   // Note: it is important that this happens **before** the call to
 | |
|   // EmitLiveInCopies, since implementations can skip copies of unused
 | |
|   // registers. If we don't apply the reg fixups before, some registers may
 | |
|   // appear as unused and will be skipped, resulting in bad MI.
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
|   for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
 | |
|                                               E = FuncInfo->RegFixups.end();
 | |
|        I != E; ++I) {
 | |
|     Register From = I->first;
 | |
|     Register To = I->second;
 | |
|     // If To is also scheduled to be replaced, find what its ultimate
 | |
|     // replacement is.
 | |
|     while (true) {
 | |
|       DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
 | |
|       if (J == E)
 | |
|         break;
 | |
|       To = J->second;
 | |
|     }
 | |
|     // Make sure the new register has a sufficiently constrained register class.
 | |
|     if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
 | |
|       MRI.constrainRegClass(To, MRI.getRegClass(From));
 | |
|     // Replace it.
 | |
| 
 | |
|     // Replacing one register with another won't touch the kill flags.
 | |
|     // We need to conservatively clear the kill flags as a kill on the old
 | |
|     // register might dominate existing uses of the new register.
 | |
|     if (!MRI.use_empty(To))
 | |
|       MRI.clearKillFlags(From);
 | |
|     MRI.replaceRegWith(From, To);
 | |
|   }
 | |
| 
 | |
|   // If the first basic block in the function has live ins that need to be
 | |
|   // copied into vregs, emit the copies into the top of the block before
 | |
|   // emitting the code for the block.
 | |
|   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
 | |
|   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
 | |
| 
 | |
|   // Insert copies in the entry block and the return blocks.
 | |
|   if (FuncInfo->SplitCSR) {
 | |
|     SmallVector<MachineBasicBlock*, 4> Returns;
 | |
|     // Collect all the return blocks.
 | |
|     for (MachineBasicBlock &MBB : mf) {
 | |
|       if (!MBB.succ_empty())
 | |
|         continue;
 | |
| 
 | |
|       MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
 | |
|       if (Term != MBB.end() && Term->isReturn()) {
 | |
|         Returns.push_back(&MBB);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
 | |
|   }
 | |
| 
 | |
|   DenseMap<unsigned, unsigned> LiveInMap;
 | |
|   if (!FuncInfo->ArgDbgValues.empty())
 | |
|     for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
 | |
|       if (LI.second)
 | |
|         LiveInMap.insert(LI);
 | |
| 
 | |
|   // Insert DBG_VALUE instructions for function arguments to the entry block.
 | |
|   bool InstrRef = MF->useDebugInstrRef();
 | |
|   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
 | |
|     MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
 | |
|     assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
 | |
|            "Function parameters should not be described by DBG_VALUE_LIST.");
 | |
|     bool hasFI = MI->getOperand(0).isFI();
 | |
|     Register Reg =
 | |
|         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
 | |
|     if (Register::isPhysicalRegister(Reg))
 | |
|       EntryMBB->insert(EntryMBB->begin(), MI);
 | |
|     else {
 | |
|       MachineInstr *Def = RegInfo->getVRegDef(Reg);
 | |
|       if (Def) {
 | |
|         MachineBasicBlock::iterator InsertPos = Def;
 | |
|         // FIXME: VR def may not be in entry block.
 | |
|         Def->getParent()->insert(std::next(InsertPos), MI);
 | |
|       } else
 | |
|         LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
 | |
|                           << Register::virtReg2Index(Reg) << "\n");
 | |
|     }
 | |
| 
 | |
|     // Don't try and extend through copies in instruction referencing mode.
 | |
|     if (InstrRef)
 | |
|       continue;
 | |
| 
 | |
|     // If Reg is live-in then update debug info to track its copy in a vreg.
 | |
|     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
 | |
|     if (LDI != LiveInMap.end()) {
 | |
|       assert(!hasFI && "There's no handling of frame pointer updating here yet "
 | |
|                        "- add if needed");
 | |
|       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
 | |
|       MachineBasicBlock::iterator InsertPos = Def;
 | |
|       const MDNode *Variable = MI->getDebugVariable();
 | |
|       const MDNode *Expr = MI->getDebugExpression();
 | |
|       DebugLoc DL = MI->getDebugLoc();
 | |
|       bool IsIndirect = MI->isIndirectDebugValue();
 | |
|       if (IsIndirect)
 | |
|         assert(MI->getOperand(1).getImm() == 0 &&
 | |
|                "DBG_VALUE with nonzero offset");
 | |
|       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
 | |
|              "Expected inlined-at fields to agree");
 | |
|       assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
 | |
|              "Didn't expect to see a DBG_VALUE_LIST here");
 | |
|       // Def is never a terminator here, so it is ok to increment InsertPos.
 | |
|       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
 | |
|               IsIndirect, LDI->second, Variable, Expr);
 | |
| 
 | |
|       // If this vreg is directly copied into an exported register then
 | |
|       // that COPY instructions also need DBG_VALUE, if it is the only
 | |
|       // user of LDI->second.
 | |
|       MachineInstr *CopyUseMI = nullptr;
 | |
|       for (MachineRegisterInfo::use_instr_iterator
 | |
|            UI = RegInfo->use_instr_begin(LDI->second),
 | |
|            E = RegInfo->use_instr_end(); UI != E; ) {
 | |
|         MachineInstr *UseMI = &*(UI++);
 | |
|         if (UseMI->isDebugValue()) continue;
 | |
|         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
 | |
|           CopyUseMI = UseMI; continue;
 | |
|         }
 | |
|         // Otherwise this is another use or second copy use.
 | |
|         CopyUseMI = nullptr; break;
 | |
|       }
 | |
|       if (CopyUseMI &&
 | |
|           TRI.getRegSizeInBits(LDI->second, MRI) ==
 | |
|               TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
 | |
|         // Use MI's debug location, which describes where Variable was
 | |
|         // declared, rather than whatever is attached to CopyUseMI.
 | |
|         MachineInstr *NewMI =
 | |
|             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
 | |
|                     CopyUseMI->getOperand(0).getReg(), Variable, Expr);
 | |
|         MachineBasicBlock::iterator Pos = CopyUseMI;
 | |
|         EntryMBB->insertAfter(Pos, NewMI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For debug-info, in instruction referencing mode, we need to perform some
 | |
|   // post-isel maintenence.
 | |
|   if (UseInstrRefDebugInfo)
 | |
|     MF->finalizeDebugInstrRefs();
 | |
| 
 | |
|   // Determine if there are any calls in this machine function.
 | |
|   MachineFrameInfo &MFI = MF->getFrameInfo();
 | |
|   for (const auto &MBB : *MF) {
 | |
|     if (MFI.hasCalls() && MF->hasInlineAsm())
 | |
|       break;
 | |
| 
 | |
|     for (const auto &MI : MBB) {
 | |
|       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
 | |
|       if ((MCID.isCall() && !MCID.isReturn()) ||
 | |
|           MI.isStackAligningInlineAsm()) {
 | |
|         MFI.setHasCalls(true);
 | |
|       }
 | |
|       if (MI.isInlineAsm()) {
 | |
|         MF->setHasInlineAsm(true);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Determine if there is a call to setjmp in the machine function.
 | |
|   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
 | |
| 
 | |
|   // Determine if floating point is used for msvc
 | |
|   computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
 | |
| 
 | |
|   // Release function-specific state. SDB and CurDAG are already cleared
 | |
|   // at this point.
 | |
|   FuncInfo->clear();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
 | |
|   LLVM_DEBUG(MF->print(dbgs()));
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void reportFastISelFailure(MachineFunction &MF,
 | |
|                                   OptimizationRemarkEmitter &ORE,
 | |
|                                   OptimizationRemarkMissed &R,
 | |
|                                   bool ShouldAbort) {
 | |
|   // Print the function name explicitly if we don't have a debug location (which
 | |
|   // makes the diagnostic less useful) or if we're going to emit a raw error.
 | |
|   if (!R.getLocation().isValid() || ShouldAbort)
 | |
|     R << (" (in function: " + MF.getName() + ")").str();
 | |
| 
 | |
|   if (ShouldAbort)
 | |
|     report_fatal_error(Twine(R.getMsg()));
 | |
| 
 | |
|   ORE.emit(R);
 | |
|   LLVM_DEBUG(dbgs() << R.getMsg() << "\n");
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
 | |
|                                         BasicBlock::const_iterator End,
 | |
|                                         bool &HadTailCall) {
 | |
|   // Allow creating illegal types during DAG building for the basic block.
 | |
|   CurDAG->NewNodesMustHaveLegalTypes = false;
 | |
| 
 | |
|   // Lower the instructions. If a call is emitted as a tail call, cease emitting
 | |
|   // nodes for this block.
 | |
|   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
 | |
|     if (!ElidedArgCopyInstrs.count(&*I))
 | |
|       SDB->visit(*I);
 | |
|   }
 | |
| 
 | |
|   // Make sure the root of the DAG is up-to-date.
 | |
|   CurDAG->setRoot(SDB->getControlRoot());
 | |
|   HadTailCall = SDB->HasTailCall;
 | |
|   SDB->resolveOrClearDbgInfo();
 | |
|   SDB->clear();
 | |
| 
 | |
|   // Final step, emit the lowered DAG as machine code.
 | |
|   CodeGenAndEmitDAG();
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::ComputeLiveOutVRegInfo() {
 | |
|   SmallPtrSet<SDNode *, 16> Added;
 | |
|   SmallVector<SDNode*, 128> Worklist;
 | |
| 
 | |
|   Worklist.push_back(CurDAG->getRoot().getNode());
 | |
|   Added.insert(CurDAG->getRoot().getNode());
 | |
| 
 | |
|   KnownBits Known;
 | |
| 
 | |
|   do {
 | |
|     SDNode *N = Worklist.pop_back_val();
 | |
| 
 | |
|     // Otherwise, add all chain operands to the worklist.
 | |
|     for (const SDValue &Op : N->op_values())
 | |
|       if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
 | |
|         Worklist.push_back(Op.getNode());
 | |
| 
 | |
|     // If this is a CopyToReg with a vreg dest, process it.
 | |
|     if (N->getOpcode() != ISD::CopyToReg)
 | |
|       continue;
 | |
| 
 | |
|     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
 | |
|     if (!Register::isVirtualRegister(DestReg))
 | |
|       continue;
 | |
| 
 | |
|     // Ignore non-integer values.
 | |
|     SDValue Src = N->getOperand(2);
 | |
|     EVT SrcVT = Src.getValueType();
 | |
|     if (!SrcVT.isInteger())
 | |
|       continue;
 | |
| 
 | |
|     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
 | |
|     Known = CurDAG->computeKnownBits(Src);
 | |
|     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
 | |
|   } while (!Worklist.empty());
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::CodeGenAndEmitDAG() {
 | |
|   StringRef GroupName = "sdag";
 | |
|   StringRef GroupDescription = "Instruction Selection and Scheduling";
 | |
|   std::string BlockName;
 | |
|   bool MatchFilterBB = false; (void)MatchFilterBB;
 | |
| #ifndef NDEBUG
 | |
|   TargetTransformInfo &TTI =
 | |
|       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
 | |
| #endif
 | |
| 
 | |
|   // Pre-type legalization allow creation of any node types.
 | |
|   CurDAG->NewNodesMustHaveLegalTypes = false;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
 | |
|                    FilterDAGBasicBlockName ==
 | |
|                        FuncInfo->MBB->getBasicBlock()->getName());
 | |
| #endif
 | |
| #ifdef NDEBUG
 | |
|   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
 | |
|       ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
 | |
|       ViewSUnitDAGs)
 | |
| #endif
 | |
|   {
 | |
|     BlockName =
 | |
|         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Initial selection DAG: "
 | |
|                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
 | |
|                     << "'\n";
 | |
|              CurDAG->dump());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (TTI.hasBranchDivergence())
 | |
|     CurDAG->VerifyDAGDivergence();
 | |
| #endif
 | |
| 
 | |
|   if (ViewDAGCombine1 && MatchFilterBB)
 | |
|     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
 | |
| 
 | |
|   // Run the DAG combiner in pre-legalize mode.
 | |
|   {
 | |
|     NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
 | |
|                        GroupDescription, TimePassesIsEnabled);
 | |
|     CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
 | |
|                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
 | |
|                     << "'\n";
 | |
|              CurDAG->dump());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (TTI.hasBranchDivergence())
 | |
|     CurDAG->VerifyDAGDivergence();
 | |
| #endif
 | |
| 
 | |
|   // Second step, hack on the DAG until it only uses operations and types that
 | |
|   // the target supports.
 | |
|   if (ViewLegalizeTypesDAGs && MatchFilterBB)
 | |
|     CurDAG->viewGraph("legalize-types input for " + BlockName);
 | |
| 
 | |
|   bool Changed;
 | |
|   {
 | |
|     NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
 | |
|                        GroupDescription, TimePassesIsEnabled);
 | |
|     Changed = CurDAG->LegalizeTypes();
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
 | |
|                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
 | |
|                     << "'\n";
 | |
|              CurDAG->dump());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (TTI.hasBranchDivergence())
 | |
|     CurDAG->VerifyDAGDivergence();
 | |
| #endif
 | |
| 
 | |
|   // Only allow creation of legal node types.
 | |
|   CurDAG->NewNodesMustHaveLegalTypes = true;
 | |
| 
 | |
|   if (Changed) {
 | |
|     if (ViewDAGCombineLT && MatchFilterBB)
 | |
|       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
 | |
| 
 | |
|     // Run the DAG combiner in post-type-legalize mode.
 | |
|     {
 | |
|       NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
 | |
|                          GroupName, GroupDescription, TimePassesIsEnabled);
 | |
|       CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
 | |
|                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
 | |
|                       << "'\n";
 | |
|                CurDAG->dump());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     if (TTI.hasBranchDivergence())
 | |
|       CurDAG->VerifyDAGDivergence();
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
 | |
|                        GroupDescription, TimePassesIsEnabled);
 | |
|     Changed = CurDAG->LegalizeVectors();
 | |
|   }
 | |
| 
 | |
|   if (Changed) {
 | |
|     LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
 | |
|                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
 | |
|                       << "'\n";
 | |
|                CurDAG->dump());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     if (TTI.hasBranchDivergence())
 | |
|       CurDAG->VerifyDAGDivergence();
 | |
| #endif
 | |
| 
 | |
|     {
 | |
|       NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
 | |
|                          GroupDescription, TimePassesIsEnabled);
 | |
|       CurDAG->LegalizeTypes();
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
 | |
|                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
 | |
|                       << "'\n";
 | |
|                CurDAG->dump());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     if (TTI.hasBranchDivergence())
 | |
|       CurDAG->VerifyDAGDivergence();
 | |
| #endif
 | |
| 
 | |
|     if (ViewDAGCombineLT && MatchFilterBB)
 | |
|       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
 | |
| 
 | |
|     // Run the DAG combiner in post-type-legalize mode.
 | |
|     {
 | |
|       NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
 | |
|                          GroupName, GroupDescription, TimePassesIsEnabled);
 | |
|       CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
 | |
|                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
 | |
|                       << "'\n";
 | |
|                CurDAG->dump());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     if (TTI.hasBranchDivergence())
 | |
|       CurDAG->VerifyDAGDivergence();
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   if (ViewLegalizeDAGs && MatchFilterBB)
 | |
|     CurDAG->viewGraph("legalize input for " + BlockName);
 | |
| 
 | |
|   {
 | |
|     NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
 | |
|                        GroupDescription, TimePassesIsEnabled);
 | |
|     CurDAG->Legalize();
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
 | |
|                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
 | |
|                     << "'\n";
 | |
|              CurDAG->dump());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (TTI.hasBranchDivergence())
 | |
|     CurDAG->VerifyDAGDivergence();
 | |
| #endif
 | |
| 
 | |
|   if (ViewDAGCombine2 && MatchFilterBB)
 | |
|     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
 | |
| 
 | |
|   // Run the DAG combiner in post-legalize mode.
 | |
|   {
 | |
|     NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
 | |
|                        GroupDescription, TimePassesIsEnabled);
 | |
|     CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
 | |
|                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
 | |
|                     << "'\n";
 | |
|              CurDAG->dump());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (TTI.hasBranchDivergence())
 | |
|     CurDAG->VerifyDAGDivergence();
 | |
| #endif
 | |
| 
 | |
|   if (OptLevel != CodeGenOpt::None)
 | |
|     ComputeLiveOutVRegInfo();
 | |
| 
 | |
|   if (ViewISelDAGs && MatchFilterBB)
 | |
|     CurDAG->viewGraph("isel input for " + BlockName);
 | |
| 
 | |
|   // Third, instruction select all of the operations to machine code, adding the
 | |
|   // code to the MachineBasicBlock.
 | |
|   {
 | |
|     NamedRegionTimer T("isel", "Instruction Selection", GroupName,
 | |
|                        GroupDescription, TimePassesIsEnabled);
 | |
|     DoInstructionSelection();
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Selected selection DAG: "
 | |
|                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
 | |
|                     << "'\n";
 | |
|              CurDAG->dump());
 | |
| 
 | |
|   if (ViewSchedDAGs && MatchFilterBB)
 | |
|     CurDAG->viewGraph("scheduler input for " + BlockName);
 | |
| 
 | |
|   // Schedule machine code.
 | |
|   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
 | |
|   {
 | |
|     NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
 | |
|                        GroupDescription, TimePassesIsEnabled);
 | |
|     Scheduler->Run(CurDAG, FuncInfo->MBB);
 | |
|   }
 | |
| 
 | |
|   if (ViewSUnitDAGs && MatchFilterBB)
 | |
|     Scheduler->viewGraph();
 | |
| 
 | |
|   // Emit machine code to BB.  This can change 'BB' to the last block being
 | |
|   // inserted into.
 | |
|   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
 | |
|   {
 | |
|     NamedRegionTimer T("emit", "Instruction Creation", GroupName,
 | |
|                        GroupDescription, TimePassesIsEnabled);
 | |
| 
 | |
|     // FuncInfo->InsertPt is passed by reference and set to the end of the
 | |
|     // scheduled instructions.
 | |
|     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
 | |
|   }
 | |
| 
 | |
|   // If the block was split, make sure we update any references that are used to
 | |
|   // update PHI nodes later on.
 | |
|   if (FirstMBB != LastMBB)
 | |
|     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
 | |
| 
 | |
|   // Free the scheduler state.
 | |
|   {
 | |
|     NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
 | |
|                        GroupDescription, TimePassesIsEnabled);
 | |
|     delete Scheduler;
 | |
|   }
 | |
| 
 | |
|   // Free the SelectionDAG state, now that we're finished with it.
 | |
|   CurDAG->clear();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// ISelUpdater - helper class to handle updates of the instruction selection
 | |
| /// graph.
 | |
| class ISelUpdater : public SelectionDAG::DAGUpdateListener {
 | |
|   SelectionDAG::allnodes_iterator &ISelPosition;
 | |
| 
 | |
| public:
 | |
|   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
 | |
|     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
 | |
| 
 | |
|   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
 | |
|   /// deleted is the current ISelPosition node, update ISelPosition.
 | |
|   ///
 | |
|   void NodeDeleted(SDNode *N, SDNode *E) override {
 | |
|     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
 | |
|       ++ISelPosition;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // This function is used to enforce the topological node id property
 | |
| // leveraged during instruction selection. Before the selection process all
 | |
| // nodes are given a non-negative id such that all nodes have a greater id than
 | |
| // their operands. As this holds transitively we can prune checks that a node N
 | |
| // is a predecessor of M another by not recursively checking through M's
 | |
| // operands if N's ID is larger than M's ID. This significantly improves
 | |
| // performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
 | |
| 
 | |
| // However, when we fuse multiple nodes into a single node during the
 | |
| // selection we may induce a predecessor relationship between inputs and
 | |
| // outputs of distinct nodes being merged, violating the topological property.
 | |
| // Should a fused node have a successor which has yet to be selected,
 | |
| // our legality checks would be incorrect. To avoid this we mark all unselected
 | |
| // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
 | |
| // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
 | |
| // We use bit-negation to more clearly enforce that node id -1 can only be
 | |
| // achieved by selected nodes. As the conversion is reversable to the original
 | |
| // Id, topological pruning can still be leveraged when looking for unselected
 | |
| // nodes. This method is called internally in all ISel replacement related
 | |
| // functions.
 | |
| void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
 | |
|   SmallVector<SDNode *, 4> Nodes;
 | |
|   Nodes.push_back(Node);
 | |
| 
 | |
|   while (!Nodes.empty()) {
 | |
|     SDNode *N = Nodes.pop_back_val();
 | |
|     for (auto *U : N->uses()) {
 | |
|       auto UId = U->getNodeId();
 | |
|       if (UId > 0) {
 | |
|         InvalidateNodeId(U);
 | |
|         Nodes.push_back(U);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
 | |
| // NodeId with the equivalent node id which is invalid for topological
 | |
| // pruning.
 | |
| void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
 | |
|   int InvalidId = -(N->getNodeId() + 1);
 | |
|   N->setNodeId(InvalidId);
 | |
| }
 | |
| 
 | |
| // getUninvalidatedNodeId - get original uninvalidated node id.
 | |
| int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
 | |
|   int Id = N->getNodeId();
 | |
|   if (Id < -1)
 | |
|     return -(Id + 1);
 | |
|   return Id;
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::DoInstructionSelection() {
 | |
|   LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
 | |
|                     << printMBBReference(*FuncInfo->MBB) << " '"
 | |
|                     << FuncInfo->MBB->getName() << "'\n");
 | |
| 
 | |
|   PreprocessISelDAG();
 | |
| 
 | |
|   // Select target instructions for the DAG.
 | |
|   {
 | |
|     // Number all nodes with a topological order and set DAGSize.
 | |
|     DAGSize = CurDAG->AssignTopologicalOrder();
 | |
| 
 | |
|     // Create a dummy node (which is not added to allnodes), that adds
 | |
|     // a reference to the root node, preventing it from being deleted,
 | |
|     // and tracking any changes of the root.
 | |
|     HandleSDNode Dummy(CurDAG->getRoot());
 | |
|     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
 | |
|     ++ISelPosition;
 | |
| 
 | |
|     // Make sure that ISelPosition gets properly updated when nodes are deleted
 | |
|     // in calls made from this function.
 | |
|     ISelUpdater ISU(*CurDAG, ISelPosition);
 | |
| 
 | |
|     // The AllNodes list is now topological-sorted. Visit the
 | |
|     // nodes by starting at the end of the list (the root of the
 | |
|     // graph) and preceding back toward the beginning (the entry
 | |
|     // node).
 | |
|     while (ISelPosition != CurDAG->allnodes_begin()) {
 | |
|       SDNode *Node = &*--ISelPosition;
 | |
|       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
 | |
|       // but there are currently some corner cases that it misses. Also, this
 | |
|       // makes it theoretically possible to disable the DAGCombiner.
 | |
|       if (Node->use_empty())
 | |
|         continue;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       SmallVector<SDNode *, 4> Nodes;
 | |
|       Nodes.push_back(Node);
 | |
| 
 | |
|       while (!Nodes.empty()) {
 | |
|         auto N = Nodes.pop_back_val();
 | |
|         if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
 | |
|           continue;
 | |
|         for (const SDValue &Op : N->op_values()) {
 | |
|           if (Op->getOpcode() == ISD::TokenFactor)
 | |
|             Nodes.push_back(Op.getNode());
 | |
|           else {
 | |
|             // We rely on topological ordering of node ids for checking for
 | |
|             // cycles when fusing nodes during selection. All unselected nodes
 | |
|             // successors of an already selected node should have a negative id.
 | |
|             // This assertion will catch such cases. If this assertion triggers
 | |
|             // it is likely you using DAG-level Value/Node replacement functions
 | |
|             // (versus equivalent ISEL replacement) in backend-specific
 | |
|             // selections. See comment in EnforceNodeIdInvariant for more
 | |
|             // details.
 | |
|             assert(Op->getNodeId() != -1 &&
 | |
|                    "Node has already selected predecessor node");
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       // When we are using non-default rounding modes or FP exception behavior
 | |
|       // FP operations are represented by StrictFP pseudo-operations.  For
 | |
|       // targets that do not (yet) understand strict FP operations directly,
 | |
|       // we convert them to normal FP opcodes instead at this point.  This
 | |
|       // will allow them to be handled by existing target-specific instruction
 | |
|       // selectors.
 | |
|       if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
 | |
|         // For some opcodes, we need to call TLI->getOperationAction using
 | |
|         // the first operand type instead of the result type.  Note that this
 | |
|         // must match what SelectionDAGLegalize::LegalizeOp is doing.
 | |
|         EVT ActionVT;
 | |
|         switch (Node->getOpcode()) {
 | |
|         case ISD::STRICT_SINT_TO_FP:
 | |
|         case ISD::STRICT_UINT_TO_FP:
 | |
|         case ISD::STRICT_LRINT:
 | |
|         case ISD::STRICT_LLRINT:
 | |
|         case ISD::STRICT_LROUND:
 | |
|         case ISD::STRICT_LLROUND:
 | |
|         case ISD::STRICT_FSETCC:
 | |
|         case ISD::STRICT_FSETCCS:
 | |
|           ActionVT = Node->getOperand(1).getValueType();
 | |
|           break;
 | |
|         default:
 | |
|           ActionVT = Node->getValueType(0);
 | |
|           break;
 | |
|         }
 | |
|         if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
 | |
|             == TargetLowering::Expand)
 | |
|           Node = CurDAG->mutateStrictFPToFP(Node);
 | |
|       }
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
 | |
|                  Node->dump(CurDAG));
 | |
| 
 | |
|       Select(Node);
 | |
|     }
 | |
| 
 | |
|     CurDAG->setRoot(Dummy.getValue());
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
 | |
| 
 | |
|   PostprocessISelDAG();
 | |
| }
 | |
| 
 | |
| static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
 | |
|   for (const User *U : CPI->users()) {
 | |
|     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
 | |
|       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
 | |
|       if (IID == Intrinsic::eh_exceptionpointer ||
 | |
|           IID == Intrinsic::eh_exceptioncode)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // wasm.landingpad.index intrinsic is for associating a landing pad index number
 | |
| // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
 | |
| // and store the mapping in the function.
 | |
| static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
 | |
|                                    const CatchPadInst *CPI) {
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   // In case of single catch (...), we don't emit LSDA, so we don't need
 | |
|   // this information.
 | |
|   bool IsSingleCatchAllClause =
 | |
|       CPI->getNumArgOperands() == 1 &&
 | |
|       cast<Constant>(CPI->getArgOperand(0))->isNullValue();
 | |
|   // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 []
 | |
|   // and they don't need LSDA info
 | |
|   bool IsCatchLongjmp = CPI->getNumArgOperands() == 0;
 | |
|   if (!IsSingleCatchAllClause && !IsCatchLongjmp) {
 | |
|     // Create a mapping from landing pad label to landing pad index.
 | |
|     bool IntrFound = false;
 | |
|     for (const User *U : CPI->users()) {
 | |
|       if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
 | |
|         Intrinsic::ID IID = Call->getIntrinsicID();
 | |
|         if (IID == Intrinsic::wasm_landingpad_index) {
 | |
|           Value *IndexArg = Call->getArgOperand(1);
 | |
|           int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
 | |
|           MF->setWasmLandingPadIndex(MBB, Index);
 | |
|           IntrFound = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
 | |
|     (void)IntrFound;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
 | |
| /// do other setup for EH landing-pad blocks.
 | |
| bool SelectionDAGISel::PrepareEHLandingPad() {
 | |
|   MachineBasicBlock *MBB = FuncInfo->MBB;
 | |
|   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
 | |
|   const BasicBlock *LLVMBB = MBB->getBasicBlock();
 | |
|   const TargetRegisterClass *PtrRC =
 | |
|       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
| 
 | |
|   auto Pers = classifyEHPersonality(PersonalityFn);
 | |
| 
 | |
|   // Catchpads have one live-in register, which typically holds the exception
 | |
|   // pointer or code.
 | |
|   if (isFuncletEHPersonality(Pers)) {
 | |
|     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
 | |
|       if (hasExceptionPointerOrCodeUser(CPI)) {
 | |
|         // Get or create the virtual register to hold the pointer or code.  Mark
 | |
|         // the live in physreg and copy into the vreg.
 | |
|         MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
 | |
|         assert(EHPhysReg && "target lacks exception pointer register");
 | |
|         MBB->addLiveIn(EHPhysReg);
 | |
|         unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
 | |
|         BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
 | |
|                 TII->get(TargetOpcode::COPY), VReg)
 | |
|             .addReg(EHPhysReg, RegState::Kill);
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Add a label to mark the beginning of the landing pad.  Deletion of the
 | |
|   // landing pad can thus be detected via the MachineModuleInfo.
 | |
|   MCSymbol *Label = MF->addLandingPad(MBB);
 | |
| 
 | |
|   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
 | |
|   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
 | |
|     .addSym(Label);
 | |
| 
 | |
|   // If the unwinder does not preserve all registers, ensure that the
 | |
|   // function marks the clobbered registers as used.
 | |
|   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
 | |
|   if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
 | |
|     MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
 | |
| 
 | |
|   if (Pers == EHPersonality::Wasm_CXX) {
 | |
|     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
 | |
|       mapWasmLandingPadIndex(MBB, CPI);
 | |
|   } else {
 | |
|     // Assign the call site to the landing pad's begin label.
 | |
|     MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
 | |
|     // Mark exception register as live in.
 | |
|     if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
 | |
|       FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
 | |
|     // Mark exception selector register as live in.
 | |
|     if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
 | |
|       FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isFoldedOrDeadInstruction - Return true if the specified instruction is
 | |
| /// side-effect free and is either dead or folded into a generated instruction.
 | |
| /// Return false if it needs to be emitted.
 | |
| static bool isFoldedOrDeadInstruction(const Instruction *I,
 | |
|                                       const FunctionLoweringInfo &FuncInfo) {
 | |
|   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
 | |
|          !I->isTerminator() &&     // Terminators aren't folded.
 | |
|          !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
 | |
|          !I->isEHPad() &&             // EH pad instructions aren't folded.
 | |
|          !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
 | |
| }
 | |
| 
 | |
| /// Collect llvm.dbg.declare information. This is done after argument lowering
 | |
| /// in case the declarations refer to arguments.
 | |
| static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
 | |
|   MachineFunction *MF = FuncInfo.MF;
 | |
|   const DataLayout &DL = MF->getDataLayout();
 | |
|   for (const BasicBlock &BB : *FuncInfo.Fn) {
 | |
|     for (const Instruction &I : BB) {
 | |
|       const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
 | |
|       if (!DI)
 | |
|         continue;
 | |
| 
 | |
|       assert(DI->getVariable() && "Missing variable");
 | |
|       assert(DI->getDebugLoc() && "Missing location");
 | |
|       const Value *Address = DI->getAddress();
 | |
|       if (!Address) {
 | |
|         LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
 | |
|                           << " (bad address)\n");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Look through casts and constant offset GEPs. These mostly come from
 | |
|       // inalloca.
 | |
|       APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
 | |
|       Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
 | |
| 
 | |
|       // Check if the variable is a static alloca or a byval or inalloca
 | |
|       // argument passed in memory. If it is not, then we will ignore this
 | |
|       // intrinsic and handle this during isel like dbg.value.
 | |
|       int FI = std::numeric_limits<int>::max();
 | |
|       if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
 | |
|         auto SI = FuncInfo.StaticAllocaMap.find(AI);
 | |
|         if (SI != FuncInfo.StaticAllocaMap.end())
 | |
|           FI = SI->second;
 | |
|       } else if (const auto *Arg = dyn_cast<Argument>(Address))
 | |
|         FI = FuncInfo.getArgumentFrameIndex(Arg);
 | |
| 
 | |
|       if (FI == std::numeric_limits<int>::max())
 | |
|         continue;
 | |
| 
 | |
|       DIExpression *Expr = DI->getExpression();
 | |
|       if (Offset.getBoolValue())
 | |
|         Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
 | |
|                                      Offset.getZExtValue());
 | |
|       LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
 | |
|                         << ", " << *DI << "\n");
 | |
|       MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
 | |
|   FastISelFailed = false;
 | |
|   // Initialize the Fast-ISel state, if needed.
 | |
|   FastISel *FastIS = nullptr;
 | |
|   if (TM.Options.EnableFastISel) {
 | |
|     LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
 | |
|     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
 | |
|     if (FastIS)
 | |
|       FastIS->useInstrRefDebugInfo(UseInstrRefDebugInfo);
 | |
|   }
 | |
| 
 | |
|   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
 | |
| 
 | |
|   // Lower arguments up front. An RPO iteration always visits the entry block
 | |
|   // first.
 | |
|   assert(*RPOT.begin() == &Fn.getEntryBlock());
 | |
|   ++NumEntryBlocks;
 | |
| 
 | |
|   // Set up FuncInfo for ISel. Entry blocks never have PHIs.
 | |
|   FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
 | |
|   FuncInfo->InsertPt = FuncInfo->MBB->begin();
 | |
| 
 | |
|   CurDAG->setFunctionLoweringInfo(FuncInfo.get());
 | |
| 
 | |
|   if (!FastIS) {
 | |
|     LowerArguments(Fn);
 | |
|   } else {
 | |
|     // See if fast isel can lower the arguments.
 | |
|     FastIS->startNewBlock();
 | |
|     if (!FastIS->lowerArguments()) {
 | |
|       FastISelFailed = true;
 | |
|       // Fast isel failed to lower these arguments
 | |
|       ++NumFastIselFailLowerArguments;
 | |
| 
 | |
|       OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
 | |
|                                  Fn.getSubprogram(),
 | |
|                                  &Fn.getEntryBlock());
 | |
|       R << "FastISel didn't lower all arguments: "
 | |
|         << ore::NV("Prototype", Fn.getType());
 | |
|       reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
 | |
| 
 | |
|       // Use SelectionDAG argument lowering
 | |
|       LowerArguments(Fn);
 | |
|       CurDAG->setRoot(SDB->getControlRoot());
 | |
|       SDB->clear();
 | |
|       CodeGenAndEmitDAG();
 | |
|     }
 | |
| 
 | |
|     // If we inserted any instructions at the beginning, make a note of
 | |
|     // where they are, so we can be sure to emit subsequent instructions
 | |
|     // after them.
 | |
|     if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
 | |
|       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
 | |
|     else
 | |
|       FastIS->setLastLocalValue(nullptr);
 | |
|   }
 | |
| 
 | |
|   bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
 | |
| 
 | |
|   if (FastIS && Inserted)
 | |
|     FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
 | |
| 
 | |
|   processDbgDeclares(*FuncInfo);
 | |
| 
 | |
|   // Iterate over all basic blocks in the function.
 | |
|   StackProtector &SP = getAnalysis<StackProtector>();
 | |
|   for (const BasicBlock *LLVMBB : RPOT) {
 | |
|     if (OptLevel != CodeGenOpt::None) {
 | |
|       bool AllPredsVisited = true;
 | |
|       for (const BasicBlock *Pred : predecessors(LLVMBB)) {
 | |
|         if (!FuncInfo->VisitedBBs.count(Pred)) {
 | |
|           AllPredsVisited = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (AllPredsVisited) {
 | |
|         for (const PHINode &PN : LLVMBB->phis())
 | |
|           FuncInfo->ComputePHILiveOutRegInfo(&PN);
 | |
|       } else {
 | |
|         for (const PHINode &PN : LLVMBB->phis())
 | |
|           FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
 | |
|       }
 | |
| 
 | |
|       FuncInfo->VisitedBBs.insert(LLVMBB);
 | |
|     }
 | |
| 
 | |
|     BasicBlock::const_iterator const Begin =
 | |
|         LLVMBB->getFirstNonPHI()->getIterator();
 | |
|     BasicBlock::const_iterator const End = LLVMBB->end();
 | |
|     BasicBlock::const_iterator BI = End;
 | |
| 
 | |
|     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
 | |
|     if (!FuncInfo->MBB)
 | |
|       continue; // Some blocks like catchpads have no code or MBB.
 | |
| 
 | |
|     // Insert new instructions after any phi or argument setup code.
 | |
|     FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
| 
 | |
|     // Setup an EH landing-pad block.
 | |
|     FuncInfo->ExceptionPointerVirtReg = 0;
 | |
|     FuncInfo->ExceptionSelectorVirtReg = 0;
 | |
|     if (LLVMBB->isEHPad())
 | |
|       if (!PrepareEHLandingPad())
 | |
|         continue;
 | |
| 
 | |
|     // Before doing SelectionDAG ISel, see if FastISel has been requested.
 | |
|     if (FastIS) {
 | |
|       if (LLVMBB != &Fn.getEntryBlock())
 | |
|         FastIS->startNewBlock();
 | |
| 
 | |
|       unsigned NumFastIselRemaining = std::distance(Begin, End);
 | |
| 
 | |
|       // Pre-assign swifterror vregs.
 | |
|       SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
 | |
| 
 | |
|       // Do FastISel on as many instructions as possible.
 | |
|       for (; BI != Begin; --BI) {
 | |
|         const Instruction *Inst = &*std::prev(BI);
 | |
| 
 | |
|         // If we no longer require this instruction, skip it.
 | |
|         if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
 | |
|             ElidedArgCopyInstrs.count(Inst)) {
 | |
|           --NumFastIselRemaining;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Bottom-up: reset the insert pos at the top, after any local-value
 | |
|         // instructions.
 | |
|         FastIS->recomputeInsertPt();
 | |
| 
 | |
|         // Try to select the instruction with FastISel.
 | |
|         if (FastIS->selectInstruction(Inst)) {
 | |
|           --NumFastIselRemaining;
 | |
|           ++NumFastIselSuccess;
 | |
|           // If fast isel succeeded, skip over all the folded instructions, and
 | |
|           // then see if there is a load right before the selected instructions.
 | |
|           // Try to fold the load if so.
 | |
|           const Instruction *BeforeInst = Inst;
 | |
|           while (BeforeInst != &*Begin) {
 | |
|             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
 | |
|             if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
 | |
|               break;
 | |
|           }
 | |
|           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
 | |
|               BeforeInst->hasOneUse() &&
 | |
|               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
 | |
|             // If we succeeded, don't re-select the load.
 | |
|             LLVM_DEBUG(dbgs()
 | |
|                        << "FastISel folded load: " << *BeforeInst << "\n");
 | |
|             BI = std::next(BasicBlock::const_iterator(BeforeInst));
 | |
|             --NumFastIselRemaining;
 | |
|             ++NumFastIselSuccess;
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         FastISelFailed = true;
 | |
| 
 | |
|         // Then handle certain instructions as single-LLVM-Instruction blocks.
 | |
|         // We cannot separate out GCrelocates to their own blocks since we need
 | |
|         // to keep track of gc-relocates for a particular gc-statepoint. This is
 | |
|         // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
 | |
|         // visitGCRelocate.
 | |
|         if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
 | |
|             !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
 | |
|           OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
 | |
|                                      Inst->getDebugLoc(), LLVMBB);
 | |
| 
 | |
|           R << "FastISel missed call";
 | |
| 
 | |
|           if (R.isEnabled() || EnableFastISelAbort) {
 | |
|             std::string InstStrStorage;
 | |
|             raw_string_ostream InstStr(InstStrStorage);
 | |
|             InstStr << *Inst;
 | |
| 
 | |
|             R << ": " << InstStr.str();
 | |
|           }
 | |
| 
 | |
|           reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
 | |
| 
 | |
|           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
 | |
|               !Inst->use_empty()) {
 | |
|             Register &R = FuncInfo->ValueMap[Inst];
 | |
|             if (!R)
 | |
|               R = FuncInfo->CreateRegs(Inst);
 | |
|           }
 | |
| 
 | |
|           bool HadTailCall = false;
 | |
|           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
 | |
|           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
 | |
| 
 | |
|           // If the call was emitted as a tail call, we're done with the block.
 | |
|           // We also need to delete any previously emitted instructions.
 | |
|           if (HadTailCall) {
 | |
|             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
 | |
|             --BI;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // Recompute NumFastIselRemaining as Selection DAG instruction
 | |
|           // selection may have handled the call, input args, etc.
 | |
|           unsigned RemainingNow = std::distance(Begin, BI);
 | |
|           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
 | |
|           NumFastIselRemaining = RemainingNow;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
 | |
|                                    Inst->getDebugLoc(), LLVMBB);
 | |
| 
 | |
|         bool ShouldAbort = EnableFastISelAbort;
 | |
|         if (Inst->isTerminator()) {
 | |
|           // Use a different message for terminator misses.
 | |
|           R << "FastISel missed terminator";
 | |
|           // Don't abort for terminator unless the level is really high
 | |
|           ShouldAbort = (EnableFastISelAbort > 2);
 | |
|         } else {
 | |
|           R << "FastISel missed";
 | |
|         }
 | |
| 
 | |
|         if (R.isEnabled() || EnableFastISelAbort) {
 | |
|           std::string InstStrStorage;
 | |
|           raw_string_ostream InstStr(InstStrStorage);
 | |
|           InstStr << *Inst;
 | |
|           R << ": " << InstStr.str();
 | |
|         }
 | |
| 
 | |
|         reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
 | |
| 
 | |
|         NumFastIselFailures += NumFastIselRemaining;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       FastIS->recomputeInsertPt();
 | |
|     }
 | |
| 
 | |
|     if (SP.shouldEmitSDCheck(*LLVMBB)) {
 | |
|       bool FunctionBasedInstrumentation =
 | |
|           TLI->getSSPStackGuardCheck(*Fn.getParent());
 | |
|       SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
 | |
|                                    FunctionBasedInstrumentation);
 | |
|     }
 | |
| 
 | |
|     if (Begin != BI)
 | |
|       ++NumDAGBlocks;
 | |
|     else
 | |
|       ++NumFastIselBlocks;
 | |
| 
 | |
|     if (Begin != BI) {
 | |
|       // Run SelectionDAG instruction selection on the remainder of the block
 | |
|       // not handled by FastISel. If FastISel is not run, this is the entire
 | |
|       // block.
 | |
|       bool HadTailCall;
 | |
|       SelectBasicBlock(Begin, BI, HadTailCall);
 | |
| 
 | |
|       // But if FastISel was run, we already selected some of the block.
 | |
|       // If we emitted a tail-call, we need to delete any previously emitted
 | |
|       // instruction that follows it.
 | |
|       if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
 | |
|         FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
 | |
|     }
 | |
| 
 | |
|     if (FastIS)
 | |
|       FastIS->finishBasicBlock();
 | |
|     FinishBasicBlock();
 | |
|     FuncInfo->PHINodesToUpdate.clear();
 | |
|     ElidedArgCopyInstrs.clear();
 | |
|   }
 | |
| 
 | |
|   SP.copyToMachineFrameInfo(MF->getFrameInfo());
 | |
| 
 | |
|   SwiftError->propagateVRegs();
 | |
| 
 | |
|   delete FastIS;
 | |
|   SDB->clearDanglingDebugInfo();
 | |
|   SDB->SPDescriptor.resetPerFunctionState();
 | |
| }
 | |
| 
 | |
| void
 | |
| SelectionDAGISel::FinishBasicBlock() {
 | |
|   LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
 | |
|                     << FuncInfo->PHINodesToUpdate.size() << "\n";
 | |
|              for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
 | |
|                   ++i) dbgs()
 | |
|              << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
 | |
|              << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
 | |
| 
 | |
|   // Next, now that we know what the last MBB the LLVM BB expanded is, update
 | |
|   // PHI nodes in successors.
 | |
|   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
 | |
|     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
 | |
|     assert(PHI->isPHI() &&
 | |
|            "This is not a machine PHI node that we are updating!");
 | |
|     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
 | |
|       continue;
 | |
|     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
 | |
|   }
 | |
| 
 | |
|   // Handle stack protector.
 | |
|   if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
 | |
|     // The target provides a guard check function. There is no need to
 | |
|     // generate error handling code or to split current basic block.
 | |
|     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
 | |
| 
 | |
|     // Add load and check to the basicblock.
 | |
|     FuncInfo->MBB = ParentMBB;
 | |
|     FuncInfo->InsertPt =
 | |
|         findSplitPointForStackProtector(ParentMBB, *TII);
 | |
|     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
 | |
|     CurDAG->setRoot(SDB->getRoot());
 | |
|     SDB->clear();
 | |
|     CodeGenAndEmitDAG();
 | |
| 
 | |
|     // Clear the Per-BB State.
 | |
|     SDB->SPDescriptor.resetPerBBState();
 | |
|   } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
 | |
|     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
 | |
|     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
 | |
| 
 | |
|     // Find the split point to split the parent mbb. At the same time copy all
 | |
|     // physical registers used in the tail of parent mbb into virtual registers
 | |
|     // before the split point and back into physical registers after the split
 | |
|     // point. This prevents us needing to deal with Live-ins and many other
 | |
|     // register allocation issues caused by us splitting the parent mbb. The
 | |
|     // register allocator will clean up said virtual copies later on.
 | |
|     MachineBasicBlock::iterator SplitPoint =
 | |
|         findSplitPointForStackProtector(ParentMBB, *TII);
 | |
| 
 | |
|     // Splice the terminator of ParentMBB into SuccessMBB.
 | |
|     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
 | |
|                        SplitPoint,
 | |
|                        ParentMBB->end());
 | |
| 
 | |
|     // Add compare/jump on neq/jump to the parent BB.
 | |
|     FuncInfo->MBB = ParentMBB;
 | |
|     FuncInfo->InsertPt = ParentMBB->end();
 | |
|     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
 | |
|     CurDAG->setRoot(SDB->getRoot());
 | |
|     SDB->clear();
 | |
|     CodeGenAndEmitDAG();
 | |
| 
 | |
|     // CodeGen Failure MBB if we have not codegened it yet.
 | |
|     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
 | |
|     if (FailureMBB->empty()) {
 | |
|       FuncInfo->MBB = FailureMBB;
 | |
|       FuncInfo->InsertPt = FailureMBB->end();
 | |
|       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
 | |
|       CurDAG->setRoot(SDB->getRoot());
 | |
|       SDB->clear();
 | |
|       CodeGenAndEmitDAG();
 | |
|     }
 | |
| 
 | |
|     // Clear the Per-BB State.
 | |
|     SDB->SPDescriptor.resetPerBBState();
 | |
|   }
 | |
| 
 | |
|   // Lower each BitTestBlock.
 | |
|   for (auto &BTB : SDB->SL->BitTestCases) {
 | |
|     // Lower header first, if it wasn't already lowered
 | |
|     if (!BTB.Emitted) {
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       FuncInfo->MBB = BTB.Parent;
 | |
|       FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
|       // Emit the code
 | |
|       SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
 | |
|       CurDAG->setRoot(SDB->getRoot());
 | |
|       SDB->clear();
 | |
|       CodeGenAndEmitDAG();
 | |
|     }
 | |
| 
 | |
|     BranchProbability UnhandledProb = BTB.Prob;
 | |
|     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
 | |
|       UnhandledProb -= BTB.Cases[j].ExtraProb;
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       FuncInfo->MBB = BTB.Cases[j].ThisBB;
 | |
|       FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
|       // Emit the code
 | |
| 
 | |
|       // If all cases cover a contiguous range, it is not necessary to jump to
 | |
|       // the default block after the last bit test fails. This is because the
 | |
|       // range check during bit test header creation has guaranteed that every
 | |
|       // case here doesn't go outside the range. In this case, there is no need
 | |
|       // to perform the last bit test, as it will always be true. Instead, make
 | |
|       // the second-to-last bit-test fall through to the target of the last bit
 | |
|       // test, and delete the last bit test.
 | |
| 
 | |
|       MachineBasicBlock *NextMBB;
 | |
|       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
 | |
|         // Second-to-last bit-test with contiguous range or omitted range
 | |
|         // check: fall through to the target of the final bit test.
 | |
|         NextMBB = BTB.Cases[j + 1].TargetBB;
 | |
|       } else if (j + 1 == ej) {
 | |
|         // For the last bit test, fall through to Default.
 | |
|         NextMBB = BTB.Default;
 | |
|       } else {
 | |
|         // Otherwise, fall through to the next bit test.
 | |
|         NextMBB = BTB.Cases[j + 1].ThisBB;
 | |
|       }
 | |
| 
 | |
|       SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
 | |
|                             FuncInfo->MBB);
 | |
| 
 | |
|       CurDAG->setRoot(SDB->getRoot());
 | |
|       SDB->clear();
 | |
|       CodeGenAndEmitDAG();
 | |
| 
 | |
|       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
 | |
|         // Since we're not going to use the final bit test, remove it.
 | |
|         BTB.Cases.pop_back();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Update PHI Nodes
 | |
|     for (const std::pair<MachineInstr *, unsigned> &P :
 | |
|          FuncInfo->PHINodesToUpdate) {
 | |
|       MachineInstrBuilder PHI(*MF, P.first);
 | |
|       MachineBasicBlock *PHIBB = PHI->getParent();
 | |
|       assert(PHI->isPHI() &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       // This is "default" BB. We have two jumps to it. From "header" BB and
 | |
|       // from last "case" BB, unless the latter was skipped.
 | |
|       if (PHIBB == BTB.Default) {
 | |
|         PHI.addReg(P.second).addMBB(BTB.Parent);
 | |
|         if (!BTB.ContiguousRange) {
 | |
|           PHI.addReg(P.second).addMBB(BTB.Cases.back().ThisBB);
 | |
|          }
 | |
|       }
 | |
|       // One of "cases" BB.
 | |
|       for (const SwitchCG::BitTestCase &BT : BTB.Cases) {
 | |
|         MachineBasicBlock* cBB = BT.ThisBB;
 | |
|         if (cBB->isSuccessor(PHIBB))
 | |
|           PHI.addReg(P.second).addMBB(cBB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   SDB->SL->BitTestCases.clear();
 | |
| 
 | |
|   // If the JumpTable record is filled in, then we need to emit a jump table.
 | |
|   // Updating the PHI nodes is tricky in this case, since we need to determine
 | |
|   // whether the PHI is a successor of the range check MBB or the jump table MBB
 | |
|   for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
 | |
|     // Lower header first, if it wasn't already lowered
 | |
|     if (!SDB->SL->JTCases[i].first.Emitted) {
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
 | |
|       FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
|       // Emit the code
 | |
|       SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
 | |
|                                 SDB->SL->JTCases[i].first, FuncInfo->MBB);
 | |
|       CurDAG->setRoot(SDB->getRoot());
 | |
|       SDB->clear();
 | |
|       CodeGenAndEmitDAG();
 | |
|     }
 | |
| 
 | |
|     // Set the current basic block to the mbb we wish to insert the code into
 | |
|     FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
 | |
|     FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
|     // Emit the code
 | |
|     SDB->visitJumpTable(SDB->SL->JTCases[i].second);
 | |
|     CurDAG->setRoot(SDB->getRoot());
 | |
|     SDB->clear();
 | |
|     CodeGenAndEmitDAG();
 | |
| 
 | |
|     // Update PHI Nodes
 | |
|     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
 | |
|          pi != pe; ++pi) {
 | |
|       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
 | |
|       MachineBasicBlock *PHIBB = PHI->getParent();
 | |
|       assert(PHI->isPHI() &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       // "default" BB. We can go there only from header BB.
 | |
|       if (PHIBB == SDB->SL->JTCases[i].second.Default)
 | |
|         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
 | |
|            .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
 | |
|       // JT BB. Just iterate over successors here
 | |
|       if (FuncInfo->MBB->isSuccessor(PHIBB))
 | |
|         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
 | |
|     }
 | |
|   }
 | |
|   SDB->SL->JTCases.clear();
 | |
| 
 | |
|   // If we generated any switch lowering information, build and codegen any
 | |
|   // additional DAGs necessary.
 | |
|   for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
 | |
|     // Set the current basic block to the mbb we wish to insert the code into
 | |
|     FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
 | |
|     FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
| 
 | |
|     // Determine the unique successors.
 | |
|     SmallVector<MachineBasicBlock *, 2> Succs;
 | |
|     Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
 | |
|     if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
 | |
|       Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
 | |
| 
 | |
|     // Emit the code. Note that this could result in FuncInfo->MBB being split.
 | |
|     SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
 | |
|     CurDAG->setRoot(SDB->getRoot());
 | |
|     SDB->clear();
 | |
|     CodeGenAndEmitDAG();
 | |
| 
 | |
|     // Remember the last block, now that any splitting is done, for use in
 | |
|     // populating PHI nodes in successors.
 | |
|     MachineBasicBlock *ThisBB = FuncInfo->MBB;
 | |
| 
 | |
|     // Handle any PHI nodes in successors of this chunk, as if we were coming
 | |
|     // from the original BB before switch expansion.  Note that PHI nodes can
 | |
|     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
 | |
|     // handle them the right number of times.
 | |
|     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
 | |
|       FuncInfo->MBB = Succs[i];
 | |
|       FuncInfo->InsertPt = FuncInfo->MBB->end();
 | |
|       // FuncInfo->MBB may have been removed from the CFG if a branch was
 | |
|       // constant folded.
 | |
|       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
 | |
|         for (MachineBasicBlock::iterator
 | |
|              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
 | |
|              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
 | |
|           MachineInstrBuilder PHI(*MF, MBBI);
 | |
|           // This value for this PHI node is recorded in PHINodesToUpdate.
 | |
|           for (unsigned pn = 0; ; ++pn) {
 | |
|             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
 | |
|                    "Didn't find PHI entry!");
 | |
|             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
 | |
|               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   SDB->SL->SwitchCases.clear();
 | |
| }
 | |
| 
 | |
| /// Create the scheduler. If a specific scheduler was specified
 | |
| /// via the SchedulerRegistry, use it, otherwise select the
 | |
| /// one preferred by the target.
 | |
| ///
 | |
| ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
 | |
|   return ISHeuristic(this, OptLevel);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper functions used by the generated instruction selector.
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Calls to these methods are generated by tblgen.
 | |
| 
 | |
| /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
 | |
| /// the dag combiner simplified the 255, we still want to match.  RHS is the
 | |
| /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
 | |
| /// specified in the .td file (e.g. 255).
 | |
| bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
 | |
|                                     int64_t DesiredMaskS) const {
 | |
|   const APInt &ActualMask = RHS->getAPIntValue();
 | |
|   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
 | |
| 
 | |
|   // If the actual mask exactly matches, success!
 | |
|   if (ActualMask == DesiredMask)
 | |
|     return true;
 | |
| 
 | |
|   // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | |
|   if (!ActualMask.isSubsetOf(DesiredMask))
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, the DAG Combiner may have proven that the value coming in is
 | |
|   // either already zero or is not demanded.  Check for known zero input bits.
 | |
|   APInt NeededMask = DesiredMask & ~ActualMask;
 | |
|   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
 | |
|     return true;
 | |
| 
 | |
|   // TODO: check to see if missing bits are just not demanded.
 | |
| 
 | |
|   // Otherwise, this pattern doesn't match.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
 | |
| /// the dag combiner simplified the 255, we still want to match.  RHS is the
 | |
| /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
 | |
| /// specified in the .td file (e.g. 255).
 | |
| bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
 | |
|                                    int64_t DesiredMaskS) const {
 | |
|   const APInt &ActualMask = RHS->getAPIntValue();
 | |
|   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
 | |
| 
 | |
|   // If the actual mask exactly matches, success!
 | |
|   if (ActualMask == DesiredMask)
 | |
|     return true;
 | |
| 
 | |
|   // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | |
|   if (!ActualMask.isSubsetOf(DesiredMask))
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, the DAG Combiner may have proven that the value coming in is
 | |
|   // either already zero or is not demanded.  Check for known zero input bits.
 | |
|   APInt NeededMask = DesiredMask & ~ActualMask;
 | |
|   KnownBits Known = CurDAG->computeKnownBits(LHS);
 | |
| 
 | |
|   // If all the missing bits in the or are already known to be set, match!
 | |
|   if (NeededMask.isSubsetOf(Known.One))
 | |
|     return true;
 | |
| 
 | |
|   // TODO: check to see if missing bits are just not demanded.
 | |
| 
 | |
|   // Otherwise, this pattern doesn't match.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
 | |
| /// by tblgen.  Others should not call it.
 | |
| void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
 | |
|                                                      const SDLoc &DL) {
 | |
|   std::vector<SDValue> InOps;
 | |
|   std::swap(InOps, Ops);
 | |
| 
 | |
|   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
 | |
|   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
 | |
|   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
 | |
|   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
 | |
| 
 | |
|   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
 | |
|   if (InOps[e-1].getValueType() == MVT::Glue)
 | |
|     --e;  // Don't process a glue operand if it is here.
 | |
| 
 | |
|   while (i != e) {
 | |
|     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
 | |
|     if (!InlineAsm::isMemKind(Flags)) {
 | |
|       // Just skip over this operand, copying the operands verbatim.
 | |
|       Ops.insert(Ops.end(), InOps.begin()+i,
 | |
|                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
 | |
|       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
 | |
|     } else {
 | |
|       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
 | |
|              "Memory operand with multiple values?");
 | |
| 
 | |
|       unsigned TiedToOperand;
 | |
|       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
 | |
|         // We need the constraint ID from the operand this is tied to.
 | |
|         unsigned CurOp = InlineAsm::Op_FirstOperand;
 | |
|         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
 | |
|         for (; TiedToOperand; --TiedToOperand) {
 | |
|           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
 | |
|           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Otherwise, this is a memory operand.  Ask the target to select it.
 | |
|       std::vector<SDValue> SelOps;
 | |
|       unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
 | |
|       if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
 | |
|         report_fatal_error("Could not match memory address.  Inline asm"
 | |
|                            " failure!");
 | |
| 
 | |
|       // Add this to the output node.
 | |
|       unsigned NewFlags =
 | |
|         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
 | |
|       NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
 | |
|       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
 | |
|       llvm::append_range(Ops, SelOps);
 | |
|       i += 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add the glue input back if present.
 | |
|   if (e != InOps.size())
 | |
|     Ops.push_back(InOps.back());
 | |
| }
 | |
| 
 | |
| /// findGlueUse - Return use of MVT::Glue value produced by the specified
 | |
| /// SDNode.
 | |
| ///
 | |
| static SDNode *findGlueUse(SDNode *N) {
 | |
|   unsigned FlagResNo = N->getNumValues()-1;
 | |
|   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | |
|     SDUse &Use = I.getUse();
 | |
|     if (Use.getResNo() == FlagResNo)
 | |
|       return Use.getUser();
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
 | |
| /// beyond "ImmedUse".  We may ignore chains as they are checked separately.
 | |
| static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
 | |
|                           bool IgnoreChains) {
 | |
|   SmallPtrSet<const SDNode *, 16> Visited;
 | |
|   SmallVector<const SDNode *, 16> WorkList;
 | |
|   // Only check if we have non-immediate uses of Def.
 | |
|   if (ImmedUse->isOnlyUserOf(Def))
 | |
|     return false;
 | |
| 
 | |
|   // We don't care about paths to Def that go through ImmedUse so mark it
 | |
|   // visited and mark non-def operands as used.
 | |
|   Visited.insert(ImmedUse);
 | |
|   for (const SDValue &Op : ImmedUse->op_values()) {
 | |
|     SDNode *N = Op.getNode();
 | |
|     // Ignore chain deps (they are validated by
 | |
|     // HandleMergeInputChains) and immediate uses
 | |
|     if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
 | |
|       continue;
 | |
|     if (!Visited.insert(N).second)
 | |
|       continue;
 | |
|     WorkList.push_back(N);
 | |
|   }
 | |
| 
 | |
|   // Initialize worklist to operands of Root.
 | |
|   if (Root != ImmedUse) {
 | |
|     for (const SDValue &Op : Root->op_values()) {
 | |
|       SDNode *N = Op.getNode();
 | |
|       // Ignore chains (they are validated by HandleMergeInputChains)
 | |
|       if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
 | |
|         continue;
 | |
|       if (!Visited.insert(N).second)
 | |
|         continue;
 | |
|       WorkList.push_back(N);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
 | |
| }
 | |
| 
 | |
| /// IsProfitableToFold - Returns true if it's profitable to fold the specific
 | |
| /// operand node N of U during instruction selection that starts at Root.
 | |
| bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
 | |
|                                           SDNode *Root) const {
 | |
|   if (OptLevel == CodeGenOpt::None) return false;
 | |
|   return N.hasOneUse();
 | |
| }
 | |
| 
 | |
| /// IsLegalToFold - Returns true if the specific operand node N of
 | |
| /// U can be folded during instruction selection that starts at Root.
 | |
| bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
 | |
|                                      CodeGenOpt::Level OptLevel,
 | |
|                                      bool IgnoreChains) {
 | |
|   if (OptLevel == CodeGenOpt::None) return false;
 | |
| 
 | |
|   // If Root use can somehow reach N through a path that that doesn't contain
 | |
|   // U then folding N would create a cycle. e.g. In the following
 | |
|   // diagram, Root can reach N through X. If N is folded into Root, then
 | |
|   // X is both a predecessor and a successor of U.
 | |
|   //
 | |
|   //          [N*]           //
 | |
|   //         ^   ^           //
 | |
|   //        /     \          //
 | |
|   //      [U*]    [X]?       //
 | |
|   //        ^     ^          //
 | |
|   //         \   /           //
 | |
|   //          \ /            //
 | |
|   //         [Root*]         //
 | |
|   //
 | |
|   // * indicates nodes to be folded together.
 | |
|   //
 | |
|   // If Root produces glue, then it gets (even more) interesting. Since it
 | |
|   // will be "glued" together with its glue use in the scheduler, we need to
 | |
|   // check if it might reach N.
 | |
|   //
 | |
|   //          [N*]           //
 | |
|   //         ^   ^           //
 | |
|   //        /     \          //
 | |
|   //      [U*]    [X]?       //
 | |
|   //        ^       ^        //
 | |
|   //         \       \       //
 | |
|   //          \      |       //
 | |
|   //         [Root*] |       //
 | |
|   //          ^      |       //
 | |
|   //          f      |       //
 | |
|   //          |      /       //
 | |
|   //         [Y]    /        //
 | |
|   //           ^   /         //
 | |
|   //           f  /          //
 | |
|   //           | /           //
 | |
|   //          [GU]           //
 | |
|   //
 | |
|   // If GU (glue use) indirectly reaches N (the load), and Root folds N
 | |
|   // (call it Fold), then X is a predecessor of GU and a successor of
 | |
|   // Fold. But since Fold and GU are glued together, this will create
 | |
|   // a cycle in the scheduling graph.
 | |
| 
 | |
|   // If the node has glue, walk down the graph to the "lowest" node in the
 | |
|   // glueged set.
 | |
|   EVT VT = Root->getValueType(Root->getNumValues()-1);
 | |
|   while (VT == MVT::Glue) {
 | |
|     SDNode *GU = findGlueUse(Root);
 | |
|     if (!GU)
 | |
|       break;
 | |
|     Root = GU;
 | |
|     VT = Root->getValueType(Root->getNumValues()-1);
 | |
| 
 | |
|     // If our query node has a glue result with a use, we've walked up it.  If
 | |
|     // the user (which has already been selected) has a chain or indirectly uses
 | |
|     // the chain, HandleMergeInputChains will not consider it.  Because of
 | |
|     // this, we cannot ignore chains in this predicate.
 | |
|     IgnoreChains = false;
 | |
|   }
 | |
| 
 | |
|   return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
 | |
|   SelectInlineAsmMemoryOperands(Ops, DL);
 | |
| 
 | |
|   const EVT VTs[] = {MVT::Other, MVT::Glue};
 | |
|   SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
 | |
|   New->setNodeId(-1);
 | |
|   ReplaceUses(N, New.getNode());
 | |
|   CurDAG->RemoveDeadNode(N);
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
 | |
|   SDLoc dl(Op);
 | |
|   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
 | |
|   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
 | |
| 
 | |
|   EVT VT = Op->getValueType(0);
 | |
|   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
 | |
|   Register Reg =
 | |
|       TLI->getRegisterByName(RegStr->getString().data(), Ty,
 | |
|                              CurDAG->getMachineFunction());
 | |
|   SDValue New = CurDAG->getCopyFromReg(
 | |
|                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
 | |
|   New->setNodeId(-1);
 | |
|   ReplaceUses(Op, New.getNode());
 | |
|   CurDAG->RemoveDeadNode(Op);
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
 | |
|   SDLoc dl(Op);
 | |
|   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
 | |
|   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
 | |
| 
 | |
|   EVT VT = Op->getOperand(2).getValueType();
 | |
|   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
 | |
| 
 | |
|   Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
 | |
|                                         CurDAG->getMachineFunction());
 | |
|   SDValue New = CurDAG->getCopyToReg(
 | |
|                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
 | |
|   New->setNodeId(-1);
 | |
|   ReplaceUses(Op, New.getNode());
 | |
|   CurDAG->RemoveDeadNode(Op);
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::Select_UNDEF(SDNode *N) {
 | |
|   CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::Select_FREEZE(SDNode *N) {
 | |
|   // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
 | |
|   // If FREEZE instruction is added later, the code below must be changed as
 | |
|   // well.
 | |
|   CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
 | |
|                        N->getOperand(0));
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) {
 | |
|   CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0),
 | |
|                        N->getOperand(0));
 | |
| }
 | |
| 
 | |
| /// GetVBR - decode a vbr encoding whose top bit is set.
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
 | |
| GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
 | |
|   assert(Val >= 128 && "Not a VBR");
 | |
|   Val &= 127;  // Remove first vbr bit.
 | |
| 
 | |
|   unsigned Shift = 7;
 | |
|   uint64_t NextBits;
 | |
|   do {
 | |
|     NextBits = MatcherTable[Idx++];
 | |
|     Val |= (NextBits&127) << Shift;
 | |
|     Shift += 7;
 | |
|   } while (NextBits & 128);
 | |
| 
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| /// When a match is complete, this method updates uses of interior chain results
 | |
| /// to use the new results.
 | |
| void SelectionDAGISel::UpdateChains(
 | |
|     SDNode *NodeToMatch, SDValue InputChain,
 | |
|     SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
 | |
|   SmallVector<SDNode*, 4> NowDeadNodes;
 | |
| 
 | |
|   // Now that all the normal results are replaced, we replace the chain and
 | |
|   // glue results if present.
 | |
|   if (!ChainNodesMatched.empty()) {
 | |
|     assert(InputChain.getNode() &&
 | |
|            "Matched input chains but didn't produce a chain");
 | |
|     // Loop over all of the nodes we matched that produced a chain result.
 | |
|     // Replace all the chain results with the final chain we ended up with.
 | |
|     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
 | |
|       SDNode *ChainNode = ChainNodesMatched[i];
 | |
|       // If ChainNode is null, it's because we replaced it on a previous
 | |
|       // iteration and we cleared it out of the map. Just skip it.
 | |
|       if (!ChainNode)
 | |
|         continue;
 | |
| 
 | |
|       assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
 | |
|              "Deleted node left in chain");
 | |
| 
 | |
|       // Don't replace the results of the root node if we're doing a
 | |
|       // MorphNodeTo.
 | |
|       if (ChainNode == NodeToMatch && isMorphNodeTo)
 | |
|         continue;
 | |
| 
 | |
|       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
 | |
|       if (ChainVal.getValueType() == MVT::Glue)
 | |
|         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
 | |
|       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
 | |
|       SelectionDAG::DAGNodeDeletedListener NDL(
 | |
|           *CurDAG, [&](SDNode *N, SDNode *E) {
 | |
|             std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
 | |
|                          static_cast<SDNode *>(nullptr));
 | |
|           });
 | |
|       if (ChainNode->getOpcode() != ISD::TokenFactor)
 | |
|         ReplaceUses(ChainVal, InputChain);
 | |
| 
 | |
|       // If the node became dead and we haven't already seen it, delete it.
 | |
|       if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
 | |
|           !llvm::is_contained(NowDeadNodes, ChainNode))
 | |
|         NowDeadNodes.push_back(ChainNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!NowDeadNodes.empty())
 | |
|     CurDAG->RemoveDeadNodes(NowDeadNodes);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
 | |
| }
 | |
| 
 | |
| /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
 | |
| /// operation for when the pattern matched at least one node with a chains.  The
 | |
| /// input vector contains a list of all of the chained nodes that we match.  We
 | |
| /// must determine if this is a valid thing to cover (i.e. matching it won't
 | |
| /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
 | |
| /// be used as the input node chain for the generated nodes.
 | |
| static SDValue
 | |
| HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
 | |
|                        SelectionDAG *CurDAG) {
 | |
| 
 | |
|   SmallPtrSet<const SDNode *, 16> Visited;
 | |
|   SmallVector<const SDNode *, 8> Worklist;
 | |
|   SmallVector<SDValue, 3> InputChains;
 | |
|   unsigned int Max = 8192;
 | |
| 
 | |
|   // Quick exit on trivial merge.
 | |
|   if (ChainNodesMatched.size() == 1)
 | |
|     return ChainNodesMatched[0]->getOperand(0);
 | |
| 
 | |
|   // Add chains that aren't already added (internal). Peek through
 | |
|   // token factors.
 | |
|   std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
 | |
|     if (V.getValueType() != MVT::Other)
 | |
|       return;
 | |
|     if (V->getOpcode() == ISD::EntryToken)
 | |
|       return;
 | |
|     if (!Visited.insert(V.getNode()).second)
 | |
|       return;
 | |
|     if (V->getOpcode() == ISD::TokenFactor) {
 | |
|       for (const SDValue &Op : V->op_values())
 | |
|         AddChains(Op);
 | |
|     } else
 | |
|       InputChains.push_back(V);
 | |
|   };
 | |
| 
 | |
|   for (auto *N : ChainNodesMatched) {
 | |
|     Worklist.push_back(N);
 | |
|     Visited.insert(N);
 | |
|   }
 | |
| 
 | |
|   while (!Worklist.empty())
 | |
|     AddChains(Worklist.pop_back_val()->getOperand(0));
 | |
| 
 | |
|   // Skip the search if there are no chain dependencies.
 | |
|   if (InputChains.size() == 0)
 | |
|     return CurDAG->getEntryNode();
 | |
| 
 | |
|   // If one of these chains is a successor of input, we must have a
 | |
|   // node that is both the predecessor and successor of the
 | |
|   // to-be-merged nodes. Fail.
 | |
|   Visited.clear();
 | |
|   for (SDValue V : InputChains)
 | |
|     Worklist.push_back(V.getNode());
 | |
| 
 | |
|   for (auto *N : ChainNodesMatched)
 | |
|     if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
 | |
|       return SDValue();
 | |
| 
 | |
|   // Return merged chain.
 | |
|   if (InputChains.size() == 1)
 | |
|     return InputChains[0];
 | |
|   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
 | |
|                          MVT::Other, InputChains);
 | |
| }
 | |
| 
 | |
| /// MorphNode - Handle morphing a node in place for the selector.
 | |
| SDNode *SelectionDAGISel::
 | |
| MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
 | |
|           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
 | |
|   // It is possible we're using MorphNodeTo to replace a node with no
 | |
|   // normal results with one that has a normal result (or we could be
 | |
|   // adding a chain) and the input could have glue and chains as well.
 | |
|   // In this case we need to shift the operands down.
 | |
|   // FIXME: This is a horrible hack and broken in obscure cases, no worse
 | |
|   // than the old isel though.
 | |
|   int OldGlueResultNo = -1, OldChainResultNo = -1;
 | |
| 
 | |
|   unsigned NTMNumResults = Node->getNumValues();
 | |
|   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
 | |
|     OldGlueResultNo = NTMNumResults-1;
 | |
|     if (NTMNumResults != 1 &&
 | |
|         Node->getValueType(NTMNumResults-2) == MVT::Other)
 | |
|       OldChainResultNo = NTMNumResults-2;
 | |
|   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
 | |
|     OldChainResultNo = NTMNumResults-1;
 | |
| 
 | |
|   // Call the underlying SelectionDAG routine to do the transmogrification. Note
 | |
|   // that this deletes operands of the old node that become dead.
 | |
|   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
 | |
| 
 | |
|   // MorphNodeTo can operate in two ways: if an existing node with the
 | |
|   // specified operands exists, it can just return it.  Otherwise, it
 | |
|   // updates the node in place to have the requested operands.
 | |
|   if (Res == Node) {
 | |
|     // If we updated the node in place, reset the node ID.  To the isel,
 | |
|     // this should be just like a newly allocated machine node.
 | |
|     Res->setNodeId(-1);
 | |
|   }
 | |
| 
 | |
|   unsigned ResNumResults = Res->getNumValues();
 | |
|   // Move the glue if needed.
 | |
|   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
 | |
|       (unsigned)OldGlueResultNo != ResNumResults-1)
 | |
|     ReplaceUses(SDValue(Node, OldGlueResultNo),
 | |
|                 SDValue(Res, ResNumResults - 1));
 | |
| 
 | |
|   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
 | |
|     --ResNumResults;
 | |
| 
 | |
|   // Move the chain reference if needed.
 | |
|   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
 | |
|       (unsigned)OldChainResultNo != ResNumResults-1)
 | |
|     ReplaceUses(SDValue(Node, OldChainResultNo),
 | |
|                 SDValue(Res, ResNumResults - 1));
 | |
| 
 | |
|   // Otherwise, no replacement happened because the node already exists. Replace
 | |
|   // Uses of the old node with the new one.
 | |
|   if (Res != Node) {
 | |
|     ReplaceNode(Node, Res);
 | |
|   } else {
 | |
|     EnforceNodeIdInvariant(Res);
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// CheckSame - Implements OP_CheckSame.
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
 | |
|           const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
 | |
|   // Accept if it is exactly the same as a previously recorded node.
 | |
|   unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
 | |
|   return N == RecordedNodes[RecNo].first;
 | |
| }
 | |
| 
 | |
| /// CheckChildSame - Implements OP_CheckChildXSame.
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame(
 | |
|     const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
 | |
|     const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
 | |
|     unsigned ChildNo) {
 | |
|   if (ChildNo >= N.getNumOperands())
 | |
|     return false;  // Match fails if out of range child #.
 | |
|   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
 | |
|                      RecordedNodes);
 | |
| }
 | |
| 
 | |
| /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|                       const SelectionDAGISel &SDISel) {
 | |
|   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
 | |
| }
 | |
| 
 | |
| /// CheckNodePredicate - Implements OP_CheckNodePredicate.
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|                    const SelectionDAGISel &SDISel, SDNode *N) {
 | |
|   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|             SDNode *N) {
 | |
|   uint16_t Opc = MatcherTable[MatcherIndex++];
 | |
|   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
 | |
|   return N->getOpcode() == Opc;
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
 | |
|           const TargetLowering *TLI, const DataLayout &DL) {
 | |
|   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|   if (N.getValueType() == VT) return true;
 | |
| 
 | |
|   // Handle the case when VT is iPTR.
 | |
|   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
 | |
|                unsigned ChildNo) {
 | |
|   if (ChildNo >= N.getNumOperands())
 | |
|     return false;  // Match fails if out of range child #.
 | |
|   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
 | |
|                      DL);
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|               SDValue N) {
 | |
|   return cast<CondCodeSDNode>(N)->get() ==
 | |
|       (ISD::CondCode)MatcherTable[MatcherIndex++];
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|                     SDValue N) {
 | |
|   if (2 >= N.getNumOperands())
 | |
|     return false;
 | |
|   return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
 | |
|   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|   if (cast<VTSDNode>(N)->getVT() == VT)
 | |
|     return true;
 | |
| 
 | |
|   // Handle the case when VT is iPTR.
 | |
|   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
 | |
| }
 | |
| 
 | |
| // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
 | |
| // shifted left by 1.
 | |
| static uint64_t decodeSignRotatedValue(uint64_t V) {
 | |
|   if ((V & 1) == 0)
 | |
|     return V >> 1;
 | |
|   if (V != 1)
 | |
|     return -(V >> 1);
 | |
|   // There is no such thing as -0 with integers.  "-0" really means MININT.
 | |
|   return 1ULL << 63;
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|              SDValue N) {
 | |
|   int64_t Val = MatcherTable[MatcherIndex++];
 | |
|   if (Val & 128)
 | |
|     Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | |
| 
 | |
|   Val = decodeSignRotatedValue(Val);
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
 | |
|   return C && C->getSExtValue() == Val;
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|                   SDValue N, unsigned ChildNo) {
 | |
|   if (ChildNo >= N.getNumOperands())
 | |
|     return false;  // Match fails if out of range child #.
 | |
|   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | |
|             SDValue N, const SelectionDAGISel &SDISel) {
 | |
|   int64_t Val = MatcherTable[MatcherIndex++];
 | |
|   if (Val & 128)
 | |
|     Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | |
| 
 | |
|   if (N->getOpcode() != ISD::AND) return false;
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
 | |
| }
 | |
| 
 | |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
 | |
| CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
 | |
|            const SelectionDAGISel &SDISel) {
 | |
|   int64_t Val = MatcherTable[MatcherIndex++];
 | |
|   if (Val & 128)
 | |
|     Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | |
| 
 | |
|   if (N->getOpcode() != ISD::OR) return false;
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
 | |
| }
 | |
| 
 | |
| /// IsPredicateKnownToFail - If we know how and can do so without pushing a
 | |
| /// scope, evaluate the current node.  If the current predicate is known to
 | |
| /// fail, set Result=true and return anything.  If the current predicate is
 | |
| /// known to pass, set Result=false and return the MatcherIndex to continue
 | |
| /// with.  If the current predicate is unknown, set Result=false and return the
 | |
| /// MatcherIndex to continue with.
 | |
| static unsigned IsPredicateKnownToFail(const unsigned char *Table,
 | |
|                                        unsigned Index, SDValue N,
 | |
|                                        bool &Result,
 | |
|                                        const SelectionDAGISel &SDISel,
 | |
|                   SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
 | |
|   switch (Table[Index++]) {
 | |
|   default:
 | |
|     Result = false;
 | |
|     return Index-1;  // Could not evaluate this predicate.
 | |
|   case SelectionDAGISel::OPC_CheckSame:
 | |
|     Result = !::CheckSame(Table, Index, N, RecordedNodes);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckChild0Same:
 | |
|   case SelectionDAGISel::OPC_CheckChild1Same:
 | |
|   case SelectionDAGISel::OPC_CheckChild2Same:
 | |
|   case SelectionDAGISel::OPC_CheckChild3Same:
 | |
|     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
 | |
|                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckPatternPredicate:
 | |
|     Result = !::CheckPatternPredicate(Table, Index, SDISel);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckPredicate:
 | |
|     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckOpcode:
 | |
|     Result = !::CheckOpcode(Table, Index, N.getNode());
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckType:
 | |
|     Result = !::CheckType(Table, Index, N, SDISel.TLI,
 | |
|                           SDISel.CurDAG->getDataLayout());
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckTypeRes: {
 | |
|     unsigned Res = Table[Index++];
 | |
|     Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
 | |
|                           SDISel.CurDAG->getDataLayout());
 | |
|     return Index;
 | |
|   }
 | |
|   case SelectionDAGISel::OPC_CheckChild0Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild1Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild2Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild3Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild4Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild5Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild6Type:
 | |
|   case SelectionDAGISel::OPC_CheckChild7Type:
 | |
|     Result = !::CheckChildType(
 | |
|                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
 | |
|                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckCondCode:
 | |
|     Result = !::CheckCondCode(Table, Index, N);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckChild2CondCode:
 | |
|     Result = !::CheckChild2CondCode(Table, Index, N);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckValueType:
 | |
|     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
 | |
|                                SDISel.CurDAG->getDataLayout());
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckInteger:
 | |
|     Result = !::CheckInteger(Table, Index, N);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckChild0Integer:
 | |
|   case SelectionDAGISel::OPC_CheckChild1Integer:
 | |
|   case SelectionDAGISel::OPC_CheckChild2Integer:
 | |
|   case SelectionDAGISel::OPC_CheckChild3Integer:
 | |
|   case SelectionDAGISel::OPC_CheckChild4Integer:
 | |
|     Result = !::CheckChildInteger(Table, Index, N,
 | |
|                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckAndImm:
 | |
|     Result = !::CheckAndImm(Table, Index, N, SDISel);
 | |
|     return Index;
 | |
|   case SelectionDAGISel::OPC_CheckOrImm:
 | |
|     Result = !::CheckOrImm(Table, Index, N, SDISel);
 | |
|     return Index;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct MatchScope {
 | |
|   /// FailIndex - If this match fails, this is the index to continue with.
 | |
|   unsigned FailIndex;
 | |
| 
 | |
|   /// NodeStack - The node stack when the scope was formed.
 | |
|   SmallVector<SDValue, 4> NodeStack;
 | |
| 
 | |
|   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
 | |
|   unsigned NumRecordedNodes;
 | |
| 
 | |
|   /// NumMatchedMemRefs - The number of matched memref entries.
 | |
|   unsigned NumMatchedMemRefs;
 | |
| 
 | |
|   /// InputChain/InputGlue - The current chain/glue
 | |
|   SDValue InputChain, InputGlue;
 | |
| 
 | |
|   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
 | |
|   bool HasChainNodesMatched;
 | |
| };
 | |
| 
 | |
| /// \A DAG update listener to keep the matching state
 | |
| /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
 | |
| /// change the DAG while matching.  X86 addressing mode matcher is an example
 | |
| /// for this.
 | |
| class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
 | |
| {
 | |
|   SDNode **NodeToMatch;
 | |
|   SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
 | |
|   SmallVectorImpl<MatchScope> &MatchScopes;
 | |
| 
 | |
| public:
 | |
|   MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
 | |
|                     SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
 | |
|                     SmallVectorImpl<MatchScope> &MS)
 | |
|       : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
 | |
|         RecordedNodes(RN), MatchScopes(MS) {}
 | |
| 
 | |
|   void NodeDeleted(SDNode *N, SDNode *E) override {
 | |
|     // Some early-returns here to avoid the search if we deleted the node or
 | |
|     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
 | |
|     // do, so it's unnecessary to update matching state at that point).
 | |
|     // Neither of these can occur currently because we only install this
 | |
|     // update listener during matching a complex patterns.
 | |
|     if (!E || E->isMachineOpcode())
 | |
|       return;
 | |
|     // Check if NodeToMatch was updated.
 | |
|     if (N == *NodeToMatch)
 | |
|       *NodeToMatch = E;
 | |
|     // Performing linear search here does not matter because we almost never
 | |
|     // run this code.  You'd have to have a CSE during complex pattern
 | |
|     // matching.
 | |
|     for (auto &I : RecordedNodes)
 | |
|       if (I.first.getNode() == N)
 | |
|         I.first.setNode(E);
 | |
| 
 | |
|     for (auto &I : MatchScopes)
 | |
|       for (auto &J : I.NodeStack)
 | |
|         if (J.getNode() == N)
 | |
|           J.setNode(E);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
 | |
|                                         const unsigned char *MatcherTable,
 | |
|                                         unsigned TableSize) {
 | |
|   // FIXME: Should these even be selected?  Handle these cases in the caller?
 | |
|   switch (NodeToMatch->getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
|   case ISD::EntryToken:       // These nodes remain the same.
 | |
|   case ISD::BasicBlock:
 | |
|   case ISD::Register:
 | |
|   case ISD::RegisterMask:
 | |
|   case ISD::HANDLENODE:
 | |
|   case ISD::MDNODE_SDNODE:
 | |
|   case ISD::TargetConstant:
 | |
|   case ISD::TargetConstantFP:
 | |
|   case ISD::TargetConstantPool:
 | |
|   case ISD::TargetFrameIndex:
 | |
|   case ISD::TargetExternalSymbol:
 | |
|   case ISD::MCSymbol:
 | |
|   case ISD::TargetBlockAddress:
 | |
|   case ISD::TargetJumpTable:
 | |
|   case ISD::TargetGlobalTLSAddress:
 | |
|   case ISD::TargetGlobalAddress:
 | |
|   case ISD::TokenFactor:
 | |
|   case ISD::CopyFromReg:
 | |
|   case ISD::CopyToReg:
 | |
|   case ISD::EH_LABEL:
 | |
|   case ISD::ANNOTATION_LABEL:
 | |
|   case ISD::LIFETIME_START:
 | |
|   case ISD::LIFETIME_END:
 | |
|   case ISD::PSEUDO_PROBE:
 | |
|     NodeToMatch->setNodeId(-1); // Mark selected.
 | |
|     return;
 | |
|   case ISD::AssertSext:
 | |
|   case ISD::AssertZext:
 | |
|   case ISD::AssertAlign:
 | |
|     ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
 | |
|     CurDAG->RemoveDeadNode(NodeToMatch);
 | |
|     return;
 | |
|   case ISD::INLINEASM:
 | |
|   case ISD::INLINEASM_BR:
 | |
|     Select_INLINEASM(NodeToMatch);
 | |
|     return;
 | |
|   case ISD::READ_REGISTER:
 | |
|     Select_READ_REGISTER(NodeToMatch);
 | |
|     return;
 | |
|   case ISD::WRITE_REGISTER:
 | |
|     Select_WRITE_REGISTER(NodeToMatch);
 | |
|     return;
 | |
|   case ISD::UNDEF:
 | |
|     Select_UNDEF(NodeToMatch);
 | |
|     return;
 | |
|   case ISD::FREEZE:
 | |
|     Select_FREEZE(NodeToMatch);
 | |
|     return;
 | |
|   case ISD::ARITH_FENCE:
 | |
|     Select_ARITH_FENCE(NodeToMatch);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
 | |
| 
 | |
|   // Set up the node stack with NodeToMatch as the only node on the stack.
 | |
|   SmallVector<SDValue, 8> NodeStack;
 | |
|   SDValue N = SDValue(NodeToMatch, 0);
 | |
|   NodeStack.push_back(N);
 | |
| 
 | |
|   // MatchScopes - Scopes used when matching, if a match failure happens, this
 | |
|   // indicates where to continue checking.
 | |
|   SmallVector<MatchScope, 8> MatchScopes;
 | |
| 
 | |
|   // RecordedNodes - This is the set of nodes that have been recorded by the
 | |
|   // state machine.  The second value is the parent of the node, or null if the
 | |
|   // root is recorded.
 | |
|   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
 | |
| 
 | |
|   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
 | |
|   // pattern.
 | |
|   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
 | |
| 
 | |
|   // These are the current input chain and glue for use when generating nodes.
 | |
|   // Various Emit operations change these.  For example, emitting a copytoreg
 | |
|   // uses and updates these.
 | |
|   SDValue InputChain, InputGlue;
 | |
| 
 | |
|   // ChainNodesMatched - If a pattern matches nodes that have input/output
 | |
|   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
 | |
|   // which ones they are.  The result is captured into this list so that we can
 | |
|   // update the chain results when the pattern is complete.
 | |
|   SmallVector<SDNode*, 3> ChainNodesMatched;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
 | |
| 
 | |
|   // Determine where to start the interpreter.  Normally we start at opcode #0,
 | |
|   // but if the state machine starts with an OPC_SwitchOpcode, then we
 | |
|   // accelerate the first lookup (which is guaranteed to be hot) with the
 | |
|   // OpcodeOffset table.
 | |
|   unsigned MatcherIndex = 0;
 | |
| 
 | |
|   if (!OpcodeOffset.empty()) {
 | |
|     // Already computed the OpcodeOffset table, just index into it.
 | |
|     if (N.getOpcode() < OpcodeOffset.size())
 | |
|       MatcherIndex = OpcodeOffset[N.getOpcode()];
 | |
|     LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
 | |
| 
 | |
|   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
 | |
|     // Otherwise, the table isn't computed, but the state machine does start
 | |
|     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
 | |
|     // is the first time we're selecting an instruction.
 | |
|     unsigned Idx = 1;
 | |
|     while (true) {
 | |
|       // Get the size of this case.
 | |
|       unsigned CaseSize = MatcherTable[Idx++];
 | |
|       if (CaseSize & 128)
 | |
|         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
 | |
|       if (CaseSize == 0) break;
 | |
| 
 | |
|       // Get the opcode, add the index to the table.
 | |
|       uint16_t Opc = MatcherTable[Idx++];
 | |
|       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
 | |
|       if (Opc >= OpcodeOffset.size())
 | |
|         OpcodeOffset.resize((Opc+1)*2);
 | |
|       OpcodeOffset[Opc] = Idx;
 | |
|       Idx += CaseSize;
 | |
|     }
 | |
| 
 | |
|     // Okay, do the lookup for the first opcode.
 | |
|     if (N.getOpcode() < OpcodeOffset.size())
 | |
|       MatcherIndex = OpcodeOffset[N.getOpcode()];
 | |
|   }
 | |
| 
 | |
|   while (true) {
 | |
|     assert(MatcherIndex < TableSize && "Invalid index");
 | |
| #ifndef NDEBUG
 | |
|     unsigned CurrentOpcodeIndex = MatcherIndex;
 | |
| #endif
 | |
|     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
 | |
|     switch (Opcode) {
 | |
|     case OPC_Scope: {
 | |
|       // Okay, the semantics of this operation are that we should push a scope
 | |
|       // then evaluate the first child.  However, pushing a scope only to have
 | |
|       // the first check fail (which then pops it) is inefficient.  If we can
 | |
|       // determine immediately that the first check (or first several) will
 | |
|       // immediately fail, don't even bother pushing a scope for them.
 | |
|       unsigned FailIndex;
 | |
| 
 | |
|       while (true) {
 | |
|         unsigned NumToSkip = MatcherTable[MatcherIndex++];
 | |
|         if (NumToSkip & 128)
 | |
|           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
 | |
|         // Found the end of the scope with no match.
 | |
|         if (NumToSkip == 0) {
 | |
|           FailIndex = 0;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         FailIndex = MatcherIndex+NumToSkip;
 | |
| 
 | |
|         unsigned MatcherIndexOfPredicate = MatcherIndex;
 | |
|         (void)MatcherIndexOfPredicate; // silence warning.
 | |
| 
 | |
|         // If we can't evaluate this predicate without pushing a scope (e.g. if
 | |
|         // it is a 'MoveParent') or if the predicate succeeds on this node, we
 | |
|         // push the scope and evaluate the full predicate chain.
 | |
|         bool Result;
 | |
|         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
 | |
|                                               Result, *this, RecordedNodes);
 | |
|         if (!Result)
 | |
|           break;
 | |
| 
 | |
|         LLVM_DEBUG(
 | |
|             dbgs() << "  Skipped scope entry (due to false predicate) at "
 | |
|                    << "index " << MatcherIndexOfPredicate << ", continuing at "
 | |
|                    << FailIndex << "\n");
 | |
|         ++NumDAGIselRetries;
 | |
| 
 | |
|         // Otherwise, we know that this case of the Scope is guaranteed to fail,
 | |
|         // move to the next case.
 | |
|         MatcherIndex = FailIndex;
 | |
|       }
 | |
| 
 | |
|       // If the whole scope failed to match, bail.
 | |
|       if (FailIndex == 0) break;
 | |
| 
 | |
|       // Push a MatchScope which indicates where to go if the first child fails
 | |
|       // to match.
 | |
|       MatchScope NewEntry;
 | |
|       NewEntry.FailIndex = FailIndex;
 | |
|       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
 | |
|       NewEntry.NumRecordedNodes = RecordedNodes.size();
 | |
|       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
 | |
|       NewEntry.InputChain = InputChain;
 | |
|       NewEntry.InputGlue = InputGlue;
 | |
|       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
 | |
|       MatchScopes.push_back(NewEntry);
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_RecordNode: {
 | |
|       // Remember this node, it may end up being an operand in the pattern.
 | |
|       SDNode *Parent = nullptr;
 | |
|       if (NodeStack.size() > 1)
 | |
|         Parent = NodeStack[NodeStack.size()-2].getNode();
 | |
|       RecordedNodes.push_back(std::make_pair(N, Parent));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_RecordChild0: case OPC_RecordChild1:
 | |
|     case OPC_RecordChild2: case OPC_RecordChild3:
 | |
|     case OPC_RecordChild4: case OPC_RecordChild5:
 | |
|     case OPC_RecordChild6: case OPC_RecordChild7: {
 | |
|       unsigned ChildNo = Opcode-OPC_RecordChild0;
 | |
|       if (ChildNo >= N.getNumOperands())
 | |
|         break;  // Match fails if out of range child #.
 | |
| 
 | |
|       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
 | |
|                                              N.getNode()));
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_RecordMemRef:
 | |
|       if (auto *MN = dyn_cast<MemSDNode>(N))
 | |
|         MatchedMemRefs.push_back(MN->getMemOperand());
 | |
|       else {
 | |
|         LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
 | |
|                    dbgs() << '\n');
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
| 
 | |
|     case OPC_CaptureGlueInput:
 | |
|       // If the current node has an input glue, capture it in InputGlue.
 | |
|       if (N->getNumOperands() != 0 &&
 | |
|           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
 | |
|         InputGlue = N->getOperand(N->getNumOperands()-1);
 | |
|       continue;
 | |
| 
 | |
|     case OPC_MoveChild: {
 | |
|       unsigned ChildNo = MatcherTable[MatcherIndex++];
 | |
|       if (ChildNo >= N.getNumOperands())
 | |
|         break;  // Match fails if out of range child #.
 | |
|       N = N.getOperand(ChildNo);
 | |
|       NodeStack.push_back(N);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_MoveChild0: case OPC_MoveChild1:
 | |
|     case OPC_MoveChild2: case OPC_MoveChild3:
 | |
|     case OPC_MoveChild4: case OPC_MoveChild5:
 | |
|     case OPC_MoveChild6: case OPC_MoveChild7: {
 | |
|       unsigned ChildNo = Opcode-OPC_MoveChild0;
 | |
|       if (ChildNo >= N.getNumOperands())
 | |
|         break;  // Match fails if out of range child #.
 | |
|       N = N.getOperand(ChildNo);
 | |
|       NodeStack.push_back(N);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_MoveParent:
 | |
|       // Pop the current node off the NodeStack.
 | |
|       NodeStack.pop_back();
 | |
|       assert(!NodeStack.empty() && "Node stack imbalance!");
 | |
|       N = NodeStack.back();
 | |
|       continue;
 | |
| 
 | |
|     case OPC_CheckSame:
 | |
|       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
 | |
|       continue;
 | |
| 
 | |
|     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
 | |
|     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
 | |
|       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
 | |
|                             Opcode-OPC_CheckChild0Same))
 | |
|         break;
 | |
|       continue;
 | |
| 
 | |
|     case OPC_CheckPatternPredicate:
 | |
|       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
 | |
|       continue;
 | |
|     case OPC_CheckPredicate:
 | |
|       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
 | |
|                                 N.getNode()))
 | |
|         break;
 | |
|       continue;
 | |
|     case OPC_CheckPredicateWithOperands: {
 | |
|       unsigned OpNum = MatcherTable[MatcherIndex++];
 | |
|       SmallVector<SDValue, 8> Operands;
 | |
| 
 | |
|       for (unsigned i = 0; i < OpNum; ++i)
 | |
|         Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
 | |
| 
 | |
|       unsigned PredNo = MatcherTable[MatcherIndex++];
 | |
|       if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
 | |
|         break;
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_CheckComplexPat: {
 | |
|       unsigned CPNum = MatcherTable[MatcherIndex++];
 | |
|       unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
 | |
| 
 | |
|       // If target can modify DAG during matching, keep the matching state
 | |
|       // consistent.
 | |
|       std::unique_ptr<MatchStateUpdater> MSU;
 | |
|       if (ComplexPatternFuncMutatesDAG())
 | |
|         MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
 | |
|                                         MatchScopes));
 | |
| 
 | |
|       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
 | |
|                                RecordedNodes[RecNo].first, CPNum,
 | |
|                                RecordedNodes))
 | |
|         break;
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_CheckOpcode:
 | |
|       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
 | |
|       continue;
 | |
| 
 | |
|     case OPC_CheckType:
 | |
|       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
 | |
|                        CurDAG->getDataLayout()))
 | |
|         break;
 | |
|       continue;
 | |
| 
 | |
|     case OPC_CheckTypeRes: {
 | |
|       unsigned Res = MatcherTable[MatcherIndex++];
 | |
|       if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
 | |
|                        CurDAG->getDataLayout()))
 | |
|         break;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_SwitchOpcode: {
 | |
|       unsigned CurNodeOpcode = N.getOpcode();
 | |
|       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
 | |
|       unsigned CaseSize;
 | |
|       while (true) {
 | |
|         // Get the size of this case.
 | |
|         CaseSize = MatcherTable[MatcherIndex++];
 | |
|         if (CaseSize & 128)
 | |
|           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
 | |
|         if (CaseSize == 0) break;
 | |
| 
 | |
|         uint16_t Opc = MatcherTable[MatcherIndex++];
 | |
|         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
 | |
| 
 | |
|         // If the opcode matches, then we will execute this case.
 | |
|         if (CurNodeOpcode == Opc)
 | |
|           break;
 | |
| 
 | |
|         // Otherwise, skip over this case.
 | |
|         MatcherIndex += CaseSize;
 | |
|       }
 | |
| 
 | |
|       // If no cases matched, bail out.
 | |
|       if (CaseSize == 0) break;
 | |
| 
 | |
|       // Otherwise, execute the case we found.
 | |
|       LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
 | |
|                         << MatcherIndex << "\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_SwitchType: {
 | |
|       MVT CurNodeVT = N.getSimpleValueType();
 | |
|       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
 | |
|       unsigned CaseSize;
 | |
|       while (true) {
 | |
|         // Get the size of this case.
 | |
|         CaseSize = MatcherTable[MatcherIndex++];
 | |
|         if (CaseSize & 128)
 | |
|           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
 | |
|         if (CaseSize == 0) break;
 | |
| 
 | |
|         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|         if (CaseVT == MVT::iPTR)
 | |
|           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
 | |
| 
 | |
|         // If the VT matches, then we will execute this case.
 | |
|         if (CurNodeVT == CaseVT)
 | |
|           break;
 | |
| 
 | |
|         // Otherwise, skip over this case.
 | |
|         MatcherIndex += CaseSize;
 | |
|       }
 | |
| 
 | |
|       // If no cases matched, bail out.
 | |
|       if (CaseSize == 0) break;
 | |
| 
 | |
|       // Otherwise, execute the case we found.
 | |
|       LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
 | |
|                         << "] from " << SwitchStart << " to " << MatcherIndex
 | |
|                         << '\n');
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
 | |
|     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
 | |
|     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
 | |
|     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
 | |
|       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
 | |
|                             CurDAG->getDataLayout(),
 | |
|                             Opcode - OPC_CheckChild0Type))
 | |
|         break;
 | |
|       continue;
 | |
|     case OPC_CheckCondCode:
 | |
|       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
 | |
|       continue;
 | |
|     case OPC_CheckChild2CondCode:
 | |
|       if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
 | |
|       continue;
 | |
|     case OPC_CheckValueType:
 | |
|       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
 | |
|                             CurDAG->getDataLayout()))
 | |
|         break;
 | |
|       continue;
 | |
|     case OPC_CheckInteger:
 | |
|       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
 | |
|       continue;
 | |
|     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
 | |
|     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
 | |
|     case OPC_CheckChild4Integer:
 | |
|       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
 | |
|                                Opcode-OPC_CheckChild0Integer)) break;
 | |
|       continue;
 | |
|     case OPC_CheckAndImm:
 | |
|       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
 | |
|       continue;
 | |
|     case OPC_CheckOrImm:
 | |
|       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
 | |
|       continue;
 | |
|     case OPC_CheckImmAllOnesV:
 | |
|       if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
 | |
|         break;
 | |
|       continue;
 | |
|     case OPC_CheckImmAllZerosV:
 | |
|       if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
 | |
|         break;
 | |
|       continue;
 | |
| 
 | |
|     case OPC_CheckFoldableChainNode: {
 | |
|       assert(NodeStack.size() != 1 && "No parent node");
 | |
|       // Verify that all intermediate nodes between the root and this one have
 | |
|       // a single use (ignoring chains, which are handled in UpdateChains).
 | |
|       bool HasMultipleUses = false;
 | |
|       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
 | |
|         unsigned NNonChainUses = 0;
 | |
|         SDNode *NS = NodeStack[i].getNode();
 | |
|         for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
 | |
|           if (UI.getUse().getValueType() != MVT::Other)
 | |
|             if (++NNonChainUses > 1) {
 | |
|               HasMultipleUses = true;
 | |
|               break;
 | |
|             }
 | |
|         if (HasMultipleUses) break;
 | |
|       }
 | |
|       if (HasMultipleUses) break;
 | |
| 
 | |
|       // Check to see that the target thinks this is profitable to fold and that
 | |
|       // we can fold it without inducing cycles in the graph.
 | |
|       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
 | |
|                               NodeToMatch) ||
 | |
|           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
 | |
|                          NodeToMatch, OptLevel,
 | |
|                          true/*We validate our own chains*/))
 | |
|         break;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_EmitInteger:
 | |
|     case OPC_EmitStringInteger: {
 | |
|       MVT::SimpleValueType VT =
 | |
|         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|       int64_t Val = MatcherTable[MatcherIndex++];
 | |
|       if (Val & 128)
 | |
|         Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | |
|       if (Opcode == OPC_EmitInteger)
 | |
|         Val = decodeSignRotatedValue(Val);
 | |
|       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
 | |
|                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
 | |
|                                                         VT), nullptr));
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_EmitRegister: {
 | |
|       MVT::SimpleValueType VT =
 | |
|         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|       unsigned RegNo = MatcherTable[MatcherIndex++];
 | |
|       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
 | |
|                               CurDAG->getRegister(RegNo, VT), nullptr));
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_EmitRegister2: {
 | |
|       // For targets w/ more than 256 register names, the register enum
 | |
|       // values are stored in two bytes in the matcher table (just like
 | |
|       // opcodes).
 | |
|       MVT::SimpleValueType VT =
 | |
|         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|       unsigned RegNo = MatcherTable[MatcherIndex++];
 | |
|       RegNo |= MatcherTable[MatcherIndex++] << 8;
 | |
|       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
 | |
|                               CurDAG->getRegister(RegNo, VT), nullptr));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitConvertToTarget:  {
 | |
|       // Convert from IMM/FPIMM to target version.
 | |
|       unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
 | |
|       SDValue Imm = RecordedNodes[RecNo].first;
 | |
| 
 | |
|       if (Imm->getOpcode() == ISD::Constant) {
 | |
|         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
 | |
|         Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
 | |
|                                         Imm.getValueType());
 | |
|       } else if (Imm->getOpcode() == ISD::ConstantFP) {
 | |
|         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
 | |
|         Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
 | |
|                                           Imm.getValueType());
 | |
|       }
 | |
| 
 | |
|       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
 | |
|     case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
 | |
|     case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
 | |
|       // These are space-optimized forms of OPC_EmitMergeInputChains.
 | |
|       assert(!InputChain.getNode() &&
 | |
|              "EmitMergeInputChains should be the first chain producing node");
 | |
|       assert(ChainNodesMatched.empty() &&
 | |
|              "Should only have one EmitMergeInputChains per match");
 | |
| 
 | |
|       // Read all of the chained nodes.
 | |
|       unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
 | |
|       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
 | |
|       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
 | |
| 
 | |
|       // If the chained node is not the root, we can't fold it if it has
 | |
|       // multiple uses.
 | |
|       // FIXME: What if other value results of the node have uses not matched
 | |
|       // by this pattern?
 | |
|       if (ChainNodesMatched.back() != NodeToMatch &&
 | |
|           !RecordedNodes[RecNo].first.hasOneUse()) {
 | |
|         ChainNodesMatched.clear();
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Merge the input chains if they are not intra-pattern references.
 | |
|       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
 | |
| 
 | |
|       if (!InputChain.getNode())
 | |
|         break;  // Failed to merge.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitMergeInputChains: {
 | |
|       assert(!InputChain.getNode() &&
 | |
|              "EmitMergeInputChains should be the first chain producing node");
 | |
|       // This node gets a list of nodes we matched in the input that have
 | |
|       // chains.  We want to token factor all of the input chains to these nodes
 | |
|       // together.  However, if any of the input chains is actually one of the
 | |
|       // nodes matched in this pattern, then we have an intra-match reference.
 | |
|       // Ignore these because the newly token factored chain should not refer to
 | |
|       // the old nodes.
 | |
|       unsigned NumChains = MatcherTable[MatcherIndex++];
 | |
|       assert(NumChains != 0 && "Can't TF zero chains");
 | |
| 
 | |
|       assert(ChainNodesMatched.empty() &&
 | |
|              "Should only have one EmitMergeInputChains per match");
 | |
| 
 | |
|       // Read all of the chained nodes.
 | |
|       for (unsigned i = 0; i != NumChains; ++i) {
 | |
|         unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
 | |
|         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
 | |
| 
 | |
|         // If the chained node is not the root, we can't fold it if it has
 | |
|         // multiple uses.
 | |
|         // FIXME: What if other value results of the node have uses not matched
 | |
|         // by this pattern?
 | |
|         if (ChainNodesMatched.back() != NodeToMatch &&
 | |
|             !RecordedNodes[RecNo].first.hasOneUse()) {
 | |
|           ChainNodesMatched.clear();
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If the inner loop broke out, the match fails.
 | |
|       if (ChainNodesMatched.empty())
 | |
|         break;
 | |
| 
 | |
|       // Merge the input chains if they are not intra-pattern references.
 | |
|       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
 | |
| 
 | |
|       if (!InputChain.getNode())
 | |
|         break;  // Failed to merge.
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitCopyToReg:
 | |
|     case OPC_EmitCopyToReg2: {
 | |
|       unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
 | |
|       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
 | |
|       if (Opcode == OPC_EmitCopyToReg2)
 | |
|         DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
 | |
| 
 | |
|       if (!InputChain.getNode())
 | |
|         InputChain = CurDAG->getEntryNode();
 | |
| 
 | |
|       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
 | |
|                                         DestPhysReg, RecordedNodes[RecNo].first,
 | |
|                                         InputGlue);
 | |
| 
 | |
|       InputGlue = InputChain.getValue(1);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitNodeXForm: {
 | |
|       unsigned XFormNo = MatcherTable[MatcherIndex++];
 | |
|       unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
 | |
|       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
 | |
|       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
 | |
|       continue;
 | |
|     }
 | |
|     case OPC_Coverage: {
 | |
|       // This is emitted right before MorphNode/EmitNode.
 | |
|       // So it should be safe to assume that this node has been selected
 | |
|       unsigned index = MatcherTable[MatcherIndex++];
 | |
|       index |= (MatcherTable[MatcherIndex++] << 8);
 | |
|       dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
 | |
|       dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_EmitNode:     case OPC_MorphNodeTo:
 | |
|     case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
 | |
|     case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
 | |
|       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
 | |
|       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
 | |
|       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
 | |
|       // Get the result VT list.
 | |
|       unsigned NumVTs;
 | |
|       // If this is one of the compressed forms, get the number of VTs based
 | |
|       // on the Opcode. Otherwise read the next byte from the table.
 | |
|       if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
 | |
|         NumVTs = Opcode - OPC_MorphNodeTo0;
 | |
|       else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
 | |
|         NumVTs = Opcode - OPC_EmitNode0;
 | |
|       else
 | |
|         NumVTs = MatcherTable[MatcherIndex++];
 | |
|       SmallVector<EVT, 4> VTs;
 | |
|       for (unsigned i = 0; i != NumVTs; ++i) {
 | |
|         MVT::SimpleValueType VT =
 | |
|           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | |
|         if (VT == MVT::iPTR)
 | |
|           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
 | |
|         VTs.push_back(VT);
 | |
|       }
 | |
| 
 | |
|       if (EmitNodeInfo & OPFL_Chain)
 | |
|         VTs.push_back(MVT::Other);
 | |
|       if (EmitNodeInfo & OPFL_GlueOutput)
 | |
|         VTs.push_back(MVT::Glue);
 | |
| 
 | |
|       // This is hot code, so optimize the two most common cases of 1 and 2
 | |
|       // results.
 | |
|       SDVTList VTList;
 | |
|       if (VTs.size() == 1)
 | |
|         VTList = CurDAG->getVTList(VTs[0]);
 | |
|       else if (VTs.size() == 2)
 | |
|         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
 | |
|       else
 | |
|         VTList = CurDAG->getVTList(VTs);
 | |
| 
 | |
|       // Get the operand list.
 | |
|       unsigned NumOps = MatcherTable[MatcherIndex++];
 | |
|       SmallVector<SDValue, 8> Ops;
 | |
|       for (unsigned i = 0; i != NumOps; ++i) {
 | |
|         unsigned RecNo = MatcherTable[MatcherIndex++];
 | |
|         if (RecNo & 128)
 | |
|           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
 | |
| 
 | |
|         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
 | |
|         Ops.push_back(RecordedNodes[RecNo].first);
 | |
|       }
 | |
| 
 | |
|       // If there are variadic operands to add, handle them now.
 | |
|       if (EmitNodeInfo & OPFL_VariadicInfo) {
 | |
|         // Determine the start index to copy from.
 | |
|         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
 | |
|         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
 | |
|         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
 | |
|                "Invalid variadic node");
 | |
|         // Copy all of the variadic operands, not including a potential glue
 | |
|         // input.
 | |
|         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
 | |
|              i != e; ++i) {
 | |
|           SDValue V = NodeToMatch->getOperand(i);
 | |
|           if (V.getValueType() == MVT::Glue) break;
 | |
|           Ops.push_back(V);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If this has chain/glue inputs, add them.
 | |
|       if (EmitNodeInfo & OPFL_Chain)
 | |
|         Ops.push_back(InputChain);
 | |
|       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
 | |
|         Ops.push_back(InputGlue);
 | |
| 
 | |
|       // Check whether any matched node could raise an FP exception.  Since all
 | |
|       // such nodes must have a chain, it suffices to check ChainNodesMatched.
 | |
|       // We need to perform this check before potentially modifying one of the
 | |
|       // nodes via MorphNode.
 | |
|       bool MayRaiseFPException =
 | |
|           llvm::any_of(ChainNodesMatched, [this](SDNode *N) {
 | |
|             return mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept();
 | |
|           });
 | |
| 
 | |
|       // Create the node.
 | |
|       MachineSDNode *Res = nullptr;
 | |
|       bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
 | |
|                      (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
 | |
|       if (!IsMorphNodeTo) {
 | |
|         // If this is a normal EmitNode command, just create the new node and
 | |
|         // add the results to the RecordedNodes list.
 | |
|         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
 | |
|                                      VTList, Ops);
 | |
| 
 | |
|         // Add all the non-glue/non-chain results to the RecordedNodes list.
 | |
|         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
 | |
|           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
 | |
|           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
 | |
|                                                              nullptr));
 | |
|         }
 | |
|       } else {
 | |
|         assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
 | |
|                "NodeToMatch was removed partway through selection");
 | |
|         SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
 | |
|                                                               SDNode *E) {
 | |
|           CurDAG->salvageDebugInfo(*N);
 | |
|           auto &Chain = ChainNodesMatched;
 | |
|           assert((!E || !is_contained(Chain, N)) &&
 | |
|                  "Chain node replaced during MorphNode");
 | |
|           llvm::erase_value(Chain, N);
 | |
|         });
 | |
|         Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
 | |
|                                             Ops, EmitNodeInfo));
 | |
|       }
 | |
| 
 | |
|       // Set the NoFPExcept flag when no original matched node could
 | |
|       // raise an FP exception, but the new node potentially might.
 | |
|       if (!MayRaiseFPException && mayRaiseFPException(Res)) {
 | |
|         SDNodeFlags Flags = Res->getFlags();
 | |
|         Flags.setNoFPExcept(true);
 | |
|         Res->setFlags(Flags);
 | |
|       }
 | |
| 
 | |
|       // If the node had chain/glue results, update our notion of the current
 | |
|       // chain and glue.
 | |
|       if (EmitNodeInfo & OPFL_GlueOutput) {
 | |
|         InputGlue = SDValue(Res, VTs.size()-1);
 | |
|         if (EmitNodeInfo & OPFL_Chain)
 | |
|           InputChain = SDValue(Res, VTs.size()-2);
 | |
|       } else if (EmitNodeInfo & OPFL_Chain)
 | |
|         InputChain = SDValue(Res, VTs.size()-1);
 | |
| 
 | |
|       // If the OPFL_MemRefs glue is set on this node, slap all of the
 | |
|       // accumulated memrefs onto it.
 | |
|       //
 | |
|       // FIXME: This is vastly incorrect for patterns with multiple outputs
 | |
|       // instructions that access memory and for ComplexPatterns that match
 | |
|       // loads.
 | |
|       if (EmitNodeInfo & OPFL_MemRefs) {
 | |
|         // Only attach load or store memory operands if the generated
 | |
|         // instruction may load or store.
 | |
|         const MCInstrDesc &MCID = TII->get(TargetOpc);
 | |
|         bool mayLoad = MCID.mayLoad();
 | |
|         bool mayStore = MCID.mayStore();
 | |
| 
 | |
|         // We expect to have relatively few of these so just filter them into a
 | |
|         // temporary buffer so that we can easily add them to the instruction.
 | |
|         SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
 | |
|         for (MachineMemOperand *MMO : MatchedMemRefs) {
 | |
|           if (MMO->isLoad()) {
 | |
|             if (mayLoad)
 | |
|               FilteredMemRefs.push_back(MMO);
 | |
|           } else if (MMO->isStore()) {
 | |
|             if (mayStore)
 | |
|               FilteredMemRefs.push_back(MMO);
 | |
|           } else {
 | |
|             FilteredMemRefs.push_back(MMO);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
 | |
|       }
 | |
| 
 | |
|       LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
 | |
|                      << "  Dropping mem operands\n";
 | |
|                  dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
 | |
|                         << " node: ";
 | |
|                  Res->dump(CurDAG););
 | |
| 
 | |
|       // If this was a MorphNodeTo then we're completely done!
 | |
|       if (IsMorphNodeTo) {
 | |
|         // Update chain uses.
 | |
|         UpdateChains(Res, InputChain, ChainNodesMatched, true);
 | |
|         return;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case OPC_CompleteMatch: {
 | |
|       // The match has been completed, and any new nodes (if any) have been
 | |
|       // created.  Patch up references to the matched dag to use the newly
 | |
|       // created nodes.
 | |
|       unsigned NumResults = MatcherTable[MatcherIndex++];
 | |
| 
 | |
|       for (unsigned i = 0; i != NumResults; ++i) {
 | |
|         unsigned ResSlot = MatcherTable[MatcherIndex++];
 | |
|         if (ResSlot & 128)
 | |
|           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
 | |
| 
 | |
|         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
 | |
|         SDValue Res = RecordedNodes[ResSlot].first;
 | |
| 
 | |
|         assert(i < NodeToMatch->getNumValues() &&
 | |
|                NodeToMatch->getValueType(i) != MVT::Other &&
 | |
|                NodeToMatch->getValueType(i) != MVT::Glue &&
 | |
|                "Invalid number of results to complete!");
 | |
|         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
 | |
|                 NodeToMatch->getValueType(i) == MVT::iPTR ||
 | |
|                 Res.getValueType() == MVT::iPTR ||
 | |
|                 NodeToMatch->getValueType(i).getSizeInBits() ==
 | |
|                     Res.getValueSizeInBits()) &&
 | |
|                "invalid replacement");
 | |
|         ReplaceUses(SDValue(NodeToMatch, i), Res);
 | |
|       }
 | |
| 
 | |
|       // Update chain uses.
 | |
|       UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
 | |
| 
 | |
|       // If the root node defines glue, we need to update it to the glue result.
 | |
|       // TODO: This never happens in our tests and I think it can be removed /
 | |
|       // replaced with an assert, but if we do it this the way the change is
 | |
|       // NFC.
 | |
|       if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
 | |
|               MVT::Glue &&
 | |
|           InputGlue.getNode())
 | |
|         ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
 | |
|                     InputGlue);
 | |
| 
 | |
|       assert(NodeToMatch->use_empty() &&
 | |
|              "Didn't replace all uses of the node?");
 | |
|       CurDAG->RemoveDeadNode(NodeToMatch);
 | |
| 
 | |
|       return;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     // If the code reached this point, then the match failed.  See if there is
 | |
|     // another child to try in the current 'Scope', otherwise pop it until we
 | |
|     // find a case to check.
 | |
|     LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
 | |
|                       << "\n");
 | |
|     ++NumDAGIselRetries;
 | |
|     while (true) {
 | |
|       if (MatchScopes.empty()) {
 | |
|         CannotYetSelect(NodeToMatch);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Restore the interpreter state back to the point where the scope was
 | |
|       // formed.
 | |
|       MatchScope &LastScope = MatchScopes.back();
 | |
|       RecordedNodes.resize(LastScope.NumRecordedNodes);
 | |
|       NodeStack.clear();
 | |
|       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
 | |
|       N = NodeStack.back();
 | |
| 
 | |
|       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
 | |
|         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
 | |
|       MatcherIndex = LastScope.FailIndex;
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
 | |
| 
 | |
|       InputChain = LastScope.InputChain;
 | |
|       InputGlue = LastScope.InputGlue;
 | |
|       if (!LastScope.HasChainNodesMatched)
 | |
|         ChainNodesMatched.clear();
 | |
| 
 | |
|       // Check to see what the offset is at the new MatcherIndex.  If it is zero
 | |
|       // we have reached the end of this scope, otherwise we have another child
 | |
|       // in the current scope to try.
 | |
|       unsigned NumToSkip = MatcherTable[MatcherIndex++];
 | |
|       if (NumToSkip & 128)
 | |
|         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
 | |
| 
 | |
|       // If we have another child in this scope to match, update FailIndex and
 | |
|       // try it.
 | |
|       if (NumToSkip != 0) {
 | |
|         LastScope.FailIndex = MatcherIndex+NumToSkip;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // End of this scope, pop it and try the next child in the containing
 | |
|       // scope.
 | |
|       MatchScopes.pop_back();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return whether the node may raise an FP exception.
 | |
| bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
 | |
|   // For machine opcodes, consult the MCID flag.
 | |
|   if (N->isMachineOpcode()) {
 | |
|     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
 | |
|     return MCID.mayRaiseFPException();
 | |
|   }
 | |
| 
 | |
|   // For ISD opcodes, only StrictFP opcodes may raise an FP
 | |
|   // exception.
 | |
|   if (N->isTargetOpcode())
 | |
|     return N->isTargetStrictFPOpcode();
 | |
|   return N->isStrictFPOpcode();
 | |
| }
 | |
| 
 | |
| bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
 | |
|   assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
 | |
|   auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   // Detect when "or" is used to add an offset to a stack object.
 | |
|   if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
 | |
|     MachineFrameInfo &MFI = MF->getFrameInfo();
 | |
|     Align A = MFI.getObjectAlign(FN->getIndex());
 | |
|     int32_t Off = C->getSExtValue();
 | |
|     // If the alleged offset fits in the zero bits guaranteed by
 | |
|     // the alignment, then this or is really an add.
 | |
|     return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::CannotYetSelect(SDNode *N) {
 | |
|   std::string msg;
 | |
|   raw_string_ostream Msg(msg);
 | |
|   Msg << "Cannot select: ";
 | |
| 
 | |
|   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
 | |
|       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
 | |
|       N->getOpcode() != ISD::INTRINSIC_VOID) {
 | |
|     N->printrFull(Msg, CurDAG);
 | |
|     Msg << "\nIn function: " << MF->getName();
 | |
|   } else {
 | |
|     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
 | |
|     unsigned iid =
 | |
|       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
 | |
|     if (iid < Intrinsic::num_intrinsics)
 | |
|       Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid);
 | |
|     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
 | |
|       Msg << "target intrinsic %" << TII->getName(iid);
 | |
|     else
 | |
|       Msg << "unknown intrinsic #" << iid;
 | |
|   }
 | |
|   report_fatal_error(Twine(Msg.str()));
 | |
| }
 | |
| 
 | |
| char SelectionDAGISel::ID = 0;
 |