1379 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1379 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- StackColoring.cpp --------------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass implements the stack-coloring optimization that looks for
 | |
| // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
 | |
| // which represent the possible lifetime of stack slots. It attempts to
 | |
| // merge disjoint stack slots and reduce the used stack space.
 | |
| // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
 | |
| //
 | |
| // TODO: In the future we plan to improve stack coloring in the following ways:
 | |
| // 1. Allow merging multiple small slots into a single larger slot at different
 | |
| //    offsets.
 | |
| // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
 | |
| //    spill slots.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/WinEHFuncInfo.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "stack-coloring"
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisableColoring("no-stack-coloring",
 | |
|         cl::init(false), cl::Hidden,
 | |
|         cl::desc("Disable stack coloring"));
 | |
| 
 | |
| /// The user may write code that uses allocas outside of the declared lifetime
 | |
| /// zone. This can happen when the user returns a reference to a local
 | |
| /// data-structure. We can detect these cases and decide not to optimize the
 | |
| /// code. If this flag is enabled, we try to save the user. This option
 | |
| /// is treated as overriding LifetimeStartOnFirstUse below.
 | |
| static cl::opt<bool>
 | |
| ProtectFromEscapedAllocas("protect-from-escaped-allocas",
 | |
|                           cl::init(false), cl::Hidden,
 | |
|                           cl::desc("Do not optimize lifetime zones that "
 | |
|                                    "are broken"));
 | |
| 
 | |
| /// Enable enhanced dataflow scheme for lifetime analysis (treat first
 | |
| /// use of stack slot as start of slot lifetime, as opposed to looking
 | |
| /// for LIFETIME_START marker). See "Implementation notes" below for
 | |
| /// more info.
 | |
| static cl::opt<bool>
 | |
| LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
 | |
|         cl::init(true), cl::Hidden,
 | |
|         cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
 | |
| 
 | |
| 
 | |
| STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
 | |
| STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
 | |
| STATISTIC(StackSlotMerged, "Number of stack slot merged.");
 | |
| STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           StackColoring Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Stack Coloring reduces stack usage by merging stack slots when they
 | |
| // can't be used together. For example, consider the following C program:
 | |
| //
 | |
| //     void bar(char *, int);
 | |
| //     void foo(bool var) {
 | |
| //         A: {
 | |
| //             char z[4096];
 | |
| //             bar(z, 0);
 | |
| //         }
 | |
| //
 | |
| //         char *p;
 | |
| //         char x[4096];
 | |
| //         char y[4096];
 | |
| //         if (var) {
 | |
| //             p = x;
 | |
| //         } else {
 | |
| //             bar(y, 1);
 | |
| //             p = y + 1024;
 | |
| //         }
 | |
| //     B:
 | |
| //         bar(p, 2);
 | |
| //     }
 | |
| //
 | |
| // Naively-compiled, this program would use 12k of stack space. However, the
 | |
| // stack slot corresponding to `z` is always destroyed before either of the
 | |
| // stack slots for `x` or `y` are used, and then `x` is only used if `var`
 | |
| // is true, while `y` is only used if `var` is false. So in no time are 2
 | |
| // of the stack slots used together, and therefore we can merge them,
 | |
| // compiling the function using only a single 4k alloca:
 | |
| //
 | |
| //     void foo(bool var) { // equivalent
 | |
| //         char x[4096];
 | |
| //         char *p;
 | |
| //         bar(x, 0);
 | |
| //         if (var) {
 | |
| //             p = x;
 | |
| //         } else {
 | |
| //             bar(x, 1);
 | |
| //             p = x + 1024;
 | |
| //         }
 | |
| //         bar(p, 2);
 | |
| //     }
 | |
| //
 | |
| // This is an important optimization if we want stack space to be under
 | |
| // control in large functions, both open-coded ones and ones created by
 | |
| // inlining.
 | |
| //
 | |
| // Implementation Notes:
 | |
| // ---------------------
 | |
| //
 | |
| // An important part of the above reasoning is that `z` can't be accessed
 | |
| // while the latter 2 calls to `bar` are running. This is justified because
 | |
| // `z`'s lifetime is over after we exit from block `A:`, so any further
 | |
| // accesses to it would be UB. The way we represent this information
 | |
| // in LLVM is by having frontends delimit blocks with `lifetime.start`
 | |
| // and `lifetime.end` intrinsics.
 | |
| //
 | |
| // The effect of these intrinsics seems to be as follows (maybe I should
 | |
| // specify this in the reference?):
 | |
| //
 | |
| //   L1) at start, each stack-slot is marked as *out-of-scope*, unless no
 | |
| //   lifetime intrinsic refers to that stack slot, in which case
 | |
| //   it is marked as *in-scope*.
 | |
| //   L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
 | |
| //   the stack slot is overwritten with `undef`.
 | |
| //   L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
 | |
| //   L4) on function exit, all stack slots are marked as *out-of-scope*.
 | |
| //   L5) `lifetime.end` is a no-op when called on a slot that is already
 | |
| //   *out-of-scope*.
 | |
| //   L6) memory accesses to *out-of-scope* stack slots are UB.
 | |
| //   L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
 | |
| //   are invalidated, unless the slot is "degenerate". This is used to
 | |
| //   justify not marking slots as in-use until the pointer to them is
 | |
| //   used, but feels a bit hacky in the presence of things like LICM. See
 | |
| //   the "Degenerate Slots" section for more details.
 | |
| //
 | |
| // Now, let's ground stack coloring on these rules. We'll define a slot
 | |
| // as *in-use* at a (dynamic) point in execution if it either can be
 | |
| // written to at that point, or if it has a live and non-undef content
 | |
| // at that point.
 | |
| //
 | |
| // Obviously, slots that are never *in-use* together can be merged, and
 | |
| // in our example `foo`, the slots for `x`, `y` and `z` are never
 | |
| // in-use together (of course, sometimes slots that *are* in-use together
 | |
| // might still be mergable, but we don't care about that here).
 | |
| //
 | |
| // In this implementation, we successively merge pairs of slots that are
 | |
| // not *in-use* together. We could be smarter - for example, we could merge
 | |
| // a single large slot with 2 small slots, or we could construct the
 | |
| // interference graph and run a "smart" graph coloring algorithm, but with
 | |
| // that aside, how do we find out whether a pair of slots might be *in-use*
 | |
| // together?
 | |
| //
 | |
| // From our rules, we see that *out-of-scope* slots are never *in-use*,
 | |
| // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
 | |
| // until their address is taken. Therefore, we can approximate slot activity
 | |
| // using dataflow.
 | |
| //
 | |
| // A subtle point: naively, we might try to figure out which pairs of
 | |
| // stack-slots interfere by propagating `S in-use` through the CFG for every
 | |
| // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
 | |
| // which they are both *in-use*.
 | |
| //
 | |
| // That is sound, but overly conservative in some cases: in our (artificial)
 | |
| // example `foo`, either `x` or `y` might be in use at the label `B:`, but
 | |
| // as `x` is only in use if we came in from the `var` edge and `y` only
 | |
| // if we came from the `!var` edge, they still can't be in use together.
 | |
| // See PR32488 for an important real-life case.
 | |
| //
 | |
| // If we wanted to find all points of interference precisely, we could
 | |
| // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
 | |
| // would be precise, but requires propagating `O(n^2)` dataflow facts.
 | |
| //
 | |
| // However, we aren't interested in the *set* of points of interference
 | |
| // between 2 stack slots, only *whether* there *is* such a point. So we
 | |
| // can rely on a little trick: for `S` and `T` to be in-use together,
 | |
| // one of them needs to become in-use while the other is in-use (or
 | |
| // they might both become in use simultaneously). We can check this
 | |
| // by also keeping track of the points at which a stack slot might *start*
 | |
| // being in-use.
 | |
| //
 | |
| // Exact first use:
 | |
| // ----------------
 | |
| //
 | |
| // Consider the following motivating example:
 | |
| //
 | |
| //     int foo() {
 | |
| //       char b1[1024], b2[1024];
 | |
| //       if (...) {
 | |
| //         char b3[1024];
 | |
| //         <uses of b1, b3>;
 | |
| //         return x;
 | |
| //       } else {
 | |
| //         char b4[1024], b5[1024];
 | |
| //         <uses of b2, b4, b5>;
 | |
| //         return y;
 | |
| //       }
 | |
| //     }
 | |
| //
 | |
| // In the code above, "b3" and "b4" are declared in distinct lexical
 | |
| // scopes, meaning that it is easy to prove that they can share the
 | |
| // same stack slot. Variables "b1" and "b2" are declared in the same
 | |
| // scope, meaning that from a lexical point of view, their lifetimes
 | |
| // overlap. From a control flow pointer of view, however, the two
 | |
| // variables are accessed in disjoint regions of the CFG, thus it
 | |
| // should be possible for them to share the same stack slot. An ideal
 | |
| // stack allocation for the function above would look like:
 | |
| //
 | |
| //     slot 0: b1, b2
 | |
| //     slot 1: b3, b4
 | |
| //     slot 2: b5
 | |
| //
 | |
| // Achieving this allocation is tricky, however, due to the way
 | |
| // lifetime markers are inserted. Here is a simplified view of the
 | |
| // control flow graph for the code above:
 | |
| //
 | |
| //                +------  block 0 -------+
 | |
| //               0| LIFETIME_START b1, b2 |
 | |
| //               1| <test 'if' condition> |
 | |
| //                +-----------------------+
 | |
| //                   ./              \.
 | |
| //   +------  block 1 -------+   +------  block 2 -------+
 | |
| //  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
 | |
| //  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
 | |
| //  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
 | |
| //   +-----------------------+   +-----------------------+
 | |
| //                   \.              /.
 | |
| //                +------  block 3 -------+
 | |
| //               8| <cleanupcode>         |
 | |
| //               9| LIFETIME_END b1, b2   |
 | |
| //              10| return                |
 | |
| //                +-----------------------+
 | |
| //
 | |
| // If we create live intervals for the variables above strictly based
 | |
| // on the lifetime markers, we'll get the set of intervals on the
 | |
| // left. If we ignore the lifetime start markers and instead treat a
 | |
| // variable's lifetime as beginning with the first reference to the
 | |
| // var, then we get the intervals on the right.
 | |
| //
 | |
| //            LIFETIME_START      First Use
 | |
| //     b1:    [0,9]               [3,4] [8,9]
 | |
| //     b2:    [0,9]               [6,9]
 | |
| //     b3:    [2,4]               [3,4]
 | |
| //     b4:    [5,7]               [6,7]
 | |
| //     b5:    [5,7]               [6,7]
 | |
| //
 | |
| // For the intervals on the left, the best we can do is overlap two
 | |
| // variables (b3 and b4, for example); this gives us a stack size of
 | |
| // 4*1024 bytes, not ideal. When treating first-use as the start of a
 | |
| // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
 | |
| // byte stack (better).
 | |
| //
 | |
| // Degenerate Slots:
 | |
| // -----------------
 | |
| //
 | |
| // Relying entirely on first-use of stack slots is problematic,
 | |
| // however, due to the fact that optimizations can sometimes migrate
 | |
| // uses of a variable outside of its lifetime start/end region. Here
 | |
| // is an example:
 | |
| //
 | |
| //     int bar() {
 | |
| //       char b1[1024], b2[1024];
 | |
| //       if (...) {
 | |
| //         <uses of b2>
 | |
| //         return y;
 | |
| //       } else {
 | |
| //         <uses of b1>
 | |
| //         while (...) {
 | |
| //           char b3[1024];
 | |
| //           <uses of b3>
 | |
| //         }
 | |
| //       }
 | |
| //     }
 | |
| //
 | |
| // Before optimization, the control flow graph for the code above
 | |
| // might look like the following:
 | |
| //
 | |
| //                +------  block 0 -------+
 | |
| //               0| LIFETIME_START b1, b2 |
 | |
| //               1| <test 'if' condition> |
 | |
| //                +-----------------------+
 | |
| //                   ./              \.
 | |
| //   +------  block 1 -------+    +------- block 2 -------+
 | |
| //  2| <uses of b2>          |   3| <uses of b1>          |
 | |
| //   +-----------------------+    +-----------------------+
 | |
| //              |                            |
 | |
| //              |                 +------- block 3 -------+ <-\.
 | |
| //              |                4| <while condition>     |    |
 | |
| //              |                 +-----------------------+    |
 | |
| //              |               /          |                   |
 | |
| //              |              /  +------- block 4 -------+
 | |
| //              \             /  5| LIFETIME_START b3     |    |
 | |
| //               \           /   6| <uses of b3>          |    |
 | |
| //                \         /    7| LIFETIME_END b3       |    |
 | |
| //                 \        |    +------------------------+    |
 | |
| //                  \       |                 \                /
 | |
| //                +------  block 5 -----+      \---------------
 | |
| //               8| <cleanupcode>       |
 | |
| //               9| LIFETIME_END b1, b2 |
 | |
| //              10| return              |
 | |
| //                +---------------------+
 | |
| //
 | |
| // During optimization, however, it can happen that an instruction
 | |
| // computing an address in "b3" (for example, a loop-invariant GEP) is
 | |
| // hoisted up out of the loop from block 4 to block 2.  [Note that
 | |
| // this is not an actual load from the stack, only an instruction that
 | |
| // computes the address to be loaded]. If this happens, there is now a
 | |
| // path leading from the first use of b3 to the return instruction
 | |
| // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
 | |
| // now larger than if we were computing live intervals strictly based
 | |
| // on lifetime markers. In the example above, this lengthened lifetime
 | |
| // would mean that it would appear illegal to overlap b3 with b2.
 | |
| //
 | |
| // To deal with this such cases, the code in ::collectMarkers() below
 | |
| // tries to identify "degenerate" slots -- those slots where on a single
 | |
| // forward pass through the CFG we encounter a first reference to slot
 | |
| // K before we hit the slot K lifetime start marker. For such slots,
 | |
| // we fall back on using the lifetime start marker as the beginning of
 | |
| // the variable's lifetime.  NB: with this implementation, slots can
 | |
| // appear degenerate in cases where there is unstructured control flow:
 | |
| //
 | |
| //    if (q) goto mid;
 | |
| //    if (x > 9) {
 | |
| //         int b[100];
 | |
| //         memcpy(&b[0], ...);
 | |
| //    mid: b[k] = ...;
 | |
| //         abc(&b);
 | |
| //    }
 | |
| //
 | |
| // If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
 | |
| // before visiting the memcpy block (which will contain the lifetime start
 | |
| // for "b" then it will appear that 'b' has a degenerate lifetime.
 | |
| //
 | |
| // Handle Windows Exception with LifetimeStartOnFirstUse:
 | |
| // -----------------
 | |
| //
 | |
| // There was a bug for using LifetimeStartOnFirstUse in win32.
 | |
| // class Type1 {
 | |
| // ...
 | |
| // ~Type1(){ write memory;}
 | |
| // }
 | |
| // ...
 | |
| // try{
 | |
| // Type1 V
 | |
| // ...
 | |
| // } catch (Type2 X){
 | |
| // ...
 | |
| // }
 | |
| // For variable X in catch(X), we put point pX=&(&X) into ConservativeSlots
 | |
| // to prevent using LifetimeStartOnFirstUse. Because pX may merged with
 | |
| // object V which may call destructor after implicitly writing pX. All these
 | |
| // are done in C++ EH runtime libs (through CxxThrowException), and can't
 | |
| // obviously check it in IR level.
 | |
| //
 | |
| // The loader of pX, without obvious writing IR, is usually the first LOAD MI
 | |
| // in EHPad, Some like:
 | |
| // bb.x.catch.i (landing-pad, ehfunclet-entry):
 | |
| // ; predecessors: %bb...
 | |
| //   successors: %bb...
 | |
| //  %n:gr32 = MOV32rm %stack.pX ...
 | |
| //  ...
 | |
| // The Type2** %stack.pX will only be written in EH runtime libs, so we
 | |
| // check the StoreSlots to screen it out.
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// StackColoring - A machine pass for merging disjoint stack allocations,
 | |
| /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
 | |
| class StackColoring : public MachineFunctionPass {
 | |
|   MachineFrameInfo *MFI;
 | |
|   MachineFunction *MF;
 | |
| 
 | |
|   /// A class representing liveness information for a single basic block.
 | |
|   /// Each bit in the BitVector represents the liveness property
 | |
|   /// for a different stack slot.
 | |
|   struct BlockLifetimeInfo {
 | |
|     /// Which slots BEGINs in each basic block.
 | |
|     BitVector Begin;
 | |
| 
 | |
|     /// Which slots ENDs in each basic block.
 | |
|     BitVector End;
 | |
| 
 | |
|     /// Which slots are marked as LIVE_IN, coming into each basic block.
 | |
|     BitVector LiveIn;
 | |
| 
 | |
|     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
 | |
|     BitVector LiveOut;
 | |
|   };
 | |
| 
 | |
|   /// Maps active slots (per bit) for each basic block.
 | |
|   using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
 | |
|   LivenessMap BlockLiveness;
 | |
| 
 | |
|   /// Maps serial numbers to basic blocks.
 | |
|   DenseMap<const MachineBasicBlock *, int> BasicBlocks;
 | |
| 
 | |
|   /// Maps basic blocks to a serial number.
 | |
|   SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
 | |
| 
 | |
|   /// Maps slots to their use interval. Outside of this interval, slots
 | |
|   /// values are either dead or `undef` and they will not be written to.
 | |
|   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
 | |
| 
 | |
|   /// Maps slots to the points where they can become in-use.
 | |
|   SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
 | |
| 
 | |
|   /// VNInfo is used for the construction of LiveIntervals.
 | |
|   VNInfo::Allocator VNInfoAllocator;
 | |
| 
 | |
|   /// SlotIndex analysis object.
 | |
|   SlotIndexes *Indexes;
 | |
| 
 | |
|   /// The list of lifetime markers found. These markers are to be removed
 | |
|   /// once the coloring is done.
 | |
|   SmallVector<MachineInstr*, 8> Markers;
 | |
| 
 | |
|   /// Record the FI slots for which we have seen some sort of
 | |
|   /// lifetime marker (either start or end).
 | |
|   BitVector InterestingSlots;
 | |
| 
 | |
|   /// FI slots that need to be handled conservatively (for these
 | |
|   /// slots lifetime-start-on-first-use is disabled).
 | |
|   BitVector ConservativeSlots;
 | |
| 
 | |
|   /// Record the FI slots referenced by a 'may write to memory'.
 | |
|   BitVector StoreSlots;
 | |
| 
 | |
|   /// Number of iterations taken during data flow analysis.
 | |
|   unsigned NumIterations;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   StackColoring() : MachineFunctionPass(ID) {
 | |
|     initializeStackColoringPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
|   bool runOnMachineFunction(MachineFunction &Func) override;
 | |
| 
 | |
| private:
 | |
|   /// Used in collectMarkers
 | |
|   using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
 | |
| 
 | |
|   /// Debug.
 | |
|   void dump() const;
 | |
|   void dumpIntervals() const;
 | |
|   void dumpBB(MachineBasicBlock *MBB) const;
 | |
|   void dumpBV(const char *tag, const BitVector &BV) const;
 | |
| 
 | |
|   /// Removes all of the lifetime marker instructions from the function.
 | |
|   /// \returns true if any markers were removed.
 | |
|   bool removeAllMarkers();
 | |
| 
 | |
|   /// Scan the machine function and find all of the lifetime markers.
 | |
|   /// Record the findings in the BEGIN and END vectors.
 | |
|   /// \returns the number of markers found.
 | |
|   unsigned collectMarkers(unsigned NumSlot);
 | |
| 
 | |
|   /// Perform the dataflow calculation and calculate the lifetime for each of
 | |
|   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
 | |
|   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
 | |
|   /// in and out blocks.
 | |
|   void calculateLocalLiveness();
 | |
| 
 | |
|   /// Returns TRUE if we're using the first-use-begins-lifetime method for
 | |
|   /// this slot (if FALSE, then the start marker is treated as start of lifetime).
 | |
|   bool applyFirstUse(int Slot) {
 | |
|     if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
 | |
|       return false;
 | |
|     if (ConservativeSlots.test(Slot))
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Examines the specified instruction and returns TRUE if the instruction
 | |
|   /// represents the start or end of an interesting lifetime. The slot or slots
 | |
|   /// starting or ending are added to the vector "slots" and "isStart" is set
 | |
|   /// accordingly.
 | |
|   /// \returns True if inst contains a lifetime start or end
 | |
|   bool isLifetimeStartOrEnd(const MachineInstr &MI,
 | |
|                             SmallVector<int, 4> &slots,
 | |
|                             bool &isStart);
 | |
| 
 | |
|   /// Construct the LiveIntervals for the slots.
 | |
|   void calculateLiveIntervals(unsigned NumSlots);
 | |
| 
 | |
|   /// Go over the machine function and change instructions which use stack
 | |
|   /// slots to use the joint slots.
 | |
|   void remapInstructions(DenseMap<int, int> &SlotRemap);
 | |
| 
 | |
|   /// The input program may contain instructions which are not inside lifetime
 | |
|   /// markers. This can happen due to a bug in the compiler or due to a bug in
 | |
|   /// user code (for example, returning a reference to a local variable).
 | |
|   /// This procedure checks all of the instructions in the function and
 | |
|   /// invalidates lifetime ranges which do not contain all of the instructions
 | |
|   /// which access that frame slot.
 | |
|   void removeInvalidSlotRanges();
 | |
| 
 | |
|   /// Map entries which point to other entries to their destination.
 | |
|   ///   A->B->C becomes A->C.
 | |
|   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char StackColoring::ID = 0;
 | |
| 
 | |
| char &llvm::StackColoringID = StackColoring::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
 | |
|                       "Merge disjoint stack slots", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
 | |
|                     "Merge disjoint stack slots", false, false)
 | |
| 
 | |
| void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<SlotIndexes>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
 | |
|                                             const BitVector &BV) const {
 | |
|   dbgs() << tag << " : { ";
 | |
|   for (unsigned I = 0, E = BV.size(); I != E; ++I)
 | |
|     dbgs() << BV.test(I) << " ";
 | |
|   dbgs() << "}\n";
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
 | |
|   LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
 | |
|   assert(BI != BlockLiveness.end() && "Block not found");
 | |
|   const BlockLifetimeInfo &BlockInfo = BI->second;
 | |
| 
 | |
|   dumpBV("BEGIN", BlockInfo.Begin);
 | |
|   dumpBV("END", BlockInfo.End);
 | |
|   dumpBV("LIVE_IN", BlockInfo.LiveIn);
 | |
|   dumpBV("LIVE_OUT", BlockInfo.LiveOut);
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void StackColoring::dump() const {
 | |
|   for (MachineBasicBlock *MBB : depth_first(MF)) {
 | |
|     dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
 | |
|            << MBB->getName() << "]\n";
 | |
|     dumpBB(MBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
 | |
|   for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
 | |
|     dbgs() << "Interval[" << I << "]:\n";
 | |
|     Intervals[I]->dump();
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline int getStartOrEndSlot(const MachineInstr &MI)
 | |
| {
 | |
|   assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
 | |
|           MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
 | |
|          "Expected LIFETIME_START or LIFETIME_END op");
 | |
|   const MachineOperand &MO = MI.getOperand(0);
 | |
|   int Slot = MO.getIndex();
 | |
|   if (Slot >= 0)
 | |
|     return Slot;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| // At the moment the only way to end a variable lifetime is with
 | |
| // a VARIABLE_LIFETIME op (which can't contain a start). If things
 | |
| // change and the IR allows for a single inst that both begins
 | |
| // and ends lifetime(s), this interface will need to be reworked.
 | |
| bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
 | |
|                                          SmallVector<int, 4> &slots,
 | |
|                                          bool &isStart) {
 | |
|   if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
 | |
|       MI.getOpcode() == TargetOpcode::LIFETIME_END) {
 | |
|     int Slot = getStartOrEndSlot(MI);
 | |
|     if (Slot < 0)
 | |
|       return false;
 | |
|     if (!InterestingSlots.test(Slot))
 | |
|       return false;
 | |
|     slots.push_back(Slot);
 | |
|     if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
 | |
|       isStart = false;
 | |
|       return true;
 | |
|     }
 | |
|     if (!applyFirstUse(Slot)) {
 | |
|       isStart = true;
 | |
|       return true;
 | |
|     }
 | |
|   } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
 | |
|     if (!MI.isDebugInstr()) {
 | |
|       bool found = false;
 | |
|       for (const MachineOperand &MO : MI.operands()) {
 | |
|         if (!MO.isFI())
 | |
|           continue;
 | |
|         int Slot = MO.getIndex();
 | |
|         if (Slot<0)
 | |
|           continue;
 | |
|         if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
 | |
|           slots.push_back(Slot);
 | |
|           found = true;
 | |
|         }
 | |
|       }
 | |
|       if (found) {
 | |
|         isStart = true;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned StackColoring::collectMarkers(unsigned NumSlot) {
 | |
|   unsigned MarkersFound = 0;
 | |
|   BlockBitVecMap SeenStartMap;
 | |
|   InterestingSlots.clear();
 | |
|   InterestingSlots.resize(NumSlot);
 | |
|   ConservativeSlots.clear();
 | |
|   ConservativeSlots.resize(NumSlot);
 | |
|   StoreSlots.clear();
 | |
|   StoreSlots.resize(NumSlot);
 | |
| 
 | |
|   // number of start and end lifetime ops for each slot
 | |
|   SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
 | |
|   SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
 | |
|   SmallVector<int, 8> NumLoadInCatchPad(NumSlot, 0);
 | |
| 
 | |
|   // Step 1: collect markers and populate the "InterestingSlots"
 | |
|   // and "ConservativeSlots" sets.
 | |
|   for (MachineBasicBlock *MBB : depth_first(MF)) {
 | |
|     // Compute the set of slots for which we've seen a START marker but have
 | |
|     // not yet seen an END marker at this point in the walk (e.g. on entry
 | |
|     // to this bb).
 | |
|     BitVector BetweenStartEnd;
 | |
|     BetweenStartEnd.resize(NumSlot);
 | |
|     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
 | |
|       BlockBitVecMap::const_iterator I = SeenStartMap.find(Pred);
 | |
|       if (I != SeenStartMap.end()) {
 | |
|         BetweenStartEnd |= I->second;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Walk the instructions in the block to look for start/end ops.
 | |
|     for (MachineInstr &MI : *MBB) {
 | |
|       if (MI.isDebugInstr())
 | |
|         continue;
 | |
|       if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
 | |
|           MI.getOpcode() == TargetOpcode::LIFETIME_END) {
 | |
|         int Slot = getStartOrEndSlot(MI);
 | |
|         if (Slot < 0)
 | |
|           continue;
 | |
|         InterestingSlots.set(Slot);
 | |
|         if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
 | |
|           BetweenStartEnd.set(Slot);
 | |
|           NumStartLifetimes[Slot] += 1;
 | |
|         } else {
 | |
|           BetweenStartEnd.reset(Slot);
 | |
|           NumEndLifetimes[Slot] += 1;
 | |
|         }
 | |
|         const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
 | |
|         if (Allocation) {
 | |
|           LLVM_DEBUG(dbgs() << "Found a lifetime ");
 | |
|           LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
 | |
|                                     ? "start"
 | |
|                                     : "end"));
 | |
|           LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << " with allocation: " << Allocation->getName() << "\n");
 | |
|         }
 | |
|         Markers.push_back(&MI);
 | |
|         MarkersFound += 1;
 | |
|       } else {
 | |
|         for (const MachineOperand &MO : MI.operands()) {
 | |
|           if (!MO.isFI())
 | |
|             continue;
 | |
|           int Slot = MO.getIndex();
 | |
|           if (Slot < 0)
 | |
|             continue;
 | |
|           if (! BetweenStartEnd.test(Slot)) {
 | |
|             ConservativeSlots.set(Slot);
 | |
|           }
 | |
|           // Here we check the StoreSlots to screen catch point out. For more
 | |
|           // information, please refer "Handle Windows Exception with
 | |
|           // LifetimeStartOnFirstUse" at the head of this file.
 | |
|           if (MI.mayStore())
 | |
|             StoreSlots.set(Slot);
 | |
|           if (MF->getWinEHFuncInfo() && MBB->isEHPad() && MI.mayLoad())
 | |
|             NumLoadInCatchPad[Slot] += 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     BitVector &SeenStart = SeenStartMap[MBB];
 | |
|     SeenStart |= BetweenStartEnd;
 | |
|   }
 | |
|   if (!MarkersFound) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // 1) PR27903: slots with multiple start or end lifetime ops are not
 | |
|   // safe to enable for "lifetime-start-on-first-use".
 | |
|   // 2) And also not safe for variable X in catch(X) in windows.
 | |
|   for (unsigned slot = 0; slot < NumSlot; ++slot) {
 | |
|     if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1 ||
 | |
|         (NumLoadInCatchPad[slot] > 1 && !StoreSlots.test(slot)))
 | |
|       ConservativeSlots.set(slot);
 | |
|   }
 | |
|   LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
 | |
| 
 | |
|   // Step 2: compute begin/end sets for each block
 | |
| 
 | |
|   // NOTE: We use a depth-first iteration to ensure that we obtain a
 | |
|   // deterministic numbering.
 | |
|   for (MachineBasicBlock *MBB : depth_first(MF)) {
 | |
|     // Assign a serial number to this basic block.
 | |
|     BasicBlocks[MBB] = BasicBlockNumbering.size();
 | |
|     BasicBlockNumbering.push_back(MBB);
 | |
| 
 | |
|     // Keep a reference to avoid repeated lookups.
 | |
|     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
 | |
| 
 | |
|     BlockInfo.Begin.resize(NumSlot);
 | |
|     BlockInfo.End.resize(NumSlot);
 | |
| 
 | |
|     SmallVector<int, 4> slots;
 | |
|     for (MachineInstr &MI : *MBB) {
 | |
|       bool isStart = false;
 | |
|       slots.clear();
 | |
|       if (isLifetimeStartOrEnd(MI, slots, isStart)) {
 | |
|         if (!isStart) {
 | |
|           assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
 | |
|           int Slot = slots[0];
 | |
|           if (BlockInfo.Begin.test(Slot)) {
 | |
|             BlockInfo.Begin.reset(Slot);
 | |
|           }
 | |
|           BlockInfo.End.set(Slot);
 | |
|         } else {
 | |
|           for (auto Slot : slots) {
 | |
|             LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
 | |
|             LLVM_DEBUG(dbgs()
 | |
|                        << " at " << printMBBReference(*MBB) << " index ");
 | |
|             LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
 | |
|             const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
 | |
|             if (Allocation) {
 | |
|               LLVM_DEBUG(dbgs()
 | |
|                          << " with allocation: " << Allocation->getName());
 | |
|             }
 | |
|             LLVM_DEBUG(dbgs() << "\n");
 | |
|             if (BlockInfo.End.test(Slot)) {
 | |
|               BlockInfo.End.reset(Slot);
 | |
|             }
 | |
|             BlockInfo.Begin.set(Slot);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update statistics.
 | |
|   NumMarkerSeen += MarkersFound;
 | |
|   return MarkersFound;
 | |
| }
 | |
| 
 | |
| void StackColoring::calculateLocalLiveness() {
 | |
|   unsigned NumIters = 0;
 | |
|   bool changed = true;
 | |
|   while (changed) {
 | |
|     changed = false;
 | |
|     ++NumIters;
 | |
| 
 | |
|     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
 | |
|       // Use an iterator to avoid repeated lookups.
 | |
|       LivenessMap::iterator BI = BlockLiveness.find(BB);
 | |
|       assert(BI != BlockLiveness.end() && "Block not found");
 | |
|       BlockLifetimeInfo &BlockInfo = BI->second;
 | |
| 
 | |
|       // Compute LiveIn by unioning together the LiveOut sets of all preds.
 | |
|       BitVector LocalLiveIn;
 | |
|       for (MachineBasicBlock *Pred : BB->predecessors()) {
 | |
|         LivenessMap::const_iterator I = BlockLiveness.find(Pred);
 | |
|         // PR37130: transformations prior to stack coloring can
 | |
|         // sometimes leave behind statically unreachable blocks; these
 | |
|         // can be safely skipped here.
 | |
|         if (I != BlockLiveness.end())
 | |
|           LocalLiveIn |= I->second.LiveOut;
 | |
|       }
 | |
| 
 | |
|       // Compute LiveOut by subtracting out lifetimes that end in this
 | |
|       // block, then adding in lifetimes that begin in this block.  If
 | |
|       // we have both BEGIN and END markers in the same basic block
 | |
|       // then we know that the BEGIN marker comes after the END,
 | |
|       // because we already handle the case where the BEGIN comes
 | |
|       // before the END when collecting the markers (and building the
 | |
|       // BEGIN/END vectors).
 | |
|       BitVector LocalLiveOut = LocalLiveIn;
 | |
|       LocalLiveOut.reset(BlockInfo.End);
 | |
|       LocalLiveOut |= BlockInfo.Begin;
 | |
| 
 | |
|       // Update block LiveIn set, noting whether it has changed.
 | |
|       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
 | |
|         changed = true;
 | |
|         BlockInfo.LiveIn |= LocalLiveIn;
 | |
|       }
 | |
| 
 | |
|       // Update block LiveOut set, noting whether it has changed.
 | |
|       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
 | |
|         changed = true;
 | |
|         BlockInfo.LiveOut |= LocalLiveOut;
 | |
|       }
 | |
|     }
 | |
|   } // while changed.
 | |
| 
 | |
|   NumIterations = NumIters;
 | |
| }
 | |
| 
 | |
| void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
 | |
|   SmallVector<SlotIndex, 16> Starts;
 | |
|   SmallVector<bool, 16> DefinitelyInUse;
 | |
| 
 | |
|   // For each block, find which slots are active within this block
 | |
|   // and update the live intervals.
 | |
|   for (const MachineBasicBlock &MBB : *MF) {
 | |
|     Starts.clear();
 | |
|     Starts.resize(NumSlots);
 | |
|     DefinitelyInUse.clear();
 | |
|     DefinitelyInUse.resize(NumSlots);
 | |
| 
 | |
|     // Start the interval of the slots that we previously found to be 'in-use'.
 | |
|     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
 | |
|     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
 | |
|          pos = MBBLiveness.LiveIn.find_next(pos)) {
 | |
|       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
 | |
|     }
 | |
| 
 | |
|     // Create the interval for the basic blocks containing lifetime begin/end.
 | |
|     for (const MachineInstr &MI : MBB) {
 | |
|       SmallVector<int, 4> slots;
 | |
|       bool IsStart = false;
 | |
|       if (!isLifetimeStartOrEnd(MI, slots, IsStart))
 | |
|         continue;
 | |
|       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
 | |
|       for (auto Slot : slots) {
 | |
|         if (IsStart) {
 | |
|           // If a slot is already definitely in use, we don't have to emit
 | |
|           // a new start marker because there is already a pre-existing
 | |
|           // one.
 | |
|           if (!DefinitelyInUse[Slot]) {
 | |
|             LiveStarts[Slot].push_back(ThisIndex);
 | |
|             DefinitelyInUse[Slot] = true;
 | |
|           }
 | |
|           if (!Starts[Slot].isValid())
 | |
|             Starts[Slot] = ThisIndex;
 | |
|         } else {
 | |
|           if (Starts[Slot].isValid()) {
 | |
|             VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
 | |
|             Intervals[Slot]->addSegment(
 | |
|                 LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
 | |
|             Starts[Slot] = SlotIndex(); // Invalidate the start index
 | |
|             DefinitelyInUse[Slot] = false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Finish up started segments
 | |
|     for (unsigned i = 0; i < NumSlots; ++i) {
 | |
|       if (!Starts[i].isValid())
 | |
|         continue;
 | |
| 
 | |
|       SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
 | |
|       VNInfo *VNI = Intervals[i]->getValNumInfo(0);
 | |
|       Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool StackColoring::removeAllMarkers() {
 | |
|   unsigned Count = 0;
 | |
|   for (MachineInstr *MI : Markers) {
 | |
|     MI->eraseFromParent();
 | |
|     Count++;
 | |
|   }
 | |
|   Markers.clear();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
 | |
|   unsigned FixedInstr = 0;
 | |
|   unsigned FixedMemOp = 0;
 | |
|   unsigned FixedDbg = 0;
 | |
| 
 | |
|   // Remap debug information that refers to stack slots.
 | |
|   for (auto &VI : MF->getVariableDbgInfo()) {
 | |
|     if (!VI.Var)
 | |
|       continue;
 | |
|     if (SlotRemap.count(VI.Slot)) {
 | |
|       LLVM_DEBUG(dbgs() << "Remapping debug info for ["
 | |
|                         << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
 | |
|       VI.Slot = SlotRemap[VI.Slot];
 | |
|       FixedDbg++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Keep a list of *allocas* which need to be remapped.
 | |
|   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
 | |
| 
 | |
|   // Keep a list of allocas which has been affected by the remap.
 | |
|   SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
 | |
| 
 | |
|   for (const std::pair<int, int> &SI : SlotRemap) {
 | |
|     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
 | |
|     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
 | |
|     assert(To && From && "Invalid allocation object");
 | |
|     Allocas[From] = To;
 | |
| 
 | |
|     // If From is before wo, its possible that there is a use of From between
 | |
|     // them.
 | |
|     if (From->comesBefore(To))
 | |
|       const_cast<AllocaInst*>(To)->moveBefore(const_cast<AllocaInst*>(From));
 | |
| 
 | |
|     // AA might be used later for instruction scheduling, and we need it to be
 | |
|     // able to deduce the correct aliasing releationships between pointers
 | |
|     // derived from the alloca being remapped and the target of that remapping.
 | |
|     // The only safe way, without directly informing AA about the remapping
 | |
|     // somehow, is to directly update the IR to reflect the change being made
 | |
|     // here.
 | |
|     Instruction *Inst = const_cast<AllocaInst *>(To);
 | |
|     if (From->getType() != To->getType()) {
 | |
|       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
 | |
|       Cast->insertAfter(Inst);
 | |
|       Inst = Cast;
 | |
|     }
 | |
| 
 | |
|     // We keep both slots to maintain AliasAnalysis metadata later.
 | |
|     MergedAllocas.insert(From);
 | |
|     MergedAllocas.insert(To);
 | |
| 
 | |
|     // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
 | |
|     // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
 | |
|     // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
 | |
|     MachineFrameInfo::SSPLayoutKind FromKind
 | |
|         = MFI->getObjectSSPLayout(SI.first);
 | |
|     MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
 | |
|     if (FromKind != MachineFrameInfo::SSPLK_None &&
 | |
|         (ToKind == MachineFrameInfo::SSPLK_None ||
 | |
|          (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
 | |
|           FromKind != MachineFrameInfo::SSPLK_AddrOf)))
 | |
|       MFI->setObjectSSPLayout(SI.second, FromKind);
 | |
| 
 | |
|     // The new alloca might not be valid in a llvm.dbg.declare for this
 | |
|     // variable, so undef out the use to make the verifier happy.
 | |
|     AllocaInst *FromAI = const_cast<AllocaInst *>(From);
 | |
|     if (FromAI->isUsedByMetadata())
 | |
|       ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
 | |
|     for (auto &Use : FromAI->uses()) {
 | |
|       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
 | |
|         if (BCI->isUsedByMetadata())
 | |
|           ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
 | |
|     }
 | |
| 
 | |
|     // Note that this will not replace uses in MMOs (which we'll update below),
 | |
|     // or anywhere else (which is why we won't delete the original
 | |
|     // instruction).
 | |
|     FromAI->replaceAllUsesWith(Inst);
 | |
|   }
 | |
| 
 | |
|   // Remap all instructions to the new stack slots.
 | |
|   std::vector<std::vector<MachineMemOperand *>> SSRefs(
 | |
|       MFI->getObjectIndexEnd());
 | |
|   for (MachineBasicBlock &BB : *MF)
 | |
|     for (MachineInstr &I : BB) {
 | |
|       // Skip lifetime markers. We'll remove them soon.
 | |
|       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
 | |
|           I.getOpcode() == TargetOpcode::LIFETIME_END)
 | |
|         continue;
 | |
| 
 | |
|       // Update the MachineMemOperand to use the new alloca.
 | |
|       for (MachineMemOperand *MMO : I.memoperands()) {
 | |
|         // We've replaced IR-level uses of the remapped allocas, so we only
 | |
|         // need to replace direct uses here.
 | |
|         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
 | |
|         if (!AI)
 | |
|           continue;
 | |
| 
 | |
|         if (!Allocas.count(AI))
 | |
|           continue;
 | |
| 
 | |
|         MMO->setValue(Allocas[AI]);
 | |
|         FixedMemOp++;
 | |
|       }
 | |
| 
 | |
|       // Update all of the machine instruction operands.
 | |
|       for (MachineOperand &MO : I.operands()) {
 | |
|         if (!MO.isFI())
 | |
|           continue;
 | |
|         int FromSlot = MO.getIndex();
 | |
| 
 | |
|         // Don't touch arguments.
 | |
|         if (FromSlot<0)
 | |
|           continue;
 | |
| 
 | |
|         // Only look at mapped slots.
 | |
|         if (!SlotRemap.count(FromSlot))
 | |
|           continue;
 | |
| 
 | |
|         // In a debug build, check that the instruction that we are modifying is
 | |
|         // inside the expected live range. If the instruction is not inside
 | |
|         // the calculated range then it means that the alloca usage moved
 | |
|         // outside of the lifetime markers, or that the user has a bug.
 | |
|         // NOTE: Alloca address calculations which happen outside the lifetime
 | |
|         // zone are okay, despite the fact that we don't have a good way
 | |
|         // for validating all of the usages of the calculation.
 | |
| #ifndef NDEBUG
 | |
|         bool TouchesMemory = I.mayLoadOrStore();
 | |
|         // If we *don't* protect the user from escaped allocas, don't bother
 | |
|         // validating the instructions.
 | |
|         if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
 | |
|           SlotIndex Index = Indexes->getInstructionIndex(I);
 | |
|           const LiveInterval *Interval = &*Intervals[FromSlot];
 | |
|           assert(Interval->find(Index) != Interval->end() &&
 | |
|                  "Found instruction usage outside of live range.");
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         // Fix the machine instructions.
 | |
|         int ToSlot = SlotRemap[FromSlot];
 | |
|         MO.setIndex(ToSlot);
 | |
|         FixedInstr++;
 | |
|       }
 | |
| 
 | |
|       // We adjust AliasAnalysis information for merged stack slots.
 | |
|       SmallVector<MachineMemOperand *, 2> NewMMOs;
 | |
|       bool ReplaceMemOps = false;
 | |
|       for (MachineMemOperand *MMO : I.memoperands()) {
 | |
|         // Collect MachineMemOperands which reference
 | |
|         // FixedStackPseudoSourceValues with old frame indices.
 | |
|         if (const auto *FSV = dyn_cast_or_null<FixedStackPseudoSourceValue>(
 | |
|                 MMO->getPseudoValue())) {
 | |
|           int FI = FSV->getFrameIndex();
 | |
|           auto To = SlotRemap.find(FI);
 | |
|           if (To != SlotRemap.end())
 | |
|             SSRefs[FI].push_back(MMO);
 | |
|         }
 | |
| 
 | |
|         // If this memory location can be a slot remapped here,
 | |
|         // we remove AA information.
 | |
|         bool MayHaveConflictingAAMD = false;
 | |
|         if (MMO->getAAInfo()) {
 | |
|           if (const Value *MMOV = MMO->getValue()) {
 | |
|             SmallVector<Value *, 4> Objs;
 | |
|             getUnderlyingObjectsForCodeGen(MMOV, Objs);
 | |
| 
 | |
|             if (Objs.empty())
 | |
|               MayHaveConflictingAAMD = true;
 | |
|             else
 | |
|               for (Value *V : Objs) {
 | |
|                 // If this memory location comes from a known stack slot
 | |
|                 // that is not remapped, we continue checking.
 | |
|                 // Otherwise, we need to invalidate AA infomation.
 | |
|                 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
 | |
|                 if (AI && MergedAllocas.count(AI)) {
 | |
|                   MayHaveConflictingAAMD = true;
 | |
|                   break;
 | |
|                 }
 | |
|               }
 | |
|           }
 | |
|         }
 | |
|         if (MayHaveConflictingAAMD) {
 | |
|           NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
 | |
|           ReplaceMemOps = true;
 | |
|         } else {
 | |
|           NewMMOs.push_back(MMO);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If any memory operand is updated, set memory references of
 | |
|       // this instruction.
 | |
|       if (ReplaceMemOps)
 | |
|         I.setMemRefs(*MF, NewMMOs);
 | |
|     }
 | |
| 
 | |
|   // Rewrite MachineMemOperands that reference old frame indices.
 | |
|   for (auto E : enumerate(SSRefs))
 | |
|     if (!E.value().empty()) {
 | |
|       const PseudoSourceValue *NewSV =
 | |
|           MF->getPSVManager().getFixedStack(SlotRemap.find(E.index())->second);
 | |
|       for (MachineMemOperand *Ref : E.value())
 | |
|         Ref->setValue(NewSV);
 | |
|     }
 | |
| 
 | |
|   // Update the location of C++ catch objects for the MSVC personality routine.
 | |
|   if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
 | |
|     for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
 | |
|       for (WinEHHandlerType &H : TBME.HandlerArray)
 | |
|         if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
 | |
|             SlotRemap.count(H.CatchObj.FrameIndex))
 | |
|           H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
 | |
|   LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
 | |
|   LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
 | |
|   (void) FixedMemOp;
 | |
|   (void) FixedDbg;
 | |
|   (void) FixedInstr;
 | |
| }
 | |
| 
 | |
| void StackColoring::removeInvalidSlotRanges() {
 | |
|   for (MachineBasicBlock &BB : *MF)
 | |
|     for (MachineInstr &I : BB) {
 | |
|       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
 | |
|           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
 | |
|         continue;
 | |
| 
 | |
|       // Some intervals are suspicious! In some cases we find address
 | |
|       // calculations outside of the lifetime zone, but not actual memory
 | |
|       // read or write. Memory accesses outside of the lifetime zone are a clear
 | |
|       // violation, but address calculations are okay. This can happen when
 | |
|       // GEPs are hoisted outside of the lifetime zone.
 | |
|       // So, in here we only check instructions which can read or write memory.
 | |
|       if (!I.mayLoad() && !I.mayStore())
 | |
|         continue;
 | |
| 
 | |
|       // Check all of the machine operands.
 | |
|       for (const MachineOperand &MO : I.operands()) {
 | |
|         if (!MO.isFI())
 | |
|           continue;
 | |
| 
 | |
|         int Slot = MO.getIndex();
 | |
| 
 | |
|         if (Slot<0)
 | |
|           continue;
 | |
| 
 | |
|         if (Intervals[Slot]->empty())
 | |
|           continue;
 | |
| 
 | |
|         // Check that the used slot is inside the calculated lifetime range.
 | |
|         // If it is not, warn about it and invalidate the range.
 | |
|         LiveInterval *Interval = &*Intervals[Slot];
 | |
|         SlotIndex Index = Indexes->getInstructionIndex(I);
 | |
|         if (Interval->find(Index) == Interval->end()) {
 | |
|           Interval->clear();
 | |
|           LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
 | |
|           EscapedAllocas++;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
 | |
|                                    unsigned NumSlots) {
 | |
|   // Expunge slot remap map.
 | |
|   for (unsigned i=0; i < NumSlots; ++i) {
 | |
|     // If we are remapping i
 | |
|     if (SlotRemap.count(i)) {
 | |
|       int Target = SlotRemap[i];
 | |
|       // As long as our target is mapped to something else, follow it.
 | |
|       while (SlotRemap.count(Target)) {
 | |
|         Target = SlotRemap[Target];
 | |
|         SlotRemap[i] = Target;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
 | |
|   LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
 | |
|                     << "********** Function: " << Func.getName() << '\n');
 | |
|   MF = &Func;
 | |
|   MFI = &MF->getFrameInfo();
 | |
|   Indexes = &getAnalysis<SlotIndexes>();
 | |
|   BlockLiveness.clear();
 | |
|   BasicBlocks.clear();
 | |
|   BasicBlockNumbering.clear();
 | |
|   Markers.clear();
 | |
|   Intervals.clear();
 | |
|   LiveStarts.clear();
 | |
|   VNInfoAllocator.Reset();
 | |
| 
 | |
|   unsigned NumSlots = MFI->getObjectIndexEnd();
 | |
| 
 | |
|   // If there are no stack slots then there are no markers to remove.
 | |
|   if (!NumSlots)
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<int, 8> SortedSlots;
 | |
|   SortedSlots.reserve(NumSlots);
 | |
|   Intervals.reserve(NumSlots);
 | |
|   LiveStarts.resize(NumSlots);
 | |
| 
 | |
|   unsigned NumMarkers = collectMarkers(NumSlots);
 | |
| 
 | |
|   unsigned TotalSize = 0;
 | |
|   LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
 | |
|                     << " slots\n");
 | |
|   LLVM_DEBUG(dbgs() << "Slot structure:\n");
 | |
| 
 | |
|   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
 | |
|     LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
 | |
|                       << " bytes.\n");
 | |
|     TotalSize += MFI->getObjectSize(i);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
 | |
| 
 | |
|   // Don't continue because there are not enough lifetime markers, or the
 | |
|   // stack is too small, or we are told not to optimize the slots.
 | |
|   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
 | |
|       skipFunction(Func.getFunction())) {
 | |
|     LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
 | |
|     return removeAllMarkers();
 | |
|   }
 | |
| 
 | |
|   for (unsigned i=0; i < NumSlots; ++i) {
 | |
|     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
 | |
|     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
 | |
|     Intervals.push_back(std::move(LI));
 | |
|     SortedSlots.push_back(i);
 | |
|   }
 | |
| 
 | |
|   // Calculate the liveness of each block.
 | |
|   calculateLocalLiveness();
 | |
|   LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
 | |
|   LLVM_DEBUG(dump());
 | |
| 
 | |
|   // Propagate the liveness information.
 | |
|   calculateLiveIntervals(NumSlots);
 | |
|   LLVM_DEBUG(dumpIntervals());
 | |
| 
 | |
|   // Search for allocas which are used outside of the declared lifetime
 | |
|   // markers.
 | |
|   if (ProtectFromEscapedAllocas)
 | |
|     removeInvalidSlotRanges();
 | |
| 
 | |
|   // Maps old slots to new slots.
 | |
|   DenseMap<int, int> SlotRemap;
 | |
|   unsigned RemovedSlots = 0;
 | |
|   unsigned ReducedSize = 0;
 | |
| 
 | |
|   // Do not bother looking at empty intervals.
 | |
|   for (unsigned I = 0; I < NumSlots; ++I) {
 | |
|     if (Intervals[SortedSlots[I]]->empty())
 | |
|       SortedSlots[I] = -1;
 | |
|   }
 | |
| 
 | |
|   // This is a simple greedy algorithm for merging allocas. First, sort the
 | |
|   // slots, placing the largest slots first. Next, perform an n^2 scan and look
 | |
|   // for disjoint slots. When you find disjoint slots, merge the smaller one
 | |
|   // into the bigger one and update the live interval. Remove the small alloca
 | |
|   // and continue.
 | |
| 
 | |
|   // Sort the slots according to their size. Place unused slots at the end.
 | |
|   // Use stable sort to guarantee deterministic code generation.
 | |
|   llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
 | |
|     // We use -1 to denote a uninteresting slot. Place these slots at the end.
 | |
|     if (LHS == -1)
 | |
|       return false;
 | |
|     if (RHS == -1)
 | |
|       return true;
 | |
|     // Sort according to size.
 | |
|     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
 | |
|   });
 | |
| 
 | |
|   for (auto &s : LiveStarts)
 | |
|     llvm::sort(s);
 | |
| 
 | |
|   bool Changed = true;
 | |
|   while (Changed) {
 | |
|     Changed = false;
 | |
|     for (unsigned I = 0; I < NumSlots; ++I) {
 | |
|       if (SortedSlots[I] == -1)
 | |
|         continue;
 | |
| 
 | |
|       for (unsigned J=I+1; J < NumSlots; ++J) {
 | |
|         if (SortedSlots[J] == -1)
 | |
|           continue;
 | |
| 
 | |
|         int FirstSlot = SortedSlots[I];
 | |
|         int SecondSlot = SortedSlots[J];
 | |
| 
 | |
|         // Objects with different stack IDs cannot be merged.
 | |
|         if (MFI->getStackID(FirstSlot) != MFI->getStackID(SecondSlot))
 | |
|           continue;
 | |
| 
 | |
|         LiveInterval *First = &*Intervals[FirstSlot];
 | |
|         LiveInterval *Second = &*Intervals[SecondSlot];
 | |
|         auto &FirstS = LiveStarts[FirstSlot];
 | |
|         auto &SecondS = LiveStarts[SecondSlot];
 | |
|         assert(!First->empty() && !Second->empty() && "Found an empty range");
 | |
| 
 | |
|         // Merge disjoint slots. This is a little bit tricky - see the
 | |
|         // Implementation Notes section for an explanation.
 | |
|         if (!First->isLiveAtIndexes(SecondS) &&
 | |
|             !Second->isLiveAtIndexes(FirstS)) {
 | |
|           Changed = true;
 | |
|           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
 | |
| 
 | |
|           int OldSize = FirstS.size();
 | |
|           FirstS.append(SecondS.begin(), SecondS.end());
 | |
|           auto Mid = FirstS.begin() + OldSize;
 | |
|           std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
 | |
| 
 | |
|           SlotRemap[SecondSlot] = FirstSlot;
 | |
|           SortedSlots[J] = -1;
 | |
|           LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
 | |
|                             << SecondSlot << " together.\n");
 | |
|           Align MaxAlignment = std::max(MFI->getObjectAlign(FirstSlot),
 | |
|                                         MFI->getObjectAlign(SecondSlot));
 | |
| 
 | |
|           assert(MFI->getObjectSize(FirstSlot) >=
 | |
|                  MFI->getObjectSize(SecondSlot) &&
 | |
|                  "Merging a small object into a larger one");
 | |
| 
 | |
|           RemovedSlots+=1;
 | |
|           ReducedSize += MFI->getObjectSize(SecondSlot);
 | |
|           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
 | |
|           MFI->RemoveStackObject(SecondSlot);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }// While changed.
 | |
| 
 | |
|   // Record statistics.
 | |
|   StackSpaceSaved += ReducedSize;
 | |
|   StackSlotMerged += RemovedSlots;
 | |
|   LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
 | |
|                     << ReducedSize << " bytes\n");
 | |
| 
 | |
|   // Scan the entire function and update all machine operands that use frame
 | |
|   // indices to use the remapped frame index.
 | |
|   expungeSlotMap(SlotRemap, NumSlots);
 | |
|   remapInstructions(SlotRemap);
 | |
| 
 | |
|   return removeAllMarkers();
 | |
| }
 |