1330 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1330 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file includes support code use by SelectionDAGBuilder when lowering a
 | |
| // statepoint sequence in SelectionDAG IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "StatepointLowering.h"
 | |
| #include "SelectionDAGBuilder.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/GCMetadata.h"
 | |
| #include "llvm/CodeGen/ISDOpcodes.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/RuntimeLibcalls.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GCStrategy.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/MachineValueType.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "statepoint-lowering"
 | |
| 
 | |
| STATISTIC(NumSlotsAllocatedForStatepoints,
 | |
|           "Number of stack slots allocated for statepoints");
 | |
| STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
 | |
| STATISTIC(StatepointMaxSlotsRequired,
 | |
|           "Maximum number of stack slots required for a singe statepoint");
 | |
| 
 | |
| cl::opt<bool> UseRegistersForDeoptValues(
 | |
|     "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Allow using registers for non pointer deopt args"));
 | |
| 
 | |
| cl::opt<bool> UseRegistersForGCPointersInLandingPad(
 | |
|     "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Allow using registers for gc pointer in landing pad"));
 | |
| 
 | |
| cl::opt<unsigned> MaxRegistersForGCPointers(
 | |
|     "max-registers-for-gc-values", cl::Hidden, cl::init(0),
 | |
|     cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
 | |
| 
 | |
| typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
 | |
| 
 | |
| static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
 | |
|                                  SelectionDAGBuilder &Builder, uint64_t Value) {
 | |
|   SDLoc L = Builder.getCurSDLoc();
 | |
|   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
 | |
|                                               MVT::i64));
 | |
|   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
 | |
| }
 | |
| 
 | |
| void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
 | |
|   // Consistency check
 | |
|   assert(PendingGCRelocateCalls.empty() &&
 | |
|          "Trying to visit statepoint before finished processing previous one");
 | |
|   Locations.clear();
 | |
|   NextSlotToAllocate = 0;
 | |
|   // Need to resize this on each safepoint - we need the two to stay in sync and
 | |
|   // the clear patterns of a SelectionDAGBuilder have no relation to
 | |
|   // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
 | |
|   AllocatedStackSlots.clear();
 | |
|   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
 | |
| }
 | |
| 
 | |
| void StatepointLoweringState::clear() {
 | |
|   Locations.clear();
 | |
|   AllocatedStackSlots.clear();
 | |
|   assert(PendingGCRelocateCalls.empty() &&
 | |
|          "cleared before statepoint sequence completed");
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| StatepointLoweringState::allocateStackSlot(EVT ValueType,
 | |
|                                            SelectionDAGBuilder &Builder) {
 | |
|   NumSlotsAllocatedForStatepoints++;
 | |
|   MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
 | |
| 
 | |
|   unsigned SpillSize = ValueType.getStoreSize();
 | |
|   assert((SpillSize * 8) ==
 | |
|              (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8.
 | |
|          "Size not in bytes?");
 | |
| 
 | |
|   // First look for a previously created stack slot which is not in
 | |
|   // use (accounting for the fact arbitrary slots may already be
 | |
|   // reserved), or to create a new stack slot and use it.
 | |
| 
 | |
|   const size_t NumSlots = AllocatedStackSlots.size();
 | |
|   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
 | |
| 
 | |
|   assert(AllocatedStackSlots.size() ==
 | |
|          Builder.FuncInfo.StatepointStackSlots.size() &&
 | |
|          "Broken invariant");
 | |
| 
 | |
|   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
 | |
|     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
 | |
|       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
 | |
|       if (MFI.getObjectSize(FI) == SpillSize) {
 | |
|         AllocatedStackSlots.set(NextSlotToAllocate);
 | |
|         // TODO: Is ValueType the right thing to use here?
 | |
|         return Builder.DAG.getFrameIndex(FI, ValueType);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Couldn't find a free slot, so create a new one:
 | |
| 
 | |
|   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
 | |
|   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
 | |
|   MFI.markAsStatepointSpillSlotObjectIndex(FI);
 | |
| 
 | |
|   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
 | |
|   AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
 | |
|   assert(AllocatedStackSlots.size() ==
 | |
|          Builder.FuncInfo.StatepointStackSlots.size() &&
 | |
|          "Broken invariant");
 | |
| 
 | |
|   StatepointMaxSlotsRequired.updateMax(
 | |
|       Builder.FuncInfo.StatepointStackSlots.size());
 | |
| 
 | |
|   return SpillSlot;
 | |
| }
 | |
| 
 | |
| /// Utility function for reservePreviousStackSlotForValue. Tries to find
 | |
| /// stack slot index to which we have spilled value for previous statepoints.
 | |
| /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
 | |
| static Optional<int> findPreviousSpillSlot(const Value *Val,
 | |
|                                            SelectionDAGBuilder &Builder,
 | |
|                                            int LookUpDepth) {
 | |
|   // Can not look any further - give up now
 | |
|   if (LookUpDepth <= 0)
 | |
|     return None;
 | |
| 
 | |
|   // Spill location is known for gc relocates
 | |
|   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
 | |
|     const auto &RelocationMap =
 | |
|         Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()];
 | |
| 
 | |
|     auto It = RelocationMap.find(Relocate);
 | |
|     if (It == RelocationMap.end())
 | |
|       return None;
 | |
| 
 | |
|     auto &Record = It->second;
 | |
|     if (Record.type != RecordType::Spill)
 | |
|       return None;
 | |
| 
 | |
|     return Record.payload.FI;
 | |
|   }
 | |
| 
 | |
|   // Look through bitcast instructions.
 | |
|   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
 | |
|     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
 | |
| 
 | |
|   // Look through phi nodes
 | |
|   // All incoming values should have same known stack slot, otherwise result
 | |
|   // is unknown.
 | |
|   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
 | |
|     Optional<int> MergedResult = None;
 | |
| 
 | |
|     for (auto &IncomingValue : Phi->incoming_values()) {
 | |
|       Optional<int> SpillSlot =
 | |
|           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
 | |
|       if (!SpillSlot.hasValue())
 | |
|         return None;
 | |
| 
 | |
|       if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
 | |
|         return None;
 | |
| 
 | |
|       MergedResult = SpillSlot;
 | |
|     }
 | |
|     return MergedResult;
 | |
|   }
 | |
| 
 | |
|   // TODO: We can do better for PHI nodes. In cases like this:
 | |
|   //   ptr = phi(relocated_pointer, not_relocated_pointer)
 | |
|   //   statepoint(ptr)
 | |
|   // We will return that stack slot for ptr is unknown. And later we might
 | |
|   // assign different stack slots for ptr and relocated_pointer. This limits
 | |
|   // llvm's ability to remove redundant stores.
 | |
|   // Unfortunately it's hard to accomplish in current infrastructure.
 | |
|   // We use this function to eliminate spill store completely, while
 | |
|   // in example we still need to emit store, but instead of any location
 | |
|   // we need to use special "preferred" location.
 | |
| 
 | |
|   // TODO: handle simple updates.  If a value is modified and the original
 | |
|   // value is no longer live, it would be nice to put the modified value in the
 | |
|   // same slot.  This allows folding of the memory accesses for some
 | |
|   // instructions types (like an increment).
 | |
|   //   statepoint (i)
 | |
|   //   i1 = i+1
 | |
|   //   statepoint (i1)
 | |
|   // However we need to be careful for cases like this:
 | |
|   //   statepoint(i)
 | |
|   //   i1 = i+1
 | |
|   //   statepoint(i, i1)
 | |
|   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
 | |
|   // put handling of simple modifications in this function like it's done
 | |
|   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
 | |
|   // which we visit values is unspecified.
 | |
| 
 | |
|   // Don't know any information about this instruction
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| /// Return true if-and-only-if the given SDValue can be lowered as either a
 | |
| /// constant argument or a stack reference.  The key point is that the value
 | |
| /// doesn't need to be spilled or tracked as a vreg use.
 | |
| static bool willLowerDirectly(SDValue Incoming) {
 | |
|   // We are making an unchecked assumption that the frame size <= 2^16 as that
 | |
|   // is the largest offset which can be encoded in the stackmap format.
 | |
|   if (isa<FrameIndexSDNode>(Incoming))
 | |
|     return true;
 | |
| 
 | |
|   // The largest constant describeable in the StackMap format is 64 bits.
 | |
|   // Potential Optimization:  Constants values are sign extended by consumer,
 | |
|   // and thus there are many constants of static type > 64 bits whose value
 | |
|   // happens to be sext(Con64) and could thus be lowered directly.
 | |
|   if (Incoming.getValueType().getSizeInBits() > 64)
 | |
|     return false;
 | |
| 
 | |
|   return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
 | |
|           Incoming.isUndef());
 | |
| }
 | |
| 
 | |
| /// Try to find existing copies of the incoming values in stack slots used for
 | |
| /// statepoint spilling.  If we can find a spill slot for the incoming value,
 | |
| /// mark that slot as allocated, and reuse the same slot for this safepoint.
 | |
| /// This helps to avoid series of loads and stores that only serve to reshuffle
 | |
| /// values on the stack between calls.
 | |
| static void reservePreviousStackSlotForValue(const Value *IncomingValue,
 | |
|                                              SelectionDAGBuilder &Builder) {
 | |
|   SDValue Incoming = Builder.getValue(IncomingValue);
 | |
| 
 | |
|   // If we won't spill this, we don't need to check for previously allocated
 | |
|   // stack slots.
 | |
|   if (willLowerDirectly(Incoming))
 | |
|     return;
 | |
| 
 | |
|   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
 | |
|   if (OldLocation.getNode())
 | |
|     // Duplicates in input
 | |
|     return;
 | |
| 
 | |
|   const int LookUpDepth = 6;
 | |
|   Optional<int> Index =
 | |
|       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
 | |
|   if (!Index.hasValue())
 | |
|     return;
 | |
| 
 | |
|   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
 | |
| 
 | |
|   auto SlotIt = find(StatepointSlots, *Index);
 | |
|   assert(SlotIt != StatepointSlots.end() &&
 | |
|          "Value spilled to the unknown stack slot");
 | |
| 
 | |
|   // This is one of our dedicated lowering slots
 | |
|   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
 | |
|   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
 | |
|     // stack slot already assigned to someone else, can't use it!
 | |
|     // TODO: currently we reserve space for gc arguments after doing
 | |
|     // normal allocation for deopt arguments.  We should reserve for
 | |
|     // _all_ deopt and gc arguments, then start allocating.  This
 | |
|     // will prevent some moves being inserted when vm state changes,
 | |
|     // but gc state doesn't between two calls.
 | |
|     return;
 | |
|   }
 | |
|   // Reserve this stack slot
 | |
|   Builder.StatepointLowering.reserveStackSlot(Offset);
 | |
| 
 | |
|   // Cache this slot so we find it when going through the normal
 | |
|   // assignment loop.
 | |
|   SDValue Loc =
 | |
|       Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
 | |
|   Builder.StatepointLowering.setLocation(Incoming, Loc);
 | |
| }
 | |
| 
 | |
| /// Extract call from statepoint, lower it and return pointer to the
 | |
| /// call node. Also update NodeMap so that getValue(statepoint) will
 | |
| /// reference lowered call result
 | |
| static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
 | |
|     SelectionDAGBuilder::StatepointLoweringInfo &SI,
 | |
|     SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
 | |
|   SDValue ReturnValue, CallEndVal;
 | |
|   std::tie(ReturnValue, CallEndVal) =
 | |
|       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
 | |
|   SDNode *CallEnd = CallEndVal.getNode();
 | |
| 
 | |
|   // Get a call instruction from the call sequence chain.  Tail calls are not
 | |
|   // allowed.  The following code is essentially reverse engineering X86's
 | |
|   // LowerCallTo.
 | |
|   //
 | |
|   // We are expecting DAG to have the following form:
 | |
|   //
 | |
|   // ch = eh_label (only in case of invoke statepoint)
 | |
|   //   ch, glue = callseq_start ch
 | |
|   //   ch, glue = X86::Call ch, glue
 | |
|   //   ch, glue = callseq_end ch, glue
 | |
|   //   get_return_value ch, glue
 | |
|   //
 | |
|   // get_return_value can either be a sequence of CopyFromReg instructions
 | |
|   // to grab the return value from the return register(s), or it can be a LOAD
 | |
|   // to load a value returned by reference via a stack slot.
 | |
| 
 | |
|   bool HasDef = !SI.CLI.RetTy->isVoidTy();
 | |
|   if (HasDef) {
 | |
|     if (CallEnd->getOpcode() == ISD::LOAD)
 | |
|       CallEnd = CallEnd->getOperand(0).getNode();
 | |
|     else
 | |
|       while (CallEnd->getOpcode() == ISD::CopyFromReg)
 | |
|         CallEnd = CallEnd->getOperand(0).getNode();
 | |
|   }
 | |
| 
 | |
|   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
 | |
|   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
 | |
| }
 | |
| 
 | |
| static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
 | |
|                                                FrameIndexSDNode &FI) {
 | |
|   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
 | |
|   auto MMOFlags = MachineMemOperand::MOStore |
 | |
|     MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
 | |
|   auto &MFI = MF.getFrameInfo();
 | |
|   return MF.getMachineMemOperand(PtrInfo, MMOFlags,
 | |
|                                  MFI.getObjectSize(FI.getIndex()),
 | |
|                                  MFI.getObjectAlign(FI.getIndex()));
 | |
| }
 | |
| 
 | |
| /// Spill a value incoming to the statepoint. It might be either part of
 | |
| /// vmstate
 | |
| /// or gcstate. In both cases unconditionally spill it on the stack unless it
 | |
| /// is a null constant. Return pair with first element being frame index
 | |
| /// containing saved value and second element with outgoing chain from the
 | |
| /// emitted store
 | |
| static std::tuple<SDValue, SDValue, MachineMemOperand*>
 | |
| spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
 | |
|                              SelectionDAGBuilder &Builder) {
 | |
|   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
 | |
|   MachineMemOperand* MMO = nullptr;
 | |
| 
 | |
|   // Emit new store if we didn't do it for this ptr before
 | |
|   if (!Loc.getNode()) {
 | |
|     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
 | |
|                                                        Builder);
 | |
|     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
 | |
|     // We use TargetFrameIndex so that isel will not select it into LEA
 | |
|     Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
 | |
| 
 | |
|     // Right now we always allocate spill slots that are of the same
 | |
|     // size as the value we're about to spill (the size of spillee can
 | |
|     // vary since we spill vectors of pointers too).  At some point we
 | |
|     // can consider allowing spills of smaller values to larger slots
 | |
|     // (i.e. change the '==' in the assert below to a '>=').
 | |
|     MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
 | |
|     assert((MFI.getObjectSize(Index) * 8) ==
 | |
|                (-8 & (7 + // Round up modulo 8.
 | |
|                       (int64_t)Incoming.getValueSizeInBits())) &&
 | |
|            "Bad spill:  stack slot does not match!");
 | |
| 
 | |
|     // Note: Using the alignment of the spill slot (rather than the abi or
 | |
|     // preferred alignment) is required for correctness when dealing with spill
 | |
|     // slots with preferred alignments larger than frame alignment..
 | |
|     auto &MF = Builder.DAG.getMachineFunction();
 | |
|     auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
 | |
|     auto *StoreMMO = MF.getMachineMemOperand(
 | |
|         PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
 | |
|         MFI.getObjectAlign(Index));
 | |
|     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
 | |
|                                  StoreMMO);
 | |
| 
 | |
|     MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
 | |
| 
 | |
|     Builder.StatepointLowering.setLocation(Incoming, Loc);
 | |
|   }
 | |
| 
 | |
|   assert(Loc.getNode());
 | |
|   return std::make_tuple(Loc, Chain, MMO);
 | |
| }
 | |
| 
 | |
| /// Lower a single value incoming to a statepoint node.  This value can be
 | |
| /// either a deopt value or a gc value, the handling is the same.  We special
 | |
| /// case constants and allocas, then fall back to spilling if required.
 | |
| static void
 | |
| lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
 | |
|                              SmallVectorImpl<SDValue> &Ops,
 | |
|                              SmallVectorImpl<MachineMemOperand *> &MemRefs,
 | |
|                              SelectionDAGBuilder &Builder) {
 | |
|   
 | |
|   if (willLowerDirectly(Incoming)) {
 | |
|     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
 | |
|       // This handles allocas as arguments to the statepoint (this is only
 | |
|       // really meaningful for a deopt value.  For GC, we'd be trying to
 | |
|       // relocate the address of the alloca itself?)
 | |
|       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
 | |
|              "Incoming value is a frame index!");
 | |
|       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
 | |
|                                                     Builder.getFrameIndexTy()));
 | |
| 
 | |
|       auto &MF = Builder.DAG.getMachineFunction();
 | |
|       auto *MMO = getMachineMemOperand(MF, *FI);
 | |
|       MemRefs.push_back(MMO);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     assert(Incoming.getValueType().getSizeInBits() <= 64);
 | |
|     
 | |
|     if (Incoming.isUndef()) {
 | |
|       // Put an easily recognized constant that's unlikely to be a valid
 | |
|       // value so that uses of undef by the consumer of the stackmap is
 | |
|       // easily recognized. This is legal since the compiler is always
 | |
|       // allowed to chose an arbitrary value for undef.
 | |
|       pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If the original value was a constant, make sure it gets recorded as
 | |
|     // such in the stackmap.  This is required so that the consumer can
 | |
|     // parse any internal format to the deopt state.  It also handles null
 | |
|     // pointers and other constant pointers in GC states.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
 | |
|       pushStackMapConstant(Ops, Builder, C->getSExtValue());
 | |
|       return;
 | |
|     } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
 | |
|       pushStackMapConstant(Ops, Builder,
 | |
|                            C->getValueAPF().bitcastToAPInt().getZExtValue());
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("unhandled direct lowering case");
 | |
|   }
 | |
| 
 | |
| 
 | |
| 
 | |
|   if (!RequireSpillSlot) {
 | |
|     // If this value is live in (not live-on-return, or live-through), we can
 | |
|     // treat it the same way patchpoint treats it's "live in" values.  We'll
 | |
|     // end up folding some of these into stack references, but they'll be
 | |
|     // handled by the register allocator.  Note that we do not have the notion
 | |
|     // of a late use so these values might be placed in registers which are
 | |
|     // clobbered by the call.  This is fine for live-in. For live-through
 | |
|     // fix-up pass should be executed to force spilling of such registers.
 | |
|     Ops.push_back(Incoming);
 | |
|   } else {
 | |
|     // Otherwise, locate a spill slot and explicitly spill it so it can be
 | |
|     // found by the runtime later.  Note: We know all of these spills are
 | |
|     // independent, but don't bother to exploit that chain wise.  DAGCombine
 | |
|     // will happily do so as needed, so doing it here would be a small compile
 | |
|     // time win at most. 
 | |
|     SDValue Chain = Builder.getRoot();
 | |
|     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
 | |
|     Ops.push_back(std::get<0>(Res));
 | |
|     if (auto *MMO = std::get<2>(Res))
 | |
|       MemRefs.push_back(MMO);
 | |
|     Chain = std::get<1>(Res);;
 | |
|     Builder.DAG.setRoot(Chain);
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| /// Return true if value V represents the GC value. The behavior is conservative
 | |
| /// in case it is not sure that value is not GC the function returns true.
 | |
| static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) {
 | |
|   auto *Ty = V->getType();
 | |
|   if (!Ty->isPtrOrPtrVectorTy())
 | |
|     return false;
 | |
|   if (auto *GFI = Builder.GFI)
 | |
|     if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
 | |
|       return *IsManaged;
 | |
|   return true; // conservative
 | |
| }
 | |
| 
 | |
| /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
 | |
| /// lowering is described in lowerIncomingStatepointValue.  This function is
 | |
| /// responsible for lowering everything in the right position and playing some
 | |
| /// tricks to avoid redundant stack manipulation where possible.  On
 | |
| /// completion, 'Ops' will contain ready to use operands for machine code
 | |
| /// statepoint. The chain nodes will have already been created and the DAG root
 | |
| /// will be set to the last value spilled (if any were).
 | |
| static void
 | |
| lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
 | |
|                         SmallVectorImpl<MachineMemOperand *> &MemRefs,
 | |
|                         SmallVectorImpl<SDValue> &GCPtrs,
 | |
|                         DenseMap<SDValue, int> &LowerAsVReg,
 | |
|                         SelectionDAGBuilder::StatepointLoweringInfo &SI,
 | |
|                         SelectionDAGBuilder &Builder) {
 | |
|   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
 | |
|   // deopt argument length, deopt arguments.., gc arguments...
 | |
| #ifndef NDEBUG
 | |
|   if (auto *GFI = Builder.GFI) {
 | |
|     // Check that each of the gc pointer and bases we've gotten out of the
 | |
|     // safepoint is something the strategy thinks might be a pointer (or vector
 | |
|     // of pointers) into the GC heap.  This is basically just here to help catch
 | |
|     // errors during statepoint insertion. TODO: This should actually be in the
 | |
|     // Verifier, but we can't get to the GCStrategy from there (yet).
 | |
|     GCStrategy &S = GFI->getStrategy();
 | |
|     for (const Value *V : SI.Bases) {
 | |
|       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
 | |
|       if (Opt.hasValue()) {
 | |
|         assert(Opt.getValue() &&
 | |
|                "non gc managed base pointer found in statepoint");
 | |
|       }
 | |
|     }
 | |
|     for (const Value *V : SI.Ptrs) {
 | |
|       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
 | |
|       if (Opt.hasValue()) {
 | |
|         assert(Opt.getValue() &&
 | |
|                "non gc managed derived pointer found in statepoint");
 | |
|       }
 | |
|     }
 | |
|     assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
 | |
|   } else {
 | |
|     assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
 | |
|     assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Figure out what lowering strategy we're going to use for each part
 | |
|   // Note: Is is conservatively correct to lower both "live-in" and "live-out"
 | |
|   // as "live-through". A "live-through" variable is one which is "live-in",
 | |
|   // "live-out", and live throughout the lifetime of the call (i.e. we can find
 | |
|   // it from any PC within the transitive callee of the statepoint).  In
 | |
|   // particular, if the callee spills callee preserved registers we may not
 | |
|   // be able to find a value placed in that register during the call.  This is
 | |
|   // fine for live-out, but not for live-through.  If we were willing to make
 | |
|   // assumptions about the code generator producing the callee, we could
 | |
|   // potentially allow live-through values in callee saved registers.
 | |
|   const bool LiveInDeopt =
 | |
|     SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
 | |
| 
 | |
|   // Decide which deriver pointers will go on VRegs
 | |
|   unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();
 | |
| 
 | |
|   // Pointers used on exceptional path of invoke statepoint.
 | |
|   // We cannot assing them to VRegs.
 | |
|   SmallSet<SDValue, 8> LPadPointers;
 | |
|   if (!UseRegistersForGCPointersInLandingPad)
 | |
|     if (auto *StInvoke = dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
 | |
|       LandingPadInst *LPI = StInvoke->getLandingPadInst();
 | |
|       for (auto *Relocate : SI.GCRelocates)
 | |
|         if (Relocate->getOperand(0) == LPI) {
 | |
|           LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
 | |
|           LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");
 | |
| 
 | |
|   // List of unique lowered GC Pointer values.
 | |
|   SmallSetVector<SDValue, 16> LoweredGCPtrs;
 | |
|   // Map lowered GC Pointer value to the index in above vector
 | |
|   DenseMap<SDValue, unsigned> GCPtrIndexMap;
 | |
| 
 | |
|   unsigned CurNumVRegs = 0;
 | |
| 
 | |
|   auto canPassGCPtrOnVReg = [&](SDValue SD) {
 | |
|     if (SD.getValueType().isVector())
 | |
|       return false;
 | |
|     if (LPadPointers.count(SD))
 | |
|       return false;
 | |
|     return !willLowerDirectly(SD);
 | |
|   };
 | |
| 
 | |
|   auto processGCPtr = [&](const Value *V) {
 | |
|     SDValue PtrSD = Builder.getValue(V);
 | |
|     if (!LoweredGCPtrs.insert(PtrSD))
 | |
|       return; // skip duplicates
 | |
|     GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;
 | |
| 
 | |
|     assert(!LowerAsVReg.count(PtrSD) && "must not have been seen");
 | |
|     if (LowerAsVReg.size() == MaxVRegPtrs)
 | |
|       return;
 | |
|     assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&
 | |
|            "IR and SD types disagree");
 | |
|     if (!canPassGCPtrOnVReg(PtrSD)) {
 | |
|       LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
 | |
|       return;
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
 | |
|     LowerAsVReg[PtrSD] = CurNumVRegs++;
 | |
|   };
 | |
| 
 | |
|   // Process derived pointers first to give them more chance to go on VReg.
 | |
|   for (const Value *V : SI.Ptrs)
 | |
|     processGCPtr(V);
 | |
|   for (const Value *V : SI.Bases)
 | |
|     processGCPtr(V);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n");
 | |
| 
 | |
|   auto requireSpillSlot = [&](const Value *V) {
 | |
|     if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal(
 | |
|              Builder.getValue(V).getValueType()))
 | |
|       return true;
 | |
|     if (isGCValue(V, Builder))
 | |
|       return !LowerAsVReg.count(Builder.getValue(V));
 | |
|     return !(LiveInDeopt || UseRegistersForDeoptValues);
 | |
|   };
 | |
| 
 | |
|   // Before we actually start lowering (and allocating spill slots for values),
 | |
|   // reserve any stack slots which we judge to be profitable to reuse for a
 | |
|   // particular value.  This is purely an optimization over the code below and
 | |
|   // doesn't change semantics at all.  It is important for performance that we
 | |
|   // reserve slots for both deopt and gc values before lowering either.
 | |
|   for (const Value *V : SI.DeoptState) {
 | |
|     if (requireSpillSlot(V))
 | |
|       reservePreviousStackSlotForValue(V, Builder);
 | |
|   }
 | |
| 
 | |
|   for (const Value *V : SI.Ptrs) {
 | |
|     SDValue SDV = Builder.getValue(V);
 | |
|     if (!LowerAsVReg.count(SDV))
 | |
|       reservePreviousStackSlotForValue(V, Builder);
 | |
|   }
 | |
| 
 | |
|   for (const Value *V : SI.Bases) {
 | |
|     SDValue SDV = Builder.getValue(V);
 | |
|     if (!LowerAsVReg.count(SDV))
 | |
|       reservePreviousStackSlotForValue(V, Builder);
 | |
|   }
 | |
| 
 | |
|   // First, prefix the list with the number of unique values to be
 | |
|   // lowered.  Note that this is the number of *Values* not the
 | |
|   // number of SDValues required to lower them.
 | |
|   const int NumVMSArgs = SI.DeoptState.size();
 | |
|   pushStackMapConstant(Ops, Builder, NumVMSArgs);
 | |
| 
 | |
|   // The vm state arguments are lowered in an opaque manner.  We do not know
 | |
|   // what type of values are contained within.
 | |
|   LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
 | |
|   for (const Value *V : SI.DeoptState) {
 | |
|     SDValue Incoming;
 | |
|     // If this is a function argument at a static frame index, generate it as
 | |
|     // the frame index.
 | |
|     if (const Argument *Arg = dyn_cast<Argument>(V)) {
 | |
|       int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
 | |
|       if (FI != INT_MAX)
 | |
|         Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
 | |
|     }
 | |
|     if (!Incoming.getNode())
 | |
|       Incoming = Builder.getValue(V);
 | |
|     LLVM_DEBUG(dbgs() << "Value " << *V
 | |
|                       << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
 | |
|     lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
 | |
|                                  Builder);
 | |
|   }
 | |
| 
 | |
|   // Finally, go ahead and lower all the gc arguments.
 | |
|   pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
 | |
|   for (SDValue SDV : LoweredGCPtrs)
 | |
|     lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
 | |
|                                  Builder);
 | |
| 
 | |
|   // Copy to out vector. LoweredGCPtrs will be empty after this point.
 | |
|   GCPtrs = LoweredGCPtrs.takeVector();
 | |
| 
 | |
|   // If there are any explicit spill slots passed to the statepoint, record
 | |
|   // them, but otherwise do not do anything special.  These are user provided
 | |
|   // allocas and give control over placement to the consumer.  In this case,
 | |
|   // it is the contents of the slot which may get updated, not the pointer to
 | |
|   // the alloca
 | |
|   SmallVector<SDValue, 4> Allocas;
 | |
|   for (Value *V : SI.GCArgs) {
 | |
|     SDValue Incoming = Builder.getValue(V);
 | |
|     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
 | |
|       // This handles allocas as arguments to the statepoint
 | |
|       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
 | |
|              "Incoming value is a frame index!");
 | |
|       Allocas.push_back(Builder.DAG.getTargetFrameIndex(
 | |
|           FI->getIndex(), Builder.getFrameIndexTy()));
 | |
| 
 | |
|       auto &MF = Builder.DAG.getMachineFunction();
 | |
|       auto *MMO = getMachineMemOperand(MF, *FI);
 | |
|       MemRefs.push_back(MMO);
 | |
|     }
 | |
|   }
 | |
|   pushStackMapConstant(Ops, Builder, Allocas.size());
 | |
|   Ops.append(Allocas.begin(), Allocas.end());
 | |
| 
 | |
|   // Now construct GC base/derived map;
 | |
|   pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
 | |
|   SDLoc L = Builder.getCurSDLoc();
 | |
|   for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
 | |
|     SDValue Base = Builder.getValue(SI.Bases[i]);
 | |
|     assert(GCPtrIndexMap.count(Base) && "base not found in index map");
 | |
|     Ops.push_back(
 | |
|         Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
 | |
|     SDValue Derived = Builder.getValue(SI.Ptrs[i]);
 | |
|     assert(GCPtrIndexMap.count(Derived) && "derived not found in index map");
 | |
|     Ops.push_back(
 | |
|         Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
 | |
|     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
 | |
|   // The basic scheme here is that information about both the original call and
 | |
|   // the safepoint is encoded in the CallInst.  We create a temporary call and
 | |
|   // lower it, then reverse engineer the calling sequence.
 | |
| 
 | |
|   NumOfStatepoints++;
 | |
|   // Clear state
 | |
|   StatepointLowering.startNewStatepoint(*this);
 | |
|   assert(SI.Bases.size() == SI.Ptrs.size());
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n");
 | |
| #ifndef NDEBUG
 | |
|   for (auto *Reloc : SI.GCRelocates)
 | |
|     if (Reloc->getParent() == SI.StatepointInstr->getParent())
 | |
|       StatepointLowering.scheduleRelocCall(*Reloc);
 | |
| #endif
 | |
| 
 | |
|   // Lower statepoint vmstate and gcstate arguments
 | |
| 
 | |
|   // All lowered meta args.
 | |
|   SmallVector<SDValue, 10> LoweredMetaArgs;
 | |
|   // Lowered GC pointers (subset of above).
 | |
|   SmallVector<SDValue, 16> LoweredGCArgs;
 | |
|   SmallVector<MachineMemOperand*, 16> MemRefs;
 | |
|   // Maps derived pointer SDValue to statepoint result of relocated pointer.
 | |
|   DenseMap<SDValue, int> LowerAsVReg;
 | |
|   lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
 | |
|                           SI, *this);
 | |
| 
 | |
|   // Now that we've emitted the spills, we need to update the root so that the
 | |
|   // call sequence is ordered correctly.
 | |
|   SI.CLI.setChain(getRoot());
 | |
| 
 | |
|   // Get call node, we will replace it later with statepoint
 | |
|   SDValue ReturnVal;
 | |
|   SDNode *CallNode;
 | |
|   std::tie(ReturnVal, CallNode) =
 | |
|       lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
 | |
| 
 | |
|   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
 | |
|   // nodes with all the appropriate arguments and return values.
 | |
| 
 | |
|   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
 | |
|   SDValue Chain = CallNode->getOperand(0);
 | |
| 
 | |
|   SDValue Glue;
 | |
|   bool CallHasIncomingGlue = CallNode->getGluedNode();
 | |
|   if (CallHasIncomingGlue) {
 | |
|     // Glue is always last operand
 | |
|     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
 | |
|   }
 | |
| 
 | |
|   // Build the GC_TRANSITION_START node if necessary.
 | |
|   //
 | |
|   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
 | |
|   // order in which they appear in the call to the statepoint intrinsic. If
 | |
|   // any of the operands is a pointer-typed, that operand is immediately
 | |
|   // followed by a SRCVALUE for the pointer that may be used during lowering
 | |
|   // (e.g. to form MachinePointerInfo values for loads/stores).
 | |
|   const bool IsGCTransition =
 | |
|       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
 | |
|       (uint64_t)StatepointFlags::GCTransition;
 | |
|   if (IsGCTransition) {
 | |
|     SmallVector<SDValue, 8> TSOps;
 | |
| 
 | |
|     // Add chain
 | |
|     TSOps.push_back(Chain);
 | |
| 
 | |
|     // Add GC transition arguments
 | |
|     for (const Value *V : SI.GCTransitionArgs) {
 | |
|       TSOps.push_back(getValue(V));
 | |
|       if (V->getType()->isPointerTy())
 | |
|         TSOps.push_back(DAG.getSrcValue(V));
 | |
|     }
 | |
| 
 | |
|     // Add glue if necessary
 | |
|     if (CallHasIncomingGlue)
 | |
|       TSOps.push_back(Glue);
 | |
| 
 | |
|     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
| 
 | |
|     SDValue GCTransitionStart =
 | |
|         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
 | |
| 
 | |
|     Chain = GCTransitionStart.getValue(0);
 | |
|     Glue = GCTransitionStart.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // TODO: Currently, all of these operands are being marked as read/write in
 | |
|   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
 | |
|   // and flags to be read-only.
 | |
|   SmallVector<SDValue, 40> Ops;
 | |
| 
 | |
|   // Add the <id> and <numBytes> constants.
 | |
|   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
 | |
|   Ops.push_back(
 | |
|       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
 | |
| 
 | |
|   // Calculate and push starting position of vmstate arguments
 | |
|   // Get number of arguments incoming directly into call node
 | |
|   unsigned NumCallRegArgs =
 | |
|       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
 | |
|   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
 | |
| 
 | |
|   // Add call target
 | |
|   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
 | |
|   Ops.push_back(CallTarget);
 | |
| 
 | |
|   // Add call arguments
 | |
|   // Get position of register mask in the call
 | |
|   SDNode::op_iterator RegMaskIt;
 | |
|   if (CallHasIncomingGlue)
 | |
|     RegMaskIt = CallNode->op_end() - 2;
 | |
|   else
 | |
|     RegMaskIt = CallNode->op_end() - 1;
 | |
|   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
 | |
| 
 | |
|   // Add a constant argument for the calling convention
 | |
|   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
 | |
| 
 | |
|   // Add a constant argument for the flags
 | |
|   uint64_t Flags = SI.StatepointFlags;
 | |
|   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
 | |
|          "Unknown flag used");
 | |
|   pushStackMapConstant(Ops, *this, Flags);
 | |
| 
 | |
|   // Insert all vmstate and gcstate arguments
 | |
|   llvm::append_range(Ops, LoweredMetaArgs);
 | |
| 
 | |
|   // Add register mask from call node
 | |
|   Ops.push_back(*RegMaskIt);
 | |
| 
 | |
|   // Add chain
 | |
|   Ops.push_back(Chain);
 | |
| 
 | |
|   // Same for the glue, but we add it only if original call had it
 | |
|   if (Glue.getNode())
 | |
|     Ops.push_back(Glue);
 | |
| 
 | |
|   // Compute return values.  Provide a glue output since we consume one as
 | |
|   // input.  This allows someone else to chain off us as needed.
 | |
|   SmallVector<EVT, 8> NodeTys;
 | |
|   for (auto SD : LoweredGCArgs) {
 | |
|     if (!LowerAsVReg.count(SD))
 | |
|       continue;
 | |
|     NodeTys.push_back(SD.getValueType());
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
 | |
|   assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
 | |
|   NodeTys.push_back(MVT::Other);
 | |
|   NodeTys.push_back(MVT::Glue);
 | |
| 
 | |
|   unsigned NumResults = NodeTys.size();
 | |
|   MachineSDNode *StatepointMCNode =
 | |
|     DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
 | |
|   DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
 | |
| 
 | |
|   // For values lowered to tied-defs, create the virtual registers if used
 | |
|   // in other blocks. For local gc.relocate record appropriate statepoint
 | |
|   // result in StatepointLoweringState.
 | |
|   DenseMap<SDValue, Register> VirtRegs;
 | |
|   for (const auto *Relocate : SI.GCRelocates) {
 | |
|     Value *Derived = Relocate->getDerivedPtr();
 | |
|     SDValue SD = getValue(Derived);
 | |
|     if (!LowerAsVReg.count(SD))
 | |
|       continue;
 | |
| 
 | |
|     SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);
 | |
| 
 | |
|     // Handle local relocate. Note that different relocates might
 | |
|     // map to the same SDValue.
 | |
|     if (SI.StatepointInstr->getParent() == Relocate->getParent()) {
 | |
|       SDValue Res = StatepointLowering.getLocation(SD);
 | |
|       if (Res)
 | |
|         assert(Res == Relocated);
 | |
|       else
 | |
|         StatepointLowering.setLocation(SD, Relocated);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Handle multiple gc.relocates of the same input efficiently.
 | |
|     if (VirtRegs.count(SD))
 | |
|       continue;
 | |
| 
 | |
|     auto *RetTy = Relocate->getType();
 | |
|     Register Reg = FuncInfo.CreateRegs(RetTy);
 | |
|     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
 | |
|                      DAG.getDataLayout(), Reg, RetTy, None);
 | |
|     SDValue Chain = DAG.getRoot();
 | |
|     RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
 | |
|     PendingExports.push_back(Chain);
 | |
| 
 | |
|     VirtRegs[SD] = Reg;
 | |
|   }
 | |
| 
 | |
|   // Record for later use how each relocation was lowered.  This is needed to
 | |
|   // allow later gc.relocates to mirror the lowering chosen.
 | |
|   const Instruction *StatepointInstr = SI.StatepointInstr;
 | |
|   auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
 | |
|   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
 | |
|     const Value *V = Relocate->getDerivedPtr();
 | |
|     SDValue SDV = getValue(V);
 | |
|     SDValue Loc = StatepointLowering.getLocation(SDV);
 | |
| 
 | |
|     bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent());
 | |
| 
 | |
|     RecordType Record;
 | |
|     if (IsLocal && LowerAsVReg.count(SDV)) {
 | |
|       // Result is already stored in StatepointLowering
 | |
|       Record.type = RecordType::SDValueNode;
 | |
|     } else if (LowerAsVReg.count(SDV)) {
 | |
|       Record.type = RecordType::VReg;
 | |
|       assert(VirtRegs.count(SDV));
 | |
|       Record.payload.Reg = VirtRegs[SDV];
 | |
|     } else if (Loc.getNode()) {
 | |
|       Record.type = RecordType::Spill;
 | |
|       Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
 | |
|     } else {
 | |
|       Record.type = RecordType::NoRelocate;
 | |
|       // If we didn't relocate a value, we'll essentialy end up inserting an
 | |
|       // additional use of the original value when lowering the gc.relocate.
 | |
|       // We need to make sure the value is available at the new use, which
 | |
|       // might be in another block.
 | |
|       if (Relocate->getParent() != StatepointInstr->getParent())
 | |
|         ExportFromCurrentBlock(V);
 | |
|     }
 | |
|     RelocationMap[Relocate] = Record;
 | |
|   }
 | |
| 
 | |
|   
 | |
| 
 | |
|   SDNode *SinkNode = StatepointMCNode;
 | |
| 
 | |
|   // Build the GC_TRANSITION_END node if necessary.
 | |
|   //
 | |
|   // See the comment above regarding GC_TRANSITION_START for the layout of
 | |
|   // the operands to the GC_TRANSITION_END node.
 | |
|   if (IsGCTransition) {
 | |
|     SmallVector<SDValue, 8> TEOps;
 | |
| 
 | |
|     // Add chain
 | |
|     TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
 | |
| 
 | |
|     // Add GC transition arguments
 | |
|     for (const Value *V : SI.GCTransitionArgs) {
 | |
|       TEOps.push_back(getValue(V));
 | |
|       if (V->getType()->isPointerTy())
 | |
|         TEOps.push_back(DAG.getSrcValue(V));
 | |
|     }
 | |
| 
 | |
|     // Add glue
 | |
|     TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
 | |
| 
 | |
|     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
| 
 | |
|     SDValue GCTransitionStart =
 | |
|         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
 | |
| 
 | |
|     SinkNode = GCTransitionStart.getNode();
 | |
|   }
 | |
| 
 | |
|   // Replace original call
 | |
|   // Call: ch,glue = CALL ...
 | |
|   // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
 | |
|   unsigned NumSinkValues = SinkNode->getNumValues();
 | |
|   SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
 | |
|                                  SDValue(SinkNode, NumSinkValues - 1)};
 | |
|   DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
 | |
|   // Remove original call node
 | |
|   DAG.DeleteNode(CallNode);
 | |
| 
 | |
|   // Since we always emit CopyToRegs (even for local relocates), we must
 | |
|   // update root, so that they are emitted before any local uses.
 | |
|   (void)getControlRoot();
 | |
| 
 | |
|   // TODO: A better future implementation would be to emit a single variable
 | |
|   // argument, variable return value STATEPOINT node here and then hookup the
 | |
|   // return value of each gc.relocate to the respective output of the
 | |
|   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
 | |
|   // to actually be possible today.
 | |
| 
 | |
|   return ReturnVal;
 | |
| }
 | |
| 
 | |
| /// Return two gc.results if present.  First result is a block local
 | |
| /// gc.result, second result is a non-block local gc.result.  Corresponding
 | |
| /// entry will be nullptr if not present.
 | |
| static std::pair<const GCResultInst*, const GCResultInst*>
 | |
| getGCResultLocality(const GCStatepointInst &S) {
 | |
|   std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr);
 | |
|   for (auto *U : S.users()) {
 | |
|     auto *GRI = dyn_cast<GCResultInst>(U);
 | |
|     if (!GRI)
 | |
|       continue;
 | |
|     if (GRI->getParent() == S.getParent())
 | |
|       Res.first = GRI;
 | |
|     else
 | |
|       Res.second = GRI;
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| void
 | |
| SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
 | |
|                                      const BasicBlock *EHPadBB /*= nullptr*/) {
 | |
|   assert(I.getCallingConv() != CallingConv::AnyReg &&
 | |
|          "anyregcc is not supported on statepoints!");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check that the associated GCStrategy expects to encounter statepoints.
 | |
|   assert(GFI->getStrategy().useStatepoints() &&
 | |
|          "GCStrategy does not expect to encounter statepoints");
 | |
| #endif
 | |
| 
 | |
|   SDValue ActualCallee;
 | |
|   SDValue Callee = getValue(I.getActualCalledOperand());
 | |
| 
 | |
|   if (I.getNumPatchBytes() > 0) {
 | |
|     // If we've been asked to emit a nop sequence instead of a call instruction
 | |
|     // for this statepoint then don't lower the call target, but use a constant
 | |
|     // `undef` instead.  Not lowering the call target lets statepoint clients
 | |
|     // get away without providing a physical address for the symbolic call
 | |
|     // target at link time.
 | |
|     ActualCallee = DAG.getUNDEF(Callee.getValueType());
 | |
|   } else {
 | |
|     ActualCallee = Callee;
 | |
|   }
 | |
| 
 | |
|   StatepointLoweringInfo SI(DAG);
 | |
|   populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
 | |
|                            I.getNumCallArgs(), ActualCallee,
 | |
|                            I.getActualReturnType(), false /* IsPatchPoint */);
 | |
| 
 | |
|   // There may be duplication in the gc.relocate list; such as two copies of
 | |
|   // each relocation on normal and exceptional path for an invoke.  We only
 | |
|   // need to spill once and record one copy in the stackmap, but we need to
 | |
|   // reload once per gc.relocate.  (Dedupping gc.relocates is trickier and best
 | |
|   // handled as a CSE problem elsewhere.)
 | |
|   // TODO: There a couple of major stackmap size optimizations we could do
 | |
|   // here if we wished.
 | |
|   // 1) If we've encountered a derived pair {B, D}, we don't need to actually
 | |
|   // record {B,B} if it's seen later.
 | |
|   // 2) Due to rematerialization, actual derived pointers are somewhat rare;
 | |
|   // given that, we could change the format to record base pointer relocations
 | |
|   // separately with half the space. This would require a format rev and a
 | |
|   // fairly major rework of the STATEPOINT node though.
 | |
|   SmallSet<SDValue, 8> Seen;
 | |
|   for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
 | |
|     SI.GCRelocates.push_back(Relocate);
 | |
| 
 | |
|     SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
 | |
|     if (Seen.insert(DerivedSD).second) {
 | |
|       SI.Bases.push_back(Relocate->getBasePtr());
 | |
|       SI.Ptrs.push_back(Relocate->getDerivedPtr());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we find a deopt value which isn't explicitly added, we need to
 | |
|   // ensure it gets lowered such that gc cycles occurring before the
 | |
|   // deoptimization event during the lifetime of the call don't invalidate
 | |
|   // the pointer we're deopting with.  Note that we assume that all
 | |
|   // pointers passed to deopt are base pointers; relaxing that assumption
 | |
|   // would require relatively large changes to how we represent relocations.
 | |
|   for (Value *V : I.deopt_operands()) {
 | |
|     if (!isGCValue(V, *this))
 | |
|       continue;
 | |
|     if (Seen.insert(getValue(V)).second) {
 | |
|       SI.Bases.push_back(V);
 | |
|       SI.Ptrs.push_back(V);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
 | |
|   SI.StatepointInstr = &I;
 | |
|   SI.ID = I.getID();
 | |
| 
 | |
|   SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
 | |
|   SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
 | |
|                                             I.gc_transition_args_end());
 | |
| 
 | |
|   SI.StatepointFlags = I.getFlags();
 | |
|   SI.NumPatchBytes = I.getNumPatchBytes();
 | |
|   SI.EHPadBB = EHPadBB;
 | |
| 
 | |
|   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
 | |
| 
 | |
|   // Export the result value if needed
 | |
|   const auto GCResultLocality = getGCResultLocality(I);
 | |
| 
 | |
|   if (!GCResultLocality.first && !GCResultLocality.second) {
 | |
|     // The return value is not needed, just generate a poison value.
 | |
|     // Note: This covers the void return case.
 | |
|     setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (GCResultLocality.first) {
 | |
|     // Result value will be used in a same basic block. Don't export it or
 | |
|     // perform any explicit register copies. The gc_result will simply grab
 | |
|     // this value. 
 | |
|     setValue(&I, ReturnValue);
 | |
|   }
 | |
| 
 | |
|   if (!GCResultLocality.second)
 | |
|     return;
 | |
|   // Result value will be used in a different basic block so we need to export
 | |
|   // it now.  Default exporting mechanism will not work here because statepoint
 | |
|   // call has a different type than the actual call. It means that by default
 | |
|   // llvm will create export register of the wrong type (always i32 in our
 | |
|   // case). So instead we need to create export register with correct type
 | |
|   // manually.
 | |
|   // TODO: To eliminate this problem we can remove gc.result intrinsics
 | |
|   //       completely and make statepoint call to return a tuple.
 | |
|   Type *RetTy = GCResultLocality.second->getType();
 | |
|   unsigned Reg = FuncInfo.CreateRegs(RetTy);
 | |
|   RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
 | |
|                    DAG.getDataLayout(), Reg, RetTy,
 | |
|                    I.getCallingConv());
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   
 | |
|   RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
 | |
|   PendingExports.push_back(Chain);
 | |
|   FuncInfo.ValueMap[&I] = Reg;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
 | |
|     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
 | |
|     bool VarArgDisallowed, bool ForceVoidReturnTy) {
 | |
|   StatepointLoweringInfo SI(DAG);
 | |
|   unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
 | |
|   populateCallLoweringInfo(
 | |
|       SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee,
 | |
|       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
 | |
|       false);
 | |
|   if (!VarArgDisallowed)
 | |
|     SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
 | |
| 
 | |
|   auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
 | |
| 
 | |
|   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
 | |
| 
 | |
|   auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
 | |
|   SI.ID = SD.StatepointID.getValueOr(DefaultID);
 | |
|   SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
 | |
| 
 | |
|   SI.DeoptState =
 | |
|       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
 | |
|   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
 | |
|   SI.EHPadBB = EHPadBB;
 | |
| 
 | |
|   // NB! The GC arguments are deliberately left empty.
 | |
| 
 | |
|   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
 | |
|     ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
 | |
|     setValue(Call, ReturnVal);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
 | |
|     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
 | |
|   LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
 | |
|                                    /* VarArgDisallowed = */ false,
 | |
|                                    /* ForceVoidReturnTy  = */ false);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
 | |
|   // The result value of the gc_result is simply the result of the actual
 | |
|   // call.  We've already emitted this, so just grab the value.
 | |
|   const GCStatepointInst *SI = CI.getStatepoint();
 | |
| 
 | |
|   if (SI->getParent() == CI.getParent()) {
 | |
|     setValue(&CI, getValue(SI));
 | |
|     return;
 | |
|   }
 | |
|   // Statepoint is in different basic block so we should have stored call
 | |
|   // result in a virtual register.
 | |
|   // We can not use default getValue() functionality to copy value from this
 | |
|   // register because statepoint and actual call return types can be
 | |
|   // different, and getValue() will use CopyFromReg of the wrong type,
 | |
|   // which is always i32 in our case.
 | |
|   Type *RetTy = CI.getType();
 | |
|   SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
 | |
|   
 | |
|   assert(CopyFromReg.getNode());
 | |
|   setValue(&CI, CopyFromReg);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
 | |
| #ifndef NDEBUG
 | |
|   // Consistency check
 | |
|   // We skip this check for relocates not in the same basic block as their
 | |
|   // statepoint. It would be too expensive to preserve validation info through
 | |
|   // different basic blocks.
 | |
|   if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
 | |
|     StatepointLowering.relocCallVisited(Relocate);
 | |
| 
 | |
|   auto *Ty = Relocate.getType()->getScalarType();
 | |
|   if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
 | |
|     assert(*IsManaged && "Non gc managed pointer relocated!");
 | |
| #endif
 | |
| 
 | |
|   const Value *DerivedPtr = Relocate.getDerivedPtr();
 | |
|   auto &RelocationMap =
 | |
|     FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()];
 | |
|   auto SlotIt = RelocationMap.find(&Relocate);
 | |
|   assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
 | |
|   const RecordType &Record = SlotIt->second;
 | |
| 
 | |
|   // If relocation was done via virtual register..
 | |
|   if (Record.type == RecordType::SDValueNode) {
 | |
|     assert(Relocate.getStatepoint()->getParent() == Relocate.getParent() &&
 | |
|            "Nonlocal gc.relocate mapped via SDValue");
 | |
|     SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr));
 | |
|     assert(SDV.getNode() && "empty SDValue");
 | |
|     setValue(&Relocate, SDV);
 | |
|     return;
 | |
|   }
 | |
|   if (Record.type == RecordType::VReg) {
 | |
|     Register InReg = Record.payload.Reg;
 | |
|     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
 | |
|                      DAG.getDataLayout(), InReg, Relocate.getType(),
 | |
|                      None); // This is not an ABI copy.
 | |
|     // We generate copy to/from regs even for local uses, hence we must
 | |
|     // chain with current root to ensure proper ordering of copies w.r.t.
 | |
|     // statepoint.
 | |
|     SDValue Chain = DAG.getRoot();
 | |
|     SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
 | |
|                                              Chain, nullptr, nullptr);
 | |
|     setValue(&Relocate, Relocation);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Record.type == RecordType::Spill) {
 | |
|     unsigned Index = Record.payload.FI;
 | |
|     SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
 | |
| 
 | |
|     // All the reloads are independent and are reading memory only modified by
 | |
|     // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
 | |
|     // this this let's CSE kick in for free and allows reordering of
 | |
|     // instructions if possible.  The lowering for statepoint sets the root,
 | |
|     // so this is ordering all reloads with the either
 | |
|     // a) the statepoint node itself, or
 | |
|     // b) the entry of the current block for an invoke statepoint.
 | |
|     const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
 | |
| 
 | |
|     auto &MF = DAG.getMachineFunction();
 | |
|     auto &MFI = MF.getFrameInfo();
 | |
|     auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
 | |
|     auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
 | |
|                                             MFI.getObjectSize(Index),
 | |
|                                             MFI.getObjectAlign(Index));
 | |
| 
 | |
|     auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                            Relocate.getType());
 | |
| 
 | |
|     SDValue SpillLoad =
 | |
|         DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO);
 | |
|     PendingLoads.push_back(SpillLoad.getValue(1));
 | |
| 
 | |
|     assert(SpillLoad.getNode());
 | |
|     setValue(&Relocate, SpillLoad);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(Record.type == RecordType::NoRelocate);
 | |
|   SDValue SD = getValue(DerivedPtr);
 | |
| 
 | |
|   if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
 | |
|     // Lowering relocate(undef) as arbitrary constant. Current constant value
 | |
|     // is chosen such that it's unlikely to be a valid pointer.
 | |
|     setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We didn't need to spill these special cases (constants and allocas).
 | |
|   // See the handling in spillIncomingValueForStatepoint for detail.
 | |
|   setValue(&Relocate, SD);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
 | |
|   const auto &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
 | |
|                                          TLI.getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
 | |
|   // call.  We also do not lower the return value to any virtual register, and
 | |
|   // change the immediately following return to a trap instruction.
 | |
|   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
 | |
|                                    /* VarArgDisallowed = */ true,
 | |
|                                    /* ForceVoidReturnTy = */ true);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::LowerDeoptimizingReturn() {
 | |
|   // We do not lower the return value from llvm.deoptimize to any virtual
 | |
|   // register, and change the immediately following return to a trap
 | |
|   // instruction.
 | |
|   if (DAG.getTarget().Options.TrapUnreachable)
 | |
|     DAG.setRoot(
 | |
|         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
 | |
| }
 |