9714 lines
		
	
	
		
			380 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			9714 lines
		
	
	
		
			380 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
 | ||
| //
 | ||
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | ||
| // See https://llvm.org/LICENSE.txt for license information.
 | ||
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | ||
| //
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| //
 | ||
| // This implements the TargetLowering class.
 | ||
| //
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| 
 | ||
| #include "llvm/CodeGen/TargetLowering.h"
 | ||
| #include "llvm/ADT/STLExtras.h"
 | ||
| #include "llvm/CodeGen/CallingConvLower.h"
 | ||
| #include "llvm/CodeGen/CodeGenCommonISel.h"
 | ||
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | ||
| #include "llvm/CodeGen/MachineFunction.h"
 | ||
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | ||
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | ||
| #include "llvm/CodeGen/SelectionDAG.h"
 | ||
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | ||
| #include "llvm/IR/DataLayout.h"
 | ||
| #include "llvm/IR/DerivedTypes.h"
 | ||
| #include "llvm/IR/GlobalVariable.h"
 | ||
| #include "llvm/IR/LLVMContext.h"
 | ||
| #include "llvm/MC/MCAsmInfo.h"
 | ||
| #include "llvm/MC/MCExpr.h"
 | ||
| #include "llvm/Support/DivisionByConstantInfo.h"
 | ||
| #include "llvm/Support/ErrorHandling.h"
 | ||
| #include "llvm/Support/KnownBits.h"
 | ||
| #include "llvm/Support/MathExtras.h"
 | ||
| #include "llvm/Target/TargetMachine.h"
 | ||
| #include <cctype>
 | ||
| using namespace llvm;
 | ||
| 
 | ||
| /// NOTE: The TargetMachine owns TLOF.
 | ||
| TargetLowering::TargetLowering(const TargetMachine &tm)
 | ||
|     : TargetLoweringBase(tm) {}
 | ||
| 
 | ||
| const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | ||
|   return nullptr;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::isPositionIndependent() const {
 | ||
|   return getTargetMachine().isPositionIndependent();
 | ||
| }
 | ||
| 
 | ||
| /// Check whether a given call node is in tail position within its function. If
 | ||
| /// so, it sets Chain to the input chain of the tail call.
 | ||
| bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
 | ||
|                                           SDValue &Chain) const {
 | ||
|   const Function &F = DAG.getMachineFunction().getFunction();
 | ||
| 
 | ||
|   // First, check if tail calls have been disabled in this function.
 | ||
|   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
 | ||
|     return false;
 | ||
| 
 | ||
|   // Conservatively require the attributes of the call to match those of
 | ||
|   // the return. Ignore following attributes because they don't affect the
 | ||
|   // call sequence.
 | ||
|   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
 | ||
|   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
 | ||
|                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
 | ||
|                            Attribute::NonNull, Attribute::NoUndef})
 | ||
|     CallerAttrs.removeAttribute(Attr);
 | ||
| 
 | ||
|   if (CallerAttrs.hasAttributes())
 | ||
|     return false;
 | ||
| 
 | ||
|   // It's not safe to eliminate the sign / zero extension of the return value.
 | ||
|   if (CallerAttrs.contains(Attribute::ZExt) ||
 | ||
|       CallerAttrs.contains(Attribute::SExt))
 | ||
|     return false;
 | ||
| 
 | ||
|   // Check if the only use is a function return node.
 | ||
|   return isUsedByReturnOnly(Node, Chain);
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
 | ||
|     const uint32_t *CallerPreservedMask,
 | ||
|     const SmallVectorImpl<CCValAssign> &ArgLocs,
 | ||
|     const SmallVectorImpl<SDValue> &OutVals) const {
 | ||
|   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
 | ||
|     const CCValAssign &ArgLoc = ArgLocs[I];
 | ||
|     if (!ArgLoc.isRegLoc())
 | ||
|       continue;
 | ||
|     MCRegister Reg = ArgLoc.getLocReg();
 | ||
|     // Only look at callee saved registers.
 | ||
|     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
 | ||
|       continue;
 | ||
|     // Check that we pass the value used for the caller.
 | ||
|     // (We look for a CopyFromReg reading a virtual register that is used
 | ||
|     //  for the function live-in value of register Reg)
 | ||
|     SDValue Value = OutVals[I];
 | ||
|     if (Value->getOpcode() == ISD::AssertZext)
 | ||
|       Value = Value.getOperand(0);
 | ||
|     if (Value->getOpcode() != ISD::CopyFromReg)
 | ||
|       return false;
 | ||
|     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
 | ||
|     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
 | ||
|       return false;
 | ||
|   }
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /// Set CallLoweringInfo attribute flags based on a call instruction
 | ||
| /// and called function attributes.
 | ||
| void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
 | ||
|                                                      unsigned ArgIdx) {
 | ||
|   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
 | ||
|   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
 | ||
|   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
 | ||
|   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
 | ||
|   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
 | ||
|   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
 | ||
|   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
 | ||
|   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
 | ||
|   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
 | ||
|   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
 | ||
|   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
 | ||
|   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
 | ||
|   Alignment = Call->getParamStackAlign(ArgIdx);
 | ||
|   IndirectType = nullptr;
 | ||
|   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
 | ||
|          "multiple ABI attributes?");
 | ||
|   if (IsByVal) {
 | ||
|     IndirectType = Call->getParamByValType(ArgIdx);
 | ||
|     if (!Alignment)
 | ||
|       Alignment = Call->getParamAlign(ArgIdx);
 | ||
|   }
 | ||
|   if (IsPreallocated)
 | ||
|     IndirectType = Call->getParamPreallocatedType(ArgIdx);
 | ||
|   if (IsInAlloca)
 | ||
|     IndirectType = Call->getParamInAllocaType(ArgIdx);
 | ||
|   if (IsSRet)
 | ||
|     IndirectType = Call->getParamStructRetType(ArgIdx);
 | ||
| }
 | ||
| 
 | ||
| /// Generate a libcall taking the given operands as arguments and returning a
 | ||
| /// result of type RetVT.
 | ||
| std::pair<SDValue, SDValue>
 | ||
| TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
 | ||
|                             ArrayRef<SDValue> Ops,
 | ||
|                             MakeLibCallOptions CallOptions,
 | ||
|                             const SDLoc &dl,
 | ||
|                             SDValue InChain) const {
 | ||
|   if (!InChain)
 | ||
|     InChain = DAG.getEntryNode();
 | ||
| 
 | ||
|   TargetLowering::ArgListTy Args;
 | ||
|   Args.reserve(Ops.size());
 | ||
| 
 | ||
|   TargetLowering::ArgListEntry Entry;
 | ||
|   for (unsigned i = 0; i < Ops.size(); ++i) {
 | ||
|     SDValue NewOp = Ops[i];
 | ||
|     Entry.Node = NewOp;
 | ||
|     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
 | ||
|     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
 | ||
|                                                  CallOptions.IsSExt);
 | ||
|     Entry.IsZExt = !Entry.IsSExt;
 | ||
| 
 | ||
|     if (CallOptions.IsSoften &&
 | ||
|         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
 | ||
|       Entry.IsSExt = Entry.IsZExt = false;
 | ||
|     }
 | ||
|     Args.push_back(Entry);
 | ||
|   }
 | ||
| 
 | ||
|   if (LC == RTLIB::UNKNOWN_LIBCALL)
 | ||
|     report_fatal_error("Unsupported library call operation!");
 | ||
|   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
 | ||
|                                          getPointerTy(DAG.getDataLayout()));
 | ||
| 
 | ||
|   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
 | ||
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | ||
|   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
 | ||
|   bool zeroExtend = !signExtend;
 | ||
| 
 | ||
|   if (CallOptions.IsSoften &&
 | ||
|       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
 | ||
|     signExtend = zeroExtend = false;
 | ||
|   }
 | ||
| 
 | ||
|   CLI.setDebugLoc(dl)
 | ||
|       .setChain(InChain)
 | ||
|       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
 | ||
|       .setNoReturn(CallOptions.DoesNotReturn)
 | ||
|       .setDiscardResult(!CallOptions.IsReturnValueUsed)
 | ||
|       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
 | ||
|       .setSExtResult(signExtend)
 | ||
|       .setZExtResult(zeroExtend);
 | ||
|   return LowerCallTo(CLI);
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::findOptimalMemOpLowering(
 | ||
|     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
 | ||
|     unsigned SrcAS, const AttributeList &FuncAttributes) const {
 | ||
|   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
 | ||
|       Op.getSrcAlign() < Op.getDstAlign())
 | ||
|     return false;
 | ||
| 
 | ||
|   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
 | ||
| 
 | ||
|   if (VT == MVT::Other) {
 | ||
|     // Use the largest integer type whose alignment constraints are satisfied.
 | ||
|     // We only need to check DstAlign here as SrcAlign is always greater or
 | ||
|     // equal to DstAlign (or zero).
 | ||
|     VT = MVT::i64;
 | ||
|     if (Op.isFixedDstAlign())
 | ||
|       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
 | ||
|              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
 | ||
|         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
 | ||
|     assert(VT.isInteger());
 | ||
| 
 | ||
|     // Find the largest legal integer type.
 | ||
|     MVT LVT = MVT::i64;
 | ||
|     while (!isTypeLegal(LVT))
 | ||
|       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
 | ||
|     assert(LVT.isInteger());
 | ||
| 
 | ||
|     // If the type we've chosen is larger than the largest legal integer type
 | ||
|     // then use that instead.
 | ||
|     if (VT.bitsGT(LVT))
 | ||
|       VT = LVT;
 | ||
|   }
 | ||
| 
 | ||
|   unsigned NumMemOps = 0;
 | ||
|   uint64_t Size = Op.size();
 | ||
|   while (Size) {
 | ||
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | ||
|     while (VTSize > Size) {
 | ||
|       // For now, only use non-vector load / store's for the left-over pieces.
 | ||
|       EVT NewVT = VT;
 | ||
|       unsigned NewVTSize;
 | ||
| 
 | ||
|       bool Found = false;
 | ||
|       if (VT.isVector() || VT.isFloatingPoint()) {
 | ||
|         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
 | ||
|         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
 | ||
|             isSafeMemOpType(NewVT.getSimpleVT()))
 | ||
|           Found = true;
 | ||
|         else if (NewVT == MVT::i64 &&
 | ||
|                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
 | ||
|                  isSafeMemOpType(MVT::f64)) {
 | ||
|           // i64 is usually not legal on 32-bit targets, but f64 may be.
 | ||
|           NewVT = MVT::f64;
 | ||
|           Found = true;
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       if (!Found) {
 | ||
|         do {
 | ||
|           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
 | ||
|           if (NewVT == MVT::i8)
 | ||
|             break;
 | ||
|         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
 | ||
|       }
 | ||
|       NewVTSize = NewVT.getSizeInBits() / 8;
 | ||
| 
 | ||
|       // If the new VT cannot cover all of the remaining bits, then consider
 | ||
|       // issuing a (or a pair of) unaligned and overlapping load / store.
 | ||
|       bool Fast;
 | ||
|       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
 | ||
|           allowsMisalignedMemoryAccesses(
 | ||
|               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
 | ||
|               MachineMemOperand::MONone, &Fast) &&
 | ||
|           Fast)
 | ||
|         VTSize = Size;
 | ||
|       else {
 | ||
|         VT = NewVT;
 | ||
|         VTSize = NewVTSize;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (++NumMemOps > Limit)
 | ||
|       return false;
 | ||
| 
 | ||
|     MemOps.push_back(VT);
 | ||
|     Size -= VTSize;
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /// Soften the operands of a comparison. This code is shared among BR_CC,
 | ||
| /// SELECT_CC, and SETCC handlers.
 | ||
| void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
 | ||
|                                          SDValue &NewLHS, SDValue &NewRHS,
 | ||
|                                          ISD::CondCode &CCCode,
 | ||
|                                          const SDLoc &dl, const SDValue OldLHS,
 | ||
|                                          const SDValue OldRHS) const {
 | ||
|   SDValue Chain;
 | ||
|   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
 | ||
|                              OldRHS, Chain);
 | ||
| }
 | ||
| 
 | ||
| void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
 | ||
|                                          SDValue &NewLHS, SDValue &NewRHS,
 | ||
|                                          ISD::CondCode &CCCode,
 | ||
|                                          const SDLoc &dl, const SDValue OldLHS,
 | ||
|                                          const SDValue OldRHS,
 | ||
|                                          SDValue &Chain,
 | ||
|                                          bool IsSignaling) const {
 | ||
|   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
 | ||
|   // not supporting it. We can update this code when libgcc provides such
 | ||
|   // functions.
 | ||
| 
 | ||
|   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
 | ||
|          && "Unsupported setcc type!");
 | ||
| 
 | ||
|   // Expand into one or more soft-fp libcall(s).
 | ||
|   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
 | ||
|   bool ShouldInvertCC = false;
 | ||
|   switch (CCCode) {
 | ||
|   case ISD::SETEQ:
 | ||
|   case ISD::SETOEQ:
 | ||
|     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
 | ||
|           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
 | ||
|           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
 | ||
|     break;
 | ||
|   case ISD::SETNE:
 | ||
|   case ISD::SETUNE:
 | ||
|     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
 | ||
|           (VT == MVT::f64) ? RTLIB::UNE_F64 :
 | ||
|           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
 | ||
|     break;
 | ||
|   case ISD::SETGE:
 | ||
|   case ISD::SETOGE:
 | ||
|     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
 | ||
|           (VT == MVT::f64) ? RTLIB::OGE_F64 :
 | ||
|           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
 | ||
|     break;
 | ||
|   case ISD::SETLT:
 | ||
|   case ISD::SETOLT:
 | ||
|     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
 | ||
|           (VT == MVT::f64) ? RTLIB::OLT_F64 :
 | ||
|           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
 | ||
|     break;
 | ||
|   case ISD::SETLE:
 | ||
|   case ISD::SETOLE:
 | ||
|     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
 | ||
|           (VT == MVT::f64) ? RTLIB::OLE_F64 :
 | ||
|           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
 | ||
|     break;
 | ||
|   case ISD::SETGT:
 | ||
|   case ISD::SETOGT:
 | ||
|     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
 | ||
|           (VT == MVT::f64) ? RTLIB::OGT_F64 :
 | ||
|           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
 | ||
|     break;
 | ||
|   case ISD::SETO:
 | ||
|     ShouldInvertCC = true;
 | ||
|     LLVM_FALLTHROUGH;
 | ||
|   case ISD::SETUO:
 | ||
|     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
 | ||
|           (VT == MVT::f64) ? RTLIB::UO_F64 :
 | ||
|           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
 | ||
|     break;
 | ||
|   case ISD::SETONE:
 | ||
|     // SETONE = O && UNE
 | ||
|     ShouldInvertCC = true;
 | ||
|     LLVM_FALLTHROUGH;
 | ||
|   case ISD::SETUEQ:
 | ||
|     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
 | ||
|           (VT == MVT::f64) ? RTLIB::UO_F64 :
 | ||
|           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
 | ||
|     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
 | ||
|           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
 | ||
|           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
 | ||
|     break;
 | ||
|   default:
 | ||
|     // Invert CC for unordered comparisons
 | ||
|     ShouldInvertCC = true;
 | ||
|     switch (CCCode) {
 | ||
|     case ISD::SETULT:
 | ||
|       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
 | ||
|             (VT == MVT::f64) ? RTLIB::OGE_F64 :
 | ||
|             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
 | ||
|       break;
 | ||
|     case ISD::SETULE:
 | ||
|       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
 | ||
|             (VT == MVT::f64) ? RTLIB::OGT_F64 :
 | ||
|             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
 | ||
|       break;
 | ||
|     case ISD::SETUGT:
 | ||
|       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
 | ||
|             (VT == MVT::f64) ? RTLIB::OLE_F64 :
 | ||
|             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
 | ||
|       break;
 | ||
|     case ISD::SETUGE:
 | ||
|       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
 | ||
|             (VT == MVT::f64) ? RTLIB::OLT_F64 :
 | ||
|             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
 | ||
|       break;
 | ||
|     default: llvm_unreachable("Do not know how to soften this setcc!");
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Use the target specific return value for comparions lib calls.
 | ||
|   EVT RetVT = getCmpLibcallReturnType();
 | ||
|   SDValue Ops[2] = {NewLHS, NewRHS};
 | ||
|   TargetLowering::MakeLibCallOptions CallOptions;
 | ||
|   EVT OpsVT[2] = { OldLHS.getValueType(),
 | ||
|                    OldRHS.getValueType() };
 | ||
|   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
 | ||
|   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
 | ||
|   NewLHS = Call.first;
 | ||
|   NewRHS = DAG.getConstant(0, dl, RetVT);
 | ||
| 
 | ||
|   CCCode = getCmpLibcallCC(LC1);
 | ||
|   if (ShouldInvertCC) {
 | ||
|     assert(RetVT.isInteger());
 | ||
|     CCCode = getSetCCInverse(CCCode, RetVT);
 | ||
|   }
 | ||
| 
 | ||
|   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
 | ||
|     // Update Chain.
 | ||
|     Chain = Call.second;
 | ||
|   } else {
 | ||
|     EVT SetCCVT =
 | ||
|         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
 | ||
|     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
 | ||
|     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
 | ||
|     CCCode = getCmpLibcallCC(LC2);
 | ||
|     if (ShouldInvertCC)
 | ||
|       CCCode = getSetCCInverse(CCCode, RetVT);
 | ||
|     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
 | ||
|     if (Chain)
 | ||
|       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
 | ||
|                           Call2.second);
 | ||
|     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
 | ||
|                          Tmp.getValueType(), Tmp, NewLHS);
 | ||
|     NewRHS = SDValue();
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| /// Return the entry encoding for a jump table in the current function. The
 | ||
| /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
 | ||
| unsigned TargetLowering::getJumpTableEncoding() const {
 | ||
|   // In non-pic modes, just use the address of a block.
 | ||
|   if (!isPositionIndependent())
 | ||
|     return MachineJumpTableInfo::EK_BlockAddress;
 | ||
| 
 | ||
|   // In PIC mode, if the target supports a GPRel32 directive, use it.
 | ||
|   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
 | ||
|     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
 | ||
| 
 | ||
|   // Otherwise, use a label difference.
 | ||
|   return MachineJumpTableInfo::EK_LabelDifference32;
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | ||
|                                                  SelectionDAG &DAG) const {
 | ||
|   // If our PIC model is GP relative, use the global offset table as the base.
 | ||
|   unsigned JTEncoding = getJumpTableEncoding();
 | ||
| 
 | ||
|   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
 | ||
|       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
 | ||
|     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
 | ||
| 
 | ||
|   return Table;
 | ||
| }
 | ||
| 
 | ||
| /// This returns the relocation base for the given PIC jumptable, the same as
 | ||
| /// getPICJumpTableRelocBase, but as an MCExpr.
 | ||
| const MCExpr *
 | ||
| TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
 | ||
|                                              unsigned JTI,MCContext &Ctx) const{
 | ||
|   // The normal PIC reloc base is the label at the start of the jump table.
 | ||
|   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
 | ||
| }
 | ||
| 
 | ||
| bool
 | ||
| TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | ||
|   const TargetMachine &TM = getTargetMachine();
 | ||
|   const GlobalValue *GV = GA->getGlobal();
 | ||
| 
 | ||
|   // If the address is not even local to this DSO we will have to load it from
 | ||
|   // a got and then add the offset.
 | ||
|   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
 | ||
|     return false;
 | ||
| 
 | ||
|   // If the code is position independent we will have to add a base register.
 | ||
|   if (isPositionIndependent())
 | ||
|     return false;
 | ||
| 
 | ||
|   // Otherwise we can do it.
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| //  Optimization Methods
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| 
 | ||
| /// If the specified instruction has a constant integer operand and there are
 | ||
| /// bits set in that constant that are not demanded, then clear those bits and
 | ||
| /// return true.
 | ||
| bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
 | ||
|                                             const APInt &DemandedBits,
 | ||
|                                             const APInt &DemandedElts,
 | ||
|                                             TargetLoweringOpt &TLO) const {
 | ||
|   SDLoc DL(Op);
 | ||
|   unsigned Opcode = Op.getOpcode();
 | ||
| 
 | ||
|   // Do target-specific constant optimization.
 | ||
|   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
 | ||
|     return TLO.New.getNode();
 | ||
| 
 | ||
|   // FIXME: ISD::SELECT, ISD::SELECT_CC
 | ||
|   switch (Opcode) {
 | ||
|   default:
 | ||
|     break;
 | ||
|   case ISD::XOR:
 | ||
|   case ISD::AND:
 | ||
|   case ISD::OR: {
 | ||
|     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | ||
|     if (!Op1C || Op1C->isOpaque())
 | ||
|       return false;
 | ||
| 
 | ||
|     // If this is a 'not' op, don't touch it because that's a canonical form.
 | ||
|     const APInt &C = Op1C->getAPIntValue();
 | ||
|     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
 | ||
|       return false;
 | ||
| 
 | ||
|     if (!C.isSubsetOf(DemandedBits)) {
 | ||
|       EVT VT = Op.getValueType();
 | ||
|       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
 | ||
|       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
 | ||
|       return TLO.CombineTo(Op, NewOp);
 | ||
|     }
 | ||
| 
 | ||
|     break;
 | ||
|   }
 | ||
|   }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
 | ||
|                                             const APInt &DemandedBits,
 | ||
|                                             TargetLoweringOpt &TLO) const {
 | ||
|   EVT VT = Op.getValueType();
 | ||
|   APInt DemandedElts = VT.isVector()
 | ||
|                            ? APInt::getAllOnes(VT.getVectorNumElements())
 | ||
|                            : APInt(1, 1);
 | ||
|   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
 | ||
| }
 | ||
| 
 | ||
| /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
 | ||
| /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
 | ||
| /// generalized for targets with other types of implicit widening casts.
 | ||
| bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
 | ||
|                                       const APInt &Demanded,
 | ||
|                                       TargetLoweringOpt &TLO) const {
 | ||
|   assert(Op.getNumOperands() == 2 &&
 | ||
|          "ShrinkDemandedOp only supports binary operators!");
 | ||
|   assert(Op.getNode()->getNumValues() == 1 &&
 | ||
|          "ShrinkDemandedOp only supports nodes with one result!");
 | ||
| 
 | ||
|   SelectionDAG &DAG = TLO.DAG;
 | ||
|   SDLoc dl(Op);
 | ||
| 
 | ||
|   // Early return, as this function cannot handle vector types.
 | ||
|   if (Op.getValueType().isVector())
 | ||
|     return false;
 | ||
| 
 | ||
|   // Don't do this if the node has another user, which may require the
 | ||
|   // full value.
 | ||
|   if (!Op.getNode()->hasOneUse())
 | ||
|     return false;
 | ||
| 
 | ||
|   // Search for the smallest integer type with free casts to and from
 | ||
|   // Op's type. For expedience, just check power-of-2 integer types.
 | ||
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | ||
|   unsigned DemandedSize = Demanded.getActiveBits();
 | ||
|   unsigned SmallVTBits = DemandedSize;
 | ||
|   if (!isPowerOf2_32(SmallVTBits))
 | ||
|     SmallVTBits = NextPowerOf2(SmallVTBits);
 | ||
|   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
 | ||
|     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
 | ||
|     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
 | ||
|         TLI.isZExtFree(SmallVT, Op.getValueType())) {
 | ||
|       // We found a type with free casts.
 | ||
|       SDValue X = DAG.getNode(
 | ||
|           Op.getOpcode(), dl, SmallVT,
 | ||
|           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
 | ||
|           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
 | ||
|       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
 | ||
|       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
 | ||
|       return TLO.CombineTo(Op, Z);
 | ||
|     }
 | ||
|   }
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
 | ||
|                                           DAGCombinerInfo &DCI) const {
 | ||
|   SelectionDAG &DAG = DCI.DAG;
 | ||
|   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | ||
|                         !DCI.isBeforeLegalizeOps());
 | ||
|   KnownBits Known;
 | ||
| 
 | ||
|   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
 | ||
|   if (Simplified) {
 | ||
|     DCI.AddToWorklist(Op.getNode());
 | ||
|     DCI.CommitTargetLoweringOpt(TLO);
 | ||
|   }
 | ||
|   return Simplified;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
 | ||
|                                           const APInt &DemandedElts,
 | ||
|                                           DAGCombinerInfo &DCI) const {
 | ||
|   SelectionDAG &DAG = DCI.DAG;
 | ||
|   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | ||
|                         !DCI.isBeforeLegalizeOps());
 | ||
|   KnownBits Known;
 | ||
| 
 | ||
|   bool Simplified =
 | ||
|       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
 | ||
|   if (Simplified) {
 | ||
|     DCI.AddToWorklist(Op.getNode());
 | ||
|     DCI.CommitTargetLoweringOpt(TLO);
 | ||
|   }
 | ||
|   return Simplified;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
 | ||
|                                           KnownBits &Known,
 | ||
|                                           TargetLoweringOpt &TLO,
 | ||
|                                           unsigned Depth,
 | ||
|                                           bool AssumeSingleUse) const {
 | ||
|   EVT VT = Op.getValueType();
 | ||
| 
 | ||
|   // TODO: We can probably do more work on calculating the known bits and
 | ||
|   // simplifying the operations for scalable vectors, but for now we just
 | ||
|   // bail out.
 | ||
|   if (VT.isScalableVector()) {
 | ||
|     // Pretend we don't know anything for now.
 | ||
|     Known = KnownBits(DemandedBits.getBitWidth());
 | ||
|     return false;
 | ||
|   }
 | ||
| 
 | ||
|   APInt DemandedElts = VT.isVector()
 | ||
|                            ? APInt::getAllOnes(VT.getVectorNumElements())
 | ||
|                            : APInt(1, 1);
 | ||
|   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
 | ||
|                               AssumeSingleUse);
 | ||
| }
 | ||
| 
 | ||
| // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
 | ||
| // TODO: Under what circumstances can we create nodes? Constant folding?
 | ||
| SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
 | ||
|     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
 | ||
|     SelectionDAG &DAG, unsigned Depth) const {
 | ||
|   // Limit search depth.
 | ||
|   if (Depth >= SelectionDAG::MaxRecursionDepth)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // Ignore UNDEFs.
 | ||
|   if (Op.isUndef())
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // Not demanding any bits/elts from Op.
 | ||
|   if (DemandedBits == 0 || DemandedElts == 0)
 | ||
|     return DAG.getUNDEF(Op.getValueType());
 | ||
| 
 | ||
|   bool IsLE = DAG.getDataLayout().isLittleEndian();
 | ||
|   unsigned NumElts = DemandedElts.getBitWidth();
 | ||
|   unsigned BitWidth = DemandedBits.getBitWidth();
 | ||
|   KnownBits LHSKnown, RHSKnown;
 | ||
|   switch (Op.getOpcode()) {
 | ||
|   case ISD::BITCAST: {
 | ||
|     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
 | ||
|     EVT SrcVT = Src.getValueType();
 | ||
|     EVT DstVT = Op.getValueType();
 | ||
|     if (SrcVT == DstVT)
 | ||
|       return Src;
 | ||
| 
 | ||
|     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
 | ||
|     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
 | ||
|     if (NumSrcEltBits == NumDstEltBits)
 | ||
|       if (SDValue V = SimplifyMultipleUseDemandedBits(
 | ||
|               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
 | ||
|         return DAG.getBitcast(DstVT, V);
 | ||
| 
 | ||
|     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
 | ||
|       unsigned Scale = NumDstEltBits / NumSrcEltBits;
 | ||
|       unsigned NumSrcElts = SrcVT.getVectorNumElements();
 | ||
|       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
 | ||
|       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
 | ||
|       for (unsigned i = 0; i != Scale; ++i) {
 | ||
|         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
 | ||
|         unsigned BitOffset = EltOffset * NumSrcEltBits;
 | ||
|         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
 | ||
|         if (!Sub.isZero()) {
 | ||
|           DemandedSrcBits |= Sub;
 | ||
|           for (unsigned j = 0; j != NumElts; ++j)
 | ||
|             if (DemandedElts[j])
 | ||
|               DemandedSrcElts.setBit((j * Scale) + i);
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       if (SDValue V = SimplifyMultipleUseDemandedBits(
 | ||
|               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
 | ||
|         return DAG.getBitcast(DstVT, V);
 | ||
|     }
 | ||
| 
 | ||
|     // TODO - bigendian once we have test coverage.
 | ||
|     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
 | ||
|       unsigned Scale = NumSrcEltBits / NumDstEltBits;
 | ||
|       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
 | ||
|       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
 | ||
|       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
 | ||
|       for (unsigned i = 0; i != NumElts; ++i)
 | ||
|         if (DemandedElts[i]) {
 | ||
|           unsigned Offset = (i % Scale) * NumDstEltBits;
 | ||
|           DemandedSrcBits.insertBits(DemandedBits, Offset);
 | ||
|           DemandedSrcElts.setBit(i / Scale);
 | ||
|         }
 | ||
| 
 | ||
|       if (SDValue V = SimplifyMultipleUseDemandedBits(
 | ||
|               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
 | ||
|         return DAG.getBitcast(DstVT, V);
 | ||
|     }
 | ||
| 
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::AND: {
 | ||
|     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
 | ||
|     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
 | ||
| 
 | ||
|     // If all of the demanded bits are known 1 on one side, return the other.
 | ||
|     // These bits cannot contribute to the result of the 'and' in this
 | ||
|     // context.
 | ||
|     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
 | ||
|       return Op.getOperand(0);
 | ||
|     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
 | ||
|       return Op.getOperand(1);
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::OR: {
 | ||
|     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
 | ||
|     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
 | ||
| 
 | ||
|     // If all of the demanded bits are known zero on one side, return the
 | ||
|     // other.  These bits cannot contribute to the result of the 'or' in this
 | ||
|     // context.
 | ||
|     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
 | ||
|       return Op.getOperand(0);
 | ||
|     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
 | ||
|       return Op.getOperand(1);
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::XOR: {
 | ||
|     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
 | ||
|     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
 | ||
| 
 | ||
|     // If all of the demanded bits are known zero on one side, return the
 | ||
|     // other.
 | ||
|     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
 | ||
|       return Op.getOperand(0);
 | ||
|     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
 | ||
|       return Op.getOperand(1);
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::SHL: {
 | ||
|     // If we are only demanding sign bits then we can use the shift source
 | ||
|     // directly.
 | ||
|     if (const APInt *MaxSA =
 | ||
|             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
 | ||
|       SDValue Op0 = Op.getOperand(0);
 | ||
|       unsigned ShAmt = MaxSA->getZExtValue();
 | ||
|       unsigned NumSignBits =
 | ||
|           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
 | ||
|       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
 | ||
|       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
 | ||
|         return Op0;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::SETCC: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
|     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | ||
|     // If (1) we only need the sign-bit, (2) the setcc operands are the same
 | ||
|     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
 | ||
|     // -1, we may be able to bypass the setcc.
 | ||
|     if (DemandedBits.isSignMask() &&
 | ||
|         Op0.getScalarValueSizeInBits() == BitWidth &&
 | ||
|         getBooleanContents(Op0.getValueType()) ==
 | ||
|             BooleanContent::ZeroOrNegativeOneBooleanContent) {
 | ||
|       // If we're testing X < 0, then this compare isn't needed - just use X!
 | ||
|       // FIXME: We're limiting to integer types here, but this should also work
 | ||
|       // if we don't care about FP signed-zero. The use of SETLT with FP means
 | ||
|       // that we don't care about NaNs.
 | ||
|       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
 | ||
|           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
 | ||
|         return Op0;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::SIGN_EXTEND_INREG: {
 | ||
|     // If none of the extended bits are demanded, eliminate the sextinreg.
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | ||
|     unsigned ExBits = ExVT.getScalarSizeInBits();
 | ||
|     if (DemandedBits.getActiveBits() <= ExBits)
 | ||
|       return Op0;
 | ||
|     // If the input is already sign extended, just drop the extension.
 | ||
|     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
 | ||
|     if (NumSignBits >= (BitWidth - ExBits + 1))
 | ||
|       return Op0;
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::ANY_EXTEND_VECTOR_INREG:
 | ||
|   case ISD::SIGN_EXTEND_VECTOR_INREG:
 | ||
|   case ISD::ZERO_EXTEND_VECTOR_INREG: {
 | ||
|     // If we only want the lowest element and none of extended bits, then we can
 | ||
|     // return the bitcasted source vector.
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     EVT SrcVT = Src.getValueType();
 | ||
|     EVT DstVT = Op.getValueType();
 | ||
|     if (IsLE && DemandedElts == 1 &&
 | ||
|         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
 | ||
|         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
 | ||
|       return DAG.getBitcast(DstVT, Src);
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::INSERT_VECTOR_ELT: {
 | ||
|     // If we don't demand the inserted element, return the base vector.
 | ||
|     SDValue Vec = Op.getOperand(0);
 | ||
|     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | ||
|     EVT VecVT = Vec.getValueType();
 | ||
|     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
 | ||
|         !DemandedElts[CIdx->getZExtValue()])
 | ||
|       return Vec;
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::INSERT_SUBVECTOR: {
 | ||
|     SDValue Vec = Op.getOperand(0);
 | ||
|     SDValue Sub = Op.getOperand(1);
 | ||
|     uint64_t Idx = Op.getConstantOperandVal(2);
 | ||
|     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
 | ||
|     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
 | ||
|     // If we don't demand the inserted subvector, return the base vector.
 | ||
|     if (DemandedSubElts == 0)
 | ||
|       return Vec;
 | ||
|     // If this simply widens the lowest subvector, see if we can do it earlier.
 | ||
|     if (Idx == 0 && Vec.isUndef()) {
 | ||
|       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
 | ||
|               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
 | ||
|         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
 | ||
|                            Op.getOperand(0), NewSub, Op.getOperand(2));
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::VECTOR_SHUFFLE: {
 | ||
|     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
 | ||
| 
 | ||
|     // If all the demanded elts are from one operand and are inline,
 | ||
|     // then we can use the operand directly.
 | ||
|     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
 | ||
|     for (unsigned i = 0; i != NumElts; ++i) {
 | ||
|       int M = ShuffleMask[i];
 | ||
|       if (M < 0 || !DemandedElts[i])
 | ||
|         continue;
 | ||
|       AllUndef = false;
 | ||
|       IdentityLHS &= (M == (int)i);
 | ||
|       IdentityRHS &= ((M - NumElts) == i);
 | ||
|     }
 | ||
| 
 | ||
|     if (AllUndef)
 | ||
|       return DAG.getUNDEF(Op.getValueType());
 | ||
|     if (IdentityLHS)
 | ||
|       return Op.getOperand(0);
 | ||
|     if (IdentityRHS)
 | ||
|       return Op.getOperand(1);
 | ||
|     break;
 | ||
|   }
 | ||
|   default:
 | ||
|     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
 | ||
|       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
 | ||
|               Op, DemandedBits, DemandedElts, DAG, Depth))
 | ||
|         return V;
 | ||
|     break;
 | ||
|   }
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
 | ||
|     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
 | ||
|     unsigned Depth) const {
 | ||
|   EVT VT = Op.getValueType();
 | ||
|   APInt DemandedElts = VT.isVector()
 | ||
|                            ? APInt::getAllOnes(VT.getVectorNumElements())
 | ||
|                            : APInt(1, 1);
 | ||
|   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
 | ||
|                                          Depth);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
 | ||
|     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
 | ||
|     unsigned Depth) const {
 | ||
|   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
 | ||
|   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
 | ||
|                                          Depth);
 | ||
| }
 | ||
| 
 | ||
| // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
 | ||
| //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
 | ||
| static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
 | ||
|                                  const TargetLowering &TLI,
 | ||
|                                  const APInt &DemandedBits,
 | ||
|                                  const APInt &DemandedElts,
 | ||
|                                  unsigned Depth) {
 | ||
|   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
 | ||
|          "SRL or SRA node is required here!");
 | ||
|   // Is the right shift using an immediate value of 1?
 | ||
|   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
 | ||
|   if (!N1C || !N1C->isOne())
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // We are looking for an avgfloor
 | ||
|   // add(ext, ext)
 | ||
|   // or one of these as a avgceil
 | ||
|   // add(add(ext, ext), 1)
 | ||
|   // add(add(ext, 1), ext)
 | ||
|   // add(ext, add(ext, 1))
 | ||
|   SDValue Add = Op.getOperand(0);
 | ||
|   if (Add.getOpcode() != ISD::ADD)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   SDValue ExtOpA = Add.getOperand(0);
 | ||
|   SDValue ExtOpB = Add.getOperand(1);
 | ||
|   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
 | ||
|     ConstantSDNode *ConstOp;
 | ||
|     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
 | ||
|         ConstOp->isOne()) {
 | ||
|       ExtOpA = Op2;
 | ||
|       ExtOpB = Op3;
 | ||
|       return true;
 | ||
|     }
 | ||
|     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
 | ||
|         ConstOp->isOne()) {
 | ||
|       ExtOpA = Op1;
 | ||
|       ExtOpB = Op3;
 | ||
|       return true;
 | ||
|     }
 | ||
|     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
 | ||
|         ConstOp->isOne()) {
 | ||
|       ExtOpA = Op1;
 | ||
|       ExtOpB = Op2;
 | ||
|       return true;
 | ||
|     }
 | ||
|     return false;
 | ||
|   };
 | ||
|   bool IsCeil =
 | ||
|       (ExtOpA.getOpcode() == ISD::ADD &&
 | ||
|        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
 | ||
|       (ExtOpB.getOpcode() == ISD::ADD &&
 | ||
|        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
 | ||
| 
 | ||
|   // If the shift is signed (sra):
 | ||
|   //  - Needs >= 2 sign bit for both operands.
 | ||
|   //  - Needs >= 2 zero bits.
 | ||
|   // If the shift is unsigned (srl):
 | ||
|   //  - Needs >= 1 zero bit for both operands.
 | ||
|   //  - Needs 1 demanded bit zero and >= 2 sign bits.
 | ||
|   unsigned ShiftOpc = Op.getOpcode();
 | ||
|   bool IsSigned = false;
 | ||
|   unsigned KnownBits;
 | ||
|   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
 | ||
|   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
 | ||
|   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
 | ||
|   unsigned NumZeroA =
 | ||
|       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
 | ||
|   unsigned NumZeroB =
 | ||
|       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
 | ||
|   unsigned NumZero = std::min(NumZeroA, NumZeroB);
 | ||
| 
 | ||
|   switch (ShiftOpc) {
 | ||
|   default:
 | ||
|     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
 | ||
|   case ISD::SRA: {
 | ||
|     if (NumZero >= 2 && NumSigned < NumZero) {
 | ||
|       IsSigned = false;
 | ||
|       KnownBits = NumZero;
 | ||
|       break;
 | ||
|     }
 | ||
|     if (NumSigned >= 1) {
 | ||
|       IsSigned = true;
 | ||
|       KnownBits = NumSigned;
 | ||
|       break;
 | ||
|     }
 | ||
|     return SDValue();
 | ||
|   }
 | ||
|   case ISD::SRL: {
 | ||
|     if (NumZero >= 1 && NumSigned < NumZero) {
 | ||
|       IsSigned = false;
 | ||
|       KnownBits = NumZero;
 | ||
|       break;
 | ||
|     }
 | ||
|     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
 | ||
|       IsSigned = true;
 | ||
|       KnownBits = NumSigned;
 | ||
|       break;
 | ||
|     }
 | ||
|     return SDValue();
 | ||
|   }
 | ||
|   }
 | ||
| 
 | ||
|   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
 | ||
|                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
 | ||
| 
 | ||
|   // Find the smallest power-2 type that is legal for this vector size and
 | ||
|   // operation, given the original type size and the number of known sign/zero
 | ||
|   // bits.
 | ||
|   EVT VT = Op.getValueType();
 | ||
|   unsigned MinWidth =
 | ||
|       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
 | ||
|   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
 | ||
|   if (VT.isVector())
 | ||
|     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
 | ||
|   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   SDLoc DL(Op);
 | ||
|   SDValue ResultAVG =
 | ||
|       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
 | ||
|                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
 | ||
|   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
 | ||
|                      ResultAVG);
 | ||
| }
 | ||
| 
 | ||
| /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
 | ||
| /// result of Op are ever used downstream. If we can use this information to
 | ||
| /// simplify Op, create a new simplified DAG node and return true, returning the
 | ||
| /// original and new nodes in Old and New. Otherwise, analyze the expression and
 | ||
| /// return a mask of Known bits for the expression (used to simplify the
 | ||
| /// caller).  The Known bits may only be accurate for those bits in the
 | ||
| /// OriginalDemandedBits and OriginalDemandedElts.
 | ||
| bool TargetLowering::SimplifyDemandedBits(
 | ||
|     SDValue Op, const APInt &OriginalDemandedBits,
 | ||
|     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
 | ||
|     unsigned Depth, bool AssumeSingleUse) const {
 | ||
|   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
 | ||
|   assert(Op.getScalarValueSizeInBits() == BitWidth &&
 | ||
|          "Mask size mismatches value type size!");
 | ||
| 
 | ||
|   // Don't know anything.
 | ||
|   Known = KnownBits(BitWidth);
 | ||
| 
 | ||
|   // TODO: We can probably do more work on calculating the known bits and
 | ||
|   // simplifying the operations for scalable vectors, but for now we just
 | ||
|   // bail out.
 | ||
|   if (Op.getValueType().isScalableVector())
 | ||
|     return false;
 | ||
| 
 | ||
|   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
 | ||
|   unsigned NumElts = OriginalDemandedElts.getBitWidth();
 | ||
|   assert((!Op.getValueType().isVector() ||
 | ||
|           NumElts == Op.getValueType().getVectorNumElements()) &&
 | ||
|          "Unexpected vector size");
 | ||
| 
 | ||
|   APInt DemandedBits = OriginalDemandedBits;
 | ||
|   APInt DemandedElts = OriginalDemandedElts;
 | ||
|   SDLoc dl(Op);
 | ||
|   auto &DL = TLO.DAG.getDataLayout();
 | ||
| 
 | ||
|   // Undef operand.
 | ||
|   if (Op.isUndef())
 | ||
|     return false;
 | ||
| 
 | ||
|   if (Op.getOpcode() == ISD::Constant) {
 | ||
|     // We know all of the bits for a constant!
 | ||
|     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
 | ||
|     return false;
 | ||
|   }
 | ||
| 
 | ||
|   if (Op.getOpcode() == ISD::ConstantFP) {
 | ||
|     // We know all of the bits for a floating point constant!
 | ||
|     Known = KnownBits::makeConstant(
 | ||
|         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
 | ||
|     return false;
 | ||
|   }
 | ||
| 
 | ||
|   // Other users may use these bits.
 | ||
|   EVT VT = Op.getValueType();
 | ||
|   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
 | ||
|     if (Depth != 0) {
 | ||
|       // If not at the root, Just compute the Known bits to
 | ||
|       // simplify things downstream.
 | ||
|       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | ||
|       return false;
 | ||
|     }
 | ||
|     // If this is the root being simplified, allow it to have multiple uses,
 | ||
|     // just set the DemandedBits/Elts to all bits.
 | ||
|     DemandedBits = APInt::getAllOnes(BitWidth);
 | ||
|     DemandedElts = APInt::getAllOnes(NumElts);
 | ||
|   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
 | ||
|     // Not demanding any bits/elts from Op.
 | ||
|     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
 | ||
|   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
 | ||
|     // Limit search depth.
 | ||
|     return false;
 | ||
|   }
 | ||
| 
 | ||
|   KnownBits Known2;
 | ||
|   switch (Op.getOpcode()) {
 | ||
|   case ISD::TargetConstant:
 | ||
|     llvm_unreachable("Can't simplify this node");
 | ||
|   case ISD::SCALAR_TO_VECTOR: {
 | ||
|     if (!DemandedElts[0])
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
 | ||
| 
 | ||
|     KnownBits SrcKnown;
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
 | ||
|     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
 | ||
|     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     // Upper elements are undef, so only get the knownbits if we just demand
 | ||
|     // the bottom element.
 | ||
|     if (DemandedElts == 1)
 | ||
|       Known = SrcKnown.anyextOrTrunc(BitWidth);
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::BUILD_VECTOR:
 | ||
|     // Collect the known bits that are shared by every demanded element.
 | ||
|     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
 | ||
|     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | ||
|     return false; // Don't fall through, will infinitely loop.
 | ||
|   case ISD::LOAD: {
 | ||
|     auto *LD = cast<LoadSDNode>(Op);
 | ||
|     if (getTargetConstantFromLoad(LD)) {
 | ||
|       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | ||
|       return false; // Don't fall through, will infinitely loop.
 | ||
|     }
 | ||
|     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
 | ||
|       // If this is a ZEXTLoad and we are looking at the loaded value.
 | ||
|       EVT MemVT = LD->getMemoryVT();
 | ||
|       unsigned MemBits = MemVT.getScalarSizeInBits();
 | ||
|       Known.Zero.setBitsFrom(MemBits);
 | ||
|       return false; // Don't fall through, will infinitely loop.
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::INSERT_VECTOR_ELT: {
 | ||
|     SDValue Vec = Op.getOperand(0);
 | ||
|     SDValue Scl = Op.getOperand(1);
 | ||
|     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | ||
|     EVT VecVT = Vec.getValueType();
 | ||
| 
 | ||
|     // If index isn't constant, assume we need all vector elements AND the
 | ||
|     // inserted element.
 | ||
|     APInt DemandedVecElts(DemandedElts);
 | ||
|     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
 | ||
|       unsigned Idx = CIdx->getZExtValue();
 | ||
|       DemandedVecElts.clearBit(Idx);
 | ||
| 
 | ||
|       // Inserted element is not required.
 | ||
|       if (!DemandedElts[Idx])
 | ||
|         return TLO.CombineTo(Op, Vec);
 | ||
|     }
 | ||
| 
 | ||
|     KnownBits KnownScl;
 | ||
|     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
 | ||
|     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
 | ||
|     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     Known = KnownScl.anyextOrTrunc(BitWidth);
 | ||
| 
 | ||
|     KnownBits KnownVec;
 | ||
|     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     if (!!DemandedVecElts)
 | ||
|       Known = KnownBits::commonBits(Known, KnownVec);
 | ||
| 
 | ||
|     return false;
 | ||
|   }
 | ||
|   case ISD::INSERT_SUBVECTOR: {
 | ||
|     // Demand any elements from the subvector and the remainder from the src its
 | ||
|     // inserted into.
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     SDValue Sub = Op.getOperand(1);
 | ||
|     uint64_t Idx = Op.getConstantOperandVal(2);
 | ||
|     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
 | ||
|     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
 | ||
|     APInt DemandedSrcElts = DemandedElts;
 | ||
|     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
 | ||
| 
 | ||
|     KnownBits KnownSub, KnownSrc;
 | ||
|     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     Known.Zero.setAllBits();
 | ||
|     Known.One.setAllBits();
 | ||
|     if (!!DemandedSubElts)
 | ||
|       Known = KnownBits::commonBits(Known, KnownSub);
 | ||
|     if (!!DemandedSrcElts)
 | ||
|       Known = KnownBits::commonBits(Known, KnownSrc);
 | ||
| 
 | ||
|     // Attempt to avoid multi-use src if we don't need anything from it.
 | ||
|     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
 | ||
|         !DemandedSrcElts.isAllOnes()) {
 | ||
|       SDValue NewSub = SimplifyMultipleUseDemandedBits(
 | ||
|           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
 | ||
|       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
 | ||
|           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
 | ||
|       if (NewSub || NewSrc) {
 | ||
|         NewSub = NewSub ? NewSub : Sub;
 | ||
|         NewSrc = NewSrc ? NewSrc : Src;
 | ||
|         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
 | ||
|                                         Op.getOperand(2));
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::EXTRACT_SUBVECTOR: {
 | ||
|     // Offset the demanded elts by the subvector index.
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     if (Src.getValueType().isScalableVector())
 | ||
|       break;
 | ||
|     uint64_t Idx = Op.getConstantOperandVal(1);
 | ||
|     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
 | ||
|     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
 | ||
| 
 | ||
|     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     // Attempt to avoid multi-use src if we don't need anything from it.
 | ||
|     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
 | ||
|       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
 | ||
|           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
 | ||
|       if (DemandedSrc) {
 | ||
|         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
 | ||
|                                         Op.getOperand(1));
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::CONCAT_VECTORS: {
 | ||
|     Known.Zero.setAllBits();
 | ||
|     Known.One.setAllBits();
 | ||
|     EVT SubVT = Op.getOperand(0).getValueType();
 | ||
|     unsigned NumSubVecs = Op.getNumOperands();
 | ||
|     unsigned NumSubElts = SubVT.getVectorNumElements();
 | ||
|     for (unsigned i = 0; i != NumSubVecs; ++i) {
 | ||
|       APInt DemandedSubElts =
 | ||
|           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
 | ||
|       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
 | ||
|                                Known2, TLO, Depth + 1))
 | ||
|         return true;
 | ||
|       // Known bits are shared by every demanded subvector element.
 | ||
|       if (!!DemandedSubElts)
 | ||
|         Known = KnownBits::commonBits(Known, Known2);
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::VECTOR_SHUFFLE: {
 | ||
|     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
 | ||
| 
 | ||
|     // Collect demanded elements from shuffle operands..
 | ||
|     APInt DemandedLHS(NumElts, 0);
 | ||
|     APInt DemandedRHS(NumElts, 0);
 | ||
|     for (unsigned i = 0; i != NumElts; ++i) {
 | ||
|       if (!DemandedElts[i])
 | ||
|         continue;
 | ||
|       int M = ShuffleMask[i];
 | ||
|       if (M < 0) {
 | ||
|         // For UNDEF elements, we don't know anything about the common state of
 | ||
|         // the shuffle result.
 | ||
|         DemandedLHS.clearAllBits();
 | ||
|         DemandedRHS.clearAllBits();
 | ||
|         break;
 | ||
|       }
 | ||
|       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
 | ||
|       if (M < (int)NumElts)
 | ||
|         DemandedLHS.setBit(M);
 | ||
|       else
 | ||
|         DemandedRHS.setBit(M - NumElts);
 | ||
|     }
 | ||
| 
 | ||
|     if (!!DemandedLHS || !!DemandedRHS) {
 | ||
|       SDValue Op0 = Op.getOperand(0);
 | ||
|       SDValue Op1 = Op.getOperand(1);
 | ||
| 
 | ||
|       Known.Zero.setAllBits();
 | ||
|       Known.One.setAllBits();
 | ||
|       if (!!DemandedLHS) {
 | ||
|         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
 | ||
|                                  Depth + 1))
 | ||
|           return true;
 | ||
|         Known = KnownBits::commonBits(Known, Known2);
 | ||
|       }
 | ||
|       if (!!DemandedRHS) {
 | ||
|         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
 | ||
|                                  Depth + 1))
 | ||
|           return true;
 | ||
|         Known = KnownBits::commonBits(Known, Known2);
 | ||
|       }
 | ||
| 
 | ||
|       // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | ||
|           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
 | ||
|       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
 | ||
|           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
 | ||
|       if (DemandedOp0 || DemandedOp1) {
 | ||
|         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
 | ||
|         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
 | ||
|         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::AND: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
| 
 | ||
|     // If the RHS is a constant, check to see if the LHS would be zero without
 | ||
|     // using the bits from the RHS.  Below, we use knowledge about the RHS to
 | ||
|     // simplify the LHS, here we're using information from the LHS to simplify
 | ||
|     // the RHS.
 | ||
|     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
 | ||
|       // Do not increment Depth here; that can cause an infinite loop.
 | ||
|       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
 | ||
|       // If the LHS already has zeros where RHSC does, this 'and' is dead.
 | ||
|       if ((LHSKnown.Zero & DemandedBits) ==
 | ||
|           (~RHSC->getAPIntValue() & DemandedBits))
 | ||
|         return TLO.CombineTo(Op, Op0);
 | ||
| 
 | ||
|       // If any of the set bits in the RHS are known zero on the LHS, shrink
 | ||
|       // the constant.
 | ||
|       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
 | ||
|                                  DemandedElts, TLO))
 | ||
|         return true;
 | ||
| 
 | ||
|       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
 | ||
|       // constant, but if this 'and' is only clearing bits that were just set by
 | ||
|       // the xor, then this 'and' can be eliminated by shrinking the mask of
 | ||
|       // the xor. For example, for a 32-bit X:
 | ||
|       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
 | ||
|       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
 | ||
|           LHSKnown.One == ~RHSC->getAPIntValue()) {
 | ||
|         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
 | ||
|         return TLO.CombineTo(Op, Xor);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
 | ||
|                              Known2, TLO, Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
 | ||
|       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | ||
|           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
 | ||
|           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|       if (DemandedOp0 || DemandedOp1) {
 | ||
|         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
 | ||
|         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
 | ||
|         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // If all of the demanded bits are known one on one side, return the other.
 | ||
|     // These bits cannot contribute to the result of the 'and'.
 | ||
|     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
 | ||
|       return TLO.CombineTo(Op, Op0);
 | ||
|     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
 | ||
|       return TLO.CombineTo(Op, Op1);
 | ||
|     // If all of the demanded bits in the inputs are known zeros, return zero.
 | ||
|     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
 | ||
|     // If the RHS is a constant, see if we can simplify it.
 | ||
|     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
 | ||
|                                TLO))
 | ||
|       return true;
 | ||
|     // If the operation can be done in a smaller type, do so.
 | ||
|     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
 | ||
|       return true;
 | ||
| 
 | ||
|     Known &= Known2;
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::OR: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
| 
 | ||
|     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
 | ||
|                              Known2, TLO, Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
 | ||
|       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | ||
|           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
 | ||
|           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|       if (DemandedOp0 || DemandedOp1) {
 | ||
|         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
 | ||
|         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
 | ||
|         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // If all of the demanded bits are known zero on one side, return the other.
 | ||
|     // These bits cannot contribute to the result of the 'or'.
 | ||
|     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
 | ||
|       return TLO.CombineTo(Op, Op0);
 | ||
|     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
 | ||
|       return TLO.CombineTo(Op, Op1);
 | ||
|     // If the RHS is a constant, see if we can simplify it.
 | ||
|     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
 | ||
|       return true;
 | ||
|     // If the operation can be done in a smaller type, do so.
 | ||
|     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
 | ||
|       return true;
 | ||
| 
 | ||
|     Known |= Known2;
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::XOR: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
| 
 | ||
|     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
 | ||
|       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | ||
|           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
 | ||
|           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|       if (DemandedOp0 || DemandedOp1) {
 | ||
|         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
 | ||
|         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
 | ||
|         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // If all of the demanded bits are known zero on one side, return the other.
 | ||
|     // These bits cannot contribute to the result of the 'xor'.
 | ||
|     if (DemandedBits.isSubsetOf(Known.Zero))
 | ||
|       return TLO.CombineTo(Op, Op0);
 | ||
|     if (DemandedBits.isSubsetOf(Known2.Zero))
 | ||
|       return TLO.CombineTo(Op, Op1);
 | ||
|     // If the operation can be done in a smaller type, do so.
 | ||
|     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
 | ||
|       return true;
 | ||
| 
 | ||
|     // If all of the unknown bits are known to be zero on one side or the other
 | ||
|     // turn this into an *inclusive* or.
 | ||
|     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | ||
|     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
 | ||
| 
 | ||
|     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
 | ||
|     if (C) {
 | ||
|       // If one side is a constant, and all of the set bits in the constant are
 | ||
|       // also known set on the other side, turn this into an AND, as we know
 | ||
|       // the bits will be cleared.
 | ||
|       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | ||
|       // NB: it is okay if more bits are known than are requested
 | ||
|       if (C->getAPIntValue() == Known2.One) {
 | ||
|         SDValue ANDC =
 | ||
|             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
 | ||
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
 | ||
|       }
 | ||
| 
 | ||
|       // If the RHS is a constant, see if we can change it. Don't alter a -1
 | ||
|       // constant because that's a 'not' op, and that is better for combining
 | ||
|       // and codegen.
 | ||
|       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
 | ||
|         // We're flipping all demanded bits. Flip the undemanded bits too.
 | ||
|         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
 | ||
|         return TLO.CombineTo(Op, New);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // If we can't turn this into a 'not', try to shrink the constant.
 | ||
|     if (!C || !C->isAllOnes())
 | ||
|       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
 | ||
|         return true;
 | ||
| 
 | ||
|     Known ^= Known2;
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::SELECT:
 | ||
|     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | ||
| 
 | ||
|     // If the operands are constants, see if we can simplify them.
 | ||
|     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
 | ||
|       return true;
 | ||
| 
 | ||
|     // Only known if known in both the LHS and RHS.
 | ||
|     Known = KnownBits::commonBits(Known, Known2);
 | ||
|     break;
 | ||
|   case ISD::SELECT_CC:
 | ||
|     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | ||
| 
 | ||
|     // If the operands are constants, see if we can simplify them.
 | ||
|     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
 | ||
|       return true;
 | ||
| 
 | ||
|     // Only known if known in both the LHS and RHS.
 | ||
|     Known = KnownBits::commonBits(Known, Known2);
 | ||
|     break;
 | ||
|   case ISD::SETCC: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
|     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | ||
|     // If (1) we only need the sign-bit, (2) the setcc operands are the same
 | ||
|     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
 | ||
|     // -1, we may be able to bypass the setcc.
 | ||
|     if (DemandedBits.isSignMask() &&
 | ||
|         Op0.getScalarValueSizeInBits() == BitWidth &&
 | ||
|         getBooleanContents(Op0.getValueType()) ==
 | ||
|             BooleanContent::ZeroOrNegativeOneBooleanContent) {
 | ||
|       // If we're testing X < 0, then this compare isn't needed - just use X!
 | ||
|       // FIXME: We're limiting to integer types here, but this should also work
 | ||
|       // if we don't care about FP signed-zero. The use of SETLT with FP means
 | ||
|       // that we don't care about NaNs.
 | ||
|       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
 | ||
|           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
 | ||
|         return TLO.CombineTo(Op, Op0);
 | ||
| 
 | ||
|       // TODO: Should we check for other forms of sign-bit comparisons?
 | ||
|       // Examples: X <= -1, X >= 0
 | ||
|     }
 | ||
|     if (getBooleanContents(Op0.getValueType()) ==
 | ||
|             TargetLowering::ZeroOrOneBooleanContent &&
 | ||
|         BitWidth > 1)
 | ||
|       Known.Zero.setBitsFrom(1);
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::SHL: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
|     EVT ShiftVT = Op1.getValueType();
 | ||
| 
 | ||
|     if (const APInt *SA =
 | ||
|             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
 | ||
|       unsigned ShAmt = SA->getZExtValue();
 | ||
|       if (ShAmt == 0)
 | ||
|         return TLO.CombineTo(Op, Op0);
 | ||
| 
 | ||
|       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
 | ||
|       // single shift.  We can do this if the bottom bits (which are shifted
 | ||
|       // out) are never demanded.
 | ||
|       // TODO - support non-uniform vector amounts.
 | ||
|       if (Op0.getOpcode() == ISD::SRL) {
 | ||
|         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
 | ||
|           if (const APInt *SA2 =
 | ||
|                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
 | ||
|             unsigned C1 = SA2->getZExtValue();
 | ||
|             unsigned Opc = ISD::SHL;
 | ||
|             int Diff = ShAmt - C1;
 | ||
|             if (Diff < 0) {
 | ||
|               Diff = -Diff;
 | ||
|               Opc = ISD::SRL;
 | ||
|             }
 | ||
|             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
 | ||
|             return TLO.CombineTo(
 | ||
|                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
 | ||
|       // are not demanded. This will likely allow the anyext to be folded away.
 | ||
|       // TODO - support non-uniform vector amounts.
 | ||
|       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
 | ||
|         SDValue InnerOp = Op0.getOperand(0);
 | ||
|         EVT InnerVT = InnerOp.getValueType();
 | ||
|         unsigned InnerBits = InnerVT.getScalarSizeInBits();
 | ||
|         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
 | ||
|             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
 | ||
|           EVT ShTy = getShiftAmountTy(InnerVT, DL);
 | ||
|           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
 | ||
|             ShTy = InnerVT;
 | ||
|           SDValue NarrowShl =
 | ||
|               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
 | ||
|                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
 | ||
|           return TLO.CombineTo(
 | ||
|               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
 | ||
|         }
 | ||
| 
 | ||
|         // Repeat the SHL optimization above in cases where an extension
 | ||
|         // intervenes: (shl (anyext (shr x, c1)), c2) to
 | ||
|         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
 | ||
|         // aren't demanded (as above) and that the shifted upper c1 bits of
 | ||
|         // x aren't demanded.
 | ||
|         // TODO - support non-uniform vector amounts.
 | ||
|         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
 | ||
|             InnerOp.hasOneUse()) {
 | ||
|           if (const APInt *SA2 =
 | ||
|                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
 | ||
|             unsigned InnerShAmt = SA2->getZExtValue();
 | ||
|             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
 | ||
|                 DemandedBits.getActiveBits() <=
 | ||
|                     (InnerBits - InnerShAmt + ShAmt) &&
 | ||
|                 DemandedBits.countTrailingZeros() >= ShAmt) {
 | ||
|               SDValue NewSA =
 | ||
|                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
 | ||
|               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
 | ||
|                                                InnerOp.getOperand(0));
 | ||
|               return TLO.CombineTo(
 | ||
|                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
 | ||
|             }
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
 | ||
|       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
 | ||
|                                Depth + 1))
 | ||
|         return true;
 | ||
|       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|       Known.Zero <<= ShAmt;
 | ||
|       Known.One <<= ShAmt;
 | ||
|       // low bits known zero.
 | ||
|       Known.Zero.setLowBits(ShAmt);
 | ||
| 
 | ||
|       // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
 | ||
|         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | ||
|             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|         if (DemandedOp0) {
 | ||
|           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
 | ||
|           return TLO.CombineTo(Op, NewOp);
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       // Try shrinking the operation as long as the shift amount will still be
 | ||
|       // in range.
 | ||
|       if ((ShAmt < DemandedBits.getActiveBits()) &&
 | ||
|           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
 | ||
|         return true;
 | ||
|     }
 | ||
| 
 | ||
|     // If we are only demanding sign bits then we can use the shift source
 | ||
|     // directly.
 | ||
|     if (const APInt *MaxSA =
 | ||
|             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
 | ||
|       unsigned ShAmt = MaxSA->getZExtValue();
 | ||
|       unsigned NumSignBits =
 | ||
|           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
 | ||
|       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
 | ||
|       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
 | ||
|         return TLO.CombineTo(Op, Op0);
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::SRL: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
|     EVT ShiftVT = Op1.getValueType();
 | ||
| 
 | ||
|     // Try to match AVG patterns.
 | ||
|     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
 | ||
|                                         DemandedElts, Depth + 1))
 | ||
|       return TLO.CombineTo(Op, AVG);
 | ||
| 
 | ||
|     if (const APInt *SA =
 | ||
|             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
 | ||
|       unsigned ShAmt = SA->getZExtValue();
 | ||
|       if (ShAmt == 0)
 | ||
|         return TLO.CombineTo(Op, Op0);
 | ||
| 
 | ||
|       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
 | ||
|       // single shift.  We can do this if the top bits (which are shifted out)
 | ||
|       // are never demanded.
 | ||
|       // TODO - support non-uniform vector amounts.
 | ||
|       if (Op0.getOpcode() == ISD::SHL) {
 | ||
|         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
 | ||
|           if (const APInt *SA2 =
 | ||
|                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
 | ||
|             unsigned C1 = SA2->getZExtValue();
 | ||
|             unsigned Opc = ISD::SRL;
 | ||
|             int Diff = ShAmt - C1;
 | ||
|             if (Diff < 0) {
 | ||
|               Diff = -Diff;
 | ||
|               Opc = ISD::SHL;
 | ||
|             }
 | ||
|             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
 | ||
|             return TLO.CombineTo(
 | ||
|                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       APInt InDemandedMask = (DemandedBits << ShAmt);
 | ||
| 
 | ||
|       // If the shift is exact, then it does demand the low bits (and knows that
 | ||
|       // they are zero).
 | ||
|       if (Op->getFlags().hasExact())
 | ||
|         InDemandedMask.setLowBits(ShAmt);
 | ||
| 
 | ||
|       // Compute the new bits that are at the top now.
 | ||
|       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
 | ||
|                                Depth + 1))
 | ||
|         return true;
 | ||
|       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|       Known.Zero.lshrInPlace(ShAmt);
 | ||
|       Known.One.lshrInPlace(ShAmt);
 | ||
|       // High bits known zero.
 | ||
|       Known.Zero.setHighBits(ShAmt);
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::SRA: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
|     EVT ShiftVT = Op1.getValueType();
 | ||
| 
 | ||
|     // If we only want bits that already match the signbit then we don't need
 | ||
|     // to shift.
 | ||
|     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
 | ||
|     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
 | ||
|         NumHiDemandedBits)
 | ||
|       return TLO.CombineTo(Op, Op0);
 | ||
| 
 | ||
|     // If this is an arithmetic shift right and only the low-bit is set, we can
 | ||
|     // always convert this into a logical shr, even if the shift amount is
 | ||
|     // variable.  The low bit of the shift cannot be an input sign bit unless
 | ||
|     // the shift amount is >= the size of the datatype, which is undefined.
 | ||
|     if (DemandedBits.isOne())
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
 | ||
| 
 | ||
|     // Try to match AVG patterns.
 | ||
|     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
 | ||
|                                         DemandedElts, Depth + 1))
 | ||
|       return TLO.CombineTo(Op, AVG);
 | ||
| 
 | ||
|     if (const APInt *SA =
 | ||
|             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
 | ||
|       unsigned ShAmt = SA->getZExtValue();
 | ||
|       if (ShAmt == 0)
 | ||
|         return TLO.CombineTo(Op, Op0);
 | ||
| 
 | ||
|       APInt InDemandedMask = (DemandedBits << ShAmt);
 | ||
| 
 | ||
|       // If the shift is exact, then it does demand the low bits (and knows that
 | ||
|       // they are zero).
 | ||
|       if (Op->getFlags().hasExact())
 | ||
|         InDemandedMask.setLowBits(ShAmt);
 | ||
| 
 | ||
|       // If any of the demanded bits are produced by the sign extension, we also
 | ||
|       // demand the input sign bit.
 | ||
|       if (DemandedBits.countLeadingZeros() < ShAmt)
 | ||
|         InDemandedMask.setSignBit();
 | ||
| 
 | ||
|       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
 | ||
|                                Depth + 1))
 | ||
|         return true;
 | ||
|       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|       Known.Zero.lshrInPlace(ShAmt);
 | ||
|       Known.One.lshrInPlace(ShAmt);
 | ||
| 
 | ||
|       // If the input sign bit is known to be zero, or if none of the top bits
 | ||
|       // are demanded, turn this into an unsigned shift right.
 | ||
|       if (Known.Zero[BitWidth - ShAmt - 1] ||
 | ||
|           DemandedBits.countLeadingZeros() >= ShAmt) {
 | ||
|         SDNodeFlags Flags;
 | ||
|         Flags.setExact(Op->getFlags().hasExact());
 | ||
|         return TLO.CombineTo(
 | ||
|             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
 | ||
|       }
 | ||
| 
 | ||
|       int Log2 = DemandedBits.exactLogBase2();
 | ||
|       if (Log2 >= 0) {
 | ||
|         // The bit must come from the sign.
 | ||
|         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
 | ||
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
 | ||
|       }
 | ||
| 
 | ||
|       if (Known.One[BitWidth - ShAmt - 1])
 | ||
|         // New bits are known one.
 | ||
|         Known.One.setHighBits(ShAmt);
 | ||
| 
 | ||
|       // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
 | ||
|         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | ||
|             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|         if (DemandedOp0) {
 | ||
|           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
 | ||
|           return TLO.CombineTo(Op, NewOp);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::FSHL:
 | ||
|   case ISD::FSHR: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
|     SDValue Op2 = Op.getOperand(2);
 | ||
|     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
 | ||
| 
 | ||
|     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
 | ||
|       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
 | ||
| 
 | ||
|       // For fshl, 0-shift returns the 1st arg.
 | ||
|       // For fshr, 0-shift returns the 2nd arg.
 | ||
|       if (Amt == 0) {
 | ||
|         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
 | ||
|                                  Known, TLO, Depth + 1))
 | ||
|           return true;
 | ||
|         break;
 | ||
|       }
 | ||
| 
 | ||
|       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
 | ||
|       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
 | ||
|       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
 | ||
|       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
 | ||
|       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
 | ||
|                                Depth + 1))
 | ||
|         return true;
 | ||
|       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
 | ||
|                                Depth + 1))
 | ||
|         return true;
 | ||
| 
 | ||
|       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
 | ||
|       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
 | ||
|       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
 | ||
|       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
 | ||
|       Known.One |= Known2.One;
 | ||
|       Known.Zero |= Known2.Zero;
 | ||
| 
 | ||
|       // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
 | ||
|           !DemandedElts.isAllOnes()) {
 | ||
|         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | ||
|             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
 | ||
|             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|         if (DemandedOp0 || DemandedOp1) {
 | ||
|           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
 | ||
|           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
 | ||
|           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
 | ||
|                                           DemandedOp1, Op2);
 | ||
|           return TLO.CombineTo(Op, NewOp);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
 | ||
|     if (isPowerOf2_32(BitWidth)) {
 | ||
|       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
 | ||
|       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
 | ||
|                                Known2, TLO, Depth + 1))
 | ||
|         return true;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::ROTL:
 | ||
|   case ISD::ROTR: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
|     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
 | ||
| 
 | ||
|     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
 | ||
|     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
 | ||
|       return TLO.CombineTo(Op, Op0);
 | ||
| 
 | ||
|     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
 | ||
|       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
 | ||
|       unsigned RevAmt = BitWidth - Amt;
 | ||
| 
 | ||
|       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
 | ||
|       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
 | ||
|       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
 | ||
|       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
 | ||
|                                Depth + 1))
 | ||
|         return true;
 | ||
| 
 | ||
|       // rot*(x, 0) --> x
 | ||
|       if (Amt == 0)
 | ||
|         return TLO.CombineTo(Op, Op0);
 | ||
| 
 | ||
|       // See if we don't demand either half of the rotated bits.
 | ||
|       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
 | ||
|           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
 | ||
|         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
 | ||
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
 | ||
|       }
 | ||
|       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
 | ||
|           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
 | ||
|         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
 | ||
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
 | ||
|     if (isPowerOf2_32(BitWidth)) {
 | ||
|       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
 | ||
|       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
 | ||
|                                Depth + 1))
 | ||
|         return true;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::UMIN: {
 | ||
|     // Check if one arg is always less than (or equal) to the other arg.
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
|     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
 | ||
|     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
 | ||
|     Known = KnownBits::umin(Known0, Known1);
 | ||
|     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
 | ||
|       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
 | ||
|     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
 | ||
|       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::UMAX: {
 | ||
|     // Check if one arg is always greater than (or equal) to the other arg.
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
|     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
 | ||
|     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
 | ||
|     Known = KnownBits::umax(Known0, Known1);
 | ||
|     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
 | ||
|       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
 | ||
|     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
 | ||
|       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::BITREVERSE: {
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     APInt DemandedSrcBits = DemandedBits.reverseBits();
 | ||
|     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     Known.One = Known2.One.reverseBits();
 | ||
|     Known.Zero = Known2.Zero.reverseBits();
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::BSWAP: {
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
| 
 | ||
|     // If the only bits demanded come from one byte of the bswap result,
 | ||
|     // just shift the input byte into position to eliminate the bswap.
 | ||
|     unsigned NLZ = DemandedBits.countLeadingZeros();
 | ||
|     unsigned NTZ = DemandedBits.countTrailingZeros();
 | ||
| 
 | ||
|     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
 | ||
|     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
 | ||
|     // have 14 leading zeros, round to 8.
 | ||
|     NLZ = alignDown(NLZ, 8);
 | ||
|     NTZ = alignDown(NTZ, 8);
 | ||
|     // If we need exactly one byte, we can do this transformation.
 | ||
|     if (BitWidth - NLZ - NTZ == 8) {
 | ||
|       // Replace this with either a left or right shift to get the byte into
 | ||
|       // the right place.
 | ||
|       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
 | ||
|       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
 | ||
|         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
 | ||
|         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
 | ||
|         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
 | ||
|         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     APInt DemandedSrcBits = DemandedBits.byteSwap();
 | ||
|     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     Known.One = Known2.One.byteSwap();
 | ||
|     Known.Zero = Known2.Zero.byteSwap();
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::CTPOP: {
 | ||
|     // If only 1 bit is demanded, replace with PARITY as long as we're before
 | ||
|     // op legalization.
 | ||
|     // FIXME: Limit to scalars for now.
 | ||
|     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
 | ||
|                                                Op.getOperand(0)));
 | ||
| 
 | ||
|     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::SIGN_EXTEND_INREG: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | ||
|     unsigned ExVTBits = ExVT.getScalarSizeInBits();
 | ||
| 
 | ||
|     // If we only care about the highest bit, don't bother shifting right.
 | ||
|     if (DemandedBits.isSignMask()) {
 | ||
|       unsigned MinSignedBits =
 | ||
|           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
 | ||
|       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
 | ||
|       // However if the input is already sign extended we expect the sign
 | ||
|       // extension to be dropped altogether later and do not simplify.
 | ||
|       if (!AlreadySignExtended) {
 | ||
|         // Compute the correct shift amount type, which must be getShiftAmountTy
 | ||
|         // for scalar types after legalization.
 | ||
|         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
 | ||
|                                                getShiftAmountTy(VT, DL));
 | ||
|         return TLO.CombineTo(Op,
 | ||
|                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // If none of the extended bits are demanded, eliminate the sextinreg.
 | ||
|     if (DemandedBits.getActiveBits() <= ExVTBits)
 | ||
|       return TLO.CombineTo(Op, Op0);
 | ||
| 
 | ||
|     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
 | ||
| 
 | ||
|     // Since the sign extended bits are demanded, we know that the sign
 | ||
|     // bit is demanded.
 | ||
|     InputDemandedBits.setBit(ExVTBits - 1);
 | ||
| 
 | ||
|     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
| 
 | ||
|     // If the sign bit of the input is known set or clear, then we know the
 | ||
|     // top bits of the result.
 | ||
| 
 | ||
|     // If the input sign bit is known zero, convert this into a zero extension.
 | ||
|     if (Known.Zero[ExVTBits - 1])
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
 | ||
| 
 | ||
|     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
 | ||
|     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
 | ||
|       Known.One.setBitsFrom(ExVTBits);
 | ||
|       Known.Zero &= Mask;
 | ||
|     } else { // Input sign bit unknown
 | ||
|       Known.Zero &= Mask;
 | ||
|       Known.One &= Mask;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::BUILD_PAIR: {
 | ||
|     EVT HalfVT = Op.getOperand(0).getValueType();
 | ||
|     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
 | ||
| 
 | ||
|     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
 | ||
|     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
 | ||
| 
 | ||
|     KnownBits KnownLo, KnownHi;
 | ||
| 
 | ||
|     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     Known.Zero = KnownLo.Zero.zext(BitWidth) |
 | ||
|                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
 | ||
| 
 | ||
|     Known.One = KnownLo.One.zext(BitWidth) |
 | ||
|                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::ZERO_EXTEND:
 | ||
|   case ISD::ZERO_EXTEND_VECTOR_INREG: {
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     EVT SrcVT = Src.getValueType();
 | ||
|     unsigned InBits = SrcVT.getScalarSizeInBits();
 | ||
|     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
 | ||
|     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
 | ||
| 
 | ||
|     // If none of the top bits are demanded, convert this into an any_extend.
 | ||
|     if (DemandedBits.getActiveBits() <= InBits) {
 | ||
|       // If we only need the non-extended bits of the bottom element
 | ||
|       // then we can just bitcast to the result.
 | ||
|       if (IsLE && IsVecInReg && DemandedElts == 1 &&
 | ||
|           VT.getSizeInBits() == SrcVT.getSizeInBits())
 | ||
|         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
 | ||
| 
 | ||
|       unsigned Opc =
 | ||
|           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
 | ||
|       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
 | ||
|         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
 | ||
|     }
 | ||
| 
 | ||
|     APInt InDemandedBits = DemandedBits.trunc(InBits);
 | ||
|     APInt InDemandedElts = DemandedElts.zext(InElts);
 | ||
|     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|     assert(Known.getBitWidth() == InBits && "Src width has changed?");
 | ||
|     Known = Known.zext(BitWidth);
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
 | ||
|             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::SIGN_EXTEND:
 | ||
|   case ISD::SIGN_EXTEND_VECTOR_INREG: {
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     EVT SrcVT = Src.getValueType();
 | ||
|     unsigned InBits = SrcVT.getScalarSizeInBits();
 | ||
|     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
 | ||
|     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
 | ||
| 
 | ||
|     // If none of the top bits are demanded, convert this into an any_extend.
 | ||
|     if (DemandedBits.getActiveBits() <= InBits) {
 | ||
|       // If we only need the non-extended bits of the bottom element
 | ||
|       // then we can just bitcast to the result.
 | ||
|       if (IsLE && IsVecInReg && DemandedElts == 1 &&
 | ||
|           VT.getSizeInBits() == SrcVT.getSizeInBits())
 | ||
|         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
 | ||
| 
 | ||
|       unsigned Opc =
 | ||
|           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
 | ||
|       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
 | ||
|         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
 | ||
|     }
 | ||
| 
 | ||
|     APInt InDemandedBits = DemandedBits.trunc(InBits);
 | ||
|     APInt InDemandedElts = DemandedElts.zext(InElts);
 | ||
| 
 | ||
|     // Since some of the sign extended bits are demanded, we know that the sign
 | ||
|     // bit is demanded.
 | ||
|     InDemandedBits.setBit(InBits - 1);
 | ||
| 
 | ||
|     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|     assert(Known.getBitWidth() == InBits && "Src width has changed?");
 | ||
| 
 | ||
|     // If the sign bit is known one, the top bits match.
 | ||
|     Known = Known.sext(BitWidth);
 | ||
| 
 | ||
|     // If the sign bit is known zero, convert this to a zero extend.
 | ||
|     if (Known.isNonNegative()) {
 | ||
|       unsigned Opc =
 | ||
|           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
 | ||
|       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
 | ||
|         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
 | ||
|     }
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
 | ||
|             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::ANY_EXTEND:
 | ||
|   case ISD::ANY_EXTEND_VECTOR_INREG: {
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     EVT SrcVT = Src.getValueType();
 | ||
|     unsigned InBits = SrcVT.getScalarSizeInBits();
 | ||
|     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
 | ||
|     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
 | ||
| 
 | ||
|     // If we only need the bottom element then we can just bitcast.
 | ||
|     // TODO: Handle ANY_EXTEND?
 | ||
|     if (IsLE && IsVecInReg && DemandedElts == 1 &&
 | ||
|         VT.getSizeInBits() == SrcVT.getSizeInBits())
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
 | ||
| 
 | ||
|     APInt InDemandedBits = DemandedBits.trunc(InBits);
 | ||
|     APInt InDemandedElts = DemandedElts.zext(InElts);
 | ||
|     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|     assert(Known.getBitWidth() == InBits && "Src width has changed?");
 | ||
|     Known = Known.anyext(BitWidth);
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
 | ||
|             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::TRUNCATE: {
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
| 
 | ||
|     // Simplify the input, using demanded bit information, and compute the known
 | ||
|     // zero/one bits live out.
 | ||
|     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
 | ||
|     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
 | ||
|     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
|     Known = Known.trunc(BitWidth);
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
 | ||
|             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
 | ||
| 
 | ||
|     // If the input is only used by this truncate, see if we can shrink it based
 | ||
|     // on the known demanded bits.
 | ||
|     if (Src.getNode()->hasOneUse()) {
 | ||
|       switch (Src.getOpcode()) {
 | ||
|       default:
 | ||
|         break;
 | ||
|       case ISD::SRL:
 | ||
|         // Shrink SRL by a constant if none of the high bits shifted in are
 | ||
|         // demanded.
 | ||
|         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
 | ||
|           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
 | ||
|           // undesirable.
 | ||
|           break;
 | ||
| 
 | ||
|         const APInt *ShAmtC =
 | ||
|             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
 | ||
|         if (!ShAmtC || ShAmtC->uge(BitWidth))
 | ||
|           break;
 | ||
|         uint64_t ShVal = ShAmtC->getZExtValue();
 | ||
| 
 | ||
|         APInt HighBits =
 | ||
|             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
 | ||
|         HighBits.lshrInPlace(ShVal);
 | ||
|         HighBits = HighBits.trunc(BitWidth);
 | ||
| 
 | ||
|         if (!(HighBits & DemandedBits)) {
 | ||
|           // None of the shifted in bits are needed.  Add a truncate of the
 | ||
|           // shift input, then shift it.
 | ||
|           SDValue NewShAmt = TLO.DAG.getConstant(
 | ||
|               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
 | ||
|           SDValue NewTrunc =
 | ||
|               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
 | ||
|           return TLO.CombineTo(
 | ||
|               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
 | ||
|         }
 | ||
|         break;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::AssertZext: {
 | ||
|     // AssertZext demands all of the high bits, plus any of the low bits
 | ||
|     // demanded by its users.
 | ||
|     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | ||
|     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
 | ||
|     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
 | ||
|                              TLO, Depth + 1))
 | ||
|       return true;
 | ||
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | ||
| 
 | ||
|     Known.Zero |= ~InMask;
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::EXTRACT_VECTOR_ELT: {
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     SDValue Idx = Op.getOperand(1);
 | ||
|     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
 | ||
|     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
 | ||
| 
 | ||
|     if (SrcEltCnt.isScalable())
 | ||
|       return false;
 | ||
| 
 | ||
|     // Demand the bits from every vector element without a constant index.
 | ||
|     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
 | ||
|     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
 | ||
|     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
 | ||
|       if (CIdx->getAPIntValue().ult(NumSrcElts))
 | ||
|         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
 | ||
| 
 | ||
|     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
 | ||
|     // anything about the extended bits.
 | ||
|     APInt DemandedSrcBits = DemandedBits;
 | ||
|     if (BitWidth > EltBitWidth)
 | ||
|       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
 | ||
| 
 | ||
|     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
 | ||
|                              Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
 | ||
|       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
 | ||
|               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
 | ||
|         SDValue NewOp =
 | ||
|             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     Known = Known2;
 | ||
|     if (BitWidth > EltBitWidth)
 | ||
|       Known = Known.anyext(BitWidth);
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::BITCAST: {
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     EVT SrcVT = Src.getValueType();
 | ||
|     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
 | ||
| 
 | ||
|     // If this is an FP->Int bitcast and if the sign bit is the only
 | ||
|     // thing demanded, turn this into a FGETSIGN.
 | ||
|     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
 | ||
|         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
 | ||
|         SrcVT.isFloatingPoint()) {
 | ||
|       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
 | ||
|       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
 | ||
|       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
 | ||
|           SrcVT != MVT::f128) {
 | ||
|         // Cannot eliminate/lower SHL for f128 yet.
 | ||
|         EVT Ty = OpVTLegal ? VT : MVT::i32;
 | ||
|         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
 | ||
|         // place.  We expect the SHL to be eliminated by other optimizations.
 | ||
|         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
 | ||
|         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
 | ||
|         if (!OpVTLegal && OpVTSizeInBits > 32)
 | ||
|           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
 | ||
|         unsigned ShVal = Op.getValueSizeInBits() - 1;
 | ||
|         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
 | ||
|         return TLO.CombineTo(Op,
 | ||
|                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
 | ||
|     // Demand the elt/bit if any of the original elts/bits are demanded.
 | ||
|     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
 | ||
|       unsigned Scale = BitWidth / NumSrcEltBits;
 | ||
|       unsigned NumSrcElts = SrcVT.getVectorNumElements();
 | ||
|       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
 | ||
|       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
 | ||
|       for (unsigned i = 0; i != Scale; ++i) {
 | ||
|         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
 | ||
|         unsigned BitOffset = EltOffset * NumSrcEltBits;
 | ||
|         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
 | ||
|         if (!Sub.isZero()) {
 | ||
|           DemandedSrcBits |= Sub;
 | ||
|           for (unsigned j = 0; j != NumElts; ++j)
 | ||
|             if (DemandedElts[j])
 | ||
|               DemandedSrcElts.setBit((j * Scale) + i);
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       APInt KnownSrcUndef, KnownSrcZero;
 | ||
|       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
 | ||
|                                      KnownSrcZero, TLO, Depth + 1))
 | ||
|         return true;
 | ||
| 
 | ||
|       KnownBits KnownSrcBits;
 | ||
|       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
 | ||
|                                KnownSrcBits, TLO, Depth + 1))
 | ||
|         return true;
 | ||
|     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
 | ||
|       // TODO - bigendian once we have test coverage.
 | ||
|       unsigned Scale = NumSrcEltBits / BitWidth;
 | ||
|       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
 | ||
|       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
 | ||
|       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
 | ||
|       for (unsigned i = 0; i != NumElts; ++i)
 | ||
|         if (DemandedElts[i]) {
 | ||
|           unsigned Offset = (i % Scale) * BitWidth;
 | ||
|           DemandedSrcBits.insertBits(DemandedBits, Offset);
 | ||
|           DemandedSrcElts.setBit(i / Scale);
 | ||
|         }
 | ||
| 
 | ||
|       if (SrcVT.isVector()) {
 | ||
|         APInt KnownSrcUndef, KnownSrcZero;
 | ||
|         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
 | ||
|                                        KnownSrcZero, TLO, Depth + 1))
 | ||
|           return true;
 | ||
|       }
 | ||
| 
 | ||
|       KnownBits KnownSrcBits;
 | ||
|       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
 | ||
|                                KnownSrcBits, TLO, Depth + 1))
 | ||
|         return true;
 | ||
|     }
 | ||
| 
 | ||
|     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
 | ||
|     // recursive call where Known may be useful to the caller.
 | ||
|     if (Depth > 0) {
 | ||
|       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | ||
|       return false;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::MUL:
 | ||
|     if (DemandedBits.isPowerOf2()) {
 | ||
|       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
 | ||
|       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
 | ||
|       // odd (has LSB set), then the left-shifted low bit of X is the answer.
 | ||
|       unsigned CTZ = DemandedBits.countTrailingZeros();
 | ||
|       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
 | ||
|       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
 | ||
|         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
 | ||
|         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
 | ||
|         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
 | ||
|         return TLO.CombineTo(Op, Shl);
 | ||
|       }
 | ||
|     }
 | ||
|     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
 | ||
|     // X * X is odd iff X is odd.
 | ||
|     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
 | ||
|     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
 | ||
|       SDValue One = TLO.DAG.getConstant(1, dl, VT);
 | ||
|       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
 | ||
|       return TLO.CombineTo(Op, And1);
 | ||
|     }
 | ||
|     LLVM_FALLTHROUGH;
 | ||
|   case ISD::ADD:
 | ||
|   case ISD::SUB: {
 | ||
|     // Add, Sub, and Mul don't demand any bits in positions beyond that
 | ||
|     // of the highest bit demanded of them.
 | ||
|     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
 | ||
|     SDNodeFlags Flags = Op.getNode()->getFlags();
 | ||
|     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
 | ||
|     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
 | ||
|     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
 | ||
|                              Depth + 1) ||
 | ||
|         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
 | ||
|                              Depth + 1) ||
 | ||
|         // See if the operation should be performed at a smaller bit width.
 | ||
|         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
 | ||
|       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
 | ||
|         // Disable the nsw and nuw flags. We can no longer guarantee that we
 | ||
|         // won't wrap after simplification.
 | ||
|         Flags.setNoSignedWrap(false);
 | ||
|         Flags.setNoUnsignedWrap(false);
 | ||
|         SDValue NewOp =
 | ||
|             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|       return true;
 | ||
|     }
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
 | ||
|       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | ||
|           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
 | ||
|           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
 | ||
|       if (DemandedOp0 || DemandedOp1) {
 | ||
|         Flags.setNoSignedWrap(false);
 | ||
|         Flags.setNoUnsignedWrap(false);
 | ||
|         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
 | ||
|         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
 | ||
|         SDValue NewOp =
 | ||
|             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // If we have a constant operand, we may be able to turn it into -1 if we
 | ||
|     // do not demand the high bits. This can make the constant smaller to
 | ||
|     // encode, allow more general folding, or match specialized instruction
 | ||
|     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
 | ||
|     // is probably not useful (and could be detrimental).
 | ||
|     ConstantSDNode *C = isConstOrConstSplat(Op1);
 | ||
|     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
 | ||
|     if (C && !C->isAllOnes() && !C->isOne() &&
 | ||
|         (C->getAPIntValue() | HighMask).isAllOnes()) {
 | ||
|       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
 | ||
|       // Disable the nsw and nuw flags. We can no longer guarantee that we
 | ||
|       // won't wrap after simplification.
 | ||
|       Flags.setNoSignedWrap(false);
 | ||
|       Flags.setNoUnsignedWrap(false);
 | ||
|       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
 | ||
|       return TLO.CombineTo(Op, NewOp);
 | ||
|     }
 | ||
| 
 | ||
|     // Match a multiply with a disguised negated-power-of-2 and convert to a
 | ||
|     // an equivalent shift-left amount.
 | ||
|     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
 | ||
|     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
 | ||
|       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
 | ||
|         return 0;
 | ||
| 
 | ||
|       // Don't touch opaque constants. Also, ignore zero and power-of-2
 | ||
|       // multiplies. Those will get folded later.
 | ||
|       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
 | ||
|       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
 | ||
|           !MulC->getAPIntValue().isPowerOf2()) {
 | ||
|         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
 | ||
|         if (UnmaskedC.isNegatedPowerOf2())
 | ||
|           return (-UnmaskedC).logBase2();
 | ||
|       }
 | ||
|       return 0;
 | ||
|     };
 | ||
| 
 | ||
|     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
 | ||
|       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
 | ||
|       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
 | ||
|       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
 | ||
|       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
 | ||
|       return TLO.CombineTo(Op, Res);
 | ||
|     };
 | ||
| 
 | ||
|     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
 | ||
|       if (Op.getOpcode() == ISD::ADD) {
 | ||
|         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
 | ||
|         if (unsigned ShAmt = getShiftLeftAmt(Op0))
 | ||
|           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
 | ||
|         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
 | ||
|         if (unsigned ShAmt = getShiftLeftAmt(Op1))
 | ||
|           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
 | ||
|       }
 | ||
|       if (Op.getOpcode() == ISD::SUB) {
 | ||
|         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
 | ||
|         if (unsigned ShAmt = getShiftLeftAmt(Op1))
 | ||
|           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     LLVM_FALLTHROUGH;
 | ||
|   }
 | ||
|   default:
 | ||
|     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
 | ||
|       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
 | ||
|                                             Known, TLO, Depth))
 | ||
|         return true;
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     // Just use computeKnownBits to compute output bits.
 | ||
|     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   // If we know the value of all of the demanded bits, return this as a
 | ||
|   // constant.
 | ||
|   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
 | ||
|     // Avoid folding to a constant if any OpaqueConstant is involved.
 | ||
|     const SDNode *N = Op.getNode();
 | ||
|     for (SDNode *Op :
 | ||
|          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
 | ||
|       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | ||
|         if (C->isOpaque())
 | ||
|           return false;
 | ||
|     }
 | ||
|     if (VT.isInteger())
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
 | ||
|     if (VT.isFloatingPoint())
 | ||
|       return TLO.CombineTo(
 | ||
|           Op,
 | ||
|           TLO.DAG.getConstantFP(
 | ||
|               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
 | ||
|   }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
 | ||
|                                                 const APInt &DemandedElts,
 | ||
|                                                 DAGCombinerInfo &DCI) const {
 | ||
|   SelectionDAG &DAG = DCI.DAG;
 | ||
|   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | ||
|                         !DCI.isBeforeLegalizeOps());
 | ||
| 
 | ||
|   APInt KnownUndef, KnownZero;
 | ||
|   bool Simplified =
 | ||
|       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
 | ||
|   if (Simplified) {
 | ||
|     DCI.AddToWorklist(Op.getNode());
 | ||
|     DCI.CommitTargetLoweringOpt(TLO);
 | ||
|   }
 | ||
| 
 | ||
|   return Simplified;
 | ||
| }
 | ||
| 
 | ||
| /// Given a vector binary operation and known undefined elements for each input
 | ||
| /// operand, compute whether each element of the output is undefined.
 | ||
| static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
 | ||
|                                          const APInt &UndefOp0,
 | ||
|                                          const APInt &UndefOp1) {
 | ||
|   EVT VT = BO.getValueType();
 | ||
|   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
 | ||
|          "Vector binop only");
 | ||
| 
 | ||
|   EVT EltVT = VT.getVectorElementType();
 | ||
|   unsigned NumElts = VT.getVectorNumElements();
 | ||
|   assert(UndefOp0.getBitWidth() == NumElts &&
 | ||
|          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
 | ||
| 
 | ||
|   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
 | ||
|                                    const APInt &UndefVals) {
 | ||
|     if (UndefVals[Index])
 | ||
|       return DAG.getUNDEF(EltVT);
 | ||
| 
 | ||
|     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
 | ||
|       // Try hard to make sure that the getNode() call is not creating temporary
 | ||
|       // nodes. Ignore opaque integers because they do not constant fold.
 | ||
|       SDValue Elt = BV->getOperand(Index);
 | ||
|       auto *C = dyn_cast<ConstantSDNode>(Elt);
 | ||
|       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
 | ||
|         return Elt;
 | ||
|     }
 | ||
| 
 | ||
|     return SDValue();
 | ||
|   };
 | ||
| 
 | ||
|   APInt KnownUndef = APInt::getZero(NumElts);
 | ||
|   for (unsigned i = 0; i != NumElts; ++i) {
 | ||
|     // If both inputs for this element are either constant or undef and match
 | ||
|     // the element type, compute the constant/undef result for this element of
 | ||
|     // the vector.
 | ||
|     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
 | ||
|     // not handle FP constants. The code within getNode() should be refactored
 | ||
|     // to avoid the danger of creating a bogus temporary node here.
 | ||
|     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
 | ||
|     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
 | ||
|     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
 | ||
|       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
 | ||
|         KnownUndef.setBit(i);
 | ||
|   }
 | ||
|   return KnownUndef;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::SimplifyDemandedVectorElts(
 | ||
|     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
 | ||
|     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
 | ||
|     bool AssumeSingleUse) const {
 | ||
|   EVT VT = Op.getValueType();
 | ||
|   unsigned Opcode = Op.getOpcode();
 | ||
|   APInt DemandedElts = OriginalDemandedElts;
 | ||
|   unsigned NumElts = DemandedElts.getBitWidth();
 | ||
|   assert(VT.isVector() && "Expected vector op");
 | ||
| 
 | ||
|   KnownUndef = KnownZero = APInt::getZero(NumElts);
 | ||
| 
 | ||
|   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
 | ||
|   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
 | ||
|     return false;
 | ||
| 
 | ||
|   // TODO: For now we assume we know nothing about scalable vectors.
 | ||
|   if (VT.isScalableVector())
 | ||
|     return false;
 | ||
| 
 | ||
|   assert(VT.getVectorNumElements() == NumElts &&
 | ||
|          "Mask size mismatches value type element count!");
 | ||
| 
 | ||
|   // Undef operand.
 | ||
|   if (Op.isUndef()) {
 | ||
|     KnownUndef.setAllBits();
 | ||
|     return false;
 | ||
|   }
 | ||
| 
 | ||
|   // If Op has other users, assume that all elements are needed.
 | ||
|   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
 | ||
|     DemandedElts.setAllBits();
 | ||
| 
 | ||
|   // Not demanding any elements from Op.
 | ||
|   if (DemandedElts == 0) {
 | ||
|     KnownUndef.setAllBits();
 | ||
|     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
 | ||
|   }
 | ||
| 
 | ||
|   // Limit search depth.
 | ||
|   if (Depth >= SelectionDAG::MaxRecursionDepth)
 | ||
|     return false;
 | ||
| 
 | ||
|   SDLoc DL(Op);
 | ||
|   unsigned EltSizeInBits = VT.getScalarSizeInBits();
 | ||
|   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
 | ||
| 
 | ||
|   // Helper for demanding the specified elements and all the bits of both binary
 | ||
|   // operands.
 | ||
|   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
 | ||
|     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
 | ||
|                                                            TLO.DAG, Depth + 1);
 | ||
|     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
 | ||
|                                                            TLO.DAG, Depth + 1);
 | ||
|     if (NewOp0 || NewOp1) {
 | ||
|       SDValue NewOp = TLO.DAG.getNode(
 | ||
|           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
 | ||
|       return TLO.CombineTo(Op, NewOp);
 | ||
|     }
 | ||
|     return false;
 | ||
|   };
 | ||
| 
 | ||
|   switch (Opcode) {
 | ||
|   case ISD::SCALAR_TO_VECTOR: {
 | ||
|     if (!DemandedElts[0]) {
 | ||
|       KnownUndef.setAllBits();
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
 | ||
|     }
 | ||
|     SDValue ScalarSrc = Op.getOperand(0);
 | ||
|     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | ||
|       SDValue Src = ScalarSrc.getOperand(0);
 | ||
|       SDValue Idx = ScalarSrc.getOperand(1);
 | ||
|       EVT SrcVT = Src.getValueType();
 | ||
| 
 | ||
|       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
 | ||
| 
 | ||
|       if (SrcEltCnt.isScalable())
 | ||
|         return false;
 | ||
| 
 | ||
|       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
 | ||
|       if (isNullConstant(Idx)) {
 | ||
|         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
 | ||
|         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
 | ||
|         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
 | ||
|         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
 | ||
|                                        TLO, Depth + 1))
 | ||
|           return true;
 | ||
|       }
 | ||
|     }
 | ||
|     KnownUndef.setHighBits(NumElts - 1);
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::BITCAST: {
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     EVT SrcVT = Src.getValueType();
 | ||
| 
 | ||
|     // We only handle vectors here.
 | ||
|     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
 | ||
|     if (!SrcVT.isVector())
 | ||
|       break;
 | ||
| 
 | ||
|     // Fast handling of 'identity' bitcasts.
 | ||
|     unsigned NumSrcElts = SrcVT.getVectorNumElements();
 | ||
|     if (NumSrcElts == NumElts)
 | ||
|       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
 | ||
|                                         KnownZero, TLO, Depth + 1);
 | ||
| 
 | ||
|     APInt SrcDemandedElts, SrcZero, SrcUndef;
 | ||
| 
 | ||
|     // Bitcast from 'large element' src vector to 'small element' vector, we
 | ||
|     // must demand a source element if any DemandedElt maps to it.
 | ||
|     if ((NumElts % NumSrcElts) == 0) {
 | ||
|       unsigned Scale = NumElts / NumSrcElts;
 | ||
|       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
 | ||
|       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
 | ||
|                                      TLO, Depth + 1))
 | ||
|         return true;
 | ||
| 
 | ||
|       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
 | ||
|       // of the large element.
 | ||
|       // TODO - bigendian once we have test coverage.
 | ||
|       if (IsLE) {
 | ||
|         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
 | ||
|         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
 | ||
|         for (unsigned i = 0; i != NumElts; ++i)
 | ||
|           if (DemandedElts[i]) {
 | ||
|             unsigned Ofs = (i % Scale) * EltSizeInBits;
 | ||
|             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
 | ||
|           }
 | ||
| 
 | ||
|         KnownBits Known;
 | ||
|         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
 | ||
|                                  TLO, Depth + 1))
 | ||
|           return true;
 | ||
| 
 | ||
|         // The bitcast has split each wide element into a number of
 | ||
|         // narrow subelements. We have just computed the Known bits
 | ||
|         // for wide elements. See if element splitting results in
 | ||
|         // some subelements being zero. Only for demanded elements!
 | ||
|         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
 | ||
|           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
 | ||
|                    .isAllOnes())
 | ||
|             continue;
 | ||
|           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
 | ||
|             unsigned Elt = Scale * SrcElt + SubElt;
 | ||
|             if (DemandedElts[Elt])
 | ||
|               KnownZero.setBit(Elt);
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       // If the src element is zero/undef then all the output elements will be -
 | ||
|       // only demanded elements are guaranteed to be correct.
 | ||
|       for (unsigned i = 0; i != NumSrcElts; ++i) {
 | ||
|         if (SrcDemandedElts[i]) {
 | ||
|           if (SrcZero[i])
 | ||
|             KnownZero.setBits(i * Scale, (i + 1) * Scale);
 | ||
|           if (SrcUndef[i])
 | ||
|             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // Bitcast from 'small element' src vector to 'large element' vector, we
 | ||
|     // demand all smaller source elements covered by the larger demanded element
 | ||
|     // of this vector.
 | ||
|     if ((NumSrcElts % NumElts) == 0) {
 | ||
|       unsigned Scale = NumSrcElts / NumElts;
 | ||
|       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
 | ||
|       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
 | ||
|                                      TLO, Depth + 1))
 | ||
|         return true;
 | ||
| 
 | ||
|       // If all the src elements covering an output element are zero/undef, then
 | ||
|       // the output element will be as well, assuming it was demanded.
 | ||
|       for (unsigned i = 0; i != NumElts; ++i) {
 | ||
|         if (DemandedElts[i]) {
 | ||
|           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
 | ||
|             KnownZero.setBit(i);
 | ||
|           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
 | ||
|             KnownUndef.setBit(i);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::BUILD_VECTOR: {
 | ||
|     // Check all elements and simplify any unused elements with UNDEF.
 | ||
|     if (!DemandedElts.isAllOnes()) {
 | ||
|       // Don't simplify BROADCASTS.
 | ||
|       if (llvm::any_of(Op->op_values(),
 | ||
|                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
 | ||
|         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
 | ||
|         bool Updated = false;
 | ||
|         for (unsigned i = 0; i != NumElts; ++i) {
 | ||
|           if (!DemandedElts[i] && !Ops[i].isUndef()) {
 | ||
|             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
 | ||
|             KnownUndef.setBit(i);
 | ||
|             Updated = true;
 | ||
|           }
 | ||
|         }
 | ||
|         if (Updated)
 | ||
|           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
 | ||
|       }
 | ||
|     }
 | ||
|     for (unsigned i = 0; i != NumElts; ++i) {
 | ||
|       SDValue SrcOp = Op.getOperand(i);
 | ||
|       if (SrcOp.isUndef()) {
 | ||
|         KnownUndef.setBit(i);
 | ||
|       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
 | ||
|                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
 | ||
|         KnownZero.setBit(i);
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::CONCAT_VECTORS: {
 | ||
|     EVT SubVT = Op.getOperand(0).getValueType();
 | ||
|     unsigned NumSubVecs = Op.getNumOperands();
 | ||
|     unsigned NumSubElts = SubVT.getVectorNumElements();
 | ||
|     for (unsigned i = 0; i != NumSubVecs; ++i) {
 | ||
|       SDValue SubOp = Op.getOperand(i);
 | ||
|       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
 | ||
|       APInt SubUndef, SubZero;
 | ||
|       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
 | ||
|                                      Depth + 1))
 | ||
|         return true;
 | ||
|       KnownUndef.insertBits(SubUndef, i * NumSubElts);
 | ||
|       KnownZero.insertBits(SubZero, i * NumSubElts);
 | ||
|     }
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (!DemandedElts.isAllOnes()) {
 | ||
|       bool FoundNewSub = false;
 | ||
|       SmallVector<SDValue, 2> DemandedSubOps;
 | ||
|       for (unsigned i = 0; i != NumSubVecs; ++i) {
 | ||
|         SDValue SubOp = Op.getOperand(i);
 | ||
|         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
 | ||
|         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
 | ||
|             SubOp, SubElts, TLO.DAG, Depth + 1);
 | ||
|         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
 | ||
|         FoundNewSub = NewSubOp ? true : FoundNewSub;
 | ||
|       }
 | ||
|       if (FoundNewSub) {
 | ||
|         SDValue NewOp =
 | ||
|             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::INSERT_SUBVECTOR: {
 | ||
|     // Demand any elements from the subvector and the remainder from the src its
 | ||
|     // inserted into.
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     SDValue Sub = Op.getOperand(1);
 | ||
|     uint64_t Idx = Op.getConstantOperandVal(2);
 | ||
|     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
 | ||
|     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
 | ||
|     APInt DemandedSrcElts = DemandedElts;
 | ||
|     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
 | ||
| 
 | ||
|     APInt SubUndef, SubZero;
 | ||
|     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
 | ||
|                                    Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     // If none of the src operand elements are demanded, replace it with undef.
 | ||
|     if (!DemandedSrcElts && !Src.isUndef())
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
 | ||
|                                                TLO.DAG.getUNDEF(VT), Sub,
 | ||
|                                                Op.getOperand(2)));
 | ||
| 
 | ||
|     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
 | ||
|                                    TLO, Depth + 1))
 | ||
|       return true;
 | ||
|     KnownUndef.insertBits(SubUndef, Idx);
 | ||
|     KnownZero.insertBits(SubZero, Idx);
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
 | ||
|       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
 | ||
|           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
 | ||
|       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
 | ||
|           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
 | ||
|       if (NewSrc || NewSub) {
 | ||
|         NewSrc = NewSrc ? NewSrc : Src;
 | ||
|         NewSub = NewSub ? NewSub : Sub;
 | ||
|         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
 | ||
|                                         NewSub, Op.getOperand(2));
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::EXTRACT_SUBVECTOR: {
 | ||
|     // Offset the demanded elts by the subvector index.
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     if (Src.getValueType().isScalableVector())
 | ||
|       break;
 | ||
|     uint64_t Idx = Op.getConstantOperandVal(1);
 | ||
|     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
 | ||
|     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
 | ||
| 
 | ||
|     APInt SrcUndef, SrcZero;
 | ||
|     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
 | ||
|                                    Depth + 1))
 | ||
|       return true;
 | ||
|     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
 | ||
|     KnownZero = SrcZero.extractBits(NumElts, Idx);
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     if (!DemandedElts.isAllOnes()) {
 | ||
|       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
 | ||
|           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
 | ||
|       if (NewSrc) {
 | ||
|         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
 | ||
|                                         Op.getOperand(1));
 | ||
|         return TLO.CombineTo(Op, NewOp);
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::INSERT_VECTOR_ELT: {
 | ||
|     SDValue Vec = Op.getOperand(0);
 | ||
|     SDValue Scl = Op.getOperand(1);
 | ||
|     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | ||
| 
 | ||
|     // For a legal, constant insertion index, if we don't need this insertion
 | ||
|     // then strip it, else remove it from the demanded elts.
 | ||
|     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
 | ||
|       unsigned Idx = CIdx->getZExtValue();
 | ||
|       if (!DemandedElts[Idx])
 | ||
|         return TLO.CombineTo(Op, Vec);
 | ||
| 
 | ||
|       APInt DemandedVecElts(DemandedElts);
 | ||
|       DemandedVecElts.clearBit(Idx);
 | ||
|       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
 | ||
|                                      KnownZero, TLO, Depth + 1))
 | ||
|         return true;
 | ||
| 
 | ||
|       KnownUndef.setBitVal(Idx, Scl.isUndef());
 | ||
| 
 | ||
|       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     APInt VecUndef, VecZero;
 | ||
|     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
 | ||
|                                    Depth + 1))
 | ||
|       return true;
 | ||
|     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::VSELECT: {
 | ||
|     // Try to transform the select condition based on the current demanded
 | ||
|     // elements.
 | ||
|     // TODO: If a condition element is undef, we can choose from one arm of the
 | ||
|     //       select (and if one arm is undef, then we can propagate that to the
 | ||
|     //       result).
 | ||
|     // TODO - add support for constant vselect masks (see IR version of this).
 | ||
|     APInt UnusedUndef, UnusedZero;
 | ||
|     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
 | ||
|                                    UnusedZero, TLO, Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     // See if we can simplify either vselect operand.
 | ||
|     APInt DemandedLHS(DemandedElts);
 | ||
|     APInt DemandedRHS(DemandedElts);
 | ||
|     APInt UndefLHS, ZeroLHS;
 | ||
|     APInt UndefRHS, ZeroRHS;
 | ||
|     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
 | ||
|                                    ZeroLHS, TLO, Depth + 1))
 | ||
|       return true;
 | ||
|     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
 | ||
|                                    ZeroRHS, TLO, Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     KnownUndef = UndefLHS & UndefRHS;
 | ||
|     KnownZero = ZeroLHS & ZeroRHS;
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::VECTOR_SHUFFLE: {
 | ||
|     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
 | ||
| 
 | ||
|     // Collect demanded elements from shuffle operands..
 | ||
|     APInt DemandedLHS(NumElts, 0);
 | ||
|     APInt DemandedRHS(NumElts, 0);
 | ||
|     for (unsigned i = 0; i != NumElts; ++i) {
 | ||
|       int M = ShuffleMask[i];
 | ||
|       if (M < 0 || !DemandedElts[i])
 | ||
|         continue;
 | ||
|       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
 | ||
|       if (M < (int)NumElts)
 | ||
|         DemandedLHS.setBit(M);
 | ||
|       else
 | ||
|         DemandedRHS.setBit(M - NumElts);
 | ||
|     }
 | ||
| 
 | ||
|     // See if we can simplify either shuffle operand.
 | ||
|     APInt UndefLHS, ZeroLHS;
 | ||
|     APInt UndefRHS, ZeroRHS;
 | ||
|     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
 | ||
|                                    ZeroLHS, TLO, Depth + 1))
 | ||
|       return true;
 | ||
|     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
 | ||
|                                    ZeroRHS, TLO, Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     // Simplify mask using undef elements from LHS/RHS.
 | ||
|     bool Updated = false;
 | ||
|     bool IdentityLHS = true, IdentityRHS = true;
 | ||
|     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
 | ||
|     for (unsigned i = 0; i != NumElts; ++i) {
 | ||
|       int &M = NewMask[i];
 | ||
|       if (M < 0)
 | ||
|         continue;
 | ||
|       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
 | ||
|           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
 | ||
|         Updated = true;
 | ||
|         M = -1;
 | ||
|       }
 | ||
|       IdentityLHS &= (M < 0) || (M == (int)i);
 | ||
|       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
 | ||
|     }
 | ||
| 
 | ||
|     // Update legal shuffle masks based on demanded elements if it won't reduce
 | ||
|     // to Identity which can cause premature removal of the shuffle mask.
 | ||
|     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
 | ||
|       SDValue LegalShuffle =
 | ||
|           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
 | ||
|                                   NewMask, TLO.DAG);
 | ||
|       if (LegalShuffle)
 | ||
|         return TLO.CombineTo(Op, LegalShuffle);
 | ||
|     }
 | ||
| 
 | ||
|     // Propagate undef/zero elements from LHS/RHS.
 | ||
|     for (unsigned i = 0; i != NumElts; ++i) {
 | ||
|       int M = ShuffleMask[i];
 | ||
|       if (M < 0) {
 | ||
|         KnownUndef.setBit(i);
 | ||
|       } else if (M < (int)NumElts) {
 | ||
|         if (UndefLHS[M])
 | ||
|           KnownUndef.setBit(i);
 | ||
|         if (ZeroLHS[M])
 | ||
|           KnownZero.setBit(i);
 | ||
|       } else {
 | ||
|         if (UndefRHS[M - NumElts])
 | ||
|           KnownUndef.setBit(i);
 | ||
|         if (ZeroRHS[M - NumElts])
 | ||
|           KnownZero.setBit(i);
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::ANY_EXTEND_VECTOR_INREG:
 | ||
|   case ISD::SIGN_EXTEND_VECTOR_INREG:
 | ||
|   case ISD::ZERO_EXTEND_VECTOR_INREG: {
 | ||
|     APInt SrcUndef, SrcZero;
 | ||
|     SDValue Src = Op.getOperand(0);
 | ||
|     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
 | ||
|     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
 | ||
|     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
 | ||
|                                    Depth + 1))
 | ||
|       return true;
 | ||
|     KnownZero = SrcZero.zextOrTrunc(NumElts);
 | ||
|     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
 | ||
| 
 | ||
|     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
 | ||
|         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
 | ||
|         DemandedSrcElts == 1) {
 | ||
|       // aext - if we just need the bottom element then we can bitcast.
 | ||
|       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
 | ||
|     }
 | ||
| 
 | ||
|     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
 | ||
|       // zext(undef) upper bits are guaranteed to be zero.
 | ||
|       if (DemandedElts.isSubsetOf(KnownUndef))
 | ||
|         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
 | ||
|       KnownUndef.clearAllBits();
 | ||
| 
 | ||
|       // zext - if we just need the bottom element then we can mask:
 | ||
|       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
 | ||
|       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
 | ||
|           Op->isOnlyUserOf(Src.getNode()) &&
 | ||
|           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
 | ||
|         SDLoc DL(Op);
 | ||
|         EVT SrcVT = Src.getValueType();
 | ||
|         EVT SrcSVT = SrcVT.getScalarType();
 | ||
|         SmallVector<SDValue> MaskElts;
 | ||
|         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
 | ||
|         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
 | ||
|         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
 | ||
|         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
 | ||
|                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
 | ||
|           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
 | ||
|           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   // TODO: There are more binop opcodes that could be handled here - MIN,
 | ||
|   // MAX, saturated math, etc.
 | ||
|   case ISD::ADD: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
|     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
 | ||
|       APInt UndefLHS, ZeroLHS;
 | ||
|       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
 | ||
|                                      Depth + 1, /*AssumeSingleUse*/ true))
 | ||
|         return true;
 | ||
|     }
 | ||
|     LLVM_FALLTHROUGH;
 | ||
|   }
 | ||
|   case ISD::OR:
 | ||
|   case ISD::XOR:
 | ||
|   case ISD::SUB:
 | ||
|   case ISD::FADD:
 | ||
|   case ISD::FSUB:
 | ||
|   case ISD::FMUL:
 | ||
|   case ISD::FDIV:
 | ||
|   case ISD::FREM: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
| 
 | ||
|     APInt UndefRHS, ZeroRHS;
 | ||
|     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
 | ||
|                                    Depth + 1))
 | ||
|       return true;
 | ||
|     APInt UndefLHS, ZeroLHS;
 | ||
|     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
 | ||
|                                    Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     KnownZero = ZeroLHS & ZeroRHS;
 | ||
|     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     // TODO - use KnownUndef to relax the demandedelts?
 | ||
|     if (!DemandedElts.isAllOnes())
 | ||
|       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
 | ||
|         return true;
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::SHL:
 | ||
|   case ISD::SRL:
 | ||
|   case ISD::SRA:
 | ||
|   case ISD::ROTL:
 | ||
|   case ISD::ROTR: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
| 
 | ||
|     APInt UndefRHS, ZeroRHS;
 | ||
|     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
 | ||
|                                    Depth + 1))
 | ||
|       return true;
 | ||
|     APInt UndefLHS, ZeroLHS;
 | ||
|     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
 | ||
|                                    Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     KnownZero = ZeroLHS;
 | ||
|     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     // TODO - use KnownUndef to relax the demandedelts?
 | ||
|     if (!DemandedElts.isAllOnes())
 | ||
|       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
 | ||
|         return true;
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::MUL:
 | ||
|   case ISD::AND: {
 | ||
|     SDValue Op0 = Op.getOperand(0);
 | ||
|     SDValue Op1 = Op.getOperand(1);
 | ||
| 
 | ||
|     APInt SrcUndef, SrcZero;
 | ||
|     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
 | ||
|                                    Depth + 1))
 | ||
|       return true;
 | ||
|     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
 | ||
|                                    TLO, Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     // If either side has a zero element, then the result element is zero, even
 | ||
|     // if the other is an UNDEF.
 | ||
|     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
 | ||
|     // and then handle 'and' nodes with the rest of the binop opcodes.
 | ||
|     KnownZero |= SrcZero;
 | ||
|     KnownUndef &= SrcUndef;
 | ||
|     KnownUndef &= ~KnownZero;
 | ||
| 
 | ||
|     // Attempt to avoid multi-use ops if we don't need anything from them.
 | ||
|     // TODO - use KnownUndef to relax the demandedelts?
 | ||
|     if (!DemandedElts.isAllOnes())
 | ||
|       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
 | ||
|         return true;
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::TRUNCATE:
 | ||
|   case ISD::SIGN_EXTEND:
 | ||
|   case ISD::ZERO_EXTEND:
 | ||
|     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
 | ||
|                                    KnownZero, TLO, Depth + 1))
 | ||
|       return true;
 | ||
| 
 | ||
|     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
 | ||
|       // zext(undef) upper bits are guaranteed to be zero.
 | ||
|       if (DemandedElts.isSubsetOf(KnownUndef))
 | ||
|         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
 | ||
|       KnownUndef.clearAllBits();
 | ||
|     }
 | ||
|     break;
 | ||
|   default: {
 | ||
|     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
 | ||
|       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
 | ||
|                                                   KnownZero, TLO, Depth))
 | ||
|         return true;
 | ||
|     } else {
 | ||
|       KnownBits Known;
 | ||
|       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
 | ||
|       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
 | ||
|                                TLO, Depth, AssumeSingleUse))
 | ||
|         return true;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   }
 | ||
|   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
 | ||
| 
 | ||
|   // Constant fold all undef cases.
 | ||
|   // TODO: Handle zero cases as well.
 | ||
|   if (DemandedElts.isSubsetOf(KnownUndef))
 | ||
|     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| /// Determine which of the bits specified in Mask are known to be either zero or
 | ||
| /// one and return them in the Known.
 | ||
| void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
 | ||
|                                                    KnownBits &Known,
 | ||
|                                                    const APInt &DemandedElts,
 | ||
|                                                    const SelectionDAG &DAG,
 | ||
|                                                    unsigned Depth) const {
 | ||
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | ||
|          "Should use MaskedValueIsZero if you don't know whether Op"
 | ||
|          " is a target node!");
 | ||
|   Known.resetAll();
 | ||
| }
 | ||
| 
 | ||
| void TargetLowering::computeKnownBitsForTargetInstr(
 | ||
|     GISelKnownBits &Analysis, Register R, KnownBits &Known,
 | ||
|     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
 | ||
|     unsigned Depth) const {
 | ||
|   Known.resetAll();
 | ||
| }
 | ||
| 
 | ||
| void TargetLowering::computeKnownBitsForFrameIndex(
 | ||
|   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
 | ||
|   // The low bits are known zero if the pointer is aligned.
 | ||
|   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
 | ||
| }
 | ||
| 
 | ||
| Align TargetLowering::computeKnownAlignForTargetInstr(
 | ||
|   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
 | ||
|   unsigned Depth) const {
 | ||
|   return Align(1);
 | ||
| }
 | ||
| 
 | ||
| /// This method can be implemented by targets that want to expose additional
 | ||
| /// information about sign bits to the DAG Combiner.
 | ||
| unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
 | ||
|                                                          const APInt &,
 | ||
|                                                          const SelectionDAG &,
 | ||
|                                                          unsigned Depth) const {
 | ||
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | ||
|          "Should use ComputeNumSignBits if you don't know whether Op"
 | ||
|          " is a target node!");
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| unsigned TargetLowering::computeNumSignBitsForTargetInstr(
 | ||
|   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
 | ||
|   const MachineRegisterInfo &MRI, unsigned Depth) const {
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
 | ||
|     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
 | ||
|     TargetLoweringOpt &TLO, unsigned Depth) const {
 | ||
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | ||
|          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
 | ||
|          " is a target node!");
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::SimplifyDemandedBitsForTargetNode(
 | ||
|     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
 | ||
|     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
 | ||
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | ||
|          "Should use SimplifyDemandedBits if you don't know whether Op"
 | ||
|          " is a target node!");
 | ||
|   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
 | ||
|     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
 | ||
|     SelectionDAG &DAG, unsigned Depth) const {
 | ||
|   assert(
 | ||
|       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | ||
|        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | ||
|        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | ||
|        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | ||
|       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
 | ||
|       " is a target node!");
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| SDValue
 | ||
| TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
 | ||
|                                         SDValue N1, MutableArrayRef<int> Mask,
 | ||
|                                         SelectionDAG &DAG) const {
 | ||
|   bool LegalMask = isShuffleMaskLegal(Mask, VT);
 | ||
|   if (!LegalMask) {
 | ||
|     std::swap(N0, N1);
 | ||
|     ShuffleVectorSDNode::commuteMask(Mask);
 | ||
|     LegalMask = isShuffleMaskLegal(Mask, VT);
 | ||
|   }
 | ||
| 
 | ||
|   if (!LegalMask)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
 | ||
| }
 | ||
| 
 | ||
| const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
 | ||
|   return nullptr;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
 | ||
|     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
 | ||
|     bool PoisonOnly, unsigned Depth) const {
 | ||
|   assert(
 | ||
|       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | ||
|        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | ||
|        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | ||
|        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | ||
|       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
 | ||
|       " is a target node!");
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
 | ||
|                                                   const SelectionDAG &DAG,
 | ||
|                                                   bool SNaN,
 | ||
|                                                   unsigned Depth) const {
 | ||
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | ||
|          "Should use isKnownNeverNaN if you don't know whether Op"
 | ||
|          " is a target node!");
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
 | ||
|                                                const APInt &DemandedElts,
 | ||
|                                                APInt &UndefElts,
 | ||
|                                                unsigned Depth) const {
 | ||
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | ||
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | ||
|          "Should use isSplatValue if you don't know whether Op"
 | ||
|          " is a target node!");
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
 | ||
| // work with truncating build vectors and vectors with elements of less than
 | ||
| // 8 bits.
 | ||
| bool TargetLowering::isConstTrueVal(SDValue N) const {
 | ||
|   if (!N)
 | ||
|     return false;
 | ||
| 
 | ||
|   unsigned EltWidth;
 | ||
|   APInt CVal;
 | ||
|   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
 | ||
|                                                /*AllowTruncation=*/true)) {
 | ||
|     CVal = CN->getAPIntValue();
 | ||
|     EltWidth = N.getValueType().getScalarSizeInBits();
 | ||
|   } else
 | ||
|     return false;
 | ||
| 
 | ||
|   // If this is a truncating splat, truncate the splat value.
 | ||
|   // Otherwise, we may fail to match the expected values below.
 | ||
|   if (EltWidth < CVal.getBitWidth())
 | ||
|     CVal = CVal.trunc(EltWidth);
 | ||
| 
 | ||
|   switch (getBooleanContents(N.getValueType())) {
 | ||
|   case UndefinedBooleanContent:
 | ||
|     return CVal[0];
 | ||
|   case ZeroOrOneBooleanContent:
 | ||
|     return CVal.isOne();
 | ||
|   case ZeroOrNegativeOneBooleanContent:
 | ||
|     return CVal.isAllOnes();
 | ||
|   }
 | ||
| 
 | ||
|   llvm_unreachable("Invalid boolean contents");
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::isConstFalseVal(SDValue N) const {
 | ||
|   if (!N)
 | ||
|     return false;
 | ||
| 
 | ||
|   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
 | ||
|   if (!CN) {
 | ||
|     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
 | ||
|     if (!BV)
 | ||
|       return false;
 | ||
| 
 | ||
|     // Only interested in constant splats, we don't care about undef
 | ||
|     // elements in identifying boolean constants and getConstantSplatNode
 | ||
|     // returns NULL if all ops are undef;
 | ||
|     CN = BV->getConstantSplatNode();
 | ||
|     if (!CN)
 | ||
|       return false;
 | ||
|   }
 | ||
| 
 | ||
|   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
 | ||
|     return !CN->getAPIntValue()[0];
 | ||
| 
 | ||
|   return CN->isZero();
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
 | ||
|                                        bool SExt) const {
 | ||
|   if (VT == MVT::i1)
 | ||
|     return N->isOne();
 | ||
| 
 | ||
|   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
 | ||
|   switch (Cnt) {
 | ||
|   case TargetLowering::ZeroOrOneBooleanContent:
 | ||
|     // An extended value of 1 is always true, unless its original type is i1,
 | ||
|     // in which case it will be sign extended to -1.
 | ||
|     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
 | ||
|   case TargetLowering::UndefinedBooleanContent:
 | ||
|   case TargetLowering::ZeroOrNegativeOneBooleanContent:
 | ||
|     return N->isAllOnes() && SExt;
 | ||
|   }
 | ||
|   llvm_unreachable("Unexpected enumeration.");
 | ||
| }
 | ||
| 
 | ||
| /// This helper function of SimplifySetCC tries to optimize the comparison when
 | ||
| /// either operand of the SetCC node is a bitwise-and instruction.
 | ||
| SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
 | ||
|                                          ISD::CondCode Cond, const SDLoc &DL,
 | ||
|                                          DAGCombinerInfo &DCI) const {
 | ||
|   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
 | ||
|     std::swap(N0, N1);
 | ||
| 
 | ||
|   SelectionDAG &DAG = DCI.DAG;
 | ||
|   EVT OpVT = N0.getValueType();
 | ||
|   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
 | ||
|       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // (X & Y) != 0 --> zextOrTrunc(X & Y)
 | ||
|   // iff everything but LSB is known zero:
 | ||
|   if (Cond == ISD::SETNE && isNullConstant(N1) &&
 | ||
|       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
 | ||
|        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
 | ||
|     unsigned NumEltBits = OpVT.getScalarSizeInBits();
 | ||
|     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
 | ||
|     if (DAG.MaskedValueIsZero(N0, UpperBits))
 | ||
|       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
 | ||
|   }
 | ||
| 
 | ||
|   // Match these patterns in any of their permutations:
 | ||
|   // (X & Y) == Y
 | ||
|   // (X & Y) != Y
 | ||
|   SDValue X, Y;
 | ||
|   if (N0.getOperand(0) == N1) {
 | ||
|     X = N0.getOperand(1);
 | ||
|     Y = N0.getOperand(0);
 | ||
|   } else if (N0.getOperand(1) == N1) {
 | ||
|     X = N0.getOperand(0);
 | ||
|     Y = N0.getOperand(1);
 | ||
|   } else {
 | ||
|     return SDValue();
 | ||
|   }
 | ||
| 
 | ||
|   SDValue Zero = DAG.getConstant(0, DL, OpVT);
 | ||
|   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
 | ||
|     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
 | ||
|     // Note that where Y is variable and is known to have at most one bit set
 | ||
|     // (for example, if it is Z & 1) we cannot do this; the expressions are not
 | ||
|     // equivalent when Y == 0.
 | ||
|     assert(OpVT.isInteger());
 | ||
|     Cond = ISD::getSetCCInverse(Cond, OpVT);
 | ||
|     if (DCI.isBeforeLegalizeOps() ||
 | ||
|         isCondCodeLegal(Cond, N0.getSimpleValueType()))
 | ||
|       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
 | ||
|   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
 | ||
|     // If the target supports an 'and-not' or 'and-complement' logic operation,
 | ||
|     // try to use that to make a comparison operation more efficient.
 | ||
|     // But don't do this transform if the mask is a single bit because there are
 | ||
|     // more efficient ways to deal with that case (for example, 'bt' on x86 or
 | ||
|     // 'rlwinm' on PPC).
 | ||
| 
 | ||
|     // Bail out if the compare operand that we want to turn into a zero is
 | ||
|     // already a zero (otherwise, infinite loop).
 | ||
|     auto *YConst = dyn_cast<ConstantSDNode>(Y);
 | ||
|     if (YConst && YConst->isZero())
 | ||
|       return SDValue();
 | ||
| 
 | ||
|     // Transform this into: ~X & Y == 0.
 | ||
|     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
 | ||
|     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
 | ||
|     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
 | ||
|   }
 | ||
| 
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| /// There are multiple IR patterns that could be checking whether certain
 | ||
| /// truncation of a signed number would be lossy or not. The pattern which is
 | ||
| /// best at IR level, may not lower optimally. Thus, we want to unfold it.
 | ||
| /// We are looking for the following pattern: (KeptBits is a constant)
 | ||
| ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
 | ||
| /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
 | ||
| /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
 | ||
| /// We will unfold it into the natural trunc+sext pattern:
 | ||
| ///   ((%x << C) a>> C) dstcond %x
 | ||
| /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
 | ||
| SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
 | ||
|     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
 | ||
|     const SDLoc &DL) const {
 | ||
|   // We must be comparing with a constant.
 | ||
|   ConstantSDNode *C1;
 | ||
|   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // N0 should be:  add %x, (1 << (KeptBits-1))
 | ||
|   if (N0->getOpcode() != ISD::ADD)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // And we must be 'add'ing a constant.
 | ||
|   ConstantSDNode *C01;
 | ||
|   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   SDValue X = N0->getOperand(0);
 | ||
|   EVT XVT = X.getValueType();
 | ||
| 
 | ||
|   // Validate constants ...
 | ||
| 
 | ||
|   APInt I1 = C1->getAPIntValue();
 | ||
| 
 | ||
|   ISD::CondCode NewCond;
 | ||
|   if (Cond == ISD::CondCode::SETULT) {
 | ||
|     NewCond = ISD::CondCode::SETEQ;
 | ||
|   } else if (Cond == ISD::CondCode::SETULE) {
 | ||
|     NewCond = ISD::CondCode::SETEQ;
 | ||
|     // But need to 'canonicalize' the constant.
 | ||
|     I1 += 1;
 | ||
|   } else if (Cond == ISD::CondCode::SETUGT) {
 | ||
|     NewCond = ISD::CondCode::SETNE;
 | ||
|     // But need to 'canonicalize' the constant.
 | ||
|     I1 += 1;
 | ||
|   } else if (Cond == ISD::CondCode::SETUGE) {
 | ||
|     NewCond = ISD::CondCode::SETNE;
 | ||
|   } else
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   APInt I01 = C01->getAPIntValue();
 | ||
| 
 | ||
|   auto checkConstants = [&I1, &I01]() -> bool {
 | ||
|     // Both of them must be power-of-two, and the constant from setcc is bigger.
 | ||
|     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
 | ||
|   };
 | ||
| 
 | ||
|   if (checkConstants()) {
 | ||
|     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
 | ||
|   } else {
 | ||
|     // What if we invert constants? (and the target predicate)
 | ||
|     I1.negate();
 | ||
|     I01.negate();
 | ||
|     assert(XVT.isInteger());
 | ||
|     NewCond = getSetCCInverse(NewCond, XVT);
 | ||
|     if (!checkConstants())
 | ||
|       return SDValue();
 | ||
|     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
 | ||
|   }
 | ||
| 
 | ||
|   // They are power-of-two, so which bit is set?
 | ||
|   const unsigned KeptBits = I1.logBase2();
 | ||
|   const unsigned KeptBitsMinusOne = I01.logBase2();
 | ||
| 
 | ||
|   // Magic!
 | ||
|   if (KeptBits != (KeptBitsMinusOne + 1))
 | ||
|     return SDValue();
 | ||
|   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
 | ||
| 
 | ||
|   // We don't want to do this in every single case.
 | ||
|   SelectionDAG &DAG = DCI.DAG;
 | ||
|   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
 | ||
|           XVT, KeptBits))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
 | ||
|   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
 | ||
| 
 | ||
|   // Unfold into:  ((%x << C) a>> C) cond %x
 | ||
|   // Where 'cond' will be either 'eq' or 'ne'.
 | ||
|   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
 | ||
|   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
 | ||
|   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
 | ||
|   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
 | ||
| 
 | ||
|   return T2;
 | ||
| }
 | ||
| 
 | ||
| // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
 | ||
| SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
 | ||
|     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
 | ||
|     DAGCombinerInfo &DCI, const SDLoc &DL) const {
 | ||
|   assert(isConstOrConstSplat(N1C) &&
 | ||
|          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
 | ||
|          "Should be a comparison with 0.");
 | ||
|   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | ||
|          "Valid only for [in]equality comparisons.");
 | ||
| 
 | ||
|   unsigned NewShiftOpcode;
 | ||
|   SDValue X, C, Y;
 | ||
| 
 | ||
|   SelectionDAG &DAG = DCI.DAG;
 | ||
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | ||
| 
 | ||
|   // Look for '(C l>>/<< Y)'.
 | ||
|   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
 | ||
|     // The shift should be one-use.
 | ||
|     if (!V.hasOneUse())
 | ||
|       return false;
 | ||
|     unsigned OldShiftOpcode = V.getOpcode();
 | ||
|     switch (OldShiftOpcode) {
 | ||
|     case ISD::SHL:
 | ||
|       NewShiftOpcode = ISD::SRL;
 | ||
|       break;
 | ||
|     case ISD::SRL:
 | ||
|       NewShiftOpcode = ISD::SHL;
 | ||
|       break;
 | ||
|     default:
 | ||
|       return false; // must be a logical shift.
 | ||
|     }
 | ||
|     // We should be shifting a constant.
 | ||
|     // FIXME: best to use isConstantOrConstantVector().
 | ||
|     C = V.getOperand(0);
 | ||
|     ConstantSDNode *CC =
 | ||
|         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
 | ||
|     if (!CC)
 | ||
|       return false;
 | ||
|     Y = V.getOperand(1);
 | ||
| 
 | ||
|     ConstantSDNode *XC =
 | ||
|         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
 | ||
|     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
 | ||
|         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
 | ||
|   };
 | ||
| 
 | ||
|   // LHS of comparison should be an one-use 'and'.
 | ||
|   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   X = N0.getOperand(0);
 | ||
|   SDValue Mask = N0.getOperand(1);
 | ||
| 
 | ||
|   // 'and' is commutative!
 | ||
|   if (!Match(Mask)) {
 | ||
|     std::swap(X, Mask);
 | ||
|     if (!Match(Mask))
 | ||
|       return SDValue();
 | ||
|   }
 | ||
| 
 | ||
|   EVT VT = X.getValueType();
 | ||
| 
 | ||
|   // Produce:
 | ||
|   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
 | ||
|   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
 | ||
|   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
 | ||
|   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
 | ||
|   return T2;
 | ||
| }
 | ||
| 
 | ||
| /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
 | ||
| /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
 | ||
| /// handle the commuted versions of these patterns.
 | ||
| SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
 | ||
|                                            ISD::CondCode Cond, const SDLoc &DL,
 | ||
|                                            DAGCombinerInfo &DCI) const {
 | ||
|   unsigned BOpcode = N0.getOpcode();
 | ||
|   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
 | ||
|          "Unexpected binop");
 | ||
|   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
 | ||
| 
 | ||
|   // (X + Y) == X --> Y == 0
 | ||
|   // (X - Y) == X --> Y == 0
 | ||
|   // (X ^ Y) == X --> Y == 0
 | ||
|   SelectionDAG &DAG = DCI.DAG;
 | ||
|   EVT OpVT = N0.getValueType();
 | ||
|   SDValue X = N0.getOperand(0);
 | ||
|   SDValue Y = N0.getOperand(1);
 | ||
|   if (X == N1)
 | ||
|     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
 | ||
| 
 | ||
|   if (Y != N1)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // (X + Y) == Y --> X == 0
 | ||
|   // (X ^ Y) == Y --> X == 0
 | ||
|   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
 | ||
|     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
 | ||
| 
 | ||
|   // The shift would not be valid if the operands are boolean (i1).
 | ||
|   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // (X - Y) == Y --> X == Y << 1
 | ||
|   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
 | ||
|                                  !DCI.isBeforeLegalize());
 | ||
|   SDValue One = DAG.getConstant(1, DL, ShiftVT);
 | ||
|   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
 | ||
|   if (!DCI.isCalledByLegalizer())
 | ||
|     DCI.AddToWorklist(YShl1.getNode());
 | ||
|   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
 | ||
| }
 | ||
| 
 | ||
| static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
 | ||
|                                       SDValue N0, const APInt &C1,
 | ||
|                                       ISD::CondCode Cond, const SDLoc &dl,
 | ||
|                                       SelectionDAG &DAG) {
 | ||
|   // Look through truncs that don't change the value of a ctpop.
 | ||
|   // FIXME: Add vector support? Need to be careful with setcc result type below.
 | ||
|   SDValue CTPOP = N0;
 | ||
|   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
 | ||
|       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
 | ||
|     CTPOP = N0.getOperand(0);
 | ||
| 
 | ||
|   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   EVT CTVT = CTPOP.getValueType();
 | ||
|   SDValue CTOp = CTPOP.getOperand(0);
 | ||
| 
 | ||
|   // If this is a vector CTPOP, keep the CTPOP if it is legal.
 | ||
|   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
 | ||
|   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // (ctpop x) u< 2 -> (x & x-1) == 0
 | ||
|   // (ctpop x) u> 1 -> (x & x-1) != 0
 | ||
|   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
 | ||
|     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
 | ||
|     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
 | ||
|       return SDValue();
 | ||
|     if (C1 == 0 && (Cond == ISD::SETULT))
 | ||
|       return SDValue(); // This is handled elsewhere.
 | ||
| 
 | ||
|     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
 | ||
| 
 | ||
|     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
 | ||
|     SDValue Result = CTOp;
 | ||
|     for (unsigned i = 0; i < Passes; i++) {
 | ||
|       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
 | ||
|       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
 | ||
|     }
 | ||
|     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
 | ||
|     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
 | ||
|   }
 | ||
| 
 | ||
|   // If ctpop is not supported, expand a power-of-2 comparison based on it.
 | ||
|   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
 | ||
|     // For scalars, keep CTPOP if it is legal or custom.
 | ||
|     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
 | ||
|       return SDValue();
 | ||
|     // This is based on X86's custom lowering for CTPOP which produces more
 | ||
|     // instructions than the expansion here.
 | ||
| 
 | ||
|     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
 | ||
|     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
 | ||
|     SDValue Zero = DAG.getConstant(0, dl, CTVT);
 | ||
|     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
 | ||
|     assert(CTVT.isInteger());
 | ||
|     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
 | ||
|     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
 | ||
|     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
 | ||
|     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
 | ||
|     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
 | ||
|     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
 | ||
|     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
 | ||
|   }
 | ||
| 
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
 | ||
|                                    ISD::CondCode Cond, const SDLoc &dl,
 | ||
|                                    SelectionDAG &DAG) {
 | ||
|   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
 | ||
|   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   auto getRotateSource = [](SDValue X) {
 | ||
|     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
 | ||
|       return X.getOperand(0);
 | ||
|     return SDValue();
 | ||
|   };
 | ||
| 
 | ||
|   // Peek through a rotated value compared against 0 or -1:
 | ||
|   // (rot X, Y) == 0/-1 --> X == 0/-1
 | ||
|   // (rot X, Y) != 0/-1 --> X != 0/-1
 | ||
|   if (SDValue R = getRotateSource(N0))
 | ||
|     return DAG.getSetCC(dl, VT, R, N1, Cond);
 | ||
| 
 | ||
|   // Peek through an 'or' of a rotated value compared against 0:
 | ||
|   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
 | ||
|   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
 | ||
|   //
 | ||
|   // TODO: Add the 'and' with -1 sibling.
 | ||
|   // TODO: Recurse through a series of 'or' ops to find the rotate.
 | ||
|   EVT OpVT = N0.getValueType();
 | ||
|   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
 | ||
|     if (SDValue R = getRotateSource(N0.getOperand(0))) {
 | ||
|       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
 | ||
|       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
 | ||
|     }
 | ||
|     if (SDValue R = getRotateSource(N0.getOperand(1))) {
 | ||
|       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
 | ||
|       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
 | ||
|                                         ISD::CondCode Cond, const SDLoc &dl,
 | ||
|                                         SelectionDAG &DAG) {
 | ||
|   // If we are testing for all-bits-clear, we might be able to do that with
 | ||
|   // less shifting since bit-order does not matter.
 | ||
|   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
 | ||
|   if (!C1 || !C1->isZero())
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   if (!N0.hasOneUse() ||
 | ||
|       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   unsigned BitWidth = N0.getScalarValueSizeInBits();
 | ||
|   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
 | ||
|   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // Canonicalize fshr as fshl to reduce pattern-matching.
 | ||
|   unsigned ShAmt = ShAmtC->getZExtValue();
 | ||
|   if (N0.getOpcode() == ISD::FSHR)
 | ||
|     ShAmt = BitWidth - ShAmt;
 | ||
| 
 | ||
|   // Match an 'or' with a specific operand 'Other' in either commuted variant.
 | ||
|   SDValue X, Y;
 | ||
|   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
 | ||
|     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
 | ||
|       return false;
 | ||
|     if (Or.getOperand(0) == Other) {
 | ||
|       X = Or.getOperand(0);
 | ||
|       Y = Or.getOperand(1);
 | ||
|       return true;
 | ||
|     }
 | ||
|     if (Or.getOperand(1) == Other) {
 | ||
|       X = Or.getOperand(1);
 | ||
|       Y = Or.getOperand(0);
 | ||
|       return true;
 | ||
|     }
 | ||
|     return false;
 | ||
|   };
 | ||
| 
 | ||
|   EVT OpVT = N0.getValueType();
 | ||
|   EVT ShAmtVT = N0.getOperand(2).getValueType();
 | ||
|   SDValue F0 = N0.getOperand(0);
 | ||
|   SDValue F1 = N0.getOperand(1);
 | ||
|   if (matchOr(F0, F1)) {
 | ||
|     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
 | ||
|     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
 | ||
|     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
 | ||
|     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
 | ||
|     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
 | ||
|   }
 | ||
|   if (matchOr(F1, F0)) {
 | ||
|     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
 | ||
|     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
 | ||
|     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
 | ||
|     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
 | ||
|     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
 | ||
|   }
 | ||
| 
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| /// Try to simplify a setcc built with the specified operands and cc. If it is
 | ||
| /// unable to simplify it, return a null SDValue.
 | ||
| SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
 | ||
|                                       ISD::CondCode Cond, bool foldBooleans,
 | ||
|                                       DAGCombinerInfo &DCI,
 | ||
|                                       const SDLoc &dl) const {
 | ||
|   SelectionDAG &DAG = DCI.DAG;
 | ||
|   const DataLayout &Layout = DAG.getDataLayout();
 | ||
|   EVT OpVT = N0.getValueType();
 | ||
| 
 | ||
|   // Constant fold or commute setcc.
 | ||
|   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
 | ||
|     return Fold;
 | ||
| 
 | ||
|   bool N0ConstOrSplat =
 | ||
|       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
 | ||
|   bool N1ConstOrSplat =
 | ||
|       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
 | ||
| 
 | ||
|   // Ensure that the constant occurs on the RHS and fold constant comparisons.
 | ||
|   // TODO: Handle non-splat vector constants. All undef causes trouble.
 | ||
|   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
 | ||
|   // infinite loop here when we encounter one.
 | ||
|   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
 | ||
|   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
 | ||
|       (DCI.isBeforeLegalizeOps() ||
 | ||
|        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
 | ||
|     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
 | ||
| 
 | ||
|   // If we have a subtract with the same 2 non-constant operands as this setcc
 | ||
|   // -- but in reverse order -- then try to commute the operands of this setcc
 | ||
|   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
 | ||
|   // instruction on some targets.
 | ||
|   if (!N0ConstOrSplat && !N1ConstOrSplat &&
 | ||
|       (DCI.isBeforeLegalizeOps() ||
 | ||
|        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
 | ||
|       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
 | ||
|       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
 | ||
|     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
 | ||
| 
 | ||
|   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
 | ||
|     return V;
 | ||
| 
 | ||
|   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
 | ||
|     return V;
 | ||
| 
 | ||
|   if (auto *N1C = isConstOrConstSplat(N1)) {
 | ||
|     const APInt &C1 = N1C->getAPIntValue();
 | ||
| 
 | ||
|     // Optimize some CTPOP cases.
 | ||
|     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
 | ||
|       return V;
 | ||
| 
 | ||
|     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
 | ||
|     // equality comparison, then we're just comparing whether X itself is
 | ||
|     // zero.
 | ||
|     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
 | ||
|         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
 | ||
|         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
 | ||
|       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
 | ||
|         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | ||
|             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
 | ||
|           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
 | ||
|             // (srl (ctlz x), 5) == 0  -> X != 0
 | ||
|             // (srl (ctlz x), 5) != 1  -> X != 0
 | ||
|             Cond = ISD::SETNE;
 | ||
|           } else {
 | ||
|             // (srl (ctlz x), 5) != 0  -> X == 0
 | ||
|             // (srl (ctlz x), 5) == 1  -> X == 0
 | ||
|             Cond = ISD::SETEQ;
 | ||
|           }
 | ||
|           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
 | ||
|           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
 | ||
|                               Cond);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // FIXME: Support vectors.
 | ||
|   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
 | ||
|     const APInt &C1 = N1C->getAPIntValue();
 | ||
| 
 | ||
|     // (zext x) == C --> x == (trunc C)
 | ||
|     // (sext x) == C --> x == (trunc C)
 | ||
|     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | ||
|         DCI.isBeforeLegalize() && N0->hasOneUse()) {
 | ||
|       unsigned MinBits = N0.getValueSizeInBits();
 | ||
|       SDValue PreExt;
 | ||
|       bool Signed = false;
 | ||
|       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
 | ||
|         // ZExt
 | ||
|         MinBits = N0->getOperand(0).getValueSizeInBits();
 | ||
|         PreExt = N0->getOperand(0);
 | ||
|       } else if (N0->getOpcode() == ISD::AND) {
 | ||
|         // DAGCombine turns costly ZExts into ANDs
 | ||
|         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
 | ||
|           if ((C->getAPIntValue()+1).isPowerOf2()) {
 | ||
|             MinBits = C->getAPIntValue().countTrailingOnes();
 | ||
|             PreExt = N0->getOperand(0);
 | ||
|           }
 | ||
|       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
 | ||
|         // SExt
 | ||
|         MinBits = N0->getOperand(0).getValueSizeInBits();
 | ||
|         PreExt = N0->getOperand(0);
 | ||
|         Signed = true;
 | ||
|       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
 | ||
|         // ZEXTLOAD / SEXTLOAD
 | ||
|         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
 | ||
|           MinBits = LN0->getMemoryVT().getSizeInBits();
 | ||
|           PreExt = N0;
 | ||
|         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
 | ||
|           Signed = true;
 | ||
|           MinBits = LN0->getMemoryVT().getSizeInBits();
 | ||
|           PreExt = N0;
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       // Figure out how many bits we need to preserve this constant.
 | ||
|       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
 | ||
| 
 | ||
|       // Make sure we're not losing bits from the constant.
 | ||
|       if (MinBits > 0 &&
 | ||
|           MinBits < C1.getBitWidth() &&
 | ||
|           MinBits >= ReqdBits) {
 | ||
|         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
 | ||
|         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
 | ||
|           // Will get folded away.
 | ||
|           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
 | ||
|           if (MinBits == 1 && C1 == 1)
 | ||
|             // Invert the condition.
 | ||
|             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
 | ||
|                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | ||
|           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
 | ||
|           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
 | ||
|         }
 | ||
| 
 | ||
|         // If truncating the setcc operands is not desirable, we can still
 | ||
|         // simplify the expression in some cases:
 | ||
|         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
 | ||
|         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
 | ||
|         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
 | ||
|         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
 | ||
|         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
 | ||
|         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
 | ||
|         SDValue TopSetCC = N0->getOperand(0);
 | ||
|         unsigned N0Opc = N0->getOpcode();
 | ||
|         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
 | ||
|         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
 | ||
|             TopSetCC.getOpcode() == ISD::SETCC &&
 | ||
|             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
 | ||
|             (isConstFalseVal(N1) ||
 | ||
|              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
 | ||
| 
 | ||
|           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
 | ||
|                          (!N1C->isZero() && Cond == ISD::SETNE);
 | ||
| 
 | ||
|           if (!Inverse)
 | ||
|             return TopSetCC;
 | ||
| 
 | ||
|           ISD::CondCode InvCond = ISD::getSetCCInverse(
 | ||
|               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
 | ||
|               TopSetCC.getOperand(0).getValueType());
 | ||
|           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
 | ||
|                                       TopSetCC.getOperand(1),
 | ||
|                                       InvCond);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // If the LHS is '(and load, const)', the RHS is 0, the test is for
 | ||
|     // equality or unsigned, and all 1 bits of the const are in the same
 | ||
|     // partial word, see if we can shorten the load.
 | ||
|     if (DCI.isBeforeLegalize() &&
 | ||
|         !ISD::isSignedIntSetCC(Cond) &&
 | ||
|         N0.getOpcode() == ISD::AND && C1 == 0 &&
 | ||
|         N0.getNode()->hasOneUse() &&
 | ||
|         isa<LoadSDNode>(N0.getOperand(0)) &&
 | ||
|         N0.getOperand(0).getNode()->hasOneUse() &&
 | ||
|         isa<ConstantSDNode>(N0.getOperand(1))) {
 | ||
|       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
 | ||
|       APInt bestMask;
 | ||
|       unsigned bestWidth = 0, bestOffset = 0;
 | ||
|       if (Lod->isSimple() && Lod->isUnindexed()) {
 | ||
|         unsigned origWidth = N0.getValueSizeInBits();
 | ||
|         unsigned maskWidth = origWidth;
 | ||
|         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
 | ||
|         // 8 bits, but have to be careful...
 | ||
|         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
 | ||
|           origWidth = Lod->getMemoryVT().getSizeInBits();
 | ||
|         const APInt &Mask = N0.getConstantOperandAPInt(1);
 | ||
|         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
 | ||
|           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
 | ||
|           for (unsigned offset=0; offset<origWidth/width; offset++) {
 | ||
|             if (Mask.isSubsetOf(newMask)) {
 | ||
|               if (Layout.isLittleEndian())
 | ||
|                 bestOffset = (uint64_t)offset * (width/8);
 | ||
|               else
 | ||
|                 bestOffset = (origWidth/width - offset - 1) * (width/8);
 | ||
|               bestMask = Mask.lshr(offset * (width/8) * 8);
 | ||
|               bestWidth = width;
 | ||
|               break;
 | ||
|             }
 | ||
|             newMask <<= width;
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
|       if (bestWidth) {
 | ||
|         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
 | ||
|         if (newVT.isRound() &&
 | ||
|             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
 | ||
|           SDValue Ptr = Lod->getBasePtr();
 | ||
|           if (bestOffset != 0)
 | ||
|             Ptr =
 | ||
|                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
 | ||
|           SDValue NewLoad =
 | ||
|               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
 | ||
|                           Lod->getPointerInfo().getWithOffset(bestOffset),
 | ||
|                           Lod->getOriginalAlign());
 | ||
|           return DAG.getSetCC(dl, VT,
 | ||
|                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
 | ||
|                                       DAG.getConstant(bestMask.trunc(bestWidth),
 | ||
|                                                       dl, newVT)),
 | ||
|                               DAG.getConstant(0LL, dl, newVT), Cond);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
 | ||
|     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
 | ||
|       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
 | ||
| 
 | ||
|       // If the comparison constant has bits in the upper part, the
 | ||
|       // zero-extended value could never match.
 | ||
|       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
 | ||
|                                               C1.getBitWidth() - InSize))) {
 | ||
|         switch (Cond) {
 | ||
|         case ISD::SETUGT:
 | ||
|         case ISD::SETUGE:
 | ||
|         case ISD::SETEQ:
 | ||
|           return DAG.getConstant(0, dl, VT);
 | ||
|         case ISD::SETULT:
 | ||
|         case ISD::SETULE:
 | ||
|         case ISD::SETNE:
 | ||
|           return DAG.getConstant(1, dl, VT);
 | ||
|         case ISD::SETGT:
 | ||
|         case ISD::SETGE:
 | ||
|           // True if the sign bit of C1 is set.
 | ||
|           return DAG.getConstant(C1.isNegative(), dl, VT);
 | ||
|         case ISD::SETLT:
 | ||
|         case ISD::SETLE:
 | ||
|           // True if the sign bit of C1 isn't set.
 | ||
|           return DAG.getConstant(C1.isNonNegative(), dl, VT);
 | ||
|         default:
 | ||
|           break;
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       // Otherwise, we can perform the comparison with the low bits.
 | ||
|       switch (Cond) {
 | ||
|       case ISD::SETEQ:
 | ||
|       case ISD::SETNE:
 | ||
|       case ISD::SETUGT:
 | ||
|       case ISD::SETUGE:
 | ||
|       case ISD::SETULT:
 | ||
|       case ISD::SETULE: {
 | ||
|         EVT newVT = N0.getOperand(0).getValueType();
 | ||
|         if (DCI.isBeforeLegalizeOps() ||
 | ||
|             (isOperationLegal(ISD::SETCC, newVT) &&
 | ||
|              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
 | ||
|           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
 | ||
|           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
 | ||
| 
 | ||
|           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
 | ||
|                                           NewConst, Cond);
 | ||
|           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
 | ||
|         }
 | ||
|         break;
 | ||
|       }
 | ||
|       default:
 | ||
|         break; // todo, be more careful with signed comparisons
 | ||
|       }
 | ||
|     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
 | ||
|                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | ||
|                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
 | ||
|                                       OpVT)) {
 | ||
|       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
 | ||
|       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
 | ||
|       EVT ExtDstTy = N0.getValueType();
 | ||
|       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
 | ||
| 
 | ||
|       // If the constant doesn't fit into the number of bits for the source of
 | ||
|       // the sign extension, it is impossible for both sides to be equal.
 | ||
|       if (C1.getMinSignedBits() > ExtSrcTyBits)
 | ||
|         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
 | ||
| 
 | ||
|       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
 | ||
|              ExtDstTy != ExtSrcTy && "Unexpected types!");
 | ||
|       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
 | ||
|       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
 | ||
|                                    DAG.getConstant(Imm, dl, ExtDstTy));
 | ||
|       if (!DCI.isCalledByLegalizer())
 | ||
|         DCI.AddToWorklist(ZextOp.getNode());
 | ||
|       // Otherwise, make this a use of a zext.
 | ||
|       return DAG.getSetCC(dl, VT, ZextOp,
 | ||
|                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
 | ||
|     } else if ((N1C->isZero() || N1C->isOne()) &&
 | ||
|                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | ||
|       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
 | ||
|       if (N0.getOpcode() == ISD::SETCC &&
 | ||
|           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
 | ||
|           (N0.getValueType() == MVT::i1 ||
 | ||
|            getBooleanContents(N0.getOperand(0).getValueType()) ==
 | ||
|                        ZeroOrOneBooleanContent)) {
 | ||
|         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
 | ||
|         if (TrueWhenTrue)
 | ||
|           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
 | ||
|         // Invert the condition.
 | ||
|         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
 | ||
|         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
 | ||
|         if (DCI.isBeforeLegalizeOps() ||
 | ||
|             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
 | ||
|           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
 | ||
|       }
 | ||
| 
 | ||
|       if ((N0.getOpcode() == ISD::XOR ||
 | ||
|            (N0.getOpcode() == ISD::AND &&
 | ||
|             N0.getOperand(0).getOpcode() == ISD::XOR &&
 | ||
|             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
 | ||
|           isOneConstant(N0.getOperand(1))) {
 | ||
|         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
 | ||
|         // can only do this if the top bits are known zero.
 | ||
|         unsigned BitWidth = N0.getValueSizeInBits();
 | ||
|         if (DAG.MaskedValueIsZero(N0,
 | ||
|                                   APInt::getHighBitsSet(BitWidth,
 | ||
|                                                         BitWidth-1))) {
 | ||
|           // Okay, get the un-inverted input value.
 | ||
|           SDValue Val;
 | ||
|           if (N0.getOpcode() == ISD::XOR) {
 | ||
|             Val = N0.getOperand(0);
 | ||
|           } else {
 | ||
|             assert(N0.getOpcode() == ISD::AND &&
 | ||
|                     N0.getOperand(0).getOpcode() == ISD::XOR);
 | ||
|             // ((X^1)&1)^1 -> X & 1
 | ||
|             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
 | ||
|                               N0.getOperand(0).getOperand(0),
 | ||
|                               N0.getOperand(1));
 | ||
|           }
 | ||
| 
 | ||
|           return DAG.getSetCC(dl, VT, Val, N1,
 | ||
|                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | ||
|         }
 | ||
|       } else if (N1C->isOne()) {
 | ||
|         SDValue Op0 = N0;
 | ||
|         if (Op0.getOpcode() == ISD::TRUNCATE)
 | ||
|           Op0 = Op0.getOperand(0);
 | ||
| 
 | ||
|         if ((Op0.getOpcode() == ISD::XOR) &&
 | ||
|             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
 | ||
|             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
 | ||
|           SDValue XorLHS = Op0.getOperand(0);
 | ||
|           SDValue XorRHS = Op0.getOperand(1);
 | ||
|           // Ensure that the input setccs return an i1 type or 0/1 value.
 | ||
|           if (Op0.getValueType() == MVT::i1 ||
 | ||
|               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
 | ||
|                       ZeroOrOneBooleanContent &&
 | ||
|                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
 | ||
|                         ZeroOrOneBooleanContent)) {
 | ||
|             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
 | ||
|             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
 | ||
|             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
 | ||
|           }
 | ||
|         }
 | ||
|         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
 | ||
|           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
 | ||
|           if (Op0.getValueType().bitsGT(VT))
 | ||
|             Op0 = DAG.getNode(ISD::AND, dl, VT,
 | ||
|                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
 | ||
|                           DAG.getConstant(1, dl, VT));
 | ||
|           else if (Op0.getValueType().bitsLT(VT))
 | ||
|             Op0 = DAG.getNode(ISD::AND, dl, VT,
 | ||
|                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
 | ||
|                         DAG.getConstant(1, dl, VT));
 | ||
| 
 | ||
|           return DAG.getSetCC(dl, VT, Op0,
 | ||
|                               DAG.getConstant(0, dl, Op0.getValueType()),
 | ||
|                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | ||
|         }
 | ||
|         if (Op0.getOpcode() == ISD::AssertZext &&
 | ||
|             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
 | ||
|           return DAG.getSetCC(dl, VT, Op0,
 | ||
|                               DAG.getConstant(0, dl, Op0.getValueType()),
 | ||
|                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // Given:
 | ||
|     //   icmp eq/ne (urem %x, %y), 0
 | ||
|     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
 | ||
|     //   icmp eq/ne %x, 0
 | ||
|     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
 | ||
|         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | ||
|       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
 | ||
|       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
 | ||
|       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
 | ||
|         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
 | ||
|     }
 | ||
| 
 | ||
|     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
 | ||
|     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
 | ||
|     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | ||
|         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
 | ||
|         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
 | ||
|         N1C && N1C->isAllOnes()) {
 | ||
|       return DAG.getSetCC(dl, VT, N0.getOperand(0),
 | ||
|                           DAG.getConstant(0, dl, OpVT),
 | ||
|                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
 | ||
|     }
 | ||
| 
 | ||
|     if (SDValue V =
 | ||
|             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
 | ||
|       return V;
 | ||
|   }
 | ||
| 
 | ||
|   // These simplifications apply to splat vectors as well.
 | ||
|   // TODO: Handle more splat vector cases.
 | ||
|   if (auto *N1C = isConstOrConstSplat(N1)) {
 | ||
|     const APInt &C1 = N1C->getAPIntValue();
 | ||
| 
 | ||
|     APInt MinVal, MaxVal;
 | ||
|     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
 | ||
|     if (ISD::isSignedIntSetCC(Cond)) {
 | ||
|       MinVal = APInt::getSignedMinValue(OperandBitSize);
 | ||
|       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
 | ||
|     } else {
 | ||
|       MinVal = APInt::getMinValue(OperandBitSize);
 | ||
|       MaxVal = APInt::getMaxValue(OperandBitSize);
 | ||
|     }
 | ||
| 
 | ||
|     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
 | ||
|     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
 | ||
|       // X >= MIN --> true
 | ||
|       if (C1 == MinVal)
 | ||
|         return DAG.getBoolConstant(true, dl, VT, OpVT);
 | ||
| 
 | ||
|       if (!VT.isVector()) { // TODO: Support this for vectors.
 | ||
|         // X >= C0 --> X > (C0 - 1)
 | ||
|         APInt C = C1 - 1;
 | ||
|         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
 | ||
|         if ((DCI.isBeforeLegalizeOps() ||
 | ||
|              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
 | ||
|             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
 | ||
|                                   isLegalICmpImmediate(C.getSExtValue())))) {
 | ||
|           return DAG.getSetCC(dl, VT, N0,
 | ||
|                               DAG.getConstant(C, dl, N1.getValueType()),
 | ||
|                               NewCC);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
 | ||
|       // X <= MAX --> true
 | ||
|       if (C1 == MaxVal)
 | ||
|         return DAG.getBoolConstant(true, dl, VT, OpVT);
 | ||
| 
 | ||
|       // X <= C0 --> X < (C0 + 1)
 | ||
|       if (!VT.isVector()) { // TODO: Support this for vectors.
 | ||
|         APInt C = C1 + 1;
 | ||
|         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
 | ||
|         if ((DCI.isBeforeLegalizeOps() ||
 | ||
|              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
 | ||
|             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
 | ||
|                                   isLegalICmpImmediate(C.getSExtValue())))) {
 | ||
|           return DAG.getSetCC(dl, VT, N0,
 | ||
|                               DAG.getConstant(C, dl, N1.getValueType()),
 | ||
|                               NewCC);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
 | ||
|       if (C1 == MinVal)
 | ||
|         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
 | ||
| 
 | ||
|       // TODO: Support this for vectors after legalize ops.
 | ||
|       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
 | ||
|         // Canonicalize setlt X, Max --> setne X, Max
 | ||
|         if (C1 == MaxVal)
 | ||
|           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
 | ||
| 
 | ||
|         // If we have setult X, 1, turn it into seteq X, 0
 | ||
|         if (C1 == MinVal+1)
 | ||
|           return DAG.getSetCC(dl, VT, N0,
 | ||
|                               DAG.getConstant(MinVal, dl, N0.getValueType()),
 | ||
|                               ISD::SETEQ);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
 | ||
|       if (C1 == MaxVal)
 | ||
|         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
 | ||
| 
 | ||
|       // TODO: Support this for vectors after legalize ops.
 | ||
|       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
 | ||
|         // Canonicalize setgt X, Min --> setne X, Min
 | ||
|         if (C1 == MinVal)
 | ||
|           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
 | ||
| 
 | ||
|         // If we have setugt X, Max-1, turn it into seteq X, Max
 | ||
|         if (C1 == MaxVal-1)
 | ||
|           return DAG.getSetCC(dl, VT, N0,
 | ||
|                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
 | ||
|                               ISD::SETEQ);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
 | ||
|       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
 | ||
|       if (C1.isZero())
 | ||
|         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
 | ||
|                 VT, N0, N1, Cond, DCI, dl))
 | ||
|           return CC;
 | ||
| 
 | ||
|       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
 | ||
|       // For example, when high 32-bits of i64 X are known clear:
 | ||
|       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
 | ||
|       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
 | ||
|       bool CmpZero = N1C->getAPIntValue().isZero();
 | ||
|       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
 | ||
|       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
 | ||
|         // Match or(lo,shl(hi,bw/2)) pattern.
 | ||
|         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
 | ||
|           unsigned EltBits = V.getScalarValueSizeInBits();
 | ||
|           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
 | ||
|             return false;
 | ||
|           SDValue LHS = V.getOperand(0);
 | ||
|           SDValue RHS = V.getOperand(1);
 | ||
|           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
 | ||
|           // Unshifted element must have zero upperbits.
 | ||
|           if (RHS.getOpcode() == ISD::SHL &&
 | ||
|               isa<ConstantSDNode>(RHS.getOperand(1)) &&
 | ||
|               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
 | ||
|               DAG.MaskedValueIsZero(LHS, HiBits)) {
 | ||
|             Lo = LHS;
 | ||
|             Hi = RHS.getOperand(0);
 | ||
|             return true;
 | ||
|           }
 | ||
|           if (LHS.getOpcode() == ISD::SHL &&
 | ||
|               isa<ConstantSDNode>(LHS.getOperand(1)) &&
 | ||
|               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
 | ||
|               DAG.MaskedValueIsZero(RHS, HiBits)) {
 | ||
|             Lo = RHS;
 | ||
|             Hi = LHS.getOperand(0);
 | ||
|             return true;
 | ||
|           }
 | ||
|           return false;
 | ||
|         };
 | ||
| 
 | ||
|         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
 | ||
|           unsigned EltBits = N0.getScalarValueSizeInBits();
 | ||
|           unsigned HalfBits = EltBits / 2;
 | ||
|           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
 | ||
|           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
 | ||
|           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
 | ||
|           SDValue NewN0 =
 | ||
|               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
 | ||
|           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
 | ||
|           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
 | ||
|         };
 | ||
| 
 | ||
|         SDValue Lo, Hi;
 | ||
|         if (IsConcat(N0, Lo, Hi))
 | ||
|           return MergeConcat(Lo, Hi);
 | ||
| 
 | ||
|         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
 | ||
|           SDValue Lo0, Lo1, Hi0, Hi1;
 | ||
|           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
 | ||
|               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
 | ||
|             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
 | ||
|                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // If we have "setcc X, C0", check to see if we can shrink the immediate
 | ||
|     // by changing cc.
 | ||
|     // TODO: Support this for vectors after legalize ops.
 | ||
|     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
 | ||
|       // SETUGT X, SINTMAX  -> SETLT X, 0
 | ||
|       // SETUGE X, SINTMIN -> SETLT X, 0
 | ||
|       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
 | ||
|           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
 | ||
|         return DAG.getSetCC(dl, VT, N0,
 | ||
|                             DAG.getConstant(0, dl, N1.getValueType()),
 | ||
|                             ISD::SETLT);
 | ||
| 
 | ||
|       // SETULT X, SINTMIN  -> SETGT X, -1
 | ||
|       // SETULE X, SINTMAX  -> SETGT X, -1
 | ||
|       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
 | ||
|           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
 | ||
|         return DAG.getSetCC(dl, VT, N0,
 | ||
|                             DAG.getAllOnesConstant(dl, N1.getValueType()),
 | ||
|                             ISD::SETGT);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Back to non-vector simplifications.
 | ||
|   // TODO: Can we do these for vector splats?
 | ||
|   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
 | ||
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | ||
|     const APInt &C1 = N1C->getAPIntValue();
 | ||
|     EVT ShValTy = N0.getValueType();
 | ||
| 
 | ||
|     // Fold bit comparisons when we can. This will result in an
 | ||
|     // incorrect value when boolean false is negative one, unless
 | ||
|     // the bitsize is 1 in which case the false value is the same
 | ||
|     // in practice regardless of the representation.
 | ||
|     if ((VT.getSizeInBits() == 1 ||
 | ||
|          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
 | ||
|         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | ||
|         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
 | ||
|         N0.getOpcode() == ISD::AND) {
 | ||
|       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | ||
|         EVT ShiftTy =
 | ||
|             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
 | ||
|         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
 | ||
|           // Perform the xform if the AND RHS is a single bit.
 | ||
|           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
 | ||
|           if (AndRHS->getAPIntValue().isPowerOf2() &&
 | ||
|               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
 | ||
|             return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | ||
|                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
 | ||
|                                            DAG.getConstant(ShCt, dl, ShiftTy)));
 | ||
|           }
 | ||
|         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
 | ||
|           // (X & 8) == 8  -->  (X & 8) >> 3
 | ||
|           // Perform the xform if C1 is a single bit.
 | ||
|           unsigned ShCt = C1.logBase2();
 | ||
|           if (C1.isPowerOf2() &&
 | ||
|               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
 | ||
|             return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | ||
|                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
 | ||
|                                            DAG.getConstant(ShCt, dl, ShiftTy)));
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (C1.getMinSignedBits() <= 64 &&
 | ||
|         !isLegalICmpImmediate(C1.getSExtValue())) {
 | ||
|       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
 | ||
|       // (X & -256) == 256 -> (X >> 8) == 1
 | ||
|       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | ||
|           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
 | ||
|         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | ||
|           const APInt &AndRHSC = AndRHS->getAPIntValue();
 | ||
|           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
 | ||
|             unsigned ShiftBits = AndRHSC.countTrailingZeros();
 | ||
|             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
 | ||
|               SDValue Shift =
 | ||
|                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
 | ||
|                             DAG.getConstant(ShiftBits, dl, ShiftTy));
 | ||
|               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
 | ||
|               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
 | ||
|             }
 | ||
|           }
 | ||
|         }
 | ||
|       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
 | ||
|                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
 | ||
|         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
 | ||
|         // X <  0x100000000 -> (X >> 32) <  1
 | ||
|         // X >= 0x100000000 -> (X >> 32) >= 1
 | ||
|         // X <= 0x0ffffffff -> (X >> 32) <  1
 | ||
|         // X >  0x0ffffffff -> (X >> 32) >= 1
 | ||
|         unsigned ShiftBits;
 | ||
|         APInt NewC = C1;
 | ||
|         ISD::CondCode NewCond = Cond;
 | ||
|         if (AdjOne) {
 | ||
|           ShiftBits = C1.countTrailingOnes();
 | ||
|           NewC = NewC + 1;
 | ||
|           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
 | ||
|         } else {
 | ||
|           ShiftBits = C1.countTrailingZeros();
 | ||
|         }
 | ||
|         NewC.lshrInPlace(ShiftBits);
 | ||
|         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
 | ||
|             isLegalICmpImmediate(NewC.getSExtValue()) &&
 | ||
|             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
 | ||
|           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
 | ||
|                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
 | ||
|           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
 | ||
|           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
 | ||
|     auto *CFP = cast<ConstantFPSDNode>(N1);
 | ||
|     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
 | ||
| 
 | ||
|     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
 | ||
|     // constant if knowing that the operand is non-nan is enough.  We prefer to
 | ||
|     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
 | ||
|     // materialize 0.0.
 | ||
|     if (Cond == ISD::SETO || Cond == ISD::SETUO)
 | ||
|       return DAG.getSetCC(dl, VT, N0, N0, Cond);
 | ||
| 
 | ||
|     // setcc (fneg x), C -> setcc swap(pred) x, -C
 | ||
|     if (N0.getOpcode() == ISD::FNEG) {
 | ||
|       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
 | ||
|       if (DCI.isBeforeLegalizeOps() ||
 | ||
|           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
 | ||
|         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
 | ||
|         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // If the condition is not legal, see if we can find an equivalent one
 | ||
|     // which is legal.
 | ||
|     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
 | ||
|       // If the comparison was an awkward floating-point == or != and one of
 | ||
|       // the comparison operands is infinity or negative infinity, convert the
 | ||
|       // condition to a less-awkward <= or >=.
 | ||
|       if (CFP->getValueAPF().isInfinity()) {
 | ||
|         bool IsNegInf = CFP->getValueAPF().isNegative();
 | ||
|         ISD::CondCode NewCond = ISD::SETCC_INVALID;
 | ||
|         switch (Cond) {
 | ||
|         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
 | ||
|         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
 | ||
|         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
 | ||
|         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
 | ||
|         default: break;
 | ||
|         }
 | ||
|         if (NewCond != ISD::SETCC_INVALID &&
 | ||
|             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
 | ||
|           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (N0 == N1) {
 | ||
|     // The sext(setcc()) => setcc() optimization relies on the appropriate
 | ||
|     // constant being emitted.
 | ||
|     assert(!N0.getValueType().isInteger() &&
 | ||
|            "Integer types should be handled by FoldSetCC");
 | ||
| 
 | ||
|     bool EqTrue = ISD::isTrueWhenEqual(Cond);
 | ||
|     unsigned UOF = ISD::getUnorderedFlavor(Cond);
 | ||
|     if (UOF == 2) // FP operators that are undefined on NaNs.
 | ||
|       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
 | ||
|     if (UOF == unsigned(EqTrue))
 | ||
|       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
 | ||
|     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
 | ||
|     // if it is not already.
 | ||
|     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
 | ||
|     if (NewCond != Cond &&
 | ||
|         (DCI.isBeforeLegalizeOps() ||
 | ||
|                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
 | ||
|       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
 | ||
|   }
 | ||
| 
 | ||
|   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | ||
|       N0.getValueType().isInteger()) {
 | ||
|     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
 | ||
|         N0.getOpcode() == ISD::XOR) {
 | ||
|       // Simplify (X+Y) == (X+Z) -->  Y == Z
 | ||
|       if (N0.getOpcode() == N1.getOpcode()) {
 | ||
|         if (N0.getOperand(0) == N1.getOperand(0))
 | ||
|           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
 | ||
|         if (N0.getOperand(1) == N1.getOperand(1))
 | ||
|           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
 | ||
|         if (isCommutativeBinOp(N0.getOpcode())) {
 | ||
|           // If X op Y == Y op X, try other combinations.
 | ||
|           if (N0.getOperand(0) == N1.getOperand(1))
 | ||
|             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
 | ||
|                                 Cond);
 | ||
|           if (N0.getOperand(1) == N1.getOperand(0))
 | ||
|             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
 | ||
|                                 Cond);
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       // If RHS is a legal immediate value for a compare instruction, we need
 | ||
|       // to be careful about increasing register pressure needlessly.
 | ||
|       bool LegalRHSImm = false;
 | ||
| 
 | ||
|       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
 | ||
|         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | ||
|           // Turn (X+C1) == C2 --> X == C2-C1
 | ||
|           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
 | ||
|             return DAG.getSetCC(
 | ||
|                 dl, VT, N0.getOperand(0),
 | ||
|                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
 | ||
|                                 dl, N0.getValueType()),
 | ||
|                 Cond);
 | ||
| 
 | ||
|           // Turn (X^C1) == C2 --> X == C1^C2
 | ||
|           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
 | ||
|             return DAG.getSetCC(
 | ||
|                 dl, VT, N0.getOperand(0),
 | ||
|                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
 | ||
|                                 dl, N0.getValueType()),
 | ||
|                 Cond);
 | ||
|         }
 | ||
| 
 | ||
|         // Turn (C1-X) == C2 --> X == C1-C2
 | ||
|         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
 | ||
|           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
 | ||
|             return DAG.getSetCC(
 | ||
|                 dl, VT, N0.getOperand(1),
 | ||
|                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
 | ||
|                                 dl, N0.getValueType()),
 | ||
|                 Cond);
 | ||
| 
 | ||
|         // Could RHSC fold directly into a compare?
 | ||
|         if (RHSC->getValueType(0).getSizeInBits() <= 64)
 | ||
|           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
 | ||
|       }
 | ||
| 
 | ||
|       // (X+Y) == X --> Y == 0 and similar folds.
 | ||
|       // Don't do this if X is an immediate that can fold into a cmp
 | ||
|       // instruction and X+Y has other uses. It could be an induction variable
 | ||
|       // chain, and the transform would increase register pressure.
 | ||
|       if (!LegalRHSImm || N0.hasOneUse())
 | ||
|         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
 | ||
|           return V;
 | ||
|     }
 | ||
| 
 | ||
|     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
 | ||
|         N1.getOpcode() == ISD::XOR)
 | ||
|       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
 | ||
|         return V;
 | ||
| 
 | ||
|     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
 | ||
|       return V;
 | ||
|   }
 | ||
| 
 | ||
|   // Fold remainder of division by a constant.
 | ||
|   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
 | ||
|       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | ||
|     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
 | ||
| 
 | ||
|     // When division is cheap or optimizing for minimum size,
 | ||
|     // fall through to DIVREM creation by skipping this fold.
 | ||
|     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
 | ||
|       if (N0.getOpcode() == ISD::UREM) {
 | ||
|         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
 | ||
|           return Folded;
 | ||
|       } else if (N0.getOpcode() == ISD::SREM) {
 | ||
|         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
 | ||
|           return Folded;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Fold away ALL boolean setcc's.
 | ||
|   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
 | ||
|     SDValue Temp;
 | ||
|     switch (Cond) {
 | ||
|     default: llvm_unreachable("Unknown integer setcc!");
 | ||
|     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
 | ||
|       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
 | ||
|       N0 = DAG.getNOT(dl, Temp, OpVT);
 | ||
|       if (!DCI.isCalledByLegalizer())
 | ||
|         DCI.AddToWorklist(Temp.getNode());
 | ||
|       break;
 | ||
|     case ISD::SETNE:  // X != Y   -->  (X^Y)
 | ||
|       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
 | ||
|       break;
 | ||
|     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
 | ||
|     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
 | ||
|       Temp = DAG.getNOT(dl, N0, OpVT);
 | ||
|       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
 | ||
|       if (!DCI.isCalledByLegalizer())
 | ||
|         DCI.AddToWorklist(Temp.getNode());
 | ||
|       break;
 | ||
|     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
 | ||
|     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
 | ||
|       Temp = DAG.getNOT(dl, N1, OpVT);
 | ||
|       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
 | ||
|       if (!DCI.isCalledByLegalizer())
 | ||
|         DCI.AddToWorklist(Temp.getNode());
 | ||
|       break;
 | ||
|     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
 | ||
|     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
 | ||
|       Temp = DAG.getNOT(dl, N0, OpVT);
 | ||
|       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
 | ||
|       if (!DCI.isCalledByLegalizer())
 | ||
|         DCI.AddToWorklist(Temp.getNode());
 | ||
|       break;
 | ||
|     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
 | ||
|     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
 | ||
|       Temp = DAG.getNOT(dl, N1, OpVT);
 | ||
|       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
 | ||
|       break;
 | ||
|     }
 | ||
|     if (VT.getScalarType() != MVT::i1) {
 | ||
|       if (!DCI.isCalledByLegalizer())
 | ||
|         DCI.AddToWorklist(N0.getNode());
 | ||
|       // FIXME: If running after legalize, we probably can't do this.
 | ||
|       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
 | ||
|       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
 | ||
|     }
 | ||
|     return N0;
 | ||
|   }
 | ||
| 
 | ||
|   // Could not fold it.
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| /// Returns true (and the GlobalValue and the offset) if the node is a
 | ||
| /// GlobalAddress + offset.
 | ||
| bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
 | ||
|                                     int64_t &Offset) const {
 | ||
| 
 | ||
|   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
 | ||
| 
 | ||
|   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
 | ||
|     GA = GASD->getGlobal();
 | ||
|     Offset += GASD->getOffset();
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   if (N->getOpcode() == ISD::ADD) {
 | ||
|     SDValue N1 = N->getOperand(0);
 | ||
|     SDValue N2 = N->getOperand(1);
 | ||
|     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
 | ||
|       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
 | ||
|         Offset += V->getSExtValue();
 | ||
|         return true;
 | ||
|       }
 | ||
|     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
 | ||
|       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
 | ||
|         Offset += V->getSExtValue();
 | ||
|         return true;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::PerformDAGCombine(SDNode *N,
 | ||
|                                           DAGCombinerInfo &DCI) const {
 | ||
|   // Default implementation: no optimization.
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| //  Inline Assembler Implementation Methods
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| 
 | ||
| TargetLowering::ConstraintType
 | ||
| TargetLowering::getConstraintType(StringRef Constraint) const {
 | ||
|   unsigned S = Constraint.size();
 | ||
| 
 | ||
|   if (S == 1) {
 | ||
|     switch (Constraint[0]) {
 | ||
|     default: break;
 | ||
|     case 'r':
 | ||
|       return C_RegisterClass;
 | ||
|     case 'm': // memory
 | ||
|     case 'o': // offsetable
 | ||
|     case 'V': // not offsetable
 | ||
|       return C_Memory;
 | ||
|     case 'p': // Address.
 | ||
|       return C_Address;
 | ||
|     case 'n': // Simple Integer
 | ||
|     case 'E': // Floating Point Constant
 | ||
|     case 'F': // Floating Point Constant
 | ||
|       return C_Immediate;
 | ||
|     case 'i': // Simple Integer or Relocatable Constant
 | ||
|     case 's': // Relocatable Constant
 | ||
|     case 'X': // Allow ANY value.
 | ||
|     case 'I': // Target registers.
 | ||
|     case 'J':
 | ||
|     case 'K':
 | ||
|     case 'L':
 | ||
|     case 'M':
 | ||
|     case 'N':
 | ||
|     case 'O':
 | ||
|     case 'P':
 | ||
|     case '<':
 | ||
|     case '>':
 | ||
|       return C_Other;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
 | ||
|     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
 | ||
|       return C_Memory;
 | ||
|     return C_Register;
 | ||
|   }
 | ||
|   return C_Unknown;
 | ||
| }
 | ||
| 
 | ||
| /// Try to replace an X constraint, which matches anything, with another that
 | ||
| /// has more specific requirements based on the type of the corresponding
 | ||
| /// operand.
 | ||
| const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
 | ||
|   if (ConstraintVT.isInteger())
 | ||
|     return "r";
 | ||
|   if (ConstraintVT.isFloatingPoint())
 | ||
|     return "f"; // works for many targets
 | ||
|   return nullptr;
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::LowerAsmOutputForConstraint(
 | ||
|     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
 | ||
|     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| /// Lower the specified operand into the Ops vector.
 | ||
| /// If it is invalid, don't add anything to Ops.
 | ||
| void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | ||
|                                                   std::string &Constraint,
 | ||
|                                                   std::vector<SDValue> &Ops,
 | ||
|                                                   SelectionDAG &DAG) const {
 | ||
| 
 | ||
|   if (Constraint.length() > 1) return;
 | ||
| 
 | ||
|   char ConstraintLetter = Constraint[0];
 | ||
|   switch (ConstraintLetter) {
 | ||
|   default: break;
 | ||
|   case 'X':    // Allows any operand
 | ||
|   case 'i':    // Simple Integer or Relocatable Constant
 | ||
|   case 'n':    // Simple Integer
 | ||
|   case 's': {  // Relocatable Constant
 | ||
| 
 | ||
|     ConstantSDNode *C;
 | ||
|     uint64_t Offset = 0;
 | ||
| 
 | ||
|     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
 | ||
|     // etc., since getelementpointer is variadic. We can't use
 | ||
|     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
 | ||
|     // while in this case the GA may be furthest from the root node which is
 | ||
|     // likely an ISD::ADD.
 | ||
|     while (true) {
 | ||
|       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
 | ||
|         // gcc prints these as sign extended.  Sign extend value to 64 bits
 | ||
|         // now; without this it would get ZExt'd later in
 | ||
|         // ScheduleDAGSDNodes::EmitNode, which is very generic.
 | ||
|         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
 | ||
|         BooleanContent BCont = getBooleanContents(MVT::i64);
 | ||
|         ISD::NodeType ExtOpc =
 | ||
|             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
 | ||
|         int64_t ExtVal =
 | ||
|             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
 | ||
|         Ops.push_back(
 | ||
|             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
 | ||
|         return;
 | ||
|       }
 | ||
|       if (ConstraintLetter != 'n') {
 | ||
|         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
 | ||
|           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
 | ||
|                                                    GA->getValueType(0),
 | ||
|                                                    Offset + GA->getOffset()));
 | ||
|           return;
 | ||
|         }
 | ||
|         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
 | ||
|           Ops.push_back(DAG.getTargetBlockAddress(
 | ||
|               BA->getBlockAddress(), BA->getValueType(0),
 | ||
|               Offset + BA->getOffset(), BA->getTargetFlags()));
 | ||
|           return;
 | ||
|         }
 | ||
|         if (isa<BasicBlockSDNode>(Op)) {
 | ||
|           Ops.push_back(Op);
 | ||
|           return;
 | ||
|         }
 | ||
|       }
 | ||
|       const unsigned OpCode = Op.getOpcode();
 | ||
|       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
 | ||
|         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
 | ||
|           Op = Op.getOperand(1);
 | ||
|         // Subtraction is not commutative.
 | ||
|         else if (OpCode == ISD::ADD &&
 | ||
|                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
 | ||
|           Op = Op.getOperand(0);
 | ||
|         else
 | ||
|           return;
 | ||
|         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
 | ||
|         continue;
 | ||
|       }
 | ||
|       return;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| std::pair<unsigned, const TargetRegisterClass *>
 | ||
| TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
 | ||
|                                              StringRef Constraint,
 | ||
|                                              MVT VT) const {
 | ||
|   if (Constraint.empty() || Constraint[0] != '{')
 | ||
|     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
 | ||
|   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
 | ||
| 
 | ||
|   // Remove the braces from around the name.
 | ||
|   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
 | ||
| 
 | ||
|   std::pair<unsigned, const TargetRegisterClass *> R =
 | ||
|       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
 | ||
| 
 | ||
|   // Figure out which register class contains this reg.
 | ||
|   for (const TargetRegisterClass *RC : RI->regclasses()) {
 | ||
|     // If none of the value types for this register class are valid, we
 | ||
|     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | ||
|     if (!isLegalRC(*RI, *RC))
 | ||
|       continue;
 | ||
| 
 | ||
|     for (const MCPhysReg &PR : *RC) {
 | ||
|       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
 | ||
|         std::pair<unsigned, const TargetRegisterClass *> S =
 | ||
|             std::make_pair(PR, RC);
 | ||
| 
 | ||
|         // If this register class has the requested value type, return it,
 | ||
|         // otherwise keep searching and return the first class found
 | ||
|         // if no other is found which explicitly has the requested type.
 | ||
|         if (RI->isTypeLegalForClass(*RC, VT))
 | ||
|           return S;
 | ||
|         if (!R.second)
 | ||
|           R = S;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   return R;
 | ||
| }
 | ||
| 
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| // Constraint Selection.
 | ||
| 
 | ||
| /// Return true of this is an input operand that is a matching constraint like
 | ||
| /// "4".
 | ||
| bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
 | ||
|   assert(!ConstraintCode.empty() && "No known constraint!");
 | ||
|   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
 | ||
| }
 | ||
| 
 | ||
| /// If this is an input matching constraint, this method returns the output
 | ||
| /// operand it matches.
 | ||
| unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
 | ||
|   assert(!ConstraintCode.empty() && "No known constraint!");
 | ||
|   return atoi(ConstraintCode.c_str());
 | ||
| }
 | ||
| 
 | ||
| /// Split up the constraint string from the inline assembly value into the
 | ||
| /// specific constraints and their prefixes, and also tie in the associated
 | ||
| /// operand values.
 | ||
| /// If this returns an empty vector, and if the constraint string itself
 | ||
| /// isn't empty, there was an error parsing.
 | ||
| TargetLowering::AsmOperandInfoVector
 | ||
| TargetLowering::ParseConstraints(const DataLayout &DL,
 | ||
|                                  const TargetRegisterInfo *TRI,
 | ||
|                                  const CallBase &Call) const {
 | ||
|   /// Information about all of the constraints.
 | ||
|   AsmOperandInfoVector ConstraintOperands;
 | ||
|   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
 | ||
|   unsigned maCount = 0; // Largest number of multiple alternative constraints.
 | ||
| 
 | ||
|   // Do a prepass over the constraints, canonicalizing them, and building up the
 | ||
|   // ConstraintOperands list.
 | ||
|   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
 | ||
|   unsigned ResNo = 0; // ResNo - The result number of the next output.
 | ||
| 
 | ||
|   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
 | ||
|     ConstraintOperands.emplace_back(std::move(CI));
 | ||
|     AsmOperandInfo &OpInfo = ConstraintOperands.back();
 | ||
| 
 | ||
|     // Update multiple alternative constraint count.
 | ||
|     if (OpInfo.multipleAlternatives.size() > maCount)
 | ||
|       maCount = OpInfo.multipleAlternatives.size();
 | ||
| 
 | ||
|     OpInfo.ConstraintVT = MVT::Other;
 | ||
| 
 | ||
|     // Compute the value type for each operand.
 | ||
|     switch (OpInfo.Type) {
 | ||
|     case InlineAsm::isOutput:
 | ||
|       // Indirect outputs just consume an argument.
 | ||
|       if (OpInfo.isIndirect) {
 | ||
|         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
 | ||
|         break;
 | ||
|       }
 | ||
| 
 | ||
|       // The return value of the call is this value.  As such, there is no
 | ||
|       // corresponding argument.
 | ||
|       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
 | ||
|       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
 | ||
|         OpInfo.ConstraintVT =
 | ||
|             getSimpleValueType(DL, STy->getElementType(ResNo));
 | ||
|       } else {
 | ||
|         assert(ResNo == 0 && "Asm only has one result!");
 | ||
|         OpInfo.ConstraintVT =
 | ||
|             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
 | ||
|       }
 | ||
|       ++ResNo;
 | ||
|       break;
 | ||
|     case InlineAsm::isInput:
 | ||
|       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
 | ||
|       break;
 | ||
|     case InlineAsm::isClobber:
 | ||
|       // Nothing to do.
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     if (OpInfo.CallOperandVal) {
 | ||
|       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
 | ||
|       if (OpInfo.isIndirect) {
 | ||
|         OpTy = Call.getParamElementType(ArgNo);
 | ||
|         assert(OpTy && "Indirect operand must have elementtype attribute");
 | ||
|       }
 | ||
| 
 | ||
|       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
 | ||
|       if (StructType *STy = dyn_cast<StructType>(OpTy))
 | ||
|         if (STy->getNumElements() == 1)
 | ||
|           OpTy = STy->getElementType(0);
 | ||
| 
 | ||
|       // If OpTy is not a single value, it may be a struct/union that we
 | ||
|       // can tile with integers.
 | ||
|       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
 | ||
|         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
 | ||
|         switch (BitSize) {
 | ||
|         default: break;
 | ||
|         case 1:
 | ||
|         case 8:
 | ||
|         case 16:
 | ||
|         case 32:
 | ||
|         case 64:
 | ||
|         case 128:
 | ||
|           OpInfo.ConstraintVT =
 | ||
|               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
 | ||
|           break;
 | ||
|         }
 | ||
|       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
 | ||
|         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
 | ||
|         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
 | ||
|       } else {
 | ||
|         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
 | ||
|       }
 | ||
| 
 | ||
|       ArgNo++;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // If we have multiple alternative constraints, select the best alternative.
 | ||
|   if (!ConstraintOperands.empty()) {
 | ||
|     if (maCount) {
 | ||
|       unsigned bestMAIndex = 0;
 | ||
|       int bestWeight = -1;
 | ||
|       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
 | ||
|       int weight = -1;
 | ||
|       unsigned maIndex;
 | ||
|       // Compute the sums of the weights for each alternative, keeping track
 | ||
|       // of the best (highest weight) one so far.
 | ||
|       for (maIndex = 0; maIndex < maCount; ++maIndex) {
 | ||
|         int weightSum = 0;
 | ||
|         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
 | ||
|              cIndex != eIndex; ++cIndex) {
 | ||
|           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
 | ||
|           if (OpInfo.Type == InlineAsm::isClobber)
 | ||
|             continue;
 | ||
| 
 | ||
|           // If this is an output operand with a matching input operand,
 | ||
|           // look up the matching input. If their types mismatch, e.g. one
 | ||
|           // is an integer, the other is floating point, or their sizes are
 | ||
|           // different, flag it as an maCantMatch.
 | ||
|           if (OpInfo.hasMatchingInput()) {
 | ||
|             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 | ||
|             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
 | ||
|               if ((OpInfo.ConstraintVT.isInteger() !=
 | ||
|                    Input.ConstraintVT.isInteger()) ||
 | ||
|                   (OpInfo.ConstraintVT.getSizeInBits() !=
 | ||
|                    Input.ConstraintVT.getSizeInBits())) {
 | ||
|                 weightSum = -1; // Can't match.
 | ||
|                 break;
 | ||
|               }
 | ||
|             }
 | ||
|           }
 | ||
|           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
 | ||
|           if (weight == -1) {
 | ||
|             weightSum = -1;
 | ||
|             break;
 | ||
|           }
 | ||
|           weightSum += weight;
 | ||
|         }
 | ||
|         // Update best.
 | ||
|         if (weightSum > bestWeight) {
 | ||
|           bestWeight = weightSum;
 | ||
|           bestMAIndex = maIndex;
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       // Now select chosen alternative in each constraint.
 | ||
|       for (AsmOperandInfo &cInfo : ConstraintOperands)
 | ||
|         if (cInfo.Type != InlineAsm::isClobber)
 | ||
|           cInfo.selectAlternative(bestMAIndex);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Check and hook up tied operands, choose constraint code to use.
 | ||
|   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
 | ||
|        cIndex != eIndex; ++cIndex) {
 | ||
|     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
 | ||
| 
 | ||
|     // If this is an output operand with a matching input operand, look up the
 | ||
|     // matching input. If their types mismatch, e.g. one is an integer, the
 | ||
|     // other is floating point, or their sizes are different, flag it as an
 | ||
|     // error.
 | ||
|     if (OpInfo.hasMatchingInput()) {
 | ||
|       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 | ||
| 
 | ||
|       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
 | ||
|         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
 | ||
|             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
 | ||
|                                          OpInfo.ConstraintVT);
 | ||
|         std::pair<unsigned, const TargetRegisterClass *> InputRC =
 | ||
|             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
 | ||
|                                          Input.ConstraintVT);
 | ||
|         if ((OpInfo.ConstraintVT.isInteger() !=
 | ||
|              Input.ConstraintVT.isInteger()) ||
 | ||
|             (MatchRC.second != InputRC.second)) {
 | ||
|           report_fatal_error("Unsupported asm: input constraint"
 | ||
|                              " with a matching output constraint of"
 | ||
|                              " incompatible type!");
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   return ConstraintOperands;
 | ||
| }
 | ||
| 
 | ||
| /// Return an integer indicating how general CT is.
 | ||
| static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
 | ||
|   switch (CT) {
 | ||
|   case TargetLowering::C_Immediate:
 | ||
|   case TargetLowering::C_Other:
 | ||
|   case TargetLowering::C_Unknown:
 | ||
|     return 0;
 | ||
|   case TargetLowering::C_Register:
 | ||
|     return 1;
 | ||
|   case TargetLowering::C_RegisterClass:
 | ||
|     return 2;
 | ||
|   case TargetLowering::C_Memory:
 | ||
|   case TargetLowering::C_Address:
 | ||
|     return 3;
 | ||
|   }
 | ||
|   llvm_unreachable("Invalid constraint type");
 | ||
| }
 | ||
| 
 | ||
| /// Examine constraint type and operand type and determine a weight value.
 | ||
| /// This object must already have been set up with the operand type
 | ||
| /// and the current alternative constraint selected.
 | ||
| TargetLowering::ConstraintWeight
 | ||
|   TargetLowering::getMultipleConstraintMatchWeight(
 | ||
|     AsmOperandInfo &info, int maIndex) const {
 | ||
|   InlineAsm::ConstraintCodeVector *rCodes;
 | ||
|   if (maIndex >= (int)info.multipleAlternatives.size())
 | ||
|     rCodes = &info.Codes;
 | ||
|   else
 | ||
|     rCodes = &info.multipleAlternatives[maIndex].Codes;
 | ||
|   ConstraintWeight BestWeight = CW_Invalid;
 | ||
| 
 | ||
|   // Loop over the options, keeping track of the most general one.
 | ||
|   for (const std::string &rCode : *rCodes) {
 | ||
|     ConstraintWeight weight =
 | ||
|         getSingleConstraintMatchWeight(info, rCode.c_str());
 | ||
|     if (weight > BestWeight)
 | ||
|       BestWeight = weight;
 | ||
|   }
 | ||
| 
 | ||
|   return BestWeight;
 | ||
| }
 | ||
| 
 | ||
| /// Examine constraint type and operand type and determine a weight value.
 | ||
| /// This object must already have been set up with the operand type
 | ||
| /// and the current alternative constraint selected.
 | ||
| TargetLowering::ConstraintWeight
 | ||
|   TargetLowering::getSingleConstraintMatchWeight(
 | ||
|     AsmOperandInfo &info, const char *constraint) const {
 | ||
|   ConstraintWeight weight = CW_Invalid;
 | ||
|   Value *CallOperandVal = info.CallOperandVal;
 | ||
|     // If we don't have a value, we can't do a match,
 | ||
|     // but allow it at the lowest weight.
 | ||
|   if (!CallOperandVal)
 | ||
|     return CW_Default;
 | ||
|   // Look at the constraint type.
 | ||
|   switch (*constraint) {
 | ||
|     case 'i': // immediate integer.
 | ||
|     case 'n': // immediate integer with a known value.
 | ||
|       if (isa<ConstantInt>(CallOperandVal))
 | ||
|         weight = CW_Constant;
 | ||
|       break;
 | ||
|     case 's': // non-explicit intregal immediate.
 | ||
|       if (isa<GlobalValue>(CallOperandVal))
 | ||
|         weight = CW_Constant;
 | ||
|       break;
 | ||
|     case 'E': // immediate float if host format.
 | ||
|     case 'F': // immediate float.
 | ||
|       if (isa<ConstantFP>(CallOperandVal))
 | ||
|         weight = CW_Constant;
 | ||
|       break;
 | ||
|     case '<': // memory operand with autodecrement.
 | ||
|     case '>': // memory operand with autoincrement.
 | ||
|     case 'm': // memory operand.
 | ||
|     case 'o': // offsettable memory operand
 | ||
|     case 'V': // non-offsettable memory operand
 | ||
|       weight = CW_Memory;
 | ||
|       break;
 | ||
|     case 'r': // general register.
 | ||
|     case 'g': // general register, memory operand or immediate integer.
 | ||
|               // note: Clang converts "g" to "imr".
 | ||
|       if (CallOperandVal->getType()->isIntegerTy())
 | ||
|         weight = CW_Register;
 | ||
|       break;
 | ||
|     case 'X': // any operand.
 | ||
|   default:
 | ||
|     weight = CW_Default;
 | ||
|     break;
 | ||
|   }
 | ||
|   return weight;
 | ||
| }
 | ||
| 
 | ||
| /// If there are multiple different constraints that we could pick for this
 | ||
| /// operand (e.g. "imr") try to pick the 'best' one.
 | ||
| /// This is somewhat tricky: constraints fall into four classes:
 | ||
| ///    Other         -> immediates and magic values
 | ||
| ///    Register      -> one specific register
 | ||
| ///    RegisterClass -> a group of regs
 | ||
| ///    Memory        -> memory
 | ||
| /// Ideally, we would pick the most specific constraint possible: if we have
 | ||
| /// something that fits into a register, we would pick it.  The problem here
 | ||
| /// is that if we have something that could either be in a register or in
 | ||
| /// memory that use of the register could cause selection of *other*
 | ||
| /// operands to fail: they might only succeed if we pick memory.  Because of
 | ||
| /// this the heuristic we use is:
 | ||
| ///
 | ||
| ///  1) If there is an 'other' constraint, and if the operand is valid for
 | ||
| ///     that constraint, use it.  This makes us take advantage of 'i'
 | ||
| ///     constraints when available.
 | ||
| ///  2) Otherwise, pick the most general constraint present.  This prefers
 | ||
| ///     'm' over 'r', for example.
 | ||
| ///
 | ||
| static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
 | ||
|                              const TargetLowering &TLI,
 | ||
|                              SDValue Op, SelectionDAG *DAG) {
 | ||
|   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
 | ||
|   unsigned BestIdx = 0;
 | ||
|   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
 | ||
|   int BestGenerality = -1;
 | ||
| 
 | ||
|   // Loop over the options, keeping track of the most general one.
 | ||
|   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
 | ||
|     TargetLowering::ConstraintType CType =
 | ||
|       TLI.getConstraintType(OpInfo.Codes[i]);
 | ||
| 
 | ||
|     // Indirect 'other' or 'immediate' constraints are not allowed.
 | ||
|     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
 | ||
|                                CType == TargetLowering::C_Register ||
 | ||
|                                CType == TargetLowering::C_RegisterClass))
 | ||
|       continue;
 | ||
| 
 | ||
|     // If this is an 'other' or 'immediate' constraint, see if the operand is
 | ||
|     // valid for it. For example, on X86 we might have an 'rI' constraint. If
 | ||
|     // the operand is an integer in the range [0..31] we want to use I (saving a
 | ||
|     // load of a register), otherwise we must use 'r'.
 | ||
|     if ((CType == TargetLowering::C_Other ||
 | ||
|          CType == TargetLowering::C_Immediate) && Op.getNode()) {
 | ||
|       assert(OpInfo.Codes[i].size() == 1 &&
 | ||
|              "Unhandled multi-letter 'other' constraint");
 | ||
|       std::vector<SDValue> ResultOps;
 | ||
|       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
 | ||
|                                        ResultOps, *DAG);
 | ||
|       if (!ResultOps.empty()) {
 | ||
|         BestType = CType;
 | ||
|         BestIdx = i;
 | ||
|         break;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // Things with matching constraints can only be registers, per gcc
 | ||
|     // documentation.  This mainly affects "g" constraints.
 | ||
|     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
 | ||
|       continue;
 | ||
| 
 | ||
|     // This constraint letter is more general than the previous one, use it.
 | ||
|     int Generality = getConstraintGenerality(CType);
 | ||
|     if (Generality > BestGenerality) {
 | ||
|       BestType = CType;
 | ||
|       BestIdx = i;
 | ||
|       BestGenerality = Generality;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
 | ||
|   OpInfo.ConstraintType = BestType;
 | ||
| }
 | ||
| 
 | ||
| /// Determines the constraint code and constraint type to use for the specific
 | ||
| /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
 | ||
| void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
 | ||
|                                             SDValue Op,
 | ||
|                                             SelectionDAG *DAG) const {
 | ||
|   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
 | ||
| 
 | ||
|   // Single-letter constraints ('r') are very common.
 | ||
|   if (OpInfo.Codes.size() == 1) {
 | ||
|     OpInfo.ConstraintCode = OpInfo.Codes[0];
 | ||
|     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
 | ||
|   } else {
 | ||
|     ChooseConstraint(OpInfo, *this, Op, DAG);
 | ||
|   }
 | ||
| 
 | ||
|   // 'X' matches anything.
 | ||
|   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
 | ||
|     // Constants are handled elsewhere.  For Functions, the type here is the
 | ||
|     // type of the result, which is not what we want to look at; leave them
 | ||
|     // alone.
 | ||
|     Value *v = OpInfo.CallOperandVal;
 | ||
|     if (isa<ConstantInt>(v) || isa<Function>(v)) {
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
 | ||
|       OpInfo.ConstraintCode = "i";
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|     // Otherwise, try to resolve it to something we know about by looking at
 | ||
|     // the actual operand type.
 | ||
|     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
 | ||
|       OpInfo.ConstraintCode = Repl;
 | ||
|       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
 | ||
|     }
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| /// Given an exact SDIV by a constant, create a multiplication
 | ||
| /// with the multiplicative inverse of the constant.
 | ||
| static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
 | ||
|                               const SDLoc &dl, SelectionDAG &DAG,
 | ||
|                               SmallVectorImpl<SDNode *> &Created) {
 | ||
|   SDValue Op0 = N->getOperand(0);
 | ||
|   SDValue Op1 = N->getOperand(1);
 | ||
|   EVT VT = N->getValueType(0);
 | ||
|   EVT SVT = VT.getScalarType();
 | ||
|   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|   EVT ShSVT = ShVT.getScalarType();
 | ||
| 
 | ||
|   bool UseSRA = false;
 | ||
|   SmallVector<SDValue, 16> Shifts, Factors;
 | ||
| 
 | ||
|   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
 | ||
|     if (C->isZero())
 | ||
|       return false;
 | ||
|     APInt Divisor = C->getAPIntValue();
 | ||
|     unsigned Shift = Divisor.countTrailingZeros();
 | ||
|     if (Shift) {
 | ||
|       Divisor.ashrInPlace(Shift);
 | ||
|       UseSRA = true;
 | ||
|     }
 | ||
|     // Calculate the multiplicative inverse, using Newton's method.
 | ||
|     APInt t;
 | ||
|     APInt Factor = Divisor;
 | ||
|     while ((t = Divisor * Factor) != 1)
 | ||
|       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
 | ||
|     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
 | ||
|     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
 | ||
|     return true;
 | ||
|   };
 | ||
| 
 | ||
|   // Collect all magic values from the build vector.
 | ||
|   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   SDValue Shift, Factor;
 | ||
|   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
 | ||
|     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
 | ||
|     Factor = DAG.getBuildVector(VT, dl, Factors);
 | ||
|   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
 | ||
|     assert(Shifts.size() == 1 && Factors.size() == 1 &&
 | ||
|            "Expected matchUnaryPredicate to return one element for scalable "
 | ||
|            "vectors");
 | ||
|     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
 | ||
|     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
 | ||
|   } else {
 | ||
|     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
 | ||
|     Shift = Shifts[0];
 | ||
|     Factor = Factors[0];
 | ||
|   }
 | ||
| 
 | ||
|   SDValue Res = Op0;
 | ||
| 
 | ||
|   // Shift the value upfront if it is even, so the LSB is one.
 | ||
|   if (UseSRA) {
 | ||
|     // TODO: For UDIV use SRL instead of SRA.
 | ||
|     SDNodeFlags Flags;
 | ||
|     Flags.setExact(true);
 | ||
|     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
 | ||
|     Created.push_back(Res.getNode());
 | ||
|   }
 | ||
| 
 | ||
|   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
 | ||
|                               SelectionDAG &DAG,
 | ||
|                               SmallVectorImpl<SDNode *> &Created) const {
 | ||
|   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
 | ||
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | ||
|   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
 | ||
|     return SDValue(N, 0); // Lower SDIV as SDIV
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| SDValue
 | ||
| TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
 | ||
|                               SelectionDAG &DAG,
 | ||
|                               SmallVectorImpl<SDNode *> &Created) const {
 | ||
|   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
 | ||
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | ||
|   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
 | ||
|     return SDValue(N, 0); // Lower SREM as SREM
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| /// Given an ISD::SDIV node expressing a divide by constant,
 | ||
| /// return a DAG expression to select that will generate the same value by
 | ||
| /// multiplying by a magic number.
 | ||
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
 | ||
| SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
 | ||
|                                   bool IsAfterLegalization,
 | ||
|                                   SmallVectorImpl<SDNode *> &Created) const {
 | ||
|   SDLoc dl(N);
 | ||
|   EVT VT = N->getValueType(0);
 | ||
|   EVT SVT = VT.getScalarType();
 | ||
|   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|   EVT ShSVT = ShVT.getScalarType();
 | ||
|   unsigned EltBits = VT.getScalarSizeInBits();
 | ||
|   EVT MulVT;
 | ||
| 
 | ||
|   // Check to see if we can do this.
 | ||
|   // FIXME: We should be more aggressive here.
 | ||
|   if (!isTypeLegal(VT)) {
 | ||
|     // Limit this to simple scalars for now.
 | ||
|     if (VT.isVector() || !VT.isSimple())
 | ||
|       return SDValue();
 | ||
| 
 | ||
|     // If this type will be promoted to a large enough type with a legal
 | ||
|     // multiply operation, we can go ahead and do this transform.
 | ||
|     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
 | ||
|       return SDValue();
 | ||
| 
 | ||
|     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
 | ||
|     if (MulVT.getSizeInBits() < (2 * EltBits) ||
 | ||
|         !isOperationLegal(ISD::MUL, MulVT))
 | ||
|       return SDValue();
 | ||
|   }
 | ||
| 
 | ||
|   // If the sdiv has an 'exact' bit we can use a simpler lowering.
 | ||
|   if (N->getFlags().hasExact())
 | ||
|     return BuildExactSDIV(*this, N, dl, DAG, Created);
 | ||
| 
 | ||
|   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
 | ||
| 
 | ||
|   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
 | ||
|     if (C->isZero())
 | ||
|       return false;
 | ||
| 
 | ||
|     const APInt &Divisor = C->getAPIntValue();
 | ||
|     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
 | ||
|     int NumeratorFactor = 0;
 | ||
|     int ShiftMask = -1;
 | ||
| 
 | ||
|     if (Divisor.isOne() || Divisor.isAllOnes()) {
 | ||
|       // If d is +1/-1, we just multiply the numerator by +1/-1.
 | ||
|       NumeratorFactor = Divisor.getSExtValue();
 | ||
|       magics.Magic = 0;
 | ||
|       magics.ShiftAmount = 0;
 | ||
|       ShiftMask = 0;
 | ||
|     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
 | ||
|       // If d > 0 and m < 0, add the numerator.
 | ||
|       NumeratorFactor = 1;
 | ||
|     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
 | ||
|       // If d < 0 and m > 0, subtract the numerator.
 | ||
|       NumeratorFactor = -1;
 | ||
|     }
 | ||
| 
 | ||
|     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
 | ||
|     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
 | ||
|     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
 | ||
|     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
 | ||
|     return true;
 | ||
|   };
 | ||
| 
 | ||
|   SDValue N0 = N->getOperand(0);
 | ||
|   SDValue N1 = N->getOperand(1);
 | ||
| 
 | ||
|   // Collect the shifts / magic values from each element.
 | ||
|   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   SDValue MagicFactor, Factor, Shift, ShiftMask;
 | ||
|   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
 | ||
|     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
 | ||
|     Factor = DAG.getBuildVector(VT, dl, Factors);
 | ||
|     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
 | ||
|     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
 | ||
|   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
 | ||
|     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
 | ||
|            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
 | ||
|            "Expected matchUnaryPredicate to return one element for scalable "
 | ||
|            "vectors");
 | ||
|     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
 | ||
|     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
 | ||
|     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
 | ||
|     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
 | ||
|   } else {
 | ||
|     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
 | ||
|     MagicFactor = MagicFactors[0];
 | ||
|     Factor = Factors[0];
 | ||
|     Shift = Shifts[0];
 | ||
|     ShiftMask = ShiftMasks[0];
 | ||
|   }
 | ||
| 
 | ||
|   // Multiply the numerator (operand 0) by the magic value.
 | ||
|   // FIXME: We should support doing a MUL in a wider type.
 | ||
|   auto GetMULHS = [&](SDValue X, SDValue Y) {
 | ||
|     // If the type isn't legal, use a wider mul of the the type calculated
 | ||
|     // earlier.
 | ||
|     if (!isTypeLegal(VT)) {
 | ||
|       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
 | ||
|       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
 | ||
|       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
 | ||
|       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
 | ||
|                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
 | ||
|       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
 | ||
|     }
 | ||
| 
 | ||
|     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
 | ||
|       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
 | ||
|     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
 | ||
|       SDValue LoHi =
 | ||
|           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
 | ||
|       return SDValue(LoHi.getNode(), 1);
 | ||
|     }
 | ||
|     return SDValue();
 | ||
|   };
 | ||
| 
 | ||
|   SDValue Q = GetMULHS(N0, MagicFactor);
 | ||
|   if (!Q)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   Created.push_back(Q.getNode());
 | ||
| 
 | ||
|   // (Optionally) Add/subtract the numerator using Factor.
 | ||
|   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
 | ||
|   Created.push_back(Factor.getNode());
 | ||
|   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
 | ||
|   Created.push_back(Q.getNode());
 | ||
| 
 | ||
|   // Shift right algebraic by shift value.
 | ||
|   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
 | ||
|   Created.push_back(Q.getNode());
 | ||
| 
 | ||
|   // Extract the sign bit, mask it and add it to the quotient.
 | ||
|   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
 | ||
|   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
 | ||
|   Created.push_back(T.getNode());
 | ||
|   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
 | ||
|   Created.push_back(T.getNode());
 | ||
|   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
 | ||
| }
 | ||
| 
 | ||
| /// Given an ISD::UDIV node expressing a divide by constant,
 | ||
| /// return a DAG expression to select that will generate the same value by
 | ||
| /// multiplying by a magic number.
 | ||
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
 | ||
| SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
 | ||
|                                   bool IsAfterLegalization,
 | ||
|                                   SmallVectorImpl<SDNode *> &Created) const {
 | ||
|   SDLoc dl(N);
 | ||
|   EVT VT = N->getValueType(0);
 | ||
|   EVT SVT = VT.getScalarType();
 | ||
|   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|   EVT ShSVT = ShVT.getScalarType();
 | ||
|   unsigned EltBits = VT.getScalarSizeInBits();
 | ||
|   EVT MulVT;
 | ||
| 
 | ||
|   // Check to see if we can do this.
 | ||
|   // FIXME: We should be more aggressive here.
 | ||
|   if (!isTypeLegal(VT)) {
 | ||
|     // Limit this to simple scalars for now.
 | ||
|     if (VT.isVector() || !VT.isSimple())
 | ||
|       return SDValue();
 | ||
| 
 | ||
|     // If this type will be promoted to a large enough type with a legal
 | ||
|     // multiply operation, we can go ahead and do this transform.
 | ||
|     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
 | ||
|       return SDValue();
 | ||
| 
 | ||
|     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
 | ||
|     if (MulVT.getSizeInBits() < (2 * EltBits) ||
 | ||
|         !isOperationLegal(ISD::MUL, MulVT))
 | ||
|       return SDValue();
 | ||
|   }
 | ||
| 
 | ||
|   bool UseNPQ = false;
 | ||
|   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
 | ||
| 
 | ||
|   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
 | ||
|     if (C->isZero())
 | ||
|       return false;
 | ||
|     // FIXME: We should use a narrower constant when the upper
 | ||
|     // bits are known to be zero.
 | ||
|     const APInt& Divisor = C->getAPIntValue();
 | ||
|     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
 | ||
|     unsigned PreShift = 0, PostShift = 0;
 | ||
| 
 | ||
|     // If the divisor is even, we can avoid using the expensive fixup by
 | ||
|     // shifting the divided value upfront.
 | ||
|     if (magics.IsAdd != 0 && !Divisor[0]) {
 | ||
|       PreShift = Divisor.countTrailingZeros();
 | ||
|       // Get magic number for the shifted divisor.
 | ||
|       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
 | ||
|       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
 | ||
|     }
 | ||
| 
 | ||
|     APInt Magic = magics.Magic;
 | ||
| 
 | ||
|     unsigned SelNPQ;
 | ||
|     if (magics.IsAdd == 0 || Divisor.isOne()) {
 | ||
|       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
 | ||
|              "We shouldn't generate an undefined shift!");
 | ||
|       PostShift = magics.ShiftAmount;
 | ||
|       SelNPQ = false;
 | ||
|     } else {
 | ||
|       PostShift = magics.ShiftAmount - 1;
 | ||
|       SelNPQ = true;
 | ||
|     }
 | ||
| 
 | ||
|     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
 | ||
|     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
 | ||
|     NPQFactors.push_back(
 | ||
|         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
 | ||
|                                : APInt::getZero(EltBits),
 | ||
|                         dl, SVT));
 | ||
|     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
 | ||
|     UseNPQ |= SelNPQ;
 | ||
|     return true;
 | ||
|   };
 | ||
| 
 | ||
|   SDValue N0 = N->getOperand(0);
 | ||
|   SDValue N1 = N->getOperand(1);
 | ||
| 
 | ||
|   // Collect the shifts/magic values from each element.
 | ||
|   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
 | ||
|   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
 | ||
|     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
 | ||
|     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
 | ||
|     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
 | ||
|     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
 | ||
|   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
 | ||
|     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
 | ||
|            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
 | ||
|            "Expected matchUnaryPredicate to return one for scalable vectors");
 | ||
|     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
 | ||
|     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
 | ||
|     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
 | ||
|     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
 | ||
|   } else {
 | ||
|     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
 | ||
|     PreShift = PreShifts[0];
 | ||
|     MagicFactor = MagicFactors[0];
 | ||
|     PostShift = PostShifts[0];
 | ||
|   }
 | ||
| 
 | ||
|   SDValue Q = N0;
 | ||
|   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
 | ||
|   Created.push_back(Q.getNode());
 | ||
| 
 | ||
|   // FIXME: We should support doing a MUL in a wider type.
 | ||
|   auto GetMULHU = [&](SDValue X, SDValue Y) {
 | ||
|     // If the type isn't legal, use a wider mul of the the type calculated
 | ||
|     // earlier.
 | ||
|     if (!isTypeLegal(VT)) {
 | ||
|       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
 | ||
|       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
 | ||
|       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
 | ||
|       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
 | ||
|                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
 | ||
|       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
 | ||
|     }
 | ||
| 
 | ||
|     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
 | ||
|       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
 | ||
|     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
 | ||
|       SDValue LoHi =
 | ||
|           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
 | ||
|       return SDValue(LoHi.getNode(), 1);
 | ||
|     }
 | ||
|     return SDValue(); // No mulhu or equivalent
 | ||
|   };
 | ||
| 
 | ||
|   // Multiply the numerator (operand 0) by the magic value.
 | ||
|   Q = GetMULHU(Q, MagicFactor);
 | ||
|   if (!Q)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   Created.push_back(Q.getNode());
 | ||
| 
 | ||
|   if (UseNPQ) {
 | ||
|     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
 | ||
|     Created.push_back(NPQ.getNode());
 | ||
| 
 | ||
|     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
 | ||
|     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
 | ||
|     if (VT.isVector())
 | ||
|       NPQ = GetMULHU(NPQ, NPQFactor);
 | ||
|     else
 | ||
|       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
 | ||
| 
 | ||
|     Created.push_back(NPQ.getNode());
 | ||
| 
 | ||
|     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
 | ||
|     Created.push_back(Q.getNode());
 | ||
|   }
 | ||
| 
 | ||
|   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
 | ||
|   Created.push_back(Q.getNode());
 | ||
| 
 | ||
|   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | ||
| 
 | ||
|   SDValue One = DAG.getConstant(1, dl, VT);
 | ||
|   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
 | ||
|   return DAG.getSelect(dl, VT, IsOne, N0, Q);
 | ||
| }
 | ||
| 
 | ||
| /// If all values in Values that *don't* match the predicate are same 'splat'
 | ||
| /// value, then replace all values with that splat value.
 | ||
| /// Else, if AlternativeReplacement was provided, then replace all values that
 | ||
| /// do match predicate with AlternativeReplacement value.
 | ||
| static void
 | ||
| turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
 | ||
|                           std::function<bool(SDValue)> Predicate,
 | ||
|                           SDValue AlternativeReplacement = SDValue()) {
 | ||
|   SDValue Replacement;
 | ||
|   // Is there a value for which the Predicate does *NOT* match? What is it?
 | ||
|   auto SplatValue = llvm::find_if_not(Values, Predicate);
 | ||
|   if (SplatValue != Values.end()) {
 | ||
|     // Does Values consist only of SplatValue's and values matching Predicate?
 | ||
|     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
 | ||
|           return Value == *SplatValue || Predicate(Value);
 | ||
|         })) // Then we shall replace values matching predicate with SplatValue.
 | ||
|       Replacement = *SplatValue;
 | ||
|   }
 | ||
|   if (!Replacement) {
 | ||
|     // Oops, we did not find the "baseline" splat value.
 | ||
|     if (!AlternativeReplacement)
 | ||
|       return; // Nothing to do.
 | ||
|     // Let's replace with provided value then.
 | ||
|     Replacement = AlternativeReplacement;
 | ||
|   }
 | ||
|   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
 | ||
| }
 | ||
| 
 | ||
| /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
 | ||
| /// where the divisor is constant and the comparison target is zero,
 | ||
| /// return a DAG expression that will generate the same comparison result
 | ||
| /// using only multiplications, additions and shifts/rotations.
 | ||
| /// Ref: "Hacker's Delight" 10-17.
 | ||
| SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
 | ||
|                                         SDValue CompTargetNode,
 | ||
|                                         ISD::CondCode Cond,
 | ||
|                                         DAGCombinerInfo &DCI,
 | ||
|                                         const SDLoc &DL) const {
 | ||
|   SmallVector<SDNode *, 5> Built;
 | ||
|   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
 | ||
|                                          DCI, DL, Built)) {
 | ||
|     for (SDNode *N : Built)
 | ||
|       DCI.AddToWorklist(N);
 | ||
|     return Folded;
 | ||
|   }
 | ||
| 
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| SDValue
 | ||
| TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
 | ||
|                                   SDValue CompTargetNode, ISD::CondCode Cond,
 | ||
|                                   DAGCombinerInfo &DCI, const SDLoc &DL,
 | ||
|                                   SmallVectorImpl<SDNode *> &Created) const {
 | ||
|   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
 | ||
|   // - D must be constant, with D = D0 * 2^K where D0 is odd
 | ||
|   // - P is the multiplicative inverse of D0 modulo 2^W
 | ||
|   // - Q = floor(((2^W) - 1) / D)
 | ||
|   // where W is the width of the common type of N and D.
 | ||
|   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | ||
|          "Only applicable for (in)equality comparisons.");
 | ||
| 
 | ||
|   SelectionDAG &DAG = DCI.DAG;
 | ||
| 
 | ||
|   EVT VT = REMNode.getValueType();
 | ||
|   EVT SVT = VT.getScalarType();
 | ||
|   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
 | ||
|   EVT ShSVT = ShVT.getScalarType();
 | ||
| 
 | ||
|   // If MUL is unavailable, we cannot proceed in any case.
 | ||
|   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   bool ComparingWithAllZeros = true;
 | ||
|   bool AllComparisonsWithNonZerosAreTautological = true;
 | ||
|   bool HadTautologicalLanes = false;
 | ||
|   bool AllLanesAreTautological = true;
 | ||
|   bool HadEvenDivisor = false;
 | ||
|   bool AllDivisorsArePowerOfTwo = true;
 | ||
|   bool HadTautologicalInvertedLanes = false;
 | ||
|   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
 | ||
| 
 | ||
|   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
 | ||
|     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
 | ||
|     if (CDiv->isZero())
 | ||
|       return false;
 | ||
| 
 | ||
|     const APInt &D = CDiv->getAPIntValue();
 | ||
|     const APInt &Cmp = CCmp->getAPIntValue();
 | ||
| 
 | ||
|     ComparingWithAllZeros &= Cmp.isZero();
 | ||
| 
 | ||
|     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
 | ||
|     // if C2 is not less than C1, the comparison is always false.
 | ||
|     // But we will only be able to produce the comparison that will give the
 | ||
|     // opposive tautological answer. So this lane would need to be fixed up.
 | ||
|     bool TautologicalInvertedLane = D.ule(Cmp);
 | ||
|     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
 | ||
| 
 | ||
|     // If all lanes are tautological (either all divisors are ones, or divisor
 | ||
|     // is not greater than the constant we are comparing with),
 | ||
|     // we will prefer to avoid the fold.
 | ||
|     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
 | ||
|     HadTautologicalLanes |= TautologicalLane;
 | ||
|     AllLanesAreTautological &= TautologicalLane;
 | ||
| 
 | ||
|     // If we are comparing with non-zero, we need'll need  to subtract said
 | ||
|     // comparison value from the LHS. But there is no point in doing that if
 | ||
|     // every lane where we are comparing with non-zero is tautological..
 | ||
|     if (!Cmp.isZero())
 | ||
|       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
 | ||
| 
 | ||
|     // Decompose D into D0 * 2^K
 | ||
|     unsigned K = D.countTrailingZeros();
 | ||
|     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
 | ||
|     APInt D0 = D.lshr(K);
 | ||
| 
 | ||
|     // D is even if it has trailing zeros.
 | ||
|     HadEvenDivisor |= (K != 0);
 | ||
|     // D is a power-of-two if D0 is one.
 | ||
|     // If all divisors are power-of-two, we will prefer to avoid the fold.
 | ||
|     AllDivisorsArePowerOfTwo &= D0.isOne();
 | ||
| 
 | ||
|     // P = inv(D0, 2^W)
 | ||
|     // 2^W requires W + 1 bits, so we have to extend and then truncate.
 | ||
|     unsigned W = D.getBitWidth();
 | ||
|     APInt P = D0.zext(W + 1)
 | ||
|                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
 | ||
|                   .trunc(W);
 | ||
|     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
 | ||
|     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
 | ||
| 
 | ||
|     // Q = floor((2^W - 1) u/ D)
 | ||
|     // R = ((2^W - 1) u% D)
 | ||
|     APInt Q, R;
 | ||
|     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
 | ||
| 
 | ||
|     // If we are comparing with zero, then that comparison constant is okay,
 | ||
|     // else it may need to be one less than that.
 | ||
|     if (Cmp.ugt(R))
 | ||
|       Q -= 1;
 | ||
| 
 | ||
|     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
 | ||
|            "We are expecting that K is always less than all-ones for ShSVT");
 | ||
| 
 | ||
|     // If the lane is tautological the result can be constant-folded.
 | ||
|     if (TautologicalLane) {
 | ||
|       // Set P and K amount to a bogus values so we can try to splat them.
 | ||
|       P = 0;
 | ||
|       K = -1;
 | ||
|       // And ensure that comparison constant is tautological,
 | ||
|       // it will always compare true/false.
 | ||
|       Q = -1;
 | ||
|     }
 | ||
| 
 | ||
|     PAmts.push_back(DAG.getConstant(P, DL, SVT));
 | ||
|     KAmts.push_back(
 | ||
|         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
 | ||
|     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
 | ||
|     return true;
 | ||
|   };
 | ||
| 
 | ||
|   SDValue N = REMNode.getOperand(0);
 | ||
|   SDValue D = REMNode.getOperand(1);
 | ||
| 
 | ||
|   // Collect the values from each element.
 | ||
|   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // If all lanes are tautological, the result can be constant-folded.
 | ||
|   if (AllLanesAreTautological)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // If this is a urem by a powers-of-two, avoid the fold since it can be
 | ||
|   // best implemented as a bit test.
 | ||
|   if (AllDivisorsArePowerOfTwo)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   SDValue PVal, KVal, QVal;
 | ||
|   if (D.getOpcode() == ISD::BUILD_VECTOR) {
 | ||
|     if (HadTautologicalLanes) {
 | ||
|       // Try to turn PAmts into a splat, since we don't care about the values
 | ||
|       // that are currently '0'. If we can't, just keep '0'`s.
 | ||
|       turnVectorIntoSplatVector(PAmts, isNullConstant);
 | ||
|       // Try to turn KAmts into a splat, since we don't care about the values
 | ||
|       // that are currently '-1'. If we can't, change them to '0'`s.
 | ||
|       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
 | ||
|                                 DAG.getConstant(0, DL, ShSVT));
 | ||
|     }
 | ||
| 
 | ||
|     PVal = DAG.getBuildVector(VT, DL, PAmts);
 | ||
|     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
 | ||
|     QVal = DAG.getBuildVector(VT, DL, QAmts);
 | ||
|   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
 | ||
|     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
 | ||
|            "Expected matchBinaryPredicate to return one element for "
 | ||
|            "SPLAT_VECTORs");
 | ||
|     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
 | ||
|     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
 | ||
|     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
 | ||
|   } else {
 | ||
|     PVal = PAmts[0];
 | ||
|     KVal = KAmts[0];
 | ||
|     QVal = QAmts[0];
 | ||
|   }
 | ||
| 
 | ||
|   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
 | ||
|     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
 | ||
|       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
 | ||
|     assert(CompTargetNode.getValueType() == N.getValueType() &&
 | ||
|            "Expecting that the types on LHS and RHS of comparisons match.");
 | ||
|     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
 | ||
|   }
 | ||
| 
 | ||
|   // (mul N, P)
 | ||
|   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
 | ||
|   Created.push_back(Op0.getNode());
 | ||
| 
 | ||
|   // Rotate right only if any divisor was even. We avoid rotates for all-odd
 | ||
|   // divisors as a performance improvement, since rotating by 0 is a no-op.
 | ||
|   if (HadEvenDivisor) {
 | ||
|     // We need ROTR to do this.
 | ||
|     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
 | ||
|       return SDValue();
 | ||
|     // UREM: (rotr (mul N, P), K)
 | ||
|     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
 | ||
|     Created.push_back(Op0.getNode());
 | ||
|   }
 | ||
| 
 | ||
|   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
 | ||
|   SDValue NewCC =
 | ||
|       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
 | ||
|                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
 | ||
|   if (!HadTautologicalInvertedLanes)
 | ||
|     return NewCC;
 | ||
| 
 | ||
|   // If any lanes previously compared always-false, the NewCC will give
 | ||
|   // always-true result for them, so we need to fixup those lanes.
 | ||
|   // Or the other way around for inequality predicate.
 | ||
|   assert(VT.isVector() && "Can/should only get here for vectors.");
 | ||
|   Created.push_back(NewCC.getNode());
 | ||
| 
 | ||
|   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
 | ||
|   // if C2 is not less than C1, the comparison is always false.
 | ||
|   // But we have produced the comparison that will give the
 | ||
|   // opposive tautological answer. So these lanes would need to be fixed up.
 | ||
|   SDValue TautologicalInvertedChannels =
 | ||
|       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
 | ||
|   Created.push_back(TautologicalInvertedChannels.getNode());
 | ||
| 
 | ||
|   // NOTE: we avoid letting illegal types through even if we're before legalize
 | ||
|   // ops – legalization has a hard time producing good code for this.
 | ||
|   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
 | ||
|     // If we have a vector select, let's replace the comparison results in the
 | ||
|     // affected lanes with the correct tautological result.
 | ||
|     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
 | ||
|                                               DL, SETCCVT, SETCCVT);
 | ||
|     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
 | ||
|                        Replacement, NewCC);
 | ||
|   }
 | ||
| 
 | ||
|   // Else, we can just invert the comparison result in the appropriate lanes.
 | ||
|   //
 | ||
|   // NOTE: see the note above VSELECT above.
 | ||
|   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
 | ||
|     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
 | ||
|                        TautologicalInvertedChannels);
 | ||
| 
 | ||
|   return SDValue(); // Don't know how to lower.
 | ||
| }
 | ||
| 
 | ||
| /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
 | ||
| /// where the divisor is constant and the comparison target is zero,
 | ||
| /// return a DAG expression that will generate the same comparison result
 | ||
| /// using only multiplications, additions and shifts/rotations.
 | ||
| /// Ref: "Hacker's Delight" 10-17.
 | ||
| SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
 | ||
|                                         SDValue CompTargetNode,
 | ||
|                                         ISD::CondCode Cond,
 | ||
|                                         DAGCombinerInfo &DCI,
 | ||
|                                         const SDLoc &DL) const {
 | ||
|   SmallVector<SDNode *, 7> Built;
 | ||
|   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
 | ||
|                                          DCI, DL, Built)) {
 | ||
|     assert(Built.size() <= 7 && "Max size prediction failed.");
 | ||
|     for (SDNode *N : Built)
 | ||
|       DCI.AddToWorklist(N);
 | ||
|     return Folded;
 | ||
|   }
 | ||
| 
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| SDValue
 | ||
| TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
 | ||
|                                   SDValue CompTargetNode, ISD::CondCode Cond,
 | ||
|                                   DAGCombinerInfo &DCI, const SDLoc &DL,
 | ||
|                                   SmallVectorImpl<SDNode *> &Created) const {
 | ||
|   // Fold:
 | ||
|   //   (seteq/ne (srem N, D), 0)
 | ||
|   // To:
 | ||
|   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
 | ||
|   //
 | ||
|   // - D must be constant, with D = D0 * 2^K where D0 is odd
 | ||
|   // - P is the multiplicative inverse of D0 modulo 2^W
 | ||
|   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
 | ||
|   // - Q = floor((2 * A) / (2^K))
 | ||
|   // where W is the width of the common type of N and D.
 | ||
|   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | ||
|          "Only applicable for (in)equality comparisons.");
 | ||
| 
 | ||
|   SelectionDAG &DAG = DCI.DAG;
 | ||
| 
 | ||
|   EVT VT = REMNode.getValueType();
 | ||
|   EVT SVT = VT.getScalarType();
 | ||
|   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
 | ||
|   EVT ShSVT = ShVT.getScalarType();
 | ||
| 
 | ||
|   // If we are after ops legalization, and MUL is unavailable, we can not
 | ||
|   // proceed.
 | ||
|   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // TODO: Could support comparing with non-zero too.
 | ||
|   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
 | ||
|   if (!CompTarget || !CompTarget->isZero())
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   bool HadIntMinDivisor = false;
 | ||
|   bool HadOneDivisor = false;
 | ||
|   bool AllDivisorsAreOnes = true;
 | ||
|   bool HadEvenDivisor = false;
 | ||
|   bool NeedToApplyOffset = false;
 | ||
|   bool AllDivisorsArePowerOfTwo = true;
 | ||
|   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
 | ||
| 
 | ||
|   auto BuildSREMPattern = [&](ConstantSDNode *C) {
 | ||
|     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
 | ||
|     if (C->isZero())
 | ||
|       return false;
 | ||
| 
 | ||
|     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
 | ||
| 
 | ||
|     // WARNING: this fold is only valid for positive divisors!
 | ||
|     APInt D = C->getAPIntValue();
 | ||
|     if (D.isNegative())
 | ||
|       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
 | ||
| 
 | ||
|     HadIntMinDivisor |= D.isMinSignedValue();
 | ||
| 
 | ||
|     // If all divisors are ones, we will prefer to avoid the fold.
 | ||
|     HadOneDivisor |= D.isOne();
 | ||
|     AllDivisorsAreOnes &= D.isOne();
 | ||
| 
 | ||
|     // Decompose D into D0 * 2^K
 | ||
|     unsigned K = D.countTrailingZeros();
 | ||
|     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
 | ||
|     APInt D0 = D.lshr(K);
 | ||
| 
 | ||
|     if (!D.isMinSignedValue()) {
 | ||
|       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
 | ||
|       // we don't care about this lane in this fold, we'll special-handle it.
 | ||
|       HadEvenDivisor |= (K != 0);
 | ||
|     }
 | ||
| 
 | ||
|     // D is a power-of-two if D0 is one. This includes INT_MIN.
 | ||
|     // If all divisors are power-of-two, we will prefer to avoid the fold.
 | ||
|     AllDivisorsArePowerOfTwo &= D0.isOne();
 | ||
| 
 | ||
|     // P = inv(D0, 2^W)
 | ||
|     // 2^W requires W + 1 bits, so we have to extend and then truncate.
 | ||
|     unsigned W = D.getBitWidth();
 | ||
|     APInt P = D0.zext(W + 1)
 | ||
|                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
 | ||
|                   .trunc(W);
 | ||
|     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
 | ||
|     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
 | ||
| 
 | ||
|     // A = floor((2^(W - 1) - 1) / D0) & -2^K
 | ||
|     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
 | ||
|     A.clearLowBits(K);
 | ||
| 
 | ||
|     if (!D.isMinSignedValue()) {
 | ||
|       // If divisor INT_MIN, then we don't care about this lane in this fold,
 | ||
|       // we'll special-handle it.
 | ||
|       NeedToApplyOffset |= A != 0;
 | ||
|     }
 | ||
| 
 | ||
|     // Q = floor((2 * A) / (2^K))
 | ||
|     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
 | ||
| 
 | ||
|     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
 | ||
|            "We are expecting that A is always less than all-ones for SVT");
 | ||
|     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
 | ||
|            "We are expecting that K is always less than all-ones for ShSVT");
 | ||
| 
 | ||
|     // If the divisor is 1 the result can be constant-folded. Likewise, we
 | ||
|     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
 | ||
|     if (D.isOne()) {
 | ||
|       // Set P, A and K to a bogus values so we can try to splat them.
 | ||
|       P = 0;
 | ||
|       A = -1;
 | ||
|       K = -1;
 | ||
| 
 | ||
|       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
 | ||
|       Q = -1;
 | ||
|     }
 | ||
| 
 | ||
|     PAmts.push_back(DAG.getConstant(P, DL, SVT));
 | ||
|     AAmts.push_back(DAG.getConstant(A, DL, SVT));
 | ||
|     KAmts.push_back(
 | ||
|         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
 | ||
|     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
 | ||
|     return true;
 | ||
|   };
 | ||
| 
 | ||
|   SDValue N = REMNode.getOperand(0);
 | ||
|   SDValue D = REMNode.getOperand(1);
 | ||
| 
 | ||
|   // Collect the values from each element.
 | ||
|   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // If this is a srem by a one, avoid the fold since it can be constant-folded.
 | ||
|   if (AllDivisorsAreOnes)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
 | ||
|   // since it can be best implemented as a bit test.
 | ||
|   if (AllDivisorsArePowerOfTwo)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   SDValue PVal, AVal, KVal, QVal;
 | ||
|   if (D.getOpcode() == ISD::BUILD_VECTOR) {
 | ||
|     if (HadOneDivisor) {
 | ||
|       // Try to turn PAmts into a splat, since we don't care about the values
 | ||
|       // that are currently '0'. If we can't, just keep '0'`s.
 | ||
|       turnVectorIntoSplatVector(PAmts, isNullConstant);
 | ||
|       // Try to turn AAmts into a splat, since we don't care about the
 | ||
|       // values that are currently '-1'. If we can't, change them to '0'`s.
 | ||
|       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
 | ||
|                                 DAG.getConstant(0, DL, SVT));
 | ||
|       // Try to turn KAmts into a splat, since we don't care about the values
 | ||
|       // that are currently '-1'. If we can't, change them to '0'`s.
 | ||
|       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
 | ||
|                                 DAG.getConstant(0, DL, ShSVT));
 | ||
|     }
 | ||
| 
 | ||
|     PVal = DAG.getBuildVector(VT, DL, PAmts);
 | ||
|     AVal = DAG.getBuildVector(VT, DL, AAmts);
 | ||
|     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
 | ||
|     QVal = DAG.getBuildVector(VT, DL, QAmts);
 | ||
|   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
 | ||
|     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
 | ||
|            QAmts.size() == 1 &&
 | ||
|            "Expected matchUnaryPredicate to return one element for scalable "
 | ||
|            "vectors");
 | ||
|     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
 | ||
|     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
 | ||
|     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
 | ||
|     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
 | ||
|   } else {
 | ||
|     assert(isa<ConstantSDNode>(D) && "Expected a constant");
 | ||
|     PVal = PAmts[0];
 | ||
|     AVal = AAmts[0];
 | ||
|     KVal = KAmts[0];
 | ||
|     QVal = QAmts[0];
 | ||
|   }
 | ||
| 
 | ||
|   // (mul N, P)
 | ||
|   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
 | ||
|   Created.push_back(Op0.getNode());
 | ||
| 
 | ||
|   if (NeedToApplyOffset) {
 | ||
|     // We need ADD to do this.
 | ||
|     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
 | ||
|       return SDValue();
 | ||
| 
 | ||
|     // (add (mul N, P), A)
 | ||
|     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
 | ||
|     Created.push_back(Op0.getNode());
 | ||
|   }
 | ||
| 
 | ||
|   // Rotate right only if any divisor was even. We avoid rotates for all-odd
 | ||
|   // divisors as a performance improvement, since rotating by 0 is a no-op.
 | ||
|   if (HadEvenDivisor) {
 | ||
|     // We need ROTR to do this.
 | ||
|     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
 | ||
|       return SDValue();
 | ||
|     // SREM: (rotr (add (mul N, P), A), K)
 | ||
|     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
 | ||
|     Created.push_back(Op0.getNode());
 | ||
|   }
 | ||
| 
 | ||
|   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
 | ||
|   SDValue Fold =
 | ||
|       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
 | ||
|                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
 | ||
| 
 | ||
|   // If we didn't have lanes with INT_MIN divisor, then we're done.
 | ||
|   if (!HadIntMinDivisor)
 | ||
|     return Fold;
 | ||
| 
 | ||
|   // That fold is only valid for positive divisors. Which effectively means,
 | ||
|   // it is invalid for INT_MIN divisors. So if we have such a lane,
 | ||
|   // we must fix-up results for said lanes.
 | ||
|   assert(VT.isVector() && "Can/should only get here for vectors.");
 | ||
| 
 | ||
|   // NOTE: we avoid letting illegal types through even if we're before legalize
 | ||
|   // ops – legalization has a hard time producing good code for the code that
 | ||
|   // follows.
 | ||
|   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
 | ||
|       !isOperationLegalOrCustom(ISD::AND, VT) ||
 | ||
|       !isOperationLegalOrCustom(Cond, VT) ||
 | ||
|       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   Created.push_back(Fold.getNode());
 | ||
| 
 | ||
|   SDValue IntMin = DAG.getConstant(
 | ||
|       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
 | ||
|   SDValue IntMax = DAG.getConstant(
 | ||
|       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
 | ||
|   SDValue Zero =
 | ||
|       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
 | ||
| 
 | ||
|   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
 | ||
|   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
 | ||
|   Created.push_back(DivisorIsIntMin.getNode());
 | ||
| 
 | ||
|   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
 | ||
|   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
 | ||
|   Created.push_back(Masked.getNode());
 | ||
|   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
 | ||
|   Created.push_back(MaskedIsZero.getNode());
 | ||
| 
 | ||
|   // To produce final result we need to blend 2 vectors: 'SetCC' and
 | ||
|   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
 | ||
|   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
 | ||
|   // constant-folded, select can get lowered to a shuffle with constant mask.
 | ||
|   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
 | ||
|                                 MaskedIsZero, Fold);
 | ||
| 
 | ||
|   return Blended;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::
 | ||
| verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
 | ||
|   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
 | ||
|     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
 | ||
|                                 "be a constant integer");
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
 | ||
|                                          const DenormalMode &Mode) const {
 | ||
|   SDLoc DL(Op);
 | ||
|   EVT VT = Op.getValueType();
 | ||
|   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | ||
|   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
 | ||
|   // Testing it with denormal inputs to avoid wrong estimate.
 | ||
|   if (Mode.Input == DenormalMode::IEEE) {
 | ||
|     // This is specifically a check for the handling of denormal inputs,
 | ||
|     // not the result.
 | ||
| 
 | ||
|     // Test = fabs(X) < SmallestNormal
 | ||
|     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
 | ||
|     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
 | ||
|     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
 | ||
|     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
 | ||
|     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
 | ||
|   }
 | ||
|   // Test = X == 0.0
 | ||
|   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
 | ||
|                                              bool LegalOps, bool OptForSize,
 | ||
|                                              NegatibleCost &Cost,
 | ||
|                                              unsigned Depth) const {
 | ||
|   // fneg is removable even if it has multiple uses.
 | ||
|   if (Op.getOpcode() == ISD::FNEG) {
 | ||
|     Cost = NegatibleCost::Cheaper;
 | ||
|     return Op.getOperand(0);
 | ||
|   }
 | ||
| 
 | ||
|   // Don't recurse exponentially.
 | ||
|   if (Depth > SelectionDAG::MaxRecursionDepth)
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // Pre-increment recursion depth for use in recursive calls.
 | ||
|   ++Depth;
 | ||
|   const SDNodeFlags Flags = Op->getFlags();
 | ||
|   const TargetOptions &Options = DAG.getTarget().Options;
 | ||
|   EVT VT = Op.getValueType();
 | ||
|   unsigned Opcode = Op.getOpcode();
 | ||
| 
 | ||
|   // Don't allow anything with multiple uses unless we know it is free.
 | ||
|   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
 | ||
|     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
 | ||
|                         isFPExtFree(VT, Op.getOperand(0).getValueType());
 | ||
|     if (!IsFreeExtend)
 | ||
|       return SDValue();
 | ||
|   }
 | ||
| 
 | ||
|   auto RemoveDeadNode = [&](SDValue N) {
 | ||
|     if (N && N.getNode()->use_empty())
 | ||
|       DAG.RemoveDeadNode(N.getNode());
 | ||
|   };
 | ||
| 
 | ||
|   SDLoc DL(Op);
 | ||
| 
 | ||
|   // Because getNegatedExpression can delete nodes we need a handle to keep
 | ||
|   // temporary nodes alive in case the recursion manages to create an identical
 | ||
|   // node.
 | ||
|   std::list<HandleSDNode> Handles;
 | ||
| 
 | ||
|   switch (Opcode) {
 | ||
|   case ISD::ConstantFP: {
 | ||
|     // Don't invert constant FP values after legalization unless the target says
 | ||
|     // the negated constant is legal.
 | ||
|     bool IsOpLegal =
 | ||
|         isOperationLegal(ISD::ConstantFP, VT) ||
 | ||
|         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
 | ||
|                      OptForSize);
 | ||
| 
 | ||
|     if (LegalOps && !IsOpLegal)
 | ||
|       break;
 | ||
| 
 | ||
|     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
 | ||
|     V.changeSign();
 | ||
|     SDValue CFP = DAG.getConstantFP(V, DL, VT);
 | ||
| 
 | ||
|     // If we already have the use of the negated floating constant, it is free
 | ||
|     // to negate it even it has multiple uses.
 | ||
|     if (!Op.hasOneUse() && CFP.use_empty())
 | ||
|       break;
 | ||
|     Cost = NegatibleCost::Neutral;
 | ||
|     return CFP;
 | ||
|   }
 | ||
|   case ISD::BUILD_VECTOR: {
 | ||
|     // Only permit BUILD_VECTOR of constants.
 | ||
|     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
 | ||
|           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
 | ||
|         }))
 | ||
|       break;
 | ||
| 
 | ||
|     bool IsOpLegal =
 | ||
|         (isOperationLegal(ISD::ConstantFP, VT) &&
 | ||
|          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
 | ||
|         llvm::all_of(Op->op_values(), [&](SDValue N) {
 | ||
|           return N.isUndef() ||
 | ||
|                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
 | ||
|                               OptForSize);
 | ||
|         });
 | ||
| 
 | ||
|     if (LegalOps && !IsOpLegal)
 | ||
|       break;
 | ||
| 
 | ||
|     SmallVector<SDValue, 4> Ops;
 | ||
|     for (SDValue C : Op->op_values()) {
 | ||
|       if (C.isUndef()) {
 | ||
|         Ops.push_back(C);
 | ||
|         continue;
 | ||
|       }
 | ||
|       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
 | ||
|       V.changeSign();
 | ||
|       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
 | ||
|     }
 | ||
|     Cost = NegatibleCost::Neutral;
 | ||
|     return DAG.getBuildVector(VT, DL, Ops);
 | ||
|   }
 | ||
|   case ISD::FADD: {
 | ||
|     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
 | ||
|       break;
 | ||
| 
 | ||
|     // After operation legalization, it might not be legal to create new FSUBs.
 | ||
|     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
 | ||
|       break;
 | ||
|     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
 | ||
| 
 | ||
|     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
 | ||
|     NegatibleCost CostX = NegatibleCost::Expensive;
 | ||
|     SDValue NegX =
 | ||
|         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
 | ||
|     // Prevent this node from being deleted by the next call.
 | ||
|     if (NegX)
 | ||
|       Handles.emplace_back(NegX);
 | ||
| 
 | ||
|     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
 | ||
|     NegatibleCost CostY = NegatibleCost::Expensive;
 | ||
|     SDValue NegY =
 | ||
|         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
 | ||
| 
 | ||
|     // We're done with the handles.
 | ||
|     Handles.clear();
 | ||
| 
 | ||
|     // Negate the X if its cost is less or equal than Y.
 | ||
|     if (NegX && (CostX <= CostY)) {
 | ||
|       Cost = CostX;
 | ||
|       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
 | ||
|       if (NegY != N)
 | ||
|         RemoveDeadNode(NegY);
 | ||
|       return N;
 | ||
|     }
 | ||
| 
 | ||
|     // Negate the Y if it is not expensive.
 | ||
|     if (NegY) {
 | ||
|       Cost = CostY;
 | ||
|       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
 | ||
|       if (NegX != N)
 | ||
|         RemoveDeadNode(NegX);
 | ||
|       return N;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::FSUB: {
 | ||
|     // We can't turn -(A-B) into B-A when we honor signed zeros.
 | ||
|     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
 | ||
|       break;
 | ||
| 
 | ||
|     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
 | ||
|     // fold (fneg (fsub 0, Y)) -> Y
 | ||
|     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
 | ||
|       if (C->isZero()) {
 | ||
|         Cost = NegatibleCost::Cheaper;
 | ||
|         return Y;
 | ||
|       }
 | ||
| 
 | ||
|     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
 | ||
|     Cost = NegatibleCost::Neutral;
 | ||
|     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
 | ||
|   }
 | ||
|   case ISD::FMUL:
 | ||
|   case ISD::FDIV: {
 | ||
|     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
 | ||
| 
 | ||
|     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
 | ||
|     NegatibleCost CostX = NegatibleCost::Expensive;
 | ||
|     SDValue NegX =
 | ||
|         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
 | ||
|     // Prevent this node from being deleted by the next call.
 | ||
|     if (NegX)
 | ||
|       Handles.emplace_back(NegX);
 | ||
| 
 | ||
|     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
 | ||
|     NegatibleCost CostY = NegatibleCost::Expensive;
 | ||
|     SDValue NegY =
 | ||
|         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
 | ||
| 
 | ||
|     // We're done with the handles.
 | ||
|     Handles.clear();
 | ||
| 
 | ||
|     // Negate the X if its cost is less or equal than Y.
 | ||
|     if (NegX && (CostX <= CostY)) {
 | ||
|       Cost = CostX;
 | ||
|       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
 | ||
|       if (NegY != N)
 | ||
|         RemoveDeadNode(NegY);
 | ||
|       return N;
 | ||
|     }
 | ||
| 
 | ||
|     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
 | ||
|     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
 | ||
|       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
 | ||
|         break;
 | ||
| 
 | ||
|     // Negate the Y if it is not expensive.
 | ||
|     if (NegY) {
 | ||
|       Cost = CostY;
 | ||
|       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
 | ||
|       if (NegX != N)
 | ||
|         RemoveDeadNode(NegX);
 | ||
|       return N;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::FMA:
 | ||
|   case ISD::FMAD: {
 | ||
|     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
 | ||
|       break;
 | ||
| 
 | ||
|     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
 | ||
|     NegatibleCost CostZ = NegatibleCost::Expensive;
 | ||
|     SDValue NegZ =
 | ||
|         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
 | ||
|     // Give up if fail to negate the Z.
 | ||
|     if (!NegZ)
 | ||
|       break;
 | ||
| 
 | ||
|     // Prevent this node from being deleted by the next two calls.
 | ||
|     Handles.emplace_back(NegZ);
 | ||
| 
 | ||
|     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
 | ||
|     NegatibleCost CostX = NegatibleCost::Expensive;
 | ||
|     SDValue NegX =
 | ||
|         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
 | ||
|     // Prevent this node from being deleted by the next call.
 | ||
|     if (NegX)
 | ||
|       Handles.emplace_back(NegX);
 | ||
| 
 | ||
|     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
 | ||
|     NegatibleCost CostY = NegatibleCost::Expensive;
 | ||
|     SDValue NegY =
 | ||
|         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
 | ||
| 
 | ||
|     // We're done with the handles.
 | ||
|     Handles.clear();
 | ||
| 
 | ||
|     // Negate the X if its cost is less or equal than Y.
 | ||
|     if (NegX && (CostX <= CostY)) {
 | ||
|       Cost = std::min(CostX, CostZ);
 | ||
|       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
 | ||
|       if (NegY != N)
 | ||
|         RemoveDeadNode(NegY);
 | ||
|       return N;
 | ||
|     }
 | ||
| 
 | ||
|     // Negate the Y if it is not expensive.
 | ||
|     if (NegY) {
 | ||
|       Cost = std::min(CostY, CostZ);
 | ||
|       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
 | ||
|       if (NegX != N)
 | ||
|         RemoveDeadNode(NegX);
 | ||
|       return N;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   case ISD::FP_EXTEND:
 | ||
|   case ISD::FSIN:
 | ||
|     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
 | ||
|                                             OptForSize, Cost, Depth))
 | ||
|       return DAG.getNode(Opcode, DL, VT, NegV);
 | ||
|     break;
 | ||
|   case ISD::FP_ROUND:
 | ||
|     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
 | ||
|                                             OptForSize, Cost, Depth))
 | ||
|       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| // Legalization Utilities
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| 
 | ||
| bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
 | ||
|                                     SDValue LHS, SDValue RHS,
 | ||
|                                     SmallVectorImpl<SDValue> &Result,
 | ||
|                                     EVT HiLoVT, SelectionDAG &DAG,
 | ||
|                                     MulExpansionKind Kind, SDValue LL,
 | ||
|                                     SDValue LH, SDValue RL, SDValue RH) const {
 | ||
|   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
 | ||
|          Opcode == ISD::SMUL_LOHI);
 | ||
| 
 | ||
|   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
 | ||
|                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
 | ||
|   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
 | ||
|                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
 | ||
|   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
 | ||
|                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
 | ||
|   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
 | ||
|                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
 | ||
| 
 | ||
|   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
 | ||
|     return false;
 | ||
| 
 | ||
|   unsigned OuterBitSize = VT.getScalarSizeInBits();
 | ||
|   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
 | ||
| 
 | ||
|   // LL, LH, RL, and RH must be either all NULL or all set to a value.
 | ||
|   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
 | ||
|          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
 | ||
| 
 | ||
|   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
 | ||
|   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
 | ||
|                           bool Signed) -> bool {
 | ||
|     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
 | ||
|       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
 | ||
|       Hi = SDValue(Lo.getNode(), 1);
 | ||
|       return true;
 | ||
|     }
 | ||
|     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
 | ||
|       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
 | ||
|       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
 | ||
|       return true;
 | ||
|     }
 | ||
|     return false;
 | ||
|   };
 | ||
| 
 | ||
|   SDValue Lo, Hi;
 | ||
| 
 | ||
|   if (!LL.getNode() && !RL.getNode() &&
 | ||
|       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
 | ||
|     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
 | ||
|     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
 | ||
|   }
 | ||
| 
 | ||
|   if (!LL.getNode())
 | ||
|     return false;
 | ||
| 
 | ||
|   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
 | ||
|   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
 | ||
|       DAG.MaskedValueIsZero(RHS, HighMask)) {
 | ||
|     // The inputs are both zero-extended.
 | ||
|     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
 | ||
|       Result.push_back(Lo);
 | ||
|       Result.push_back(Hi);
 | ||
|       if (Opcode != ISD::MUL) {
 | ||
|         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
 | ||
|         Result.push_back(Zero);
 | ||
|         Result.push_back(Zero);
 | ||
|       }
 | ||
|       return true;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (!VT.isVector() && Opcode == ISD::MUL &&
 | ||
|       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
 | ||
|       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
 | ||
|     // The input values are both sign-extended.
 | ||
|     // TODO non-MUL case?
 | ||
|     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
 | ||
|       Result.push_back(Lo);
 | ||
|       Result.push_back(Hi);
 | ||
|       return true;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
 | ||
|   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
 | ||
| 
 | ||
|   if (!LH.getNode() && !RH.getNode() &&
 | ||
|       isOperationLegalOrCustom(ISD::SRL, VT) &&
 | ||
|       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
 | ||
|     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
 | ||
|     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
 | ||
|     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
 | ||
|     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
 | ||
|   }
 | ||
| 
 | ||
|   if (!LH.getNode())
 | ||
|     return false;
 | ||
| 
 | ||
|   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
 | ||
|     return false;
 | ||
| 
 | ||
|   Result.push_back(Lo);
 | ||
| 
 | ||
|   if (Opcode == ISD::MUL) {
 | ||
|     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
 | ||
|     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
 | ||
|     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
 | ||
|     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
 | ||
|     Result.push_back(Hi);
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   // Compute the full width result.
 | ||
|   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
 | ||
|     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
 | ||
|     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
 | ||
|     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
 | ||
|     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
 | ||
|   };
 | ||
| 
 | ||
|   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
 | ||
|   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
 | ||
|     return false;
 | ||
| 
 | ||
|   // This is effectively the add part of a multiply-add of half-sized operands,
 | ||
|   // so it cannot overflow.
 | ||
|   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
 | ||
| 
 | ||
|   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
 | ||
|     return false;
 | ||
| 
 | ||
|   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
 | ||
|   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | ||
| 
 | ||
|   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
 | ||
|                   isOperationLegalOrCustom(ISD::ADDE, VT));
 | ||
|   if (UseGlue)
 | ||
|     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
 | ||
|                        Merge(Lo, Hi));
 | ||
|   else
 | ||
|     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
 | ||
|                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
 | ||
| 
 | ||
|   SDValue Carry = Next.getValue(1);
 | ||
|   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
 | ||
|   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
 | ||
| 
 | ||
|   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
 | ||
|     return false;
 | ||
| 
 | ||
|   if (UseGlue)
 | ||
|     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
 | ||
|                      Carry);
 | ||
|   else
 | ||
|     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
 | ||
|                      Zero, Carry);
 | ||
| 
 | ||
|   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
 | ||
| 
 | ||
|   if (Opcode == ISD::SMUL_LOHI) {
 | ||
|     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
 | ||
|                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
 | ||
|     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
 | ||
| 
 | ||
|     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
 | ||
|                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
 | ||
|     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
 | ||
|   }
 | ||
| 
 | ||
|   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
 | ||
|   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
 | ||
|   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
 | ||
|                                SelectionDAG &DAG, MulExpansionKind Kind,
 | ||
|                                SDValue LL, SDValue LH, SDValue RL,
 | ||
|                                SDValue RH) const {
 | ||
|   SmallVector<SDValue, 2> Result;
 | ||
|   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
 | ||
|                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
 | ||
|                            DAG, Kind, LL, LH, RL, RH);
 | ||
|   if (Ok) {
 | ||
|     assert(Result.size() == 2);
 | ||
|     Lo = Result[0];
 | ||
|     Hi = Result[1];
 | ||
|   }
 | ||
|   return Ok;
 | ||
| }
 | ||
| 
 | ||
| // Check that (every element of) Z is undef or not an exact multiple of BW.
 | ||
| static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
 | ||
|   return ISD::matchUnaryPredicate(
 | ||
|       Z,
 | ||
|       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
 | ||
|       true);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandFunnelShift(SDNode *Node,
 | ||
|                                           SelectionDAG &DAG) const {
 | ||
|   EVT VT = Node->getValueType(0);
 | ||
| 
 | ||
|   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
 | ||
|                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
 | ||
|                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
 | ||
|                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   SDValue X = Node->getOperand(0);
 | ||
|   SDValue Y = Node->getOperand(1);
 | ||
|   SDValue Z = Node->getOperand(2);
 | ||
| 
 | ||
|   unsigned BW = VT.getScalarSizeInBits();
 | ||
|   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
 | ||
|   SDLoc DL(SDValue(Node, 0));
 | ||
| 
 | ||
|   EVT ShVT = Z.getValueType();
 | ||
| 
 | ||
|   // If a funnel shift in the other direction is more supported, use it.
 | ||
|   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
 | ||
|   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
 | ||
|       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
 | ||
|     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
 | ||
|       // fshl X, Y, Z -> fshr X, Y, -Z
 | ||
|       // fshr X, Y, Z -> fshl X, Y, -Z
 | ||
|       SDValue Zero = DAG.getConstant(0, DL, ShVT);
 | ||
|       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
 | ||
|     } else {
 | ||
|       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
 | ||
|       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
 | ||
|       SDValue One = DAG.getConstant(1, DL, ShVT);
 | ||
|       if (IsFSHL) {
 | ||
|         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
 | ||
|         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
 | ||
|       } else {
 | ||
|         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
 | ||
|         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
 | ||
|       }
 | ||
|       Z = DAG.getNOT(DL, Z, ShVT);
 | ||
|     }
 | ||
|     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
 | ||
|   }
 | ||
| 
 | ||
|   SDValue ShX, ShY;
 | ||
|   SDValue ShAmt, InvShAmt;
 | ||
|   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
 | ||
|     // fshl: X << C | Y >> (BW - C)
 | ||
|     // fshr: X << (BW - C) | Y >> C
 | ||
|     // where C = Z % BW is not zero
 | ||
|     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
 | ||
|     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
 | ||
|     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
 | ||
|     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
 | ||
|     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
 | ||
|   } else {
 | ||
|     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
 | ||
|     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
 | ||
|     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
 | ||
|     if (isPowerOf2_32(BW)) {
 | ||
|       // Z % BW -> Z & (BW - 1)
 | ||
|       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
 | ||
|       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
 | ||
|       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
 | ||
|     } else {
 | ||
|       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
 | ||
|       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
 | ||
|       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
 | ||
|     }
 | ||
| 
 | ||
|     SDValue One = DAG.getConstant(1, DL, ShVT);
 | ||
|     if (IsFSHL) {
 | ||
|       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
 | ||
|       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
 | ||
|       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
 | ||
|     } else {
 | ||
|       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
 | ||
|       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
 | ||
|       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
 | ||
|     }
 | ||
|   }
 | ||
|   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
 | ||
| }
 | ||
| 
 | ||
| // TODO: Merge with expandFunnelShift.
 | ||
| SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
 | ||
|                                   SelectionDAG &DAG) const {
 | ||
|   EVT VT = Node->getValueType(0);
 | ||
|   unsigned EltSizeInBits = VT.getScalarSizeInBits();
 | ||
|   bool IsLeft = Node->getOpcode() == ISD::ROTL;
 | ||
|   SDValue Op0 = Node->getOperand(0);
 | ||
|   SDValue Op1 = Node->getOperand(1);
 | ||
|   SDLoc DL(SDValue(Node, 0));
 | ||
| 
 | ||
|   EVT ShVT = Op1.getValueType();
 | ||
|   SDValue Zero = DAG.getConstant(0, DL, ShVT);
 | ||
| 
 | ||
|   // If a rotate in the other direction is more supported, use it.
 | ||
|   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
 | ||
|   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
 | ||
|       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
 | ||
|     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
 | ||
|     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
 | ||
|   }
 | ||
| 
 | ||
|   if (!AllowVectorOps && VT.isVector() &&
 | ||
|       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
 | ||
|        !isOperationLegalOrCustom(ISD::SRL, VT) ||
 | ||
|        !isOperationLegalOrCustom(ISD::SUB, VT) ||
 | ||
|        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
 | ||
|        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
 | ||
|   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
 | ||
|   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
 | ||
|   SDValue ShVal;
 | ||
|   SDValue HsVal;
 | ||
|   if (isPowerOf2_32(EltSizeInBits)) {
 | ||
|     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
 | ||
|     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
 | ||
|     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
 | ||
|     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
 | ||
|     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
 | ||
|     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
 | ||
|     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
 | ||
|   } else {
 | ||
|     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
 | ||
|     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
 | ||
|     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
 | ||
|     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
 | ||
|     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
 | ||
|     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
 | ||
|     SDValue One = DAG.getConstant(1, DL, ShVT);
 | ||
|     HsVal =
 | ||
|         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
 | ||
|   }
 | ||
|   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
 | ||
| }
 | ||
| 
 | ||
| void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
 | ||
|                                       SelectionDAG &DAG) const {
 | ||
|   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
 | ||
|   EVT VT = Node->getValueType(0);
 | ||
|   unsigned VTBits = VT.getScalarSizeInBits();
 | ||
|   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
 | ||
| 
 | ||
|   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
 | ||
|   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
 | ||
|   SDValue ShOpLo = Node->getOperand(0);
 | ||
|   SDValue ShOpHi = Node->getOperand(1);
 | ||
|   SDValue ShAmt = Node->getOperand(2);
 | ||
|   EVT ShAmtVT = ShAmt.getValueType();
 | ||
|   EVT ShAmtCCVT =
 | ||
|       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
 | ||
|   SDLoc dl(Node);
 | ||
| 
 | ||
|   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
 | ||
|   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
 | ||
|   // away during isel.
 | ||
|   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
 | ||
|                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
 | ||
|   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
 | ||
|                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
 | ||
|                        : DAG.getConstant(0, dl, VT);
 | ||
| 
 | ||
|   SDValue Tmp2, Tmp3;
 | ||
|   if (IsSHL) {
 | ||
|     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
 | ||
|     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
 | ||
|   } else {
 | ||
|     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
 | ||
|     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
 | ||
|   }
 | ||
| 
 | ||
|   // If the shift amount is larger or equal than the width of a part we don't
 | ||
|   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
 | ||
|   // values for large shift amounts.
 | ||
|   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
 | ||
|                                 DAG.getConstant(VTBits, dl, ShAmtVT));
 | ||
|   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
 | ||
|                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
 | ||
| 
 | ||
|   if (IsSHL) {
 | ||
|     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
 | ||
|     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
 | ||
|   } else {
 | ||
|     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
 | ||
|     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
 | ||
|                                       SelectionDAG &DAG) const {
 | ||
|   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
 | ||
|   SDValue Src = Node->getOperand(OpNo);
 | ||
|   EVT SrcVT = Src.getValueType();
 | ||
|   EVT DstVT = Node->getValueType(0);
 | ||
|   SDLoc dl(SDValue(Node, 0));
 | ||
| 
 | ||
|   // FIXME: Only f32 to i64 conversions are supported.
 | ||
|   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
 | ||
|     return false;
 | ||
| 
 | ||
|   if (Node->isStrictFPOpcode())
 | ||
|     // When a NaN is converted to an integer a trap is allowed. We can't
 | ||
|     // use this expansion here because it would eliminate that trap. Other
 | ||
|     // traps are also allowed and cannot be eliminated. See
 | ||
|     // IEEE 754-2008 sec 5.8.
 | ||
|     return false;
 | ||
| 
 | ||
|   // Expand f32 -> i64 conversion
 | ||
|   // This algorithm comes from compiler-rt's implementation of fixsfdi:
 | ||
|   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
 | ||
|   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
 | ||
|   EVT IntVT = SrcVT.changeTypeToInteger();
 | ||
|   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
 | ||
| 
 | ||
|   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
 | ||
|   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
 | ||
|   SDValue Bias = DAG.getConstant(127, dl, IntVT);
 | ||
|   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
 | ||
|   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
 | ||
|   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
 | ||
| 
 | ||
|   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
 | ||
| 
 | ||
|   SDValue ExponentBits = DAG.getNode(
 | ||
|       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
 | ||
|       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
 | ||
|   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
 | ||
| 
 | ||
|   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
 | ||
|                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
 | ||
|                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
 | ||
|   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
 | ||
| 
 | ||
|   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
 | ||
|                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
 | ||
|                           DAG.getConstant(0x00800000, dl, IntVT));
 | ||
| 
 | ||
|   R = DAG.getZExtOrTrunc(R, dl, DstVT);
 | ||
| 
 | ||
|   R = DAG.getSelectCC(
 | ||
|       dl, Exponent, ExponentLoBit,
 | ||
|       DAG.getNode(ISD::SHL, dl, DstVT, R,
 | ||
|                   DAG.getZExtOrTrunc(
 | ||
|                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
 | ||
|                       dl, IntShVT)),
 | ||
|       DAG.getNode(ISD::SRL, dl, DstVT, R,
 | ||
|                   DAG.getZExtOrTrunc(
 | ||
|                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
 | ||
|                       dl, IntShVT)),
 | ||
|       ISD::SETGT);
 | ||
| 
 | ||
|   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
 | ||
|                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
 | ||
| 
 | ||
|   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
 | ||
|                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
 | ||
|                                       SDValue &Chain,
 | ||
|                                       SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(SDValue(Node, 0));
 | ||
|   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
 | ||
|   SDValue Src = Node->getOperand(OpNo);
 | ||
| 
 | ||
|   EVT SrcVT = Src.getValueType();
 | ||
|   EVT DstVT = Node->getValueType(0);
 | ||
|   EVT SetCCVT =
 | ||
|       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
 | ||
|   EVT DstSetCCVT =
 | ||
|       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
 | ||
| 
 | ||
|   // Only expand vector types if we have the appropriate vector bit operations.
 | ||
|   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
 | ||
|                                                    ISD::FP_TO_SINT;
 | ||
|   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
 | ||
|                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
 | ||
|     return false;
 | ||
| 
 | ||
|   // If the maximum float value is smaller then the signed integer range,
 | ||
|   // the destination signmask can't be represented by the float, so we can
 | ||
|   // just use FP_TO_SINT directly.
 | ||
|   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
 | ||
|   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
 | ||
|   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
 | ||
|   if (APFloat::opOverflow &
 | ||
|       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
 | ||
|     if (Node->isStrictFPOpcode()) {
 | ||
|       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
 | ||
|                            { Node->getOperand(0), Src });
 | ||
|       Chain = Result.getValue(1);
 | ||
|     } else
 | ||
|       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   // Don't expand it if there isn't cheap fsub instruction.
 | ||
|   if (!isOperationLegalOrCustom(
 | ||
|           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
 | ||
|     return false;
 | ||
| 
 | ||
|   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
 | ||
|   SDValue Sel;
 | ||
| 
 | ||
|   if (Node->isStrictFPOpcode()) {
 | ||
|     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
 | ||
|                        Node->getOperand(0), /*IsSignaling*/ true);
 | ||
|     Chain = Sel.getValue(1);
 | ||
|   } else {
 | ||
|     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
 | ||
|   }
 | ||
| 
 | ||
|   bool Strict = Node->isStrictFPOpcode() ||
 | ||
|                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
 | ||
| 
 | ||
|   if (Strict) {
 | ||
|     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
 | ||
|     // signmask then offset (the result of which should be fully representable).
 | ||
|     // Sel = Src < 0x8000000000000000
 | ||
|     // FltOfs = select Sel, 0, 0x8000000000000000
 | ||
|     // IntOfs = select Sel, 0, 0x8000000000000000
 | ||
|     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
 | ||
| 
 | ||
|     // TODO: Should any fast-math-flags be set for the FSUB?
 | ||
|     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
 | ||
|                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
 | ||
|     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
 | ||
|     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
 | ||
|                                    DAG.getConstant(0, dl, DstVT),
 | ||
|                                    DAG.getConstant(SignMask, dl, DstVT));
 | ||
|     SDValue SInt;
 | ||
|     if (Node->isStrictFPOpcode()) {
 | ||
|       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
 | ||
|                                 { Chain, Src, FltOfs });
 | ||
|       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
 | ||
|                          { Val.getValue(1), Val });
 | ||
|       Chain = SInt.getValue(1);
 | ||
|     } else {
 | ||
|       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
 | ||
|       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
 | ||
|     }
 | ||
|     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
 | ||
|   } else {
 | ||
|     // Expand based on maximum range of FP_TO_SINT:
 | ||
|     // True = fp_to_sint(Src)
 | ||
|     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
 | ||
|     // Result = select (Src < 0x8000000000000000), True, False
 | ||
| 
 | ||
|     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
 | ||
|     // TODO: Should any fast-math-flags be set for the FSUB?
 | ||
|     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
 | ||
|                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
 | ||
|     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
 | ||
|                         DAG.getConstant(SignMask, dl, DstVT));
 | ||
|     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
 | ||
|     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
 | ||
|   }
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
 | ||
|                                       SDValue &Chain,
 | ||
|                                       SelectionDAG &DAG) const {
 | ||
|   // This transform is not correct for converting 0 when rounding mode is set
 | ||
|   // to round toward negative infinity which will produce -0.0. So disable under
 | ||
|   // strictfp.
 | ||
|   if (Node->isStrictFPOpcode())
 | ||
|     return false;
 | ||
| 
 | ||
|   SDValue Src = Node->getOperand(0);
 | ||
|   EVT SrcVT = Src.getValueType();
 | ||
|   EVT DstVT = Node->getValueType(0);
 | ||
| 
 | ||
|   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
 | ||
|     return false;
 | ||
| 
 | ||
|   // Only expand vector types if we have the appropriate vector bit operations.
 | ||
|   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
 | ||
|                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
 | ||
|                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
 | ||
|                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
 | ||
|                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
 | ||
|     return false;
 | ||
| 
 | ||
|   SDLoc dl(SDValue(Node, 0));
 | ||
|   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
 | ||
| 
 | ||
|   // Implementation of unsigned i64 to f64 following the algorithm in
 | ||
|   // __floatundidf in compiler_rt.  This implementation performs rounding
 | ||
|   // correctly in all rounding modes with the exception of converting 0
 | ||
|   // when rounding toward negative infinity. In that case the fsub will produce
 | ||
|   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
 | ||
|   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
 | ||
|   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
 | ||
|       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
 | ||
|   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
 | ||
|   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
 | ||
|   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
 | ||
| 
 | ||
|   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
 | ||
|   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
 | ||
|   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
 | ||
|   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
 | ||
|   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
 | ||
|   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
 | ||
|   SDValue HiSub =
 | ||
|       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
 | ||
|   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| SDValue
 | ||
| TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
 | ||
|                                                SelectionDAG &DAG) const {
 | ||
|   unsigned Opcode = Node->getOpcode();
 | ||
|   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
 | ||
|           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
 | ||
|          "Wrong opcode");
 | ||
| 
 | ||
|   if (Node->getFlags().hasNoNaNs()) {
 | ||
|     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
 | ||
|     SDValue Op1 = Node->getOperand(0);
 | ||
|     SDValue Op2 = Node->getOperand(1);
 | ||
|     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
 | ||
|     // Copy FMF flags, but always set the no-signed-zeros flag
 | ||
|     // as this is implied by the FMINNUM/FMAXNUM semantics.
 | ||
|     SDNodeFlags Flags = Node->getFlags();
 | ||
|     Flags.setNoSignedZeros(true);
 | ||
|     SelCC->setFlags(Flags);
 | ||
|     return SelCC;
 | ||
|   }
 | ||
| 
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
 | ||
|                                               SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(Node);
 | ||
|   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
 | ||
|     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
 | ||
|   EVT VT = Node->getValueType(0);
 | ||
| 
 | ||
|   if (VT.isScalableVector())
 | ||
|     report_fatal_error(
 | ||
|         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
 | ||
| 
 | ||
|   if (isOperationLegalOrCustom(NewOp, VT)) {
 | ||
|     SDValue Quiet0 = Node->getOperand(0);
 | ||
|     SDValue Quiet1 = Node->getOperand(1);
 | ||
| 
 | ||
|     if (!Node->getFlags().hasNoNaNs()) {
 | ||
|       // Insert canonicalizes if it's possible we need to quiet to get correct
 | ||
|       // sNaN behavior.
 | ||
|       if (!DAG.isKnownNeverSNaN(Quiet0)) {
 | ||
|         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
 | ||
|                              Node->getFlags());
 | ||
|       }
 | ||
|       if (!DAG.isKnownNeverSNaN(Quiet1)) {
 | ||
|         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
 | ||
|                              Node->getFlags());
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
 | ||
|   }
 | ||
| 
 | ||
|   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
 | ||
|   // instead if there are no NaNs.
 | ||
|   if (Node->getFlags().hasNoNaNs()) {
 | ||
|     unsigned IEEE2018Op =
 | ||
|         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
 | ||
|     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
 | ||
|       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
 | ||
|                          Node->getOperand(1), Node->getFlags());
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
 | ||
|     return SelCC;
 | ||
| 
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
 | ||
|                                          unsigned Test, SDNodeFlags Flags,
 | ||
|                                          const SDLoc &DL,
 | ||
|                                          SelectionDAG &DAG) const {
 | ||
|   EVT OperandVT = Op.getValueType();
 | ||
|   assert(OperandVT.isFloatingPoint());
 | ||
| 
 | ||
|   // Degenerated cases.
 | ||
|   if (Test == 0)
 | ||
|     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
 | ||
|   if ((Test & fcAllFlags) == fcAllFlags)
 | ||
|     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
 | ||
| 
 | ||
|   // PPC double double is a pair of doubles, of which the higher part determines
 | ||
|   // the value class.
 | ||
|   if (OperandVT == MVT::ppcf128) {
 | ||
|     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
 | ||
|                      DAG.getConstant(1, DL, MVT::i32));
 | ||
|     OperandVT = MVT::f64;
 | ||
|   }
 | ||
| 
 | ||
|   // Some checks may be represented as inversion of simpler check, for example
 | ||
|   // "inf|normal|subnormal|zero" => !"nan".
 | ||
|   bool IsInverted = false;
 | ||
|   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
 | ||
|     IsInverted = true;
 | ||
|     Test = InvertedCheck;
 | ||
|   }
 | ||
| 
 | ||
|   // Floating-point type properties.
 | ||
|   EVT ScalarFloatVT = OperandVT.getScalarType();
 | ||
|   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
 | ||
|   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
 | ||
|   bool IsF80 = (ScalarFloatVT == MVT::f80);
 | ||
| 
 | ||
|   // Some checks can be implemented using float comparisons, if floating point
 | ||
|   // exceptions are ignored.
 | ||
|   if (Flags.hasNoFPExcept() &&
 | ||
|       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
 | ||
|     if (Test == fcZero)
 | ||
|       return DAG.getSetCC(DL, ResultVT, Op,
 | ||
|                           DAG.getConstantFP(0.0, DL, OperandVT),
 | ||
|                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
 | ||
|     if (Test == fcNan)
 | ||
|       return DAG.getSetCC(DL, ResultVT, Op, Op,
 | ||
|                           IsInverted ? ISD::SETO : ISD::SETUO);
 | ||
|   }
 | ||
| 
 | ||
|   // In the general case use integer operations.
 | ||
|   unsigned BitSize = OperandVT.getScalarSizeInBits();
 | ||
|   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
 | ||
|   if (OperandVT.isVector())
 | ||
|     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
 | ||
|                              OperandVT.getVectorElementCount());
 | ||
|   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
 | ||
| 
 | ||
|   // Various masks.
 | ||
|   APInt SignBit = APInt::getSignMask(BitSize);
 | ||
|   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
 | ||
|   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
 | ||
|   const unsigned ExplicitIntBitInF80 = 63;
 | ||
|   APInt ExpMask = Inf;
 | ||
|   if (IsF80)
 | ||
|     ExpMask.clearBit(ExplicitIntBitInF80);
 | ||
|   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
 | ||
|   APInt QNaNBitMask =
 | ||
|       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
 | ||
|   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
 | ||
| 
 | ||
|   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
 | ||
|   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
 | ||
|   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
 | ||
|   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
 | ||
|   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
 | ||
|   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
 | ||
| 
 | ||
|   SDValue Res;
 | ||
|   const auto appendResult = [&](SDValue PartialRes) {
 | ||
|     if (PartialRes) {
 | ||
|       if (Res)
 | ||
|         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
 | ||
|       else
 | ||
|         Res = PartialRes;
 | ||
|     }
 | ||
|   };
 | ||
| 
 | ||
|   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
 | ||
|   const auto getIntBitIsSet = [&]() -> SDValue {
 | ||
|     if (!IntBitIsSetV) {
 | ||
|       APInt IntBitMask(BitSize, 0);
 | ||
|       IntBitMask.setBit(ExplicitIntBitInF80);
 | ||
|       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
 | ||
|       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
 | ||
|       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
 | ||
|     }
 | ||
|     return IntBitIsSetV;
 | ||
|   };
 | ||
| 
 | ||
|   // Split the value into sign bit and absolute value.
 | ||
|   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
 | ||
|   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
 | ||
|                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
 | ||
| 
 | ||
|   // Tests that involve more than one class should be processed first.
 | ||
|   SDValue PartialRes;
 | ||
| 
 | ||
|   if (IsF80)
 | ||
|     ; // Detect finite numbers of f80 by checking individual classes because
 | ||
|       // they have different settings of the explicit integer bit.
 | ||
|   else if ((Test & fcFinite) == fcFinite) {
 | ||
|     // finite(V) ==> abs(V) < exp_mask
 | ||
|     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
 | ||
|     Test &= ~fcFinite;
 | ||
|   } else if ((Test & fcFinite) == fcPosFinite) {
 | ||
|     // finite(V) && V > 0 ==> V < exp_mask
 | ||
|     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
 | ||
|     Test &= ~fcPosFinite;
 | ||
|   } else if ((Test & fcFinite) == fcNegFinite) {
 | ||
|     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
 | ||
|     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
 | ||
|     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
 | ||
|     Test &= ~fcNegFinite;
 | ||
|   }
 | ||
|   appendResult(PartialRes);
 | ||
| 
 | ||
|   // Check for individual classes.
 | ||
| 
 | ||
|   if (unsigned PartialCheck = Test & fcZero) {
 | ||
|     if (PartialCheck == fcPosZero)
 | ||
|       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
 | ||
|     else if (PartialCheck == fcZero)
 | ||
|       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
 | ||
|     else // ISD::fcNegZero
 | ||
|       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
 | ||
|     appendResult(PartialRes);
 | ||
|   }
 | ||
| 
 | ||
|   if (unsigned PartialCheck = Test & fcInf) {
 | ||
|     if (PartialCheck == fcPosInf)
 | ||
|       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
 | ||
|     else if (PartialCheck == fcInf)
 | ||
|       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
 | ||
|     else { // ISD::fcNegInf
 | ||
|       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
 | ||
|       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
 | ||
|       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
 | ||
|     }
 | ||
|     appendResult(PartialRes);
 | ||
|   }
 | ||
| 
 | ||
|   if (unsigned PartialCheck = Test & fcNan) {
 | ||
|     APInt InfWithQnanBit = Inf | QNaNBitMask;
 | ||
|     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
 | ||
|     if (PartialCheck == fcNan) {
 | ||
|       // isnan(V) ==> abs(V) > int(inf)
 | ||
|       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
 | ||
|       if (IsF80) {
 | ||
|         // Recognize unsupported values as NaNs for compatibility with glibc.
 | ||
|         // In them (exp(V)==0) == int_bit.
 | ||
|         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
 | ||
|         SDValue ExpIsZero =
 | ||
|             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
 | ||
|         SDValue IsPseudo =
 | ||
|             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
 | ||
|         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
 | ||
|       }
 | ||
|     } else if (PartialCheck == fcQNan) {
 | ||
|       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
 | ||
|       PartialRes =
 | ||
|           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
 | ||
|     } else { // ISD::fcSNan
 | ||
|       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
 | ||
|       //                    abs(V) < (unsigned(Inf) | quiet_bit)
 | ||
|       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
 | ||
|       SDValue IsNotQnan =
 | ||
|           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
 | ||
|       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
 | ||
|     }
 | ||
|     appendResult(PartialRes);
 | ||
|   }
 | ||
| 
 | ||
|   if (unsigned PartialCheck = Test & fcSubnormal) {
 | ||
|     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
 | ||
|     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
 | ||
|     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
 | ||
|     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
 | ||
|     SDValue VMinusOneV =
 | ||
|         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
 | ||
|     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
 | ||
|     if (PartialCheck == fcNegSubnormal)
 | ||
|       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
 | ||
|     appendResult(PartialRes);
 | ||
|   }
 | ||
| 
 | ||
|   if (unsigned PartialCheck = Test & fcNormal) {
 | ||
|     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
 | ||
|     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
 | ||
|     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
 | ||
|     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
 | ||
|     APInt ExpLimit = ExpMask - ExpLSB;
 | ||
|     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
 | ||
|     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
 | ||
|     if (PartialCheck == fcNegNormal)
 | ||
|       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
 | ||
|     else if (PartialCheck == fcPosNormal) {
 | ||
|       SDValue PosSignV =
 | ||
|           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
 | ||
|       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
 | ||
|     }
 | ||
|     if (IsF80)
 | ||
|       PartialRes =
 | ||
|           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
 | ||
|     appendResult(PartialRes);
 | ||
|   }
 | ||
| 
 | ||
|   if (!Res)
 | ||
|     return DAG.getConstant(IsInverted, DL, ResultVT);
 | ||
|   if (IsInverted)
 | ||
|     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
 | ||
|   return Res;
 | ||
| }
 | ||
| 
 | ||
| // Only expand vector types if we have the appropriate vector bit operations.
 | ||
| static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
 | ||
|   assert(VT.isVector() && "Expected vector type");
 | ||
|   unsigned Len = VT.getScalarSizeInBits();
 | ||
|   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
 | ||
|          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
 | ||
|          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
 | ||
|          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
 | ||
|          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(Node);
 | ||
|   EVT VT = Node->getValueType(0);
 | ||
|   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|   SDValue Op = Node->getOperand(0);
 | ||
|   unsigned Len = VT.getScalarSizeInBits();
 | ||
|   assert(VT.isInteger() && "CTPOP not implemented for this type.");
 | ||
| 
 | ||
|   // TODO: Add support for irregular type lengths.
 | ||
|   if (!(Len <= 128 && Len % 8 == 0))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // Only expand vector types if we have the appropriate vector bit operations.
 | ||
|   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // This is the "best" algorithm from
 | ||
|   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
 | ||
|   SDValue Mask55 =
 | ||
|       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
 | ||
|   SDValue Mask33 =
 | ||
|       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
 | ||
|   SDValue Mask0F =
 | ||
|       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
 | ||
| 
 | ||
|   // v = v - ((v >> 1) & 0x55555555...)
 | ||
|   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
 | ||
|                    DAG.getNode(ISD::AND, dl, VT,
 | ||
|                                DAG.getNode(ISD::SRL, dl, VT, Op,
 | ||
|                                            DAG.getConstant(1, dl, ShVT)),
 | ||
|                                Mask55));
 | ||
|   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
 | ||
|   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
 | ||
|                    DAG.getNode(ISD::AND, dl, VT,
 | ||
|                                DAG.getNode(ISD::SRL, dl, VT, Op,
 | ||
|                                            DAG.getConstant(2, dl, ShVT)),
 | ||
|                                Mask33));
 | ||
|   // v = (v + (v >> 4)) & 0x0F0F0F0F...
 | ||
|   Op = DAG.getNode(ISD::AND, dl, VT,
 | ||
|                    DAG.getNode(ISD::ADD, dl, VT, Op,
 | ||
|                                DAG.getNode(ISD::SRL, dl, VT, Op,
 | ||
|                                            DAG.getConstant(4, dl, ShVT))),
 | ||
|                    Mask0F);
 | ||
| 
 | ||
|   if (Len <= 8)
 | ||
|     return Op;
 | ||
| 
 | ||
|   // Avoid the multiply if we only have 2 bytes to add.
 | ||
|   // TODO: Only doing this for scalars because vectors weren't as obviously
 | ||
|   // improved.
 | ||
|   if (Len == 16 && !VT.isVector()) {
 | ||
|     // v = (v + (v >> 8)) & 0x00FF;
 | ||
|     return DAG.getNode(ISD::AND, dl, VT,
 | ||
|                      DAG.getNode(ISD::ADD, dl, VT, Op,
 | ||
|                                  DAG.getNode(ISD::SRL, dl, VT, Op,
 | ||
|                                              DAG.getConstant(8, dl, ShVT))),
 | ||
|                      DAG.getConstant(0xFF, dl, VT));
 | ||
|   }
 | ||
| 
 | ||
|   // v = (v * 0x01010101...) >> (Len - 8)
 | ||
|   SDValue Mask01 =
 | ||
|       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
 | ||
|   return DAG.getNode(ISD::SRL, dl, VT,
 | ||
|                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
 | ||
|                      DAG.getConstant(Len - 8, dl, ShVT));
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(Node);
 | ||
|   EVT VT = Node->getValueType(0);
 | ||
|   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|   SDValue Op = Node->getOperand(0);
 | ||
|   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
 | ||
| 
 | ||
|   // If the non-ZERO_UNDEF version is supported we can use that instead.
 | ||
|   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
 | ||
|       isOperationLegalOrCustom(ISD::CTLZ, VT))
 | ||
|     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
 | ||
| 
 | ||
|   // If the ZERO_UNDEF version is supported use that and handle the zero case.
 | ||
|   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
 | ||
|     EVT SetCCVT =
 | ||
|         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | ||
|     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
 | ||
|     SDValue Zero = DAG.getConstant(0, dl, VT);
 | ||
|     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
 | ||
|     return DAG.getSelect(dl, VT, SrcIsZero,
 | ||
|                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
 | ||
|   }
 | ||
| 
 | ||
|   // Only expand vector types if we have the appropriate vector bit operations.
 | ||
|   // This includes the operations needed to expand CTPOP if it isn't supported.
 | ||
|   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
 | ||
|                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
 | ||
|                          !canExpandVectorCTPOP(*this, VT)) ||
 | ||
|                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
 | ||
|                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // for now, we do this:
 | ||
|   // x = x | (x >> 1);
 | ||
|   // x = x | (x >> 2);
 | ||
|   // ...
 | ||
|   // x = x | (x >>16);
 | ||
|   // x = x | (x >>32); // for 64-bit input
 | ||
|   // return popcount(~x);
 | ||
|   //
 | ||
|   // Ref: "Hacker's Delight" by Henry Warren
 | ||
|   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
 | ||
|     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
 | ||
|     Op = DAG.getNode(ISD::OR, dl, VT, Op,
 | ||
|                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
 | ||
|   }
 | ||
|   Op = DAG.getNOT(dl, Op, VT);
 | ||
|   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(Node);
 | ||
|   EVT VT = Node->getValueType(0);
 | ||
|   SDValue Op = Node->getOperand(0);
 | ||
|   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
 | ||
| 
 | ||
|   // If the non-ZERO_UNDEF version is supported we can use that instead.
 | ||
|   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
 | ||
|       isOperationLegalOrCustom(ISD::CTTZ, VT))
 | ||
|     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
 | ||
| 
 | ||
|   // If the ZERO_UNDEF version is supported use that and handle the zero case.
 | ||
|   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
 | ||
|     EVT SetCCVT =
 | ||
|         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | ||
|     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
 | ||
|     SDValue Zero = DAG.getConstant(0, dl, VT);
 | ||
|     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
 | ||
|     return DAG.getSelect(dl, VT, SrcIsZero,
 | ||
|                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
 | ||
|   }
 | ||
| 
 | ||
|   // Only expand vector types if we have the appropriate vector bit operations.
 | ||
|   // This includes the operations needed to expand CTPOP if it isn't supported.
 | ||
|   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
 | ||
|                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
 | ||
|                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
 | ||
|                          !canExpandVectorCTPOP(*this, VT)) ||
 | ||
|                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
 | ||
|                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
 | ||
|                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   // for now, we use: { return popcount(~x & (x - 1)); }
 | ||
|   // unless the target has ctlz but not ctpop, in which case we use:
 | ||
|   // { return 32 - nlz(~x & (x-1)); }
 | ||
|   // Ref: "Hacker's Delight" by Henry Warren
 | ||
|   SDValue Tmp = DAG.getNode(
 | ||
|       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
 | ||
|       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
 | ||
| 
 | ||
|   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
 | ||
|   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
 | ||
|     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
 | ||
|                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
 | ||
|   }
 | ||
| 
 | ||
|   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
 | ||
|                                   bool IsNegative) const {
 | ||
|   SDLoc dl(N);
 | ||
|   EVT VT = N->getValueType(0);
 | ||
|   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|   SDValue Op = N->getOperand(0);
 | ||
| 
 | ||
|   // abs(x) -> smax(x,sub(0,x))
 | ||
|   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
 | ||
|       isOperationLegal(ISD::SMAX, VT)) {
 | ||
|     SDValue Zero = DAG.getConstant(0, dl, VT);
 | ||
|     return DAG.getNode(ISD::SMAX, dl, VT, Op,
 | ||
|                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
 | ||
|   }
 | ||
| 
 | ||
|   // abs(x) -> umin(x,sub(0,x))
 | ||
|   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
 | ||
|       isOperationLegal(ISD::UMIN, VT)) {
 | ||
|     SDValue Zero = DAG.getConstant(0, dl, VT);
 | ||
|     Op = DAG.getFreeze(Op);
 | ||
|     return DAG.getNode(ISD::UMIN, dl, VT, Op,
 | ||
|                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
 | ||
|   }
 | ||
| 
 | ||
|   // 0 - abs(x) -> smin(x, sub(0,x))
 | ||
|   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
 | ||
|       isOperationLegal(ISD::SMIN, VT)) {
 | ||
|     Op = DAG.getFreeze(Op);
 | ||
|     SDValue Zero = DAG.getConstant(0, dl, VT);
 | ||
|     return DAG.getNode(ISD::SMIN, dl, VT, Op,
 | ||
|                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
 | ||
|   }
 | ||
| 
 | ||
|   // Only expand vector types if we have the appropriate vector operations.
 | ||
|   if (VT.isVector() &&
 | ||
|       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
 | ||
|        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
 | ||
|        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
 | ||
|        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   Op = DAG.getFreeze(Op);
 | ||
|   SDValue Shift =
 | ||
|       DAG.getNode(ISD::SRA, dl, VT, Op,
 | ||
|                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
 | ||
|   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
 | ||
| 
 | ||
|   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
 | ||
|   if (!IsNegative)
 | ||
|     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
 | ||
| 
 | ||
|   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
 | ||
|   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(N);
 | ||
|   EVT VT = N->getValueType(0);
 | ||
|   SDValue Op = N->getOperand(0);
 | ||
| 
 | ||
|   if (!VT.isSimple())
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
 | ||
|   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
 | ||
|   default:
 | ||
|     return SDValue();
 | ||
|   case MVT::i16:
 | ||
|     // Use a rotate by 8. This can be further expanded if necessary.
 | ||
|     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
 | ||
|   case MVT::i32:
 | ||
|     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
 | ||
|     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
 | ||
|     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
 | ||
|     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
 | ||
|     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
 | ||
|                        DAG.getConstant(0xFF0000, dl, VT));
 | ||
|     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
 | ||
|     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
 | ||
|     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
 | ||
|     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
 | ||
|   case MVT::i64:
 | ||
|     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
 | ||
|     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
 | ||
|     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
 | ||
|     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
 | ||
|     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
 | ||
|     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
 | ||
|     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
 | ||
|     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
 | ||
|     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
 | ||
|                        DAG.getConstant(255ULL<<48, dl, VT));
 | ||
|     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
 | ||
|                        DAG.getConstant(255ULL<<40, dl, VT));
 | ||
|     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
 | ||
|                        DAG.getConstant(255ULL<<32, dl, VT));
 | ||
|     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
 | ||
|                        DAG.getConstant(255ULL<<24, dl, VT));
 | ||
|     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
 | ||
|                        DAG.getConstant(255ULL<<16, dl, VT));
 | ||
|     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
 | ||
|                        DAG.getConstant(255ULL<<8 , dl, VT));
 | ||
|     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
 | ||
|     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
 | ||
|     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
 | ||
|     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
 | ||
|     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
 | ||
|     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
 | ||
|     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(N);
 | ||
|   EVT VT = N->getValueType(0);
 | ||
|   SDValue Op = N->getOperand(0);
 | ||
|   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|   unsigned Sz = VT.getScalarSizeInBits();
 | ||
| 
 | ||
|   SDValue Tmp, Tmp2, Tmp3;
 | ||
| 
 | ||
|   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
 | ||
|   // and finally the i1 pairs.
 | ||
|   // TODO: We can easily support i4/i2 legal types if any target ever does.
 | ||
|   if (Sz >= 8 && isPowerOf2_32(Sz)) {
 | ||
|     // Create the masks - repeating the pattern every byte.
 | ||
|     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
 | ||
|     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
 | ||
|     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
 | ||
| 
 | ||
|     // BSWAP if the type is wider than a single byte.
 | ||
|     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
 | ||
| 
 | ||
|     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
 | ||
|     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
 | ||
|     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
 | ||
|     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
 | ||
|     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
 | ||
|     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | ||
| 
 | ||
|     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
 | ||
|     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
 | ||
|     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
 | ||
|     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
 | ||
|     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
 | ||
|     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | ||
| 
 | ||
|     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
 | ||
|     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
 | ||
|     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
 | ||
|     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
 | ||
|     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
 | ||
|     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | ||
|     return Tmp;
 | ||
|   }
 | ||
| 
 | ||
|   Tmp = DAG.getConstant(0, dl, VT);
 | ||
|   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
 | ||
|     if (I < J)
 | ||
|       Tmp2 =
 | ||
|           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
 | ||
|     else
 | ||
|       Tmp2 =
 | ||
|           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
 | ||
| 
 | ||
|     APInt Shift(Sz, 1);
 | ||
|     Shift <<= J;
 | ||
|     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
 | ||
|     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
 | ||
|   }
 | ||
| 
 | ||
|   return Tmp;
 | ||
| }
 | ||
| 
 | ||
| std::pair<SDValue, SDValue>
 | ||
| TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
 | ||
|                                     SelectionDAG &DAG) const {
 | ||
|   SDLoc SL(LD);
 | ||
|   SDValue Chain = LD->getChain();
 | ||
|   SDValue BasePTR = LD->getBasePtr();
 | ||
|   EVT SrcVT = LD->getMemoryVT();
 | ||
|   EVT DstVT = LD->getValueType(0);
 | ||
|   ISD::LoadExtType ExtType = LD->getExtensionType();
 | ||
| 
 | ||
|   if (SrcVT.isScalableVector())
 | ||
|     report_fatal_error("Cannot scalarize scalable vector loads");
 | ||
| 
 | ||
|   unsigned NumElem = SrcVT.getVectorNumElements();
 | ||
| 
 | ||
|   EVT SrcEltVT = SrcVT.getScalarType();
 | ||
|   EVT DstEltVT = DstVT.getScalarType();
 | ||
| 
 | ||
|   // A vector must always be stored in memory as-is, i.e. without any padding
 | ||
|   // between the elements, since various code depend on it, e.g. in the
 | ||
|   // handling of a bitcast of a vector type to int, which may be done with a
 | ||
|   // vector store followed by an integer load. A vector that does not have
 | ||
|   // elements that are byte-sized must therefore be stored as an integer
 | ||
|   // built out of the extracted vector elements.
 | ||
|   if (!SrcEltVT.isByteSized()) {
 | ||
|     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
 | ||
|     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
 | ||
| 
 | ||
|     unsigned NumSrcBits = SrcVT.getSizeInBits();
 | ||
|     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
 | ||
| 
 | ||
|     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
 | ||
|     SDValue SrcEltBitMask = DAG.getConstant(
 | ||
|         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
 | ||
| 
 | ||
|     // Load the whole vector and avoid masking off the top bits as it makes
 | ||
|     // the codegen worse.
 | ||
|     SDValue Load =
 | ||
|         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
 | ||
|                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
 | ||
|                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
 | ||
| 
 | ||
|     SmallVector<SDValue, 8> Vals;
 | ||
|     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
 | ||
|       unsigned ShiftIntoIdx =
 | ||
|           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
 | ||
|       SDValue ShiftAmount =
 | ||
|           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
 | ||
|                                      LoadVT, SL, /*LegalTypes=*/false);
 | ||
|       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
 | ||
|       SDValue Elt =
 | ||
|           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
 | ||
|       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
 | ||
| 
 | ||
|       if (ExtType != ISD::NON_EXTLOAD) {
 | ||
|         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
 | ||
|         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
 | ||
|       }
 | ||
| 
 | ||
|       Vals.push_back(Scalar);
 | ||
|     }
 | ||
| 
 | ||
|     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
 | ||
|     return std::make_pair(Value, Load.getValue(1));
 | ||
|   }
 | ||
| 
 | ||
|   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
 | ||
|   assert(SrcEltVT.isByteSized());
 | ||
| 
 | ||
|   SmallVector<SDValue, 8> Vals;
 | ||
|   SmallVector<SDValue, 8> LoadChains;
 | ||
| 
 | ||
|   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
 | ||
|     SDValue ScalarLoad =
 | ||
|         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
 | ||
|                        LD->getPointerInfo().getWithOffset(Idx * Stride),
 | ||
|                        SrcEltVT, LD->getOriginalAlign(),
 | ||
|                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
 | ||
| 
 | ||
|     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
 | ||
| 
 | ||
|     Vals.push_back(ScalarLoad.getValue(0));
 | ||
|     LoadChains.push_back(ScalarLoad.getValue(1));
 | ||
|   }
 | ||
| 
 | ||
|   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
 | ||
|   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
 | ||
| 
 | ||
|   return std::make_pair(Value, NewChain);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
 | ||
|                                              SelectionDAG &DAG) const {
 | ||
|   SDLoc SL(ST);
 | ||
| 
 | ||
|   SDValue Chain = ST->getChain();
 | ||
|   SDValue BasePtr = ST->getBasePtr();
 | ||
|   SDValue Value = ST->getValue();
 | ||
|   EVT StVT = ST->getMemoryVT();
 | ||
| 
 | ||
|   if (StVT.isScalableVector())
 | ||
|     report_fatal_error("Cannot scalarize scalable vector stores");
 | ||
| 
 | ||
|   // The type of the data we want to save
 | ||
|   EVT RegVT = Value.getValueType();
 | ||
|   EVT RegSclVT = RegVT.getScalarType();
 | ||
| 
 | ||
|   // The type of data as saved in memory.
 | ||
|   EVT MemSclVT = StVT.getScalarType();
 | ||
| 
 | ||
|   unsigned NumElem = StVT.getVectorNumElements();
 | ||
| 
 | ||
|   // A vector must always be stored in memory as-is, i.e. without any padding
 | ||
|   // between the elements, since various code depend on it, e.g. in the
 | ||
|   // handling of a bitcast of a vector type to int, which may be done with a
 | ||
|   // vector store followed by an integer load. A vector that does not have
 | ||
|   // elements that are byte-sized must therefore be stored as an integer
 | ||
|   // built out of the extracted vector elements.
 | ||
|   if (!MemSclVT.isByteSized()) {
 | ||
|     unsigned NumBits = StVT.getSizeInBits();
 | ||
|     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
 | ||
| 
 | ||
|     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
 | ||
| 
 | ||
|     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
 | ||
|       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
 | ||
|                                 DAG.getVectorIdxConstant(Idx, SL));
 | ||
|       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
 | ||
|       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
 | ||
|       unsigned ShiftIntoIdx =
 | ||
|           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
 | ||
|       SDValue ShiftAmount =
 | ||
|           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
 | ||
|       SDValue ShiftedElt =
 | ||
|           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
 | ||
|       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
 | ||
|     }
 | ||
| 
 | ||
|     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
 | ||
|                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
 | ||
|                         ST->getAAInfo());
 | ||
|   }
 | ||
| 
 | ||
|   // Store Stride in bytes
 | ||
|   unsigned Stride = MemSclVT.getSizeInBits() / 8;
 | ||
|   assert(Stride && "Zero stride!");
 | ||
|   // Extract each of the elements from the original vector and save them into
 | ||
|   // memory individually.
 | ||
|   SmallVector<SDValue, 8> Stores;
 | ||
|   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
 | ||
|     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
 | ||
|                               DAG.getVectorIdxConstant(Idx, SL));
 | ||
| 
 | ||
|     SDValue Ptr =
 | ||
|         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
 | ||
| 
 | ||
|     // This scalar TruncStore may be illegal, but we legalize it later.
 | ||
|     SDValue Store = DAG.getTruncStore(
 | ||
|         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
 | ||
|         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
 | ||
|         ST->getAAInfo());
 | ||
| 
 | ||
|     Stores.push_back(Store);
 | ||
|   }
 | ||
| 
 | ||
|   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
 | ||
| }
 | ||
| 
 | ||
| std::pair<SDValue, SDValue>
 | ||
| TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
 | ||
|   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
 | ||
|          "unaligned indexed loads not implemented!");
 | ||
|   SDValue Chain = LD->getChain();
 | ||
|   SDValue Ptr = LD->getBasePtr();
 | ||
|   EVT VT = LD->getValueType(0);
 | ||
|   EVT LoadedVT = LD->getMemoryVT();
 | ||
|   SDLoc dl(LD);
 | ||
|   auto &MF = DAG.getMachineFunction();
 | ||
| 
 | ||
|   if (VT.isFloatingPoint() || VT.isVector()) {
 | ||
|     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
 | ||
|     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
 | ||
|       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
 | ||
|           LoadedVT.isVector()) {
 | ||
|         // Scalarize the load and let the individual components be handled.
 | ||
|         return scalarizeVectorLoad(LD, DAG);
 | ||
|       }
 | ||
| 
 | ||
|       // Expand to a (misaligned) integer load of the same size,
 | ||
|       // then bitconvert to floating point or vector.
 | ||
|       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
 | ||
|                                     LD->getMemOperand());
 | ||
|       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
 | ||
|       if (LoadedVT != VT)
 | ||
|         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
 | ||
|                              ISD::ANY_EXTEND, dl, VT, Result);
 | ||
| 
 | ||
|       return std::make_pair(Result, newLoad.getValue(1));
 | ||
|     }
 | ||
| 
 | ||
|     // Copy the value to a (aligned) stack slot using (unaligned) integer
 | ||
|     // loads and stores, then do a (aligned) load from the stack slot.
 | ||
|     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
 | ||
|     unsigned LoadedBytes = LoadedVT.getStoreSize();
 | ||
|     unsigned RegBytes = RegVT.getSizeInBits() / 8;
 | ||
|     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
 | ||
| 
 | ||
|     // Make sure the stack slot is also aligned for the register type.
 | ||
|     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
 | ||
|     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
 | ||
|     SmallVector<SDValue, 8> Stores;
 | ||
|     SDValue StackPtr = StackBase;
 | ||
|     unsigned Offset = 0;
 | ||
| 
 | ||
|     EVT PtrVT = Ptr.getValueType();
 | ||
|     EVT StackPtrVT = StackPtr.getValueType();
 | ||
| 
 | ||
|     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
 | ||
|     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
 | ||
| 
 | ||
|     // Do all but one copies using the full register width.
 | ||
|     for (unsigned i = 1; i < NumRegs; i++) {
 | ||
|       // Load one integer register's worth from the original location.
 | ||
|       SDValue Load = DAG.getLoad(
 | ||
|           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
 | ||
|           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
 | ||
|           LD->getAAInfo());
 | ||
|       // Follow the load with a store to the stack slot.  Remember the store.
 | ||
|       Stores.push_back(DAG.getStore(
 | ||
|           Load.getValue(1), dl, Load, StackPtr,
 | ||
|           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
 | ||
|       // Increment the pointers.
 | ||
|       Offset += RegBytes;
 | ||
| 
 | ||
|       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
 | ||
|       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
 | ||
|     }
 | ||
| 
 | ||
|     // The last copy may be partial.  Do an extending load.
 | ||
|     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
 | ||
|                                   8 * (LoadedBytes - Offset));
 | ||
|     SDValue Load =
 | ||
|         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
 | ||
|                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
 | ||
|                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
 | ||
|                        LD->getAAInfo());
 | ||
|     // Follow the load with a store to the stack slot.  Remember the store.
 | ||
|     // On big-endian machines this requires a truncating store to ensure
 | ||
|     // that the bits end up in the right place.
 | ||
|     Stores.push_back(DAG.getTruncStore(
 | ||
|         Load.getValue(1), dl, Load, StackPtr,
 | ||
|         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
 | ||
| 
 | ||
|     // The order of the stores doesn't matter - say it with a TokenFactor.
 | ||
|     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | ||
| 
 | ||
|     // Finally, perform the original load only redirected to the stack slot.
 | ||
|     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
 | ||
|                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
 | ||
|                           LoadedVT);
 | ||
| 
 | ||
|     // Callers expect a MERGE_VALUES node.
 | ||
|     return std::make_pair(Load, TF);
 | ||
|   }
 | ||
| 
 | ||
|   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
 | ||
|          "Unaligned load of unsupported type.");
 | ||
| 
 | ||
|   // Compute the new VT that is half the size of the old one.  This is an
 | ||
|   // integer MVT.
 | ||
|   unsigned NumBits = LoadedVT.getSizeInBits();
 | ||
|   EVT NewLoadedVT;
 | ||
|   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
 | ||
|   NumBits >>= 1;
 | ||
| 
 | ||
|   Align Alignment = LD->getOriginalAlign();
 | ||
|   unsigned IncrementSize = NumBits / 8;
 | ||
|   ISD::LoadExtType HiExtType = LD->getExtensionType();
 | ||
| 
 | ||
|   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
 | ||
|   if (HiExtType == ISD::NON_EXTLOAD)
 | ||
|     HiExtType = ISD::ZEXTLOAD;
 | ||
| 
 | ||
|   // Load the value in two parts
 | ||
|   SDValue Lo, Hi;
 | ||
|   if (DAG.getDataLayout().isLittleEndian()) {
 | ||
|     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
 | ||
|                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
 | ||
|                         LD->getAAInfo());
 | ||
| 
 | ||
|     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
 | ||
|     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
 | ||
|                         LD->getPointerInfo().getWithOffset(IncrementSize),
 | ||
|                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
 | ||
|                         LD->getAAInfo());
 | ||
|   } else {
 | ||
|     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
 | ||
|                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
 | ||
|                         LD->getAAInfo());
 | ||
| 
 | ||
|     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
 | ||
|     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
 | ||
|                         LD->getPointerInfo().getWithOffset(IncrementSize),
 | ||
|                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
 | ||
|                         LD->getAAInfo());
 | ||
|   }
 | ||
| 
 | ||
|   // aggregate the two parts
 | ||
|   SDValue ShiftAmount =
 | ||
|       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
 | ||
|                                                     DAG.getDataLayout()));
 | ||
|   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
 | ||
|   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
 | ||
| 
 | ||
|   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
 | ||
|                              Hi.getValue(1));
 | ||
| 
 | ||
|   return std::make_pair(Result, TF);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
 | ||
|                                              SelectionDAG &DAG) const {
 | ||
|   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
 | ||
|          "unaligned indexed stores not implemented!");
 | ||
|   SDValue Chain = ST->getChain();
 | ||
|   SDValue Ptr = ST->getBasePtr();
 | ||
|   SDValue Val = ST->getValue();
 | ||
|   EVT VT = Val.getValueType();
 | ||
|   Align Alignment = ST->getOriginalAlign();
 | ||
|   auto &MF = DAG.getMachineFunction();
 | ||
|   EVT StoreMemVT = ST->getMemoryVT();
 | ||
| 
 | ||
|   SDLoc dl(ST);
 | ||
|   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
 | ||
|     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
 | ||
|     if (isTypeLegal(intVT)) {
 | ||
|       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
 | ||
|           StoreMemVT.isVector()) {
 | ||
|         // Scalarize the store and let the individual components be handled.
 | ||
|         SDValue Result = scalarizeVectorStore(ST, DAG);
 | ||
|         return Result;
 | ||
|       }
 | ||
|       // Expand to a bitconvert of the value to the integer type of the
 | ||
|       // same size, then a (misaligned) int store.
 | ||
|       // FIXME: Does not handle truncating floating point stores!
 | ||
|       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
 | ||
|       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
 | ||
|                             Alignment, ST->getMemOperand()->getFlags());
 | ||
|       return Result;
 | ||
|     }
 | ||
|     // Do a (aligned) store to a stack slot, then copy from the stack slot
 | ||
|     // to the final destination using (unaligned) integer loads and stores.
 | ||
|     MVT RegVT = getRegisterType(
 | ||
|         *DAG.getContext(),
 | ||
|         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
 | ||
|     EVT PtrVT = Ptr.getValueType();
 | ||
|     unsigned StoredBytes = StoreMemVT.getStoreSize();
 | ||
|     unsigned RegBytes = RegVT.getSizeInBits() / 8;
 | ||
|     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
 | ||
| 
 | ||
|     // Make sure the stack slot is also aligned for the register type.
 | ||
|     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
 | ||
|     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
 | ||
| 
 | ||
|     // Perform the original store, only redirected to the stack slot.
 | ||
|     SDValue Store = DAG.getTruncStore(
 | ||
|         Chain, dl, Val, StackPtr,
 | ||
|         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
 | ||
| 
 | ||
|     EVT StackPtrVT = StackPtr.getValueType();
 | ||
| 
 | ||
|     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
 | ||
|     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
 | ||
|     SmallVector<SDValue, 8> Stores;
 | ||
|     unsigned Offset = 0;
 | ||
| 
 | ||
|     // Do all but one copies using the full register width.
 | ||
|     for (unsigned i = 1; i < NumRegs; i++) {
 | ||
|       // Load one integer register's worth from the stack slot.
 | ||
|       SDValue Load = DAG.getLoad(
 | ||
|           RegVT, dl, Store, StackPtr,
 | ||
|           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
 | ||
|       // Store it to the final location.  Remember the store.
 | ||
|       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
 | ||
|                                     ST->getPointerInfo().getWithOffset(Offset),
 | ||
|                                     ST->getOriginalAlign(),
 | ||
|                                     ST->getMemOperand()->getFlags()));
 | ||
|       // Increment the pointers.
 | ||
|       Offset += RegBytes;
 | ||
|       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
 | ||
|       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
 | ||
|     }
 | ||
| 
 | ||
|     // The last store may be partial.  Do a truncating store.  On big-endian
 | ||
|     // machines this requires an extending load from the stack slot to ensure
 | ||
|     // that the bits are in the right place.
 | ||
|     EVT LoadMemVT =
 | ||
|         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
 | ||
| 
 | ||
|     // Load from the stack slot.
 | ||
|     SDValue Load = DAG.getExtLoad(
 | ||
|         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
 | ||
|         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
 | ||
| 
 | ||
|     Stores.push_back(
 | ||
|         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
 | ||
|                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
 | ||
|                           ST->getOriginalAlign(),
 | ||
|                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
 | ||
|     // The order of the stores doesn't matter - say it with a TokenFactor.
 | ||
|     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | ||
|     return Result;
 | ||
|   }
 | ||
| 
 | ||
|   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
 | ||
|          "Unaligned store of unknown type.");
 | ||
|   // Get the half-size VT
 | ||
|   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
 | ||
|   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
 | ||
|   unsigned IncrementSize = NumBits / 8;
 | ||
| 
 | ||
|   // Divide the stored value in two parts.
 | ||
|   SDValue ShiftAmount = DAG.getConstant(
 | ||
|       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
 | ||
|   SDValue Lo = Val;
 | ||
|   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
 | ||
| 
 | ||
|   // Store the two parts
 | ||
|   SDValue Store1, Store2;
 | ||
|   Store1 = DAG.getTruncStore(Chain, dl,
 | ||
|                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
 | ||
|                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
 | ||
|                              ST->getMemOperand()->getFlags());
 | ||
| 
 | ||
|   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
 | ||
|   Store2 = DAG.getTruncStore(
 | ||
|       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
 | ||
|       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
 | ||
|       ST->getMemOperand()->getFlags(), ST->getAAInfo());
 | ||
| 
 | ||
|   SDValue Result =
 | ||
|       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
 | ||
|   return Result;
 | ||
| }
 | ||
| 
 | ||
| SDValue
 | ||
| TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
 | ||
|                                        const SDLoc &DL, EVT DataVT,
 | ||
|                                        SelectionDAG &DAG,
 | ||
|                                        bool IsCompressedMemory) const {
 | ||
|   SDValue Increment;
 | ||
|   EVT AddrVT = Addr.getValueType();
 | ||
|   EVT MaskVT = Mask.getValueType();
 | ||
|   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
 | ||
|          "Incompatible types of Data and Mask");
 | ||
|   if (IsCompressedMemory) {
 | ||
|     if (DataVT.isScalableVector())
 | ||
|       report_fatal_error(
 | ||
|           "Cannot currently handle compressed memory with scalable vectors");
 | ||
|     // Incrementing the pointer according to number of '1's in the mask.
 | ||
|     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
 | ||
|     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
 | ||
|     if (MaskIntVT.getSizeInBits() < 32) {
 | ||
|       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
 | ||
|       MaskIntVT = MVT::i32;
 | ||
|     }
 | ||
| 
 | ||
|     // Count '1's with POPCNT.
 | ||
|     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
 | ||
|     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
 | ||
|     // Scale is an element size in bytes.
 | ||
|     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
 | ||
|                                     AddrVT);
 | ||
|     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
 | ||
|   } else if (DataVT.isScalableVector()) {
 | ||
|     Increment = DAG.getVScale(DL, AddrVT,
 | ||
|                               APInt(AddrVT.getFixedSizeInBits(),
 | ||
|                                     DataVT.getStoreSize().getKnownMinSize()));
 | ||
|   } else
 | ||
|     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
 | ||
| 
 | ||
|   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
 | ||
| }
 | ||
| 
 | ||
| static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
 | ||
|                                        EVT VecVT, const SDLoc &dl,
 | ||
|                                        ElementCount SubEC) {
 | ||
|   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
 | ||
|          "Cannot index a scalable vector within a fixed-width vector");
 | ||
| 
 | ||
|   unsigned NElts = VecVT.getVectorMinNumElements();
 | ||
|   unsigned NumSubElts = SubEC.getKnownMinValue();
 | ||
|   EVT IdxVT = Idx.getValueType();
 | ||
| 
 | ||
|   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
 | ||
|     // If this is a constant index and we know the value plus the number of the
 | ||
|     // elements in the subvector minus one is less than the minimum number of
 | ||
|     // elements then it's safe to return Idx.
 | ||
|     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
 | ||
|       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
 | ||
|         return Idx;
 | ||
|     SDValue VS =
 | ||
|         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
 | ||
|     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
 | ||
|     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
 | ||
|                               DAG.getConstant(NumSubElts, dl, IdxVT));
 | ||
|     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
 | ||
|   }
 | ||
|   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
 | ||
|     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
 | ||
|     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
 | ||
|                        DAG.getConstant(Imm, dl, IdxVT));
 | ||
|   }
 | ||
|   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
 | ||
|   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
 | ||
|                      DAG.getConstant(MaxIndex, dl, IdxVT));
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
 | ||
|                                                 SDValue VecPtr, EVT VecVT,
 | ||
|                                                 SDValue Index) const {
 | ||
|   return getVectorSubVecPointer(
 | ||
|       DAG, VecPtr, VecVT,
 | ||
|       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
 | ||
|       Index);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
 | ||
|                                                SDValue VecPtr, EVT VecVT,
 | ||
|                                                EVT SubVecVT,
 | ||
|                                                SDValue Index) const {
 | ||
|   SDLoc dl(Index);
 | ||
|   // Make sure the index type is big enough to compute in.
 | ||
|   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
 | ||
| 
 | ||
|   EVT EltVT = VecVT.getVectorElementType();
 | ||
| 
 | ||
|   // Calculate the element offset and add it to the pointer.
 | ||
|   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
 | ||
|   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
 | ||
|          "Converting bits to bytes lost precision");
 | ||
|   assert(SubVecVT.getVectorElementType() == EltVT &&
 | ||
|          "Sub-vector must be a vector with matching element type");
 | ||
|   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
 | ||
|                                   SubVecVT.getVectorElementCount());
 | ||
| 
 | ||
|   EVT IdxVT = Index.getValueType();
 | ||
|   if (SubVecVT.isScalableVector())
 | ||
|     Index =
 | ||
|         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
 | ||
|                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
 | ||
| 
 | ||
|   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
 | ||
|                       DAG.getConstant(EltSize, dl, IdxVT));
 | ||
|   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
 | ||
| }
 | ||
| 
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| // Implementation of Emulated TLS Model
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| 
 | ||
| SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
 | ||
|                                                 SelectionDAG &DAG) const {
 | ||
|   // Access to address of TLS varialbe xyz is lowered to a function call:
 | ||
|   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
 | ||
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | ||
|   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
 | ||
|   SDLoc dl(GA);
 | ||
| 
 | ||
|   ArgListTy Args;
 | ||
|   ArgListEntry Entry;
 | ||
|   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
 | ||
|   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
 | ||
|   StringRef EmuTlsVarName(NameString);
 | ||
|   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
 | ||
|   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
 | ||
|   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
 | ||
|   Entry.Ty = VoidPtrType;
 | ||
|   Args.push_back(Entry);
 | ||
| 
 | ||
|   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
 | ||
| 
 | ||
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | ||
|   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
 | ||
|   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
 | ||
|   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | ||
| 
 | ||
|   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
 | ||
|   // At last for X86 targets, maybe good for other targets too?
 | ||
|   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | ||
|   MFI.setAdjustsStack(true); // Is this only for X86 target?
 | ||
|   MFI.setHasCalls(true);
 | ||
| 
 | ||
|   assert((GA->getOffset() == 0) &&
 | ||
|          "Emulated TLS must have zero offset in GlobalAddressSDNode");
 | ||
|   return CallResult.first;
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
 | ||
|                                                 SelectionDAG &DAG) const {
 | ||
|   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
 | ||
|   if (!isCtlzFast())
 | ||
|     return SDValue();
 | ||
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | ||
|   SDLoc dl(Op);
 | ||
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | ||
|     if (C->isZero() && CC == ISD::SETEQ) {
 | ||
|       EVT VT = Op.getOperand(0).getValueType();
 | ||
|       SDValue Zext = Op.getOperand(0);
 | ||
|       if (VT.bitsLT(MVT::i32)) {
 | ||
|         VT = MVT::i32;
 | ||
|         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
 | ||
|       }
 | ||
|       unsigned Log2b = Log2_32(VT.getSizeInBits());
 | ||
|       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
 | ||
|       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
 | ||
|                                 DAG.getConstant(Log2b, dl, MVT::i32));
 | ||
|       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
 | ||
|     }
 | ||
|   }
 | ||
|   return SDValue();
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
 | ||
|   SDValue Op0 = Node->getOperand(0);
 | ||
|   SDValue Op1 = Node->getOperand(1);
 | ||
|   EVT VT = Op0.getValueType();
 | ||
|   unsigned Opcode = Node->getOpcode();
 | ||
|   SDLoc DL(Node);
 | ||
| 
 | ||
|   // umin(x,y) -> sub(x,usubsat(x,y))
 | ||
|   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
 | ||
|       isOperationLegal(ISD::USUBSAT, VT)) {
 | ||
|     return DAG.getNode(ISD::SUB, DL, VT, Op0,
 | ||
|                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
 | ||
|   }
 | ||
| 
 | ||
|   // umax(x,y) -> add(x,usubsat(y,x))
 | ||
|   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
 | ||
|       isOperationLegal(ISD::USUBSAT, VT)) {
 | ||
|     return DAG.getNode(ISD::ADD, DL, VT, Op0,
 | ||
|                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
 | ||
|   }
 | ||
| 
 | ||
|   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
 | ||
|   ISD::CondCode CC;
 | ||
|   switch (Opcode) {
 | ||
|   default: llvm_unreachable("How did we get here?");
 | ||
|   case ISD::SMAX: CC = ISD::SETGT; break;
 | ||
|   case ISD::SMIN: CC = ISD::SETLT; break;
 | ||
|   case ISD::UMAX: CC = ISD::SETUGT; break;
 | ||
|   case ISD::UMIN: CC = ISD::SETULT; break;
 | ||
|   }
 | ||
| 
 | ||
|   // FIXME: Should really try to split the vector in case it's legal on a
 | ||
|   // subvector.
 | ||
|   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
 | ||
|     return DAG.UnrollVectorOp(Node);
 | ||
| 
 | ||
|   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | ||
|   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
 | ||
|   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
 | ||
|   unsigned Opcode = Node->getOpcode();
 | ||
|   SDValue LHS = Node->getOperand(0);
 | ||
|   SDValue RHS = Node->getOperand(1);
 | ||
|   EVT VT = LHS.getValueType();
 | ||
|   SDLoc dl(Node);
 | ||
| 
 | ||
|   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
 | ||
|   assert(VT.isInteger() && "Expected operands to be integers");
 | ||
| 
 | ||
|   // usub.sat(a, b) -> umax(a, b) - b
 | ||
|   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
 | ||
|     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
 | ||
|     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
 | ||
|   }
 | ||
| 
 | ||
|   // uadd.sat(a, b) -> umin(a, ~b) + b
 | ||
|   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
 | ||
|     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
 | ||
|     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
 | ||
|     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
 | ||
|   }
 | ||
| 
 | ||
|   unsigned OverflowOp;
 | ||
|   switch (Opcode) {
 | ||
|   case ISD::SADDSAT:
 | ||
|     OverflowOp = ISD::SADDO;
 | ||
|     break;
 | ||
|   case ISD::UADDSAT:
 | ||
|     OverflowOp = ISD::UADDO;
 | ||
|     break;
 | ||
|   case ISD::SSUBSAT:
 | ||
|     OverflowOp = ISD::SSUBO;
 | ||
|     break;
 | ||
|   case ISD::USUBSAT:
 | ||
|     OverflowOp = ISD::USUBO;
 | ||
|     break;
 | ||
|   default:
 | ||
|     llvm_unreachable("Expected method to receive signed or unsigned saturation "
 | ||
|                      "addition or subtraction node.");
 | ||
|   }
 | ||
| 
 | ||
|   // FIXME: Should really try to split the vector in case it's legal on a
 | ||
|   // subvector.
 | ||
|   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
 | ||
|     return DAG.UnrollVectorOp(Node);
 | ||
| 
 | ||
|   unsigned BitWidth = LHS.getScalarValueSizeInBits();
 | ||
|   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | ||
|   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
 | ||
|   SDValue SumDiff = Result.getValue(0);
 | ||
|   SDValue Overflow = Result.getValue(1);
 | ||
|   SDValue Zero = DAG.getConstant(0, dl, VT);
 | ||
|   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
 | ||
| 
 | ||
|   if (Opcode == ISD::UADDSAT) {
 | ||
|     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
 | ||
|       // (LHS + RHS) | OverflowMask
 | ||
|       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
 | ||
|       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
 | ||
|     }
 | ||
|     // Overflow ? 0xffff.... : (LHS + RHS)
 | ||
|     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
 | ||
|   }
 | ||
| 
 | ||
|   if (Opcode == ISD::USUBSAT) {
 | ||
|     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
 | ||
|       // (LHS - RHS) & ~OverflowMask
 | ||
|       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
 | ||
|       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
 | ||
|       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
 | ||
|     }
 | ||
|     // Overflow ? 0 : (LHS - RHS)
 | ||
|     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
 | ||
|   }
 | ||
| 
 | ||
|   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
 | ||
|   APInt MinVal = APInt::getSignedMinValue(BitWidth);
 | ||
|   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
 | ||
|   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
 | ||
|                               DAG.getConstant(BitWidth - 1, dl, VT));
 | ||
|   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
 | ||
|   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
 | ||
|   unsigned Opcode = Node->getOpcode();
 | ||
|   bool IsSigned = Opcode == ISD::SSHLSAT;
 | ||
|   SDValue LHS = Node->getOperand(0);
 | ||
|   SDValue RHS = Node->getOperand(1);
 | ||
|   EVT VT = LHS.getValueType();
 | ||
|   SDLoc dl(Node);
 | ||
| 
 | ||
|   assert((Node->getOpcode() == ISD::SSHLSAT ||
 | ||
|           Node->getOpcode() == ISD::USHLSAT) &&
 | ||
|           "Expected a SHLSAT opcode");
 | ||
|   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
 | ||
|   assert(VT.isInteger() && "Expected operands to be integers");
 | ||
| 
 | ||
|   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
 | ||
| 
 | ||
|   unsigned BW = VT.getScalarSizeInBits();
 | ||
|   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
 | ||
|   SDValue Orig =
 | ||
|       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
 | ||
| 
 | ||
|   SDValue SatVal;
 | ||
|   if (IsSigned) {
 | ||
|     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
 | ||
|     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
 | ||
|     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
 | ||
|                              SatMin, SatMax, ISD::SETLT);
 | ||
|   } else {
 | ||
|     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
 | ||
|   }
 | ||
|   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
 | ||
| 
 | ||
|   return Result;
 | ||
| }
 | ||
| 
 | ||
| SDValue
 | ||
| TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
 | ||
|   assert((Node->getOpcode() == ISD::SMULFIX ||
 | ||
|           Node->getOpcode() == ISD::UMULFIX ||
 | ||
|           Node->getOpcode() == ISD::SMULFIXSAT ||
 | ||
|           Node->getOpcode() == ISD::UMULFIXSAT) &&
 | ||
|          "Expected a fixed point multiplication opcode");
 | ||
| 
 | ||
|   SDLoc dl(Node);
 | ||
|   SDValue LHS = Node->getOperand(0);
 | ||
|   SDValue RHS = Node->getOperand(1);
 | ||
|   EVT VT = LHS.getValueType();
 | ||
|   unsigned Scale = Node->getConstantOperandVal(2);
 | ||
|   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
 | ||
|                      Node->getOpcode() == ISD::UMULFIXSAT);
 | ||
|   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
 | ||
|                  Node->getOpcode() == ISD::SMULFIXSAT);
 | ||
|   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | ||
|   unsigned VTSize = VT.getScalarSizeInBits();
 | ||
| 
 | ||
|   if (!Scale) {
 | ||
|     // [us]mul.fix(a, b, 0) -> mul(a, b)
 | ||
|     if (!Saturating) {
 | ||
|       if (isOperationLegalOrCustom(ISD::MUL, VT))
 | ||
|         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
 | ||
|     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
 | ||
|       SDValue Result =
 | ||
|           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
 | ||
|       SDValue Product = Result.getValue(0);
 | ||
|       SDValue Overflow = Result.getValue(1);
 | ||
|       SDValue Zero = DAG.getConstant(0, dl, VT);
 | ||
| 
 | ||
|       APInt MinVal = APInt::getSignedMinValue(VTSize);
 | ||
|       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
 | ||
|       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
 | ||
|       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
 | ||
|       // Xor the inputs, if resulting sign bit is 0 the product will be
 | ||
|       // positive, else negative.
 | ||
|       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
 | ||
|       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
 | ||
|       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
 | ||
|       return DAG.getSelect(dl, VT, Overflow, Result, Product);
 | ||
|     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
 | ||
|       SDValue Result =
 | ||
|           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
 | ||
|       SDValue Product = Result.getValue(0);
 | ||
|       SDValue Overflow = Result.getValue(1);
 | ||
| 
 | ||
|       APInt MaxVal = APInt::getMaxValue(VTSize);
 | ||
|       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
 | ||
|       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
 | ||
|          "Expected scale to be less than the number of bits if signed or at "
 | ||
|          "most the number of bits if unsigned.");
 | ||
|   assert(LHS.getValueType() == RHS.getValueType() &&
 | ||
|          "Expected both operands to be the same type");
 | ||
| 
 | ||
|   // Get the upper and lower bits of the result.
 | ||
|   SDValue Lo, Hi;
 | ||
|   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
 | ||
|   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
 | ||
|   if (isOperationLegalOrCustom(LoHiOp, VT)) {
 | ||
|     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
 | ||
|     Lo = Result.getValue(0);
 | ||
|     Hi = Result.getValue(1);
 | ||
|   } else if (isOperationLegalOrCustom(HiOp, VT)) {
 | ||
|     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
 | ||
|     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
 | ||
|   } else if (VT.isVector()) {
 | ||
|     return SDValue();
 | ||
|   } else {
 | ||
|     report_fatal_error("Unable to expand fixed point multiplication.");
 | ||
|   }
 | ||
| 
 | ||
|   if (Scale == VTSize)
 | ||
|     // Result is just the top half since we'd be shifting by the width of the
 | ||
|     // operand. Overflow impossible so this works for both UMULFIX and
 | ||
|     // UMULFIXSAT.
 | ||
|     return Hi;
 | ||
| 
 | ||
|   // The result will need to be shifted right by the scale since both operands
 | ||
|   // are scaled. The result is given to us in 2 halves, so we only want part of
 | ||
|   // both in the result.
 | ||
|   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
 | ||
|                                DAG.getConstant(Scale, dl, ShiftTy));
 | ||
|   if (!Saturating)
 | ||
|     return Result;
 | ||
| 
 | ||
|   if (!Signed) {
 | ||
|     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
 | ||
|     // widened multiplication) aren't all zeroes.
 | ||
| 
 | ||
|     // Saturate to max if ((Hi >> Scale) != 0),
 | ||
|     // which is the same as if (Hi > ((1 << Scale) - 1))
 | ||
|     APInt MaxVal = APInt::getMaxValue(VTSize);
 | ||
|     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
 | ||
|                                       dl, VT);
 | ||
|     Result = DAG.getSelectCC(dl, Hi, LowMask,
 | ||
|                              DAG.getConstant(MaxVal, dl, VT), Result,
 | ||
|                              ISD::SETUGT);
 | ||
| 
 | ||
|     return Result;
 | ||
|   }
 | ||
| 
 | ||
|   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
 | ||
|   // widened multiplication) aren't all ones or all zeroes.
 | ||
| 
 | ||
|   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
 | ||
|   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
 | ||
| 
 | ||
|   if (Scale == 0) {
 | ||
|     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
 | ||
|                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
 | ||
|     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
 | ||
|     // Saturated to SatMin if wide product is negative, and SatMax if wide
 | ||
|     // product is positive ...
 | ||
|     SDValue Zero = DAG.getConstant(0, dl, VT);
 | ||
|     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
 | ||
|                                                ISD::SETLT);
 | ||
|     // ... but only if we overflowed.
 | ||
|     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
 | ||
|   }
 | ||
| 
 | ||
|   //  We handled Scale==0 above so all the bits to examine is in Hi.
 | ||
| 
 | ||
|   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
 | ||
|   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
 | ||
|   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
 | ||
|                                     dl, VT);
 | ||
|   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
 | ||
|   // Saturate to min if (Hi >> (Scale - 1)) < -1),
 | ||
|   // which is the same as if (HI < (-1 << (Scale - 1))
 | ||
|   SDValue HighMask =
 | ||
|       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
 | ||
|                       dl, VT);
 | ||
|   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
 | ||
|   return Result;
 | ||
| }
 | ||
| 
 | ||
| SDValue
 | ||
| TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
 | ||
|                                     SDValue LHS, SDValue RHS,
 | ||
|                                     unsigned Scale, SelectionDAG &DAG) const {
 | ||
|   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
 | ||
|           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
 | ||
|          "Expected a fixed point division opcode");
 | ||
| 
 | ||
|   EVT VT = LHS.getValueType();
 | ||
|   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
 | ||
|   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
 | ||
|   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | ||
| 
 | ||
|   // If there is enough room in the type to upscale the LHS or downscale the
 | ||
|   // RHS before the division, we can perform it in this type without having to
 | ||
|   // resize. For signed operations, the LHS headroom is the number of
 | ||
|   // redundant sign bits, and for unsigned ones it is the number of zeroes.
 | ||
|   // The headroom for the RHS is the number of trailing zeroes.
 | ||
|   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
 | ||
|                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
 | ||
|   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
 | ||
| 
 | ||
|   // For signed saturating operations, we need to be able to detect true integer
 | ||
|   // division overflow; that is, when you have MIN / -EPS. However, this
 | ||
|   // is undefined behavior and if we emit divisions that could take such
 | ||
|   // values it may cause undesired behavior (arithmetic exceptions on x86, for
 | ||
|   // example).
 | ||
|   // Avoid this by requiring an extra bit so that we never get this case.
 | ||
|   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
 | ||
|   // signed saturating division, we need to emit a whopping 32-bit division.
 | ||
|   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
 | ||
|     return SDValue();
 | ||
| 
 | ||
|   unsigned LHSShift = std::min(LHSLead, Scale);
 | ||
|   unsigned RHSShift = Scale - LHSShift;
 | ||
| 
 | ||
|   // At this point, we know that if we shift the LHS up by LHSShift and the
 | ||
|   // RHS down by RHSShift, we can emit a regular division with a final scaling
 | ||
|   // factor of Scale.
 | ||
| 
 | ||
|   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|   if (LHSShift)
 | ||
|     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
 | ||
|                       DAG.getConstant(LHSShift, dl, ShiftTy));
 | ||
|   if (RHSShift)
 | ||
|     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
 | ||
|                       DAG.getConstant(RHSShift, dl, ShiftTy));
 | ||
| 
 | ||
|   SDValue Quot;
 | ||
|   if (Signed) {
 | ||
|     // For signed operations, if the resulting quotient is negative and the
 | ||
|     // remainder is nonzero, subtract 1 from the quotient to round towards
 | ||
|     // negative infinity.
 | ||
|     SDValue Rem;
 | ||
|     // FIXME: Ideally we would always produce an SDIVREM here, but if the
 | ||
|     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
 | ||
|     // we couldn't just form a libcall, but the type legalizer doesn't do it.
 | ||
|     if (isTypeLegal(VT) &&
 | ||
|         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
 | ||
|       Quot = DAG.getNode(ISD::SDIVREM, dl,
 | ||
|                          DAG.getVTList(VT, VT),
 | ||
|                          LHS, RHS);
 | ||
|       Rem = Quot.getValue(1);
 | ||
|       Quot = Quot.getValue(0);
 | ||
|     } else {
 | ||
|       Quot = DAG.getNode(ISD::SDIV, dl, VT,
 | ||
|                          LHS, RHS);
 | ||
|       Rem = DAG.getNode(ISD::SREM, dl, VT,
 | ||
|                         LHS, RHS);
 | ||
|     }
 | ||
|     SDValue Zero = DAG.getConstant(0, dl, VT);
 | ||
|     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
 | ||
|     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
 | ||
|     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
 | ||
|     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
 | ||
|     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
 | ||
|                                DAG.getConstant(1, dl, VT));
 | ||
|     Quot = DAG.getSelect(dl, VT,
 | ||
|                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
 | ||
|                          Sub1, Quot);
 | ||
|   } else
 | ||
|     Quot = DAG.getNode(ISD::UDIV, dl, VT,
 | ||
|                        LHS, RHS);
 | ||
| 
 | ||
|   return Quot;
 | ||
| }
 | ||
| 
 | ||
| void TargetLowering::expandUADDSUBO(
 | ||
|     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(Node);
 | ||
|   SDValue LHS = Node->getOperand(0);
 | ||
|   SDValue RHS = Node->getOperand(1);
 | ||
|   bool IsAdd = Node->getOpcode() == ISD::UADDO;
 | ||
| 
 | ||
|   // If ADD/SUBCARRY is legal, use that instead.
 | ||
|   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
 | ||
|   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
 | ||
|     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
 | ||
|     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
 | ||
|                                     { LHS, RHS, CarryIn });
 | ||
|     Result = SDValue(NodeCarry.getNode(), 0);
 | ||
|     Overflow = SDValue(NodeCarry.getNode(), 1);
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
 | ||
|                             LHS.getValueType(), LHS, RHS);
 | ||
| 
 | ||
|   EVT ResultType = Node->getValueType(1);
 | ||
|   EVT SetCCType = getSetCCResultType(
 | ||
|       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
 | ||
|   SDValue SetCC;
 | ||
|   if (IsAdd && isOneConstant(RHS)) {
 | ||
|     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
 | ||
|     // the live range of X. We assume comparing with 0 is cheap.
 | ||
|     // The general case (X + C) < C is not necessarily beneficial. Although we
 | ||
|     // reduce the live range of X, we may introduce the materialization of
 | ||
|     // constant C.
 | ||
|     SetCC =
 | ||
|         DAG.getSetCC(dl, SetCCType, Result,
 | ||
|                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
 | ||
|   } else {
 | ||
|     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
 | ||
|     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
 | ||
|   }
 | ||
|   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
 | ||
| }
 | ||
| 
 | ||
| void TargetLowering::expandSADDSUBO(
 | ||
|     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(Node);
 | ||
|   SDValue LHS = Node->getOperand(0);
 | ||
|   SDValue RHS = Node->getOperand(1);
 | ||
|   bool IsAdd = Node->getOpcode() == ISD::SADDO;
 | ||
| 
 | ||
|   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
 | ||
|                             LHS.getValueType(), LHS, RHS);
 | ||
| 
 | ||
|   EVT ResultType = Node->getValueType(1);
 | ||
|   EVT OType = getSetCCResultType(
 | ||
|       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
 | ||
| 
 | ||
|   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
 | ||
|   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
 | ||
|   if (isOperationLegal(OpcSat, LHS.getValueType())) {
 | ||
|     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
 | ||
|     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
 | ||
|     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
 | ||
| 
 | ||
|   // For an addition, the result should be less than one of the operands (LHS)
 | ||
|   // if and only if the other operand (RHS) is negative, otherwise there will
 | ||
|   // be overflow.
 | ||
|   // For a subtraction, the result should be less than one of the operands
 | ||
|   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
 | ||
|   // otherwise there will be overflow.
 | ||
|   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
 | ||
|   SDValue ConditionRHS =
 | ||
|       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
 | ||
| 
 | ||
|   Overflow = DAG.getBoolExtOrTrunc(
 | ||
|       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
 | ||
|       ResultType, ResultType);
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
 | ||
|                                 SDValue &Overflow, SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(Node);
 | ||
|   EVT VT = Node->getValueType(0);
 | ||
|   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | ||
|   SDValue LHS = Node->getOperand(0);
 | ||
|   SDValue RHS = Node->getOperand(1);
 | ||
|   bool isSigned = Node->getOpcode() == ISD::SMULO;
 | ||
| 
 | ||
|   // For power-of-two multiplications we can use a simpler shift expansion.
 | ||
|   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
 | ||
|     const APInt &C = RHSC->getAPIntValue();
 | ||
|     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
 | ||
|     if (C.isPowerOf2()) {
 | ||
|       // smulo(x, signed_min) is same as umulo(x, signed_min).
 | ||
|       bool UseArithShift = isSigned && !C.isMinSignedValue();
 | ||
|       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
 | ||
|       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
 | ||
|       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
 | ||
|       Overflow = DAG.getSetCC(dl, SetCCVT,
 | ||
|           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
 | ||
|                       dl, VT, Result, ShiftAmt),
 | ||
|           LHS, ISD::SETNE);
 | ||
|       return true;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
 | ||
|   if (VT.isVector())
 | ||
|     WideVT =
 | ||
|         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
 | ||
| 
 | ||
|   SDValue BottomHalf;
 | ||
|   SDValue TopHalf;
 | ||
|   static const unsigned Ops[2][3] =
 | ||
|       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
 | ||
|         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
 | ||
|   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
 | ||
|     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
 | ||
|     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
 | ||
|   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
 | ||
|     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
 | ||
|                              RHS);
 | ||
|     TopHalf = BottomHalf.getValue(1);
 | ||
|   } else if (isTypeLegal(WideVT)) {
 | ||
|     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
 | ||
|     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
 | ||
|     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
 | ||
|     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
 | ||
|     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
 | ||
|         getShiftAmountTy(WideVT, DAG.getDataLayout()));
 | ||
|     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
 | ||
|                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
 | ||
|   } else {
 | ||
|     if (VT.isVector())
 | ||
|       return false;
 | ||
| 
 | ||
|     // We can fall back to a libcall with an illegal type for the MUL if we
 | ||
|     // have a libcall big enough.
 | ||
|     // Also, we can fall back to a division in some cases, but that's a big
 | ||
|     // performance hit in the general case.
 | ||
|     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
 | ||
|     if (WideVT == MVT::i16)
 | ||
|       LC = RTLIB::MUL_I16;
 | ||
|     else if (WideVT == MVT::i32)
 | ||
|       LC = RTLIB::MUL_I32;
 | ||
|     else if (WideVT == MVT::i64)
 | ||
|       LC = RTLIB::MUL_I64;
 | ||
|     else if (WideVT == MVT::i128)
 | ||
|       LC = RTLIB::MUL_I128;
 | ||
|     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
 | ||
| 
 | ||
|     SDValue HiLHS;
 | ||
|     SDValue HiRHS;
 | ||
|     if (isSigned) {
 | ||
|       // The high part is obtained by SRA'ing all but one of the bits of low
 | ||
|       // part.
 | ||
|       unsigned LoSize = VT.getFixedSizeInBits();
 | ||
|       HiLHS =
 | ||
|           DAG.getNode(ISD::SRA, dl, VT, LHS,
 | ||
|                       DAG.getConstant(LoSize - 1, dl,
 | ||
|                                       getPointerTy(DAG.getDataLayout())));
 | ||
|       HiRHS =
 | ||
|           DAG.getNode(ISD::SRA, dl, VT, RHS,
 | ||
|                       DAG.getConstant(LoSize - 1, dl,
 | ||
|                                       getPointerTy(DAG.getDataLayout())));
 | ||
|     } else {
 | ||
|         HiLHS = DAG.getConstant(0, dl, VT);
 | ||
|         HiRHS = DAG.getConstant(0, dl, VT);
 | ||
|     }
 | ||
| 
 | ||
|     // Here we're passing the 2 arguments explicitly as 4 arguments that are
 | ||
|     // pre-lowered to the correct types. This all depends upon WideVT not
 | ||
|     // being a legal type for the architecture and thus has to be split to
 | ||
|     // two arguments.
 | ||
|     SDValue Ret;
 | ||
|     TargetLowering::MakeLibCallOptions CallOptions;
 | ||
|     CallOptions.setSExt(isSigned);
 | ||
|     CallOptions.setIsPostTypeLegalization(true);
 | ||
|     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
 | ||
|       // Halves of WideVT are packed into registers in different order
 | ||
|       // depending on platform endianness. This is usually handled by
 | ||
|       // the C calling convention, but we can't defer to it in
 | ||
|       // the legalizer.
 | ||
|       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
 | ||
|       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
 | ||
|     } else {
 | ||
|       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
 | ||
|       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
 | ||
|     }
 | ||
|     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
 | ||
|            "Ret value is a collection of constituent nodes holding result.");
 | ||
|     if (DAG.getDataLayout().isLittleEndian()) {
 | ||
|       // Same as above.
 | ||
|       BottomHalf = Ret.getOperand(0);
 | ||
|       TopHalf = Ret.getOperand(1);
 | ||
|     } else {
 | ||
|       BottomHalf = Ret.getOperand(1);
 | ||
|       TopHalf = Ret.getOperand(0);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   Result = BottomHalf;
 | ||
|   if (isSigned) {
 | ||
|     SDValue ShiftAmt = DAG.getConstant(
 | ||
|         VT.getScalarSizeInBits() - 1, dl,
 | ||
|         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
 | ||
|     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
 | ||
|     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
 | ||
|   } else {
 | ||
|     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
 | ||
|                             DAG.getConstant(0, dl, VT), ISD::SETNE);
 | ||
|   }
 | ||
| 
 | ||
|   // Truncate the result if SetCC returns a larger type than needed.
 | ||
|   EVT RType = Node->getValueType(1);
 | ||
|   if (RType.bitsLT(Overflow.getValueType()))
 | ||
|     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
 | ||
| 
 | ||
|   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
 | ||
|          "Unexpected result type for S/UMULO legalization");
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(Node);
 | ||
|   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
 | ||
|   SDValue Op = Node->getOperand(0);
 | ||
|   EVT VT = Op.getValueType();
 | ||
| 
 | ||
|   if (VT.isScalableVector())
 | ||
|     report_fatal_error(
 | ||
|         "Expanding reductions for scalable vectors is undefined.");
 | ||
| 
 | ||
|   // Try to use a shuffle reduction for power of two vectors.
 | ||
|   if (VT.isPow2VectorType()) {
 | ||
|     while (VT.getVectorNumElements() > 1) {
 | ||
|       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
 | ||
|       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
 | ||
|         break;
 | ||
| 
 | ||
|       SDValue Lo, Hi;
 | ||
|       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
 | ||
|       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
 | ||
|       VT = HalfVT;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   EVT EltVT = VT.getVectorElementType();
 | ||
|   unsigned NumElts = VT.getVectorNumElements();
 | ||
| 
 | ||
|   SmallVector<SDValue, 8> Ops;
 | ||
|   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
 | ||
| 
 | ||
|   SDValue Res = Ops[0];
 | ||
|   for (unsigned i = 1; i < NumElts; i++)
 | ||
|     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
 | ||
| 
 | ||
|   // Result type may be wider than element type.
 | ||
|   if (EltVT != Node->getValueType(0))
 | ||
|     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
 | ||
|   return Res;
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
 | ||
|   SDLoc dl(Node);
 | ||
|   SDValue AccOp = Node->getOperand(0);
 | ||
|   SDValue VecOp = Node->getOperand(1);
 | ||
|   SDNodeFlags Flags = Node->getFlags();
 | ||
| 
 | ||
|   EVT VT = VecOp.getValueType();
 | ||
|   EVT EltVT = VT.getVectorElementType();
 | ||
| 
 | ||
|   if (VT.isScalableVector())
 | ||
|     report_fatal_error(
 | ||
|         "Expanding reductions for scalable vectors is undefined.");
 | ||
| 
 | ||
|   unsigned NumElts = VT.getVectorNumElements();
 | ||
| 
 | ||
|   SmallVector<SDValue, 8> Ops;
 | ||
|   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
 | ||
| 
 | ||
|   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
 | ||
| 
 | ||
|   SDValue Res = AccOp;
 | ||
|   for (unsigned i = 0; i < NumElts; i++)
 | ||
|     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
 | ||
| 
 | ||
|   return Res;
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
 | ||
|                                SelectionDAG &DAG) const {
 | ||
|   EVT VT = Node->getValueType(0);
 | ||
|   SDLoc dl(Node);
 | ||
|   bool isSigned = Node->getOpcode() == ISD::SREM;
 | ||
|   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
 | ||
|   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
 | ||
|   SDValue Dividend = Node->getOperand(0);
 | ||
|   SDValue Divisor = Node->getOperand(1);
 | ||
|   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
 | ||
|     SDVTList VTs = DAG.getVTList(VT, VT);
 | ||
|     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
 | ||
|     return true;
 | ||
|   }
 | ||
|   if (isOperationLegalOrCustom(DivOpc, VT)) {
 | ||
|     // X % Y -> X-X/Y*Y
 | ||
|     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
 | ||
|     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
 | ||
|     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
 | ||
|     return true;
 | ||
|   }
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
 | ||
|                                             SelectionDAG &DAG) const {
 | ||
|   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
 | ||
|   SDLoc dl(SDValue(Node, 0));
 | ||
|   SDValue Src = Node->getOperand(0);
 | ||
| 
 | ||
|   // DstVT is the result type, while SatVT is the size to which we saturate
 | ||
|   EVT SrcVT = Src.getValueType();
 | ||
|   EVT DstVT = Node->getValueType(0);
 | ||
| 
 | ||
|   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
 | ||
|   unsigned SatWidth = SatVT.getScalarSizeInBits();
 | ||
|   unsigned DstWidth = DstVT.getScalarSizeInBits();
 | ||
|   assert(SatWidth <= DstWidth &&
 | ||
|          "Expected saturation width smaller than result width");
 | ||
| 
 | ||
|   // Determine minimum and maximum integer values and their corresponding
 | ||
|   // floating-point values.
 | ||
|   APInt MinInt, MaxInt;
 | ||
|   if (IsSigned) {
 | ||
|     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
 | ||
|     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
 | ||
|   } else {
 | ||
|     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
 | ||
|     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
 | ||
|   }
 | ||
| 
 | ||
|   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
 | ||
|   // libcall emission cannot handle this. Large result types will fail.
 | ||
|   if (SrcVT == MVT::f16) {
 | ||
|     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
 | ||
|     SrcVT = Src.getValueType();
 | ||
|   }
 | ||
| 
 | ||
|   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
 | ||
|   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
 | ||
| 
 | ||
|   APFloat::opStatus MinStatus =
 | ||
|       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
 | ||
|   APFloat::opStatus MaxStatus =
 | ||
|       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
 | ||
|   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
 | ||
|                              !(MaxStatus & APFloat::opStatus::opInexact);
 | ||
| 
 | ||
|   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
 | ||
|   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
 | ||
| 
 | ||
|   // If the integer bounds are exactly representable as floats and min/max are
 | ||
|   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
 | ||
|   // of comparisons and selects.
 | ||
|   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
 | ||
|                      isOperationLegal(ISD::FMAXNUM, SrcVT);
 | ||
|   if (AreExactFloatBounds && MinMaxLegal) {
 | ||
|     SDValue Clamped = Src;
 | ||
| 
 | ||
|     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
 | ||
|     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
 | ||
|     // Clamp by MaxFloat from above. NaN cannot occur.
 | ||
|     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
 | ||
|     // Convert clamped value to integer.
 | ||
|     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
 | ||
|                                   dl, DstVT, Clamped);
 | ||
| 
 | ||
|     // In the unsigned case we're done, because we mapped NaN to MinFloat,
 | ||
|     // which will cast to zero.
 | ||
|     if (!IsSigned)
 | ||
|       return FpToInt;
 | ||
| 
 | ||
|     // Otherwise, select 0 if Src is NaN.
 | ||
|     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
 | ||
|     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
 | ||
|                            ISD::CondCode::SETUO);
 | ||
|   }
 | ||
| 
 | ||
|   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
 | ||
|   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
 | ||
| 
 | ||
|   // Result of direct conversion. The assumption here is that the operation is
 | ||
|   // non-trapping and it's fine to apply it to an out-of-range value if we
 | ||
|   // select it away later.
 | ||
|   SDValue FpToInt =
 | ||
|       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
 | ||
| 
 | ||
|   SDValue Select = FpToInt;
 | ||
| 
 | ||
|   // If Src ULT MinFloat, select MinInt. In particular, this also selects
 | ||
|   // MinInt if Src is NaN.
 | ||
|   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
 | ||
|                            ISD::CondCode::SETULT);
 | ||
|   // If Src OGT MaxFloat, select MaxInt.
 | ||
|   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
 | ||
|                            ISD::CondCode::SETOGT);
 | ||
| 
 | ||
|   // In the unsigned case we are done, because we mapped NaN to MinInt, which
 | ||
|   // is already zero.
 | ||
|   if (!IsSigned)
 | ||
|     return Select;
 | ||
| 
 | ||
|   // Otherwise, select 0 if Src is NaN.
 | ||
|   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
 | ||
|   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
 | ||
| }
 | ||
| 
 | ||
| SDValue TargetLowering::expandVectorSplice(SDNode *Node,
 | ||
|                                            SelectionDAG &DAG) const {
 | ||
|   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
 | ||
|   assert(Node->getValueType(0).isScalableVector() &&
 | ||
|          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
 | ||
| 
 | ||
|   EVT VT = Node->getValueType(0);
 | ||
|   SDValue V1 = Node->getOperand(0);
 | ||
|   SDValue V2 = Node->getOperand(1);
 | ||
|   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
 | ||
|   SDLoc DL(Node);
 | ||
| 
 | ||
|   // Expand through memory thusly:
 | ||
|   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
 | ||
|   //  Store V1, Ptr
 | ||
|   //  Store V2, Ptr + sizeof(V1)
 | ||
|   //  If (Imm < 0)
 | ||
|   //    TrailingElts = -Imm
 | ||
|   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
 | ||
|   //  else
 | ||
|   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
 | ||
|   //  Res = Load Ptr
 | ||
| 
 | ||
|   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
 | ||
| 
 | ||
|   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
 | ||
|                                VT.getVectorElementCount() * 2);
 | ||
|   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
 | ||
|   EVT PtrVT = StackPtr.getValueType();
 | ||
|   auto &MF = DAG.getMachineFunction();
 | ||
|   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
 | ||
|   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
 | ||
| 
 | ||
|   // Store the lo part of CONCAT_VECTORS(V1, V2)
 | ||
|   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
 | ||
|   // Store the hi part of CONCAT_VECTORS(V1, V2)
 | ||
|   SDValue OffsetToV2 = DAG.getVScale(
 | ||
|       DL, PtrVT,
 | ||
|       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
 | ||
|   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
 | ||
|   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
 | ||
| 
 | ||
|   if (Imm >= 0) {
 | ||
|     // Load back the required element. getVectorElementPointer takes care of
 | ||
|     // clamping the index if it's out-of-bounds.
 | ||
|     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
 | ||
|     // Load the spliced result
 | ||
|     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
 | ||
|                        MachinePointerInfo::getUnknownStack(MF));
 | ||
|   }
 | ||
| 
 | ||
|   uint64_t TrailingElts = -Imm;
 | ||
| 
 | ||
|   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
 | ||
|   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
 | ||
|   SDValue TrailingBytes =
 | ||
|       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
 | ||
| 
 | ||
|   if (TrailingElts > VT.getVectorMinNumElements()) {
 | ||
|     SDValue VLBytes = DAG.getVScale(
 | ||
|         DL, PtrVT,
 | ||
|         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
 | ||
|     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
 | ||
|   }
 | ||
| 
 | ||
|   // Calculate the start address of the spliced result.
 | ||
|   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
 | ||
| 
 | ||
|   // Load the spliced result
 | ||
|   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
 | ||
|                      MachinePointerInfo::getUnknownStack(MF));
 | ||
| }
 | ||
| 
 | ||
| bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
 | ||
|                                            SDValue &LHS, SDValue &RHS,
 | ||
|                                            SDValue &CC, SDValue Mask,
 | ||
|                                            SDValue EVL, bool &NeedInvert,
 | ||
|                                            const SDLoc &dl, SDValue &Chain,
 | ||
|                                            bool IsSignaling) const {
 | ||
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | ||
|   MVT OpVT = LHS.getSimpleValueType();
 | ||
|   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
 | ||
|   NeedInvert = false;
 | ||
|   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
 | ||
|   bool IsNonVP = !EVL;
 | ||
|   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
 | ||
|   default:
 | ||
|     llvm_unreachable("Unknown condition code action!");
 | ||
|   case TargetLowering::Legal:
 | ||
|     // Nothing to do.
 | ||
|     break;
 | ||
|   case TargetLowering::Expand: {
 | ||
|     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
 | ||
|     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
 | ||
|       std::swap(LHS, RHS);
 | ||
|       CC = DAG.getCondCode(InvCC);
 | ||
|       return true;
 | ||
|     }
 | ||
|     // Swapping operands didn't work. Try inverting the condition.
 | ||
|     bool NeedSwap = false;
 | ||
|     InvCC = getSetCCInverse(CCCode, OpVT);
 | ||
|     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
 | ||
|       // If inverting the condition is not enough, try swapping operands
 | ||
|       // on top of it.
 | ||
|       InvCC = ISD::getSetCCSwappedOperands(InvCC);
 | ||
|       NeedSwap = true;
 | ||
|     }
 | ||
|     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
 | ||
|       CC = DAG.getCondCode(InvCC);
 | ||
|       NeedInvert = true;
 | ||
|       if (NeedSwap)
 | ||
|         std::swap(LHS, RHS);
 | ||
|       return true;
 | ||
|     }
 | ||
| 
 | ||
|     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
 | ||
|     unsigned Opc = 0;
 | ||
|     switch (CCCode) {
 | ||
|     default:
 | ||
|       llvm_unreachable("Don't know how to expand this condition!");
 | ||
|     case ISD::SETUO:
 | ||
|       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
 | ||
|         CC1 = ISD::SETUNE;
 | ||
|         CC2 = ISD::SETUNE;
 | ||
|         Opc = ISD::OR;
 | ||
|         break;
 | ||
|       }
 | ||
|       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
 | ||
|              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
 | ||
|       NeedInvert = true;
 | ||
|       LLVM_FALLTHROUGH;
 | ||
|     case ISD::SETO:
 | ||
|       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
 | ||
|              "If SETO is expanded, SETOEQ must be legal!");
 | ||
|       CC1 = ISD::SETOEQ;
 | ||
|       CC2 = ISD::SETOEQ;
 | ||
|       Opc = ISD::AND;
 | ||
|       break;
 | ||
|     case ISD::SETONE:
 | ||
|     case ISD::SETUEQ:
 | ||
|       // If the SETUO or SETO CC isn't legal, we might be able to use
 | ||
|       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
 | ||
|       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
 | ||
|       // the operands.
 | ||
|       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
 | ||
|       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
 | ||
|           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
 | ||
|            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
 | ||
|         CC1 = ISD::SETOGT;
 | ||
|         CC2 = ISD::SETOLT;
 | ||
|         Opc = ISD::OR;
 | ||
|         NeedInvert = ((unsigned)CCCode & 0x8U);
 | ||
|         break;
 | ||
|       }
 | ||
|       LLVM_FALLTHROUGH;
 | ||
|     case ISD::SETOEQ:
 | ||
|     case ISD::SETOGT:
 | ||
|     case ISD::SETOGE:
 | ||
|     case ISD::SETOLT:
 | ||
|     case ISD::SETOLE:
 | ||
|     case ISD::SETUNE:
 | ||
|     case ISD::SETUGT:
 | ||
|     case ISD::SETUGE:
 | ||
|     case ISD::SETULT:
 | ||
|     case ISD::SETULE:
 | ||
|       // If we are floating point, assign and break, otherwise fall through.
 | ||
|       if (!OpVT.isInteger()) {
 | ||
|         // We can use the 4th bit to tell if we are the unordered
 | ||
|         // or ordered version of the opcode.
 | ||
|         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
 | ||
|         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
 | ||
|         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
 | ||
|         break;
 | ||
|       }
 | ||
|       // Fallthrough if we are unsigned integer.
 | ||
|       LLVM_FALLTHROUGH;
 | ||
|     case ISD::SETLE:
 | ||
|     case ISD::SETGT:
 | ||
|     case ISD::SETGE:
 | ||
|     case ISD::SETLT:
 | ||
|     case ISD::SETNE:
 | ||
|     case ISD::SETEQ:
 | ||
|       // If all combinations of inverting the condition and swapping operands
 | ||
|       // didn't work then we have no means to expand the condition.
 | ||
|       llvm_unreachable("Don't know how to expand this condition!");
 | ||
|     }
 | ||
| 
 | ||
|     SDValue SetCC1, SetCC2;
 | ||
|     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
 | ||
|       // If we aren't the ordered or unorder operation,
 | ||
|       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
 | ||
|       if (IsNonVP) {
 | ||
|         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
 | ||
|         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
 | ||
|       } else {
 | ||
|         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
 | ||
|         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
 | ||
|       }
 | ||
|     } else {
 | ||
|       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
 | ||
|       if (IsNonVP) {
 | ||
|         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
 | ||
|         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
 | ||
|       } else {
 | ||
|         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
 | ||
|         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
 | ||
|       }
 | ||
|     }
 | ||
|     if (Chain)
 | ||
|       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
 | ||
|                           SetCC2.getValue(1));
 | ||
|     if (IsNonVP)
 | ||
|       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
 | ||
|     else {
 | ||
|       // Transform the binary opcode to the VP equivalent.
 | ||
|       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
 | ||
|       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
 | ||
|       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
 | ||
|     }
 | ||
|     RHS = SDValue();
 | ||
|     CC = SDValue();
 | ||
|     return true;
 | ||
|   }
 | ||
|   }
 | ||
|   return false;
 | ||
| }
 |