495 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			495 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains switch inst lowering optimizations and utilities for
 | |
| // codegen, so that it can be used for both SelectionDAG and GlobalISel.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/SwitchLoweringUtils.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace SwitchCG;
 | |
| 
 | |
| uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters,
 | |
|                                      unsigned First, unsigned Last) {
 | |
|   assert(Last >= First);
 | |
|   const APInt &LowCase = Clusters[First].Low->getValue();
 | |
|   const APInt &HighCase = Clusters[Last].High->getValue();
 | |
|   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
 | |
| 
 | |
|   // FIXME: A range of consecutive cases has 100% density, but only requires one
 | |
|   // comparison to lower. We should discriminate against such consecutive ranges
 | |
|   // in jump tables.
 | |
|   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases,
 | |
|                                unsigned First, unsigned Last) {
 | |
|   assert(Last >= First);
 | |
|   assert(TotalCases[Last] >= TotalCases[First]);
 | |
|   uint64_t NumCases =
 | |
|       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
 | |
|   return NumCases;
 | |
| }
 | |
| 
 | |
| void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters,
 | |
|                                               const SwitchInst *SI,
 | |
|                                               MachineBasicBlock *DefaultMBB,
 | |
|                                               ProfileSummaryInfo *PSI,
 | |
|                                               BlockFrequencyInfo *BFI) {
 | |
| #ifndef NDEBUG
 | |
|   // Clusters must be non-empty, sorted, and only contain Range clusters.
 | |
|   assert(!Clusters.empty());
 | |
|   for (CaseCluster &C : Clusters)
 | |
|     assert(C.Kind == CC_Range);
 | |
|   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
 | |
|     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
 | |
| #endif
 | |
| 
 | |
|   assert(TLI && "TLI not set!");
 | |
|   if (!TLI->areJTsAllowed(SI->getParent()->getParent()))
 | |
|     return;
 | |
| 
 | |
|   const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries();
 | |
|   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
 | |
| 
 | |
|   // Bail if not enough cases.
 | |
|   const int64_t N = Clusters.size();
 | |
|   if (N < 2 || N < MinJumpTableEntries)
 | |
|     return;
 | |
| 
 | |
|   // Accumulated number of cases in each cluster and those prior to it.
 | |
|   SmallVector<unsigned, 8> TotalCases(N);
 | |
|   for (unsigned i = 0; i < N; ++i) {
 | |
|     const APInt &Hi = Clusters[i].High->getValue();
 | |
|     const APInt &Lo = Clusters[i].Low->getValue();
 | |
|     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
 | |
|     if (i != 0)
 | |
|       TotalCases[i] += TotalCases[i - 1];
 | |
|   }
 | |
| 
 | |
|   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
 | |
|   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
 | |
|   assert(NumCases < UINT64_MAX / 100);
 | |
|   assert(Range >= NumCases);
 | |
| 
 | |
|   // Cheap case: the whole range may be suitable for jump table.
 | |
|   if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) {
 | |
|     CaseCluster JTCluster;
 | |
|     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
 | |
|       Clusters[0] = JTCluster;
 | |
|       Clusters.resize(1);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The algorithm below is not suitable for -O0.
 | |
|   if (TM->getOptLevel() == CodeGenOpt::None)
 | |
|     return;
 | |
| 
 | |
|   // Split Clusters into minimum number of dense partitions. The algorithm uses
 | |
|   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
 | |
|   // for the Case Statement'" (1994), but builds the MinPartitions array in
 | |
|   // reverse order to make it easier to reconstruct the partitions in ascending
 | |
|   // order. In the choice between two optimal partitionings, it picks the one
 | |
|   // which yields more jump tables.
 | |
| 
 | |
|   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
 | |
|   SmallVector<unsigned, 8> MinPartitions(N);
 | |
|   // LastElement[i] is the last element of the partition starting at i.
 | |
|   SmallVector<unsigned, 8> LastElement(N);
 | |
|   // PartitionsScore[i] is used to break ties when choosing between two
 | |
|   // partitionings resulting in the same number of partitions.
 | |
|   SmallVector<unsigned, 8> PartitionsScore(N);
 | |
|   // For PartitionsScore, a small number of comparisons is considered as good as
 | |
|   // a jump table and a single comparison is considered better than a jump
 | |
|   // table.
 | |
|   enum PartitionScores : unsigned {
 | |
|     NoTable = 0,
 | |
|     Table = 1,
 | |
|     FewCases = 1,
 | |
|     SingleCase = 2
 | |
|   };
 | |
| 
 | |
|   // Base case: There is only one way to partition Clusters[N-1].
 | |
|   MinPartitions[N - 1] = 1;
 | |
|   LastElement[N - 1] = N - 1;
 | |
|   PartitionsScore[N - 1] = PartitionScores::SingleCase;
 | |
| 
 | |
|   // Note: loop indexes are signed to avoid underflow.
 | |
|   for (int64_t i = N - 2; i >= 0; i--) {
 | |
|     // Find optimal partitioning of Clusters[i..N-1].
 | |
|     // Baseline: Put Clusters[i] into a partition on its own.
 | |
|     MinPartitions[i] = MinPartitions[i + 1] + 1;
 | |
|     LastElement[i] = i;
 | |
|     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
 | |
| 
 | |
|     // Search for a solution that results in fewer partitions.
 | |
|     for (int64_t j = N - 1; j > i; j--) {
 | |
|       // Try building a partition from Clusters[i..j].
 | |
|       Range = getJumpTableRange(Clusters, i, j);
 | |
|       NumCases = getJumpTableNumCases(TotalCases, i, j);
 | |
|       assert(NumCases < UINT64_MAX / 100);
 | |
|       assert(Range >= NumCases);
 | |
| 
 | |
|       if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) {
 | |
|         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
 | |
|         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
 | |
|         int64_t NumEntries = j - i + 1;
 | |
| 
 | |
|         if (NumEntries == 1)
 | |
|           Score += PartitionScores::SingleCase;
 | |
|         else if (NumEntries <= SmallNumberOfEntries)
 | |
|           Score += PartitionScores::FewCases;
 | |
|         else if (NumEntries >= MinJumpTableEntries)
 | |
|           Score += PartitionScores::Table;
 | |
| 
 | |
|         // If this leads to fewer partitions, or to the same number of
 | |
|         // partitions with better score, it is a better partitioning.
 | |
|         if (NumPartitions < MinPartitions[i] ||
 | |
|             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
 | |
|           MinPartitions[i] = NumPartitions;
 | |
|           LastElement[i] = j;
 | |
|           PartitionsScore[i] = Score;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iterate over the partitions, replacing some with jump tables in-place.
 | |
|   unsigned DstIndex = 0;
 | |
|   for (unsigned First = 0, Last; First < N; First = Last + 1) {
 | |
|     Last = LastElement[First];
 | |
|     assert(Last >= First);
 | |
|     assert(DstIndex <= First);
 | |
|     unsigned NumClusters = Last - First + 1;
 | |
| 
 | |
|     CaseCluster JTCluster;
 | |
|     if (NumClusters >= MinJumpTableEntries &&
 | |
|         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
 | |
|       Clusters[DstIndex++] = JTCluster;
 | |
|     } else {
 | |
|       for (unsigned I = First; I <= Last; ++I)
 | |
|         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
 | |
|     }
 | |
|   }
 | |
|   Clusters.resize(DstIndex);
 | |
| }
 | |
| 
 | |
| bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters,
 | |
|                                               unsigned First, unsigned Last,
 | |
|                                               const SwitchInst *SI,
 | |
|                                               MachineBasicBlock *DefaultMBB,
 | |
|                                               CaseCluster &JTCluster) {
 | |
|   assert(First <= Last);
 | |
| 
 | |
|   auto Prob = BranchProbability::getZero();
 | |
|   unsigned NumCmps = 0;
 | |
|   std::vector<MachineBasicBlock*> Table;
 | |
|   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
 | |
| 
 | |
|   // Initialize probabilities in JTProbs.
 | |
|   for (unsigned I = First; I <= Last; ++I)
 | |
|     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
 | |
| 
 | |
|   for (unsigned I = First; I <= Last; ++I) {
 | |
|     assert(Clusters[I].Kind == CC_Range);
 | |
|     Prob += Clusters[I].Prob;
 | |
|     const APInt &Low = Clusters[I].Low->getValue();
 | |
|     const APInt &High = Clusters[I].High->getValue();
 | |
|     NumCmps += (Low == High) ? 1 : 2;
 | |
|     if (I != First) {
 | |
|       // Fill the gap between this and the previous cluster.
 | |
|       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
 | |
|       assert(PreviousHigh.slt(Low));
 | |
|       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
 | |
|       for (uint64_t J = 0; J < Gap; J++)
 | |
|         Table.push_back(DefaultMBB);
 | |
|     }
 | |
|     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
 | |
|     for (uint64_t J = 0; J < ClusterSize; ++J)
 | |
|       Table.push_back(Clusters[I].MBB);
 | |
|     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
 | |
|   }
 | |
| 
 | |
|   unsigned NumDests = JTProbs.size();
 | |
|   if (TLI->isSuitableForBitTests(NumDests, NumCmps,
 | |
|                                  Clusters[First].Low->getValue(),
 | |
|                                  Clusters[Last].High->getValue(), *DL)) {
 | |
|     // Clusters[First..Last] should be lowered as bit tests instead.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Create the MBB that will load from and jump through the table.
 | |
|   // Note: We create it here, but it's not inserted into the function yet.
 | |
|   MachineFunction *CurMF = FuncInfo.MF;
 | |
|   MachineBasicBlock *JumpTableMBB =
 | |
|       CurMF->CreateMachineBasicBlock(SI->getParent());
 | |
| 
 | |
|   // Add successors. Note: use table order for determinism.
 | |
|   SmallPtrSet<MachineBasicBlock *, 8> Done;
 | |
|   for (MachineBasicBlock *Succ : Table) {
 | |
|     if (Done.count(Succ))
 | |
|       continue;
 | |
|     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
 | |
|     Done.insert(Succ);
 | |
|   }
 | |
|   JumpTableMBB->normalizeSuccProbs();
 | |
| 
 | |
|   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding())
 | |
|                      ->createJumpTableIndex(Table);
 | |
| 
 | |
|   // Set up the jump table info.
 | |
|   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
 | |
|   JumpTableHeader JTH(Clusters[First].Low->getValue(),
 | |
|                       Clusters[Last].High->getValue(), SI->getCondition(),
 | |
|                       nullptr, false);
 | |
|   JTCases.emplace_back(std::move(JTH), std::move(JT));
 | |
| 
 | |
|   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
 | |
|                                      JTCases.size() - 1, Prob);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters,
 | |
|                                                    const SwitchInst *SI) {
 | |
|   // Partition Clusters into as few subsets as possible, where each subset has a
 | |
|   // range that fits in a machine word and has <= 3 unique destinations.
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Clusters must be sorted and contain Range or JumpTable clusters.
 | |
|   assert(!Clusters.empty());
 | |
|   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
 | |
|   for (const CaseCluster &C : Clusters)
 | |
|     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
 | |
|   for (unsigned i = 1; i < Clusters.size(); ++i)
 | |
|     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
 | |
| #endif
 | |
| 
 | |
|   // The algorithm below is not suitable for -O0.
 | |
|   if (TM->getOptLevel() == CodeGenOpt::None)
 | |
|     return;
 | |
| 
 | |
|   // If target does not have legal shift left, do not emit bit tests at all.
 | |
|   EVT PTy = TLI->getPointerTy(*DL);
 | |
|   if (!TLI->isOperationLegal(ISD::SHL, PTy))
 | |
|     return;
 | |
| 
 | |
|   int BitWidth = PTy.getSizeInBits();
 | |
|   const int64_t N = Clusters.size();
 | |
| 
 | |
|   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
 | |
|   SmallVector<unsigned, 8> MinPartitions(N);
 | |
|   // LastElement[i] is the last element of the partition starting at i.
 | |
|   SmallVector<unsigned, 8> LastElement(N);
 | |
| 
 | |
|   // FIXME: This might not be the best algorithm for finding bit test clusters.
 | |
| 
 | |
|   // Base case: There is only one way to partition Clusters[N-1].
 | |
|   MinPartitions[N - 1] = 1;
 | |
|   LastElement[N - 1] = N - 1;
 | |
| 
 | |
|   // Note: loop indexes are signed to avoid underflow.
 | |
|   for (int64_t i = N - 2; i >= 0; --i) {
 | |
|     // Find optimal partitioning of Clusters[i..N-1].
 | |
|     // Baseline: Put Clusters[i] into a partition on its own.
 | |
|     MinPartitions[i] = MinPartitions[i + 1] + 1;
 | |
|     LastElement[i] = i;
 | |
| 
 | |
|     // Search for a solution that results in fewer partitions.
 | |
|     // Note: the search is limited by BitWidth, reducing time complexity.
 | |
|     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
 | |
|       // Try building a partition from Clusters[i..j].
 | |
| 
 | |
|       // Check the range.
 | |
|       if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(),
 | |
|                                 Clusters[j].High->getValue(), *DL))
 | |
|         continue;
 | |
| 
 | |
|       // Check nbr of destinations and cluster types.
 | |
|       // FIXME: This works, but doesn't seem very efficient.
 | |
|       bool RangesOnly = true;
 | |
|       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
 | |
|       for (int64_t k = i; k <= j; k++) {
 | |
|         if (Clusters[k].Kind != CC_Range) {
 | |
|           RangesOnly = false;
 | |
|           break;
 | |
|         }
 | |
|         Dests.set(Clusters[k].MBB->getNumber());
 | |
|       }
 | |
|       if (!RangesOnly || Dests.count() > 3)
 | |
|         break;
 | |
| 
 | |
|       // Check if it's a better partition.
 | |
|       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
 | |
|       if (NumPartitions < MinPartitions[i]) {
 | |
|         // Found a better partition.
 | |
|         MinPartitions[i] = NumPartitions;
 | |
|         LastElement[i] = j;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iterate over the partitions, replacing with bit-test clusters in-place.
 | |
|   unsigned DstIndex = 0;
 | |
|   for (unsigned First = 0, Last; First < N; First = Last + 1) {
 | |
|     Last = LastElement[First];
 | |
|     assert(First <= Last);
 | |
|     assert(DstIndex <= First);
 | |
| 
 | |
|     CaseCluster BitTestCluster;
 | |
|     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
 | |
|       Clusters[DstIndex++] = BitTestCluster;
 | |
|     } else {
 | |
|       size_t NumClusters = Last - First + 1;
 | |
|       std::memmove(&Clusters[DstIndex], &Clusters[First],
 | |
|                    sizeof(Clusters[0]) * NumClusters);
 | |
|       DstIndex += NumClusters;
 | |
|     }
 | |
|   }
 | |
|   Clusters.resize(DstIndex);
 | |
| }
 | |
| 
 | |
| bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters,
 | |
|                                              unsigned First, unsigned Last,
 | |
|                                              const SwitchInst *SI,
 | |
|                                              CaseCluster &BTCluster) {
 | |
|   assert(First <= Last);
 | |
|   if (First == Last)
 | |
|     return false;
 | |
| 
 | |
|   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
 | |
|   unsigned NumCmps = 0;
 | |
|   for (int64_t I = First; I <= Last; ++I) {
 | |
|     assert(Clusters[I].Kind == CC_Range);
 | |
|     Dests.set(Clusters[I].MBB->getNumber());
 | |
|     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
 | |
|   }
 | |
|   unsigned NumDests = Dests.count();
 | |
| 
 | |
|   APInt Low = Clusters[First].Low->getValue();
 | |
|   APInt High = Clusters[Last].High->getValue();
 | |
|   assert(Low.slt(High));
 | |
| 
 | |
|   if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL))
 | |
|     return false;
 | |
| 
 | |
|   APInt LowBound;
 | |
|   APInt CmpRange;
 | |
| 
 | |
|   const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits();
 | |
|   assert(TLI->rangeFitsInWord(Low, High, *DL) &&
 | |
|          "Case range must fit in bit mask!");
 | |
| 
 | |
|   // Check if the clusters cover a contiguous range such that no value in the
 | |
|   // range will jump to the default statement.
 | |
|   bool ContiguousRange = true;
 | |
|   for (int64_t I = First + 1; I <= Last; ++I) {
 | |
|     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
 | |
|       ContiguousRange = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
 | |
|     // Optimize the case where all the case values fit in a word without having
 | |
|     // to subtract minValue. In this case, we can optimize away the subtraction.
 | |
|     LowBound = APInt::getZero(Low.getBitWidth());
 | |
|     CmpRange = High;
 | |
|     ContiguousRange = false;
 | |
|   } else {
 | |
|     LowBound = Low;
 | |
|     CmpRange = High - Low;
 | |
|   }
 | |
| 
 | |
|   CaseBitsVector CBV;
 | |
|   auto TotalProb = BranchProbability::getZero();
 | |
|   for (unsigned i = First; i <= Last; ++i) {
 | |
|     // Find the CaseBits for this destination.
 | |
|     unsigned j;
 | |
|     for (j = 0; j < CBV.size(); ++j)
 | |
|       if (CBV[j].BB == Clusters[i].MBB)
 | |
|         break;
 | |
|     if (j == CBV.size())
 | |
|       CBV.push_back(
 | |
|           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
 | |
|     CaseBits *CB = &CBV[j];
 | |
| 
 | |
|     // Update Mask, Bits and ExtraProb.
 | |
|     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
 | |
|     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
 | |
|     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
 | |
|     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
 | |
|     CB->Bits += Hi - Lo + 1;
 | |
|     CB->ExtraProb += Clusters[i].Prob;
 | |
|     TotalProb += Clusters[i].Prob;
 | |
|   }
 | |
| 
 | |
|   BitTestInfo BTI;
 | |
|   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
 | |
|     // Sort by probability first, number of bits second, bit mask third.
 | |
|     if (a.ExtraProb != b.ExtraProb)
 | |
|       return a.ExtraProb > b.ExtraProb;
 | |
|     if (a.Bits != b.Bits)
 | |
|       return a.Bits > b.Bits;
 | |
|     return a.Mask < b.Mask;
 | |
|   });
 | |
| 
 | |
|   for (auto &CB : CBV) {
 | |
|     MachineBasicBlock *BitTestBB =
 | |
|         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
 | |
|     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
 | |
|   }
 | |
|   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
 | |
|                             SI->getCondition(), -1U, MVT::Other, false,
 | |
|                             ContiguousRange, nullptr, nullptr, std::move(BTI),
 | |
|                             TotalProb);
 | |
| 
 | |
|   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
 | |
|                                     BitTestCases.size() - 1, TotalProb);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) {
 | |
| #ifndef NDEBUG
 | |
|   for (const CaseCluster &CC : Clusters)
 | |
|     assert(CC.Low == CC.High && "Input clusters must be single-case");
 | |
| #endif
 | |
| 
 | |
|   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
 | |
|     return a.Low->getValue().slt(b.Low->getValue());
 | |
|   });
 | |
| 
 | |
|   // Merge adjacent clusters with the same destination.
 | |
|   const unsigned N = Clusters.size();
 | |
|   unsigned DstIndex = 0;
 | |
|   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
 | |
|     CaseCluster &CC = Clusters[SrcIndex];
 | |
|     const ConstantInt *CaseVal = CC.Low;
 | |
|     MachineBasicBlock *Succ = CC.MBB;
 | |
| 
 | |
|     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
 | |
|         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
 | |
|       // If this case has the same successor and is a neighbour, merge it into
 | |
|       // the previous cluster.
 | |
|       Clusters[DstIndex - 1].High = CaseVal;
 | |
|       Clusters[DstIndex - 1].Prob += CC.Prob;
 | |
|     } else {
 | |
|       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
 | |
|                    sizeof(Clusters[SrcIndex]));
 | |
|     }
 | |
|   }
 | |
|   Clusters.resize(DstIndex);
 | |
| }
 |