1881 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1881 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Construction of pass pipelines -------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| ///
 | |
| /// This file provides the implementation of the PassBuilder based on our
 | |
| /// static pass registry as well as related functionality. It also provides
 | |
| /// helpers to aid in analyzing, debugging, and testing passes and pass
 | |
| /// pipelines.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/CGSCCPassManager.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/InlineAdvisor.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/ProfileSummaryInfo.h"
 | |
| #include "llvm/Analysis/ScopedNoAliasAA.h"
 | |
| #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/Passes/OptimizationLevel.h"
 | |
| #include "llvm/Passes/PassBuilder.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/PGOOptions.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
 | |
| #include "llvm/Transforms/Coroutines/CoroCleanup.h"
 | |
| #include "llvm/Transforms/Coroutines/CoroConditionalWrapper.h"
 | |
| #include "llvm/Transforms/Coroutines/CoroEarly.h"
 | |
| #include "llvm/Transforms/Coroutines/CoroElide.h"
 | |
| #include "llvm/Transforms/Coroutines/CoroSplit.h"
 | |
| #include "llvm/Transforms/IPO/AlwaysInliner.h"
 | |
| #include "llvm/Transforms/IPO/Annotation2Metadata.h"
 | |
| #include "llvm/Transforms/IPO/ArgumentPromotion.h"
 | |
| #include "llvm/Transforms/IPO/Attributor.h"
 | |
| #include "llvm/Transforms/IPO/CalledValuePropagation.h"
 | |
| #include "llvm/Transforms/IPO/ConstantMerge.h"
 | |
| #include "llvm/Transforms/IPO/CrossDSOCFI.h"
 | |
| #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
 | |
| #include "llvm/Transforms/IPO/ElimAvailExtern.h"
 | |
| #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
 | |
| #include "llvm/Transforms/IPO/FunctionAttrs.h"
 | |
| #include "llvm/Transforms/IPO/GlobalDCE.h"
 | |
| #include "llvm/Transforms/IPO/GlobalOpt.h"
 | |
| #include "llvm/Transforms/IPO/GlobalSplit.h"
 | |
| #include "llvm/Transforms/IPO/HotColdSplitting.h"
 | |
| #include "llvm/Transforms/IPO/IROutliner.h"
 | |
| #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
 | |
| #include "llvm/Transforms/IPO/Inliner.h"
 | |
| #include "llvm/Transforms/IPO/LowerTypeTests.h"
 | |
| #include "llvm/Transforms/IPO/MergeFunctions.h"
 | |
| #include "llvm/Transforms/IPO/ModuleInliner.h"
 | |
| #include "llvm/Transforms/IPO/OpenMPOpt.h"
 | |
| #include "llvm/Transforms/IPO/PartialInlining.h"
 | |
| #include "llvm/Transforms/IPO/SCCP.h"
 | |
| #include "llvm/Transforms/IPO/SampleProfile.h"
 | |
| #include "llvm/Transforms/IPO/SampleProfileProbe.h"
 | |
| #include "llvm/Transforms/IPO/SyntheticCountsPropagation.h"
 | |
| #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
 | |
| #include "llvm/Transforms/InstCombine/InstCombine.h"
 | |
| #include "llvm/Transforms/Instrumentation/CGProfile.h"
 | |
| #include "llvm/Transforms/Instrumentation/ControlHeightReduction.h"
 | |
| #include "llvm/Transforms/Instrumentation/InstrOrderFile.h"
 | |
| #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
 | |
| #include "llvm/Transforms/Instrumentation/MemProfiler.h"
 | |
| #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
 | |
| #include "llvm/Transforms/Scalar/ADCE.h"
 | |
| #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
 | |
| #include "llvm/Transforms/Scalar/AnnotationRemarks.h"
 | |
| #include "llvm/Transforms/Scalar/BDCE.h"
 | |
| #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
 | |
| #include "llvm/Transforms/Scalar/ConstraintElimination.h"
 | |
| #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
 | |
| #include "llvm/Transforms/Scalar/DFAJumpThreading.h"
 | |
| #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
 | |
| #include "llvm/Transforms/Scalar/DivRemPairs.h"
 | |
| #include "llvm/Transforms/Scalar/EarlyCSE.h"
 | |
| #include "llvm/Transforms/Scalar/Float2Int.h"
 | |
| #include "llvm/Transforms/Scalar/GVN.h"
 | |
| #include "llvm/Transforms/Scalar/IndVarSimplify.h"
 | |
| #include "llvm/Transforms/Scalar/InstSimplifyPass.h"
 | |
| #include "llvm/Transforms/Scalar/JumpThreading.h"
 | |
| #include "llvm/Transforms/Scalar/LICM.h"
 | |
| #include "llvm/Transforms/Scalar/LoopDeletion.h"
 | |
| #include "llvm/Transforms/Scalar/LoopDistribute.h"
 | |
| #include "llvm/Transforms/Scalar/LoopFlatten.h"
 | |
| #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
 | |
| #include "llvm/Transforms/Scalar/LoopInstSimplify.h"
 | |
| #include "llvm/Transforms/Scalar/LoopInterchange.h"
 | |
| #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
 | |
| #include "llvm/Transforms/Scalar/LoopPassManager.h"
 | |
| #include "llvm/Transforms/Scalar/LoopRotation.h"
 | |
| #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
 | |
| #include "llvm/Transforms/Scalar/LoopSink.h"
 | |
| #include "llvm/Transforms/Scalar/LoopUnrollAndJamPass.h"
 | |
| #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
 | |
| #include "llvm/Transforms/Scalar/LowerConstantIntrinsics.h"
 | |
| #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
 | |
| #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
 | |
| #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
 | |
| #include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h"
 | |
| #include "llvm/Transforms/Scalar/NewGVN.h"
 | |
| #include "llvm/Transforms/Scalar/Reassociate.h"
 | |
| #include "llvm/Transforms/Scalar/SCCP.h"
 | |
| #include "llvm/Transforms/Scalar/SROA.h"
 | |
| #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
 | |
| #include "llvm/Transforms/Scalar/SimplifyCFG.h"
 | |
| #include "llvm/Transforms/Scalar/SpeculativeExecution.h"
 | |
| #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
 | |
| #include "llvm/Transforms/Scalar/WarnMissedTransforms.h"
 | |
| #include "llvm/Transforms/Utils/AddDiscriminators.h"
 | |
| #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
 | |
| #include "llvm/Transforms/Utils/CanonicalizeAliases.h"
 | |
| #include "llvm/Transforms/Utils/InjectTLIMappings.h"
 | |
| #include "llvm/Transforms/Utils/LibCallsShrinkWrap.h"
 | |
| #include "llvm/Transforms/Utils/Mem2Reg.h"
 | |
| #include "llvm/Transforms/Utils/NameAnonGlobals.h"
 | |
| #include "llvm/Transforms/Utils/RelLookupTableConverter.h"
 | |
| #include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
 | |
| #include "llvm/Transforms/Vectorize/LoopVectorize.h"
 | |
| #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
 | |
| #include "llvm/Transforms/Vectorize/VectorCombine.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<InliningAdvisorMode> UseInlineAdvisor(
 | |
|     "enable-ml-inliner", cl::init(InliningAdvisorMode::Default), cl::Hidden,
 | |
|     cl::desc("Enable ML policy for inliner. Currently trained for -Oz only"),
 | |
|     cl::values(clEnumValN(InliningAdvisorMode::Default, "default",
 | |
|                           "Heuristics-based inliner version."),
 | |
|                clEnumValN(InliningAdvisorMode::Development, "development",
 | |
|                           "Use development mode (runtime-loadable model)."),
 | |
|                clEnumValN(InliningAdvisorMode::Release, "release",
 | |
|                           "Use release mode (AOT-compiled model).")));
 | |
| 
 | |
| static cl::opt<bool> EnableSyntheticCounts(
 | |
|     "enable-npm-synthetic-counts", cl::Hidden,
 | |
|     cl::desc("Run synthetic function entry count generation "
 | |
|              "pass"));
 | |
| 
 | |
| /// Flag to enable inline deferral during PGO.
 | |
| static cl::opt<bool>
 | |
|     EnablePGOInlineDeferral("enable-npm-pgo-inline-deferral", cl::init(true),
 | |
|                             cl::Hidden,
 | |
|                             cl::desc("Enable inline deferral during PGO"));
 | |
| 
 | |
| static cl::opt<bool> EnableMemProfiler("enable-mem-prof", cl::Hidden,
 | |
|                                        cl::desc("Enable memory profiler"));
 | |
| 
 | |
| static cl::opt<bool> EnableModuleInliner("enable-module-inliner",
 | |
|                                          cl::init(false), cl::Hidden,
 | |
|                                          cl::desc("Enable module inliner"));
 | |
| 
 | |
| static cl::opt<bool> PerformMandatoryInliningsFirst(
 | |
|     "mandatory-inlining-first", cl::init(true), cl::Hidden,
 | |
|     cl::desc("Perform mandatory inlinings module-wide, before performing "
 | |
|              "inlining."));
 | |
| 
 | |
| static cl::opt<bool> EnableO3NonTrivialUnswitching(
 | |
|     "enable-npm-O3-nontrivial-unswitch", cl::init(true), cl::Hidden,
 | |
|     cl::desc("Enable non-trivial loop unswitching for -O3"));
 | |
| 
 | |
| static cl::opt<bool> EnableEagerlyInvalidateAnalyses(
 | |
|     "eagerly-invalidate-analyses", cl::init(true), cl::Hidden,
 | |
|     cl::desc("Eagerly invalidate more analyses in default pipelines"));
 | |
| 
 | |
| static cl::opt<bool> EnableNoRerunSimplificationPipeline(
 | |
|     "enable-no-rerun-simplification-pipeline", cl::init(false), cl::Hidden,
 | |
|     cl::desc(
 | |
|         "Prevent running the simplification pipeline on a function more "
 | |
|         "than once in the case that SCC mutations cause a function to be "
 | |
|         "visited multiple times as long as the function has not been changed"));
 | |
| 
 | |
| static cl::opt<bool> EnableMergeFunctions(
 | |
|     "enable-merge-functions", cl::init(false), cl::Hidden,
 | |
|     cl::desc("Enable function merging as part of the optimization pipeline"));
 | |
| 
 | |
| PipelineTuningOptions::PipelineTuningOptions() {
 | |
|   LoopInterleaving = true;
 | |
|   LoopVectorization = true;
 | |
|   SLPVectorization = false;
 | |
|   LoopUnrolling = true;
 | |
|   ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
 | |
|   LicmMssaOptCap = SetLicmMssaOptCap;
 | |
|   LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
 | |
|   CallGraphProfile = true;
 | |
|   MergeFunctions = EnableMergeFunctions;
 | |
|   EagerlyInvalidateAnalyses = EnableEagerlyInvalidateAnalyses;
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| extern cl::opt<unsigned> MaxDevirtIterations;
 | |
| extern cl::opt<bool> EnableConstraintElimination;
 | |
| extern cl::opt<bool> EnableFunctionSpecialization;
 | |
| extern cl::opt<bool> EnableGVNHoist;
 | |
| extern cl::opt<bool> EnableGVNSink;
 | |
| extern cl::opt<bool> EnableHotColdSplit;
 | |
| extern cl::opt<bool> EnableIROutliner;
 | |
| extern cl::opt<bool> EnableOrderFileInstrumentation;
 | |
| extern cl::opt<bool> EnableCHR;
 | |
| extern cl::opt<bool> EnableLoopInterchange;
 | |
| extern cl::opt<bool> EnableUnrollAndJam;
 | |
| extern cl::opt<bool> EnableLoopFlatten;
 | |
| extern cl::opt<bool> EnableDFAJumpThreading;
 | |
| extern cl::opt<bool> RunNewGVN;
 | |
| extern cl::opt<bool> RunPartialInlining;
 | |
| extern cl::opt<bool> ExtraVectorizerPasses;
 | |
| 
 | |
| extern cl::opt<bool> FlattenedProfileUsed;
 | |
| 
 | |
| extern cl::opt<AttributorRunOption> AttributorRun;
 | |
| extern cl::opt<bool> EnableKnowledgeRetention;
 | |
| 
 | |
| extern cl::opt<bool> EnableMatrix;
 | |
| 
 | |
| extern cl::opt<bool> DisablePreInliner;
 | |
| extern cl::opt<int> PreInlineThreshold;
 | |
| } // namespace llvm
 | |
| 
 | |
| void PassBuilder::invokePeepholeEPCallbacks(FunctionPassManager &FPM,
 | |
|                                             OptimizationLevel Level) {
 | |
|   for (auto &C : PeepholeEPCallbacks)
 | |
|     C(FPM, Level);
 | |
| }
 | |
| 
 | |
| // Helper to add AnnotationRemarksPass.
 | |
| static void addAnnotationRemarksPass(ModulePassManager &MPM) {
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));
 | |
| }
 | |
| 
 | |
| // Helper to check if the current compilation phase is preparing for LTO
 | |
| static bool isLTOPreLink(ThinOrFullLTOPhase Phase) {
 | |
|   return Phase == ThinOrFullLTOPhase::ThinLTOPreLink ||
 | |
|          Phase == ThinOrFullLTOPhase::FullLTOPreLink;
 | |
| }
 | |
| 
 | |
| // TODO: Investigate the cost/benefit of tail call elimination on debugging.
 | |
| FunctionPassManager
 | |
| PassBuilder::buildO1FunctionSimplificationPipeline(OptimizationLevel Level,
 | |
|                                                    ThinOrFullLTOPhase Phase) {
 | |
| 
 | |
|   FunctionPassManager FPM;
 | |
| 
 | |
|   // Form SSA out of local memory accesses after breaking apart aggregates into
 | |
|   // scalars.
 | |
|   FPM.addPass(SROAPass());
 | |
| 
 | |
|   // Catch trivial redundancies
 | |
|   FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
 | |
| 
 | |
|   // Hoisting of scalars and load expressions.
 | |
|   FPM.addPass(
 | |
|       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
 | |
|   FPM.addPass(InstCombinePass());
 | |
| 
 | |
|   FPM.addPass(LibCallsShrinkWrapPass());
 | |
| 
 | |
|   invokePeepholeEPCallbacks(FPM, Level);
 | |
| 
 | |
|   FPM.addPass(
 | |
|       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
 | |
| 
 | |
|   // Form canonically associated expression trees, and simplify the trees using
 | |
|   // basic mathematical properties. For example, this will form (nearly)
 | |
|   // minimal multiplication trees.
 | |
|   FPM.addPass(ReassociatePass());
 | |
| 
 | |
|   // Add the primary loop simplification pipeline.
 | |
|   // FIXME: Currently this is split into two loop pass pipelines because we run
 | |
|   // some function passes in between them. These can and should be removed
 | |
|   // and/or replaced by scheduling the loop pass equivalents in the correct
 | |
|   // positions. But those equivalent passes aren't powerful enough yet.
 | |
|   // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
 | |
|   // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
 | |
|   // fully replace `SimplifyCFGPass`, and the closest to the other we have is
 | |
|   // `LoopInstSimplify`.
 | |
|   LoopPassManager LPM1, LPM2;
 | |
| 
 | |
|   // Simplify the loop body. We do this initially to clean up after other loop
 | |
|   // passes run, either when iterating on a loop or on inner loops with
 | |
|   // implications on the outer loop.
 | |
|   LPM1.addPass(LoopInstSimplifyPass());
 | |
|   LPM1.addPass(LoopSimplifyCFGPass());
 | |
| 
 | |
|   // Try to remove as much code from the loop header as possible,
 | |
|   // to reduce amount of IR that will have to be duplicated. However,
 | |
|   // do not perform speculative hoisting the first time as LICM
 | |
|   // will destroy metadata that may not need to be destroyed if run
 | |
|   // after loop rotation.
 | |
|   // TODO: Investigate promotion cap for O1.
 | |
|   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
 | |
|                         /*AllowSpeculation=*/false));
 | |
| 
 | |
|   LPM1.addPass(LoopRotatePass(/* Disable header duplication */ true,
 | |
|                               isLTOPreLink(Phase)));
 | |
|   // TODO: Investigate promotion cap for O1.
 | |
|   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
 | |
|                         /*AllowSpeculation=*/true));
 | |
|   LPM1.addPass(SimpleLoopUnswitchPass());
 | |
|   if (EnableLoopFlatten)
 | |
|     LPM1.addPass(LoopFlattenPass());
 | |
| 
 | |
|   LPM2.addPass(LoopIdiomRecognizePass());
 | |
|   LPM2.addPass(IndVarSimplifyPass());
 | |
| 
 | |
|   for (auto &C : LateLoopOptimizationsEPCallbacks)
 | |
|     C(LPM2, Level);
 | |
| 
 | |
|   LPM2.addPass(LoopDeletionPass());
 | |
| 
 | |
|   if (EnableLoopInterchange)
 | |
|     LPM2.addPass(LoopInterchangePass());
 | |
| 
 | |
|   // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
 | |
|   // because it changes IR to makes profile annotation in back compile
 | |
|   // inaccurate. The normal unroller doesn't pay attention to forced full unroll
 | |
|   // attributes so we need to make sure and allow the full unroll pass to pay
 | |
|   // attention to it.
 | |
|   if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
 | |
|       PGOOpt->Action != PGOOptions::SampleUse)
 | |
|     LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
 | |
|                                     /* OnlyWhenForced= */ !PTO.LoopUnrolling,
 | |
|                                     PTO.ForgetAllSCEVInLoopUnroll));
 | |
| 
 | |
|   for (auto &C : LoopOptimizerEndEPCallbacks)
 | |
|     C(LPM2, Level);
 | |
| 
 | |
|   // We provide the opt remark emitter pass for LICM to use. We only need to do
 | |
|   // this once as it is immutable.
 | |
|   FPM.addPass(
 | |
|       RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
 | |
|                                               /*UseMemorySSA=*/true,
 | |
|                                               /*UseBlockFrequencyInfo=*/true));
 | |
|   FPM.addPass(
 | |
|       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
 | |
|   FPM.addPass(InstCombinePass());
 | |
|   // The loop passes in LPM2 (LoopFullUnrollPass) do not preserve MemorySSA.
 | |
|   // *All* loop passes must preserve it, in order to be able to use it.
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
 | |
|                                               /*UseMemorySSA=*/false,
 | |
|                                               /*UseBlockFrequencyInfo=*/false));
 | |
| 
 | |
|   // Delete small array after loop unroll.
 | |
|   FPM.addPass(SROAPass());
 | |
| 
 | |
|   // Specially optimize memory movement as it doesn't look like dataflow in SSA.
 | |
|   FPM.addPass(MemCpyOptPass());
 | |
| 
 | |
|   // Sparse conditional constant propagation.
 | |
|   // FIXME: It isn't clear why we do this *after* loop passes rather than
 | |
|   // before...
 | |
|   FPM.addPass(SCCPPass());
 | |
| 
 | |
|   // Delete dead bit computations (instcombine runs after to fold away the dead
 | |
|   // computations, and then ADCE will run later to exploit any new DCE
 | |
|   // opportunities that creates).
 | |
|   FPM.addPass(BDCEPass());
 | |
| 
 | |
|   // Run instcombine after redundancy and dead bit elimination to exploit
 | |
|   // opportunities opened up by them.
 | |
|   FPM.addPass(InstCombinePass());
 | |
|   invokePeepholeEPCallbacks(FPM, Level);
 | |
| 
 | |
|   FPM.addPass(CoroElidePass());
 | |
| 
 | |
|   for (auto &C : ScalarOptimizerLateEPCallbacks)
 | |
|     C(FPM, Level);
 | |
| 
 | |
|   // Finally, do an expensive DCE pass to catch all the dead code exposed by
 | |
|   // the simplifications and basic cleanup after all the simplifications.
 | |
|   // TODO: Investigate if this is too expensive.
 | |
|   FPM.addPass(ADCEPass());
 | |
|   FPM.addPass(
 | |
|       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
 | |
|   FPM.addPass(InstCombinePass());
 | |
|   invokePeepholeEPCallbacks(FPM, Level);
 | |
| 
 | |
|   return FPM;
 | |
| }
 | |
| 
 | |
| FunctionPassManager
 | |
| PassBuilder::buildFunctionSimplificationPipeline(OptimizationLevel Level,
 | |
|                                                  ThinOrFullLTOPhase Phase) {
 | |
|   assert(Level != OptimizationLevel::O0 && "Must request optimizations!");
 | |
| 
 | |
|   // The O1 pipeline has a separate pipeline creation function to simplify
 | |
|   // construction readability.
 | |
|   if (Level.getSpeedupLevel() == 1)
 | |
|     return buildO1FunctionSimplificationPipeline(Level, Phase);
 | |
| 
 | |
|   FunctionPassManager FPM;
 | |
| 
 | |
|   // Form SSA out of local memory accesses after breaking apart aggregates into
 | |
|   // scalars.
 | |
|   FPM.addPass(SROAPass());
 | |
| 
 | |
|   // Catch trivial redundancies
 | |
|   FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
 | |
|   if (EnableKnowledgeRetention)
 | |
|     FPM.addPass(AssumeSimplifyPass());
 | |
| 
 | |
|   // Hoisting of scalars and load expressions.
 | |
|   if (EnableGVNHoist)
 | |
|     FPM.addPass(GVNHoistPass());
 | |
| 
 | |
|   // Global value numbering based sinking.
 | |
|   if (EnableGVNSink) {
 | |
|     FPM.addPass(GVNSinkPass());
 | |
|     FPM.addPass(
 | |
|         SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
 | |
|   }
 | |
| 
 | |
|   if (EnableConstraintElimination)
 | |
|     FPM.addPass(ConstraintEliminationPass());
 | |
| 
 | |
|   // Speculative execution if the target has divergent branches; otherwise nop.
 | |
|   FPM.addPass(SpeculativeExecutionPass(/* OnlyIfDivergentTarget =*/true));
 | |
| 
 | |
|   // Optimize based on known information about branches, and cleanup afterward.
 | |
|   FPM.addPass(JumpThreadingPass());
 | |
|   FPM.addPass(CorrelatedValuePropagationPass());
 | |
| 
 | |
|   FPM.addPass(
 | |
|       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
 | |
|   FPM.addPass(InstCombinePass());
 | |
|   if (Level == OptimizationLevel::O3)
 | |
|     FPM.addPass(AggressiveInstCombinePass());
 | |
| 
 | |
|   if (!Level.isOptimizingForSize())
 | |
|     FPM.addPass(LibCallsShrinkWrapPass());
 | |
| 
 | |
|   invokePeepholeEPCallbacks(FPM, Level);
 | |
| 
 | |
|   // For PGO use pipeline, try to optimize memory intrinsics such as memcpy
 | |
|   // using the size value profile. Don't perform this when optimizing for size.
 | |
|   if (PGOOpt && PGOOpt->Action == PGOOptions::IRUse &&
 | |
|       !Level.isOptimizingForSize())
 | |
|     FPM.addPass(PGOMemOPSizeOpt());
 | |
| 
 | |
|   FPM.addPass(TailCallElimPass());
 | |
|   FPM.addPass(
 | |
|       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
 | |
| 
 | |
|   // Form canonically associated expression trees, and simplify the trees using
 | |
|   // basic mathematical properties. For example, this will form (nearly)
 | |
|   // minimal multiplication trees.
 | |
|   FPM.addPass(ReassociatePass());
 | |
| 
 | |
|   // Add the primary loop simplification pipeline.
 | |
|   // FIXME: Currently this is split into two loop pass pipelines because we run
 | |
|   // some function passes in between them. These can and should be removed
 | |
|   // and/or replaced by scheduling the loop pass equivalents in the correct
 | |
|   // positions. But those equivalent passes aren't powerful enough yet.
 | |
|   // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
 | |
|   // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
 | |
|   // fully replace `SimplifyCFGPass`, and the closest to the other we have is
 | |
|   // `LoopInstSimplify`.
 | |
|   LoopPassManager LPM1, LPM2;
 | |
| 
 | |
|   // Simplify the loop body. We do this initially to clean up after other loop
 | |
|   // passes run, either when iterating on a loop or on inner loops with
 | |
|   // implications on the outer loop.
 | |
|   LPM1.addPass(LoopInstSimplifyPass());
 | |
|   LPM1.addPass(LoopSimplifyCFGPass());
 | |
| 
 | |
|   // Try to remove as much code from the loop header as possible,
 | |
|   // to reduce amount of IR that will have to be duplicated. However,
 | |
|   // do not perform speculative hoisting the first time as LICM
 | |
|   // will destroy metadata that may not need to be destroyed if run
 | |
|   // after loop rotation.
 | |
|   // TODO: Investigate promotion cap for O1.
 | |
|   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
 | |
|                         /*AllowSpeculation=*/false));
 | |
| 
 | |
|   // Disable header duplication in loop rotation at -Oz.
 | |
|   LPM1.addPass(
 | |
|       LoopRotatePass(Level != OptimizationLevel::Oz, isLTOPreLink(Phase)));
 | |
|   // TODO: Investigate promotion cap for O1.
 | |
|   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
 | |
|                         /*AllowSpeculation=*/true));
 | |
|   LPM1.addPass(
 | |
|       SimpleLoopUnswitchPass(/* NonTrivial */ Level == OptimizationLevel::O3 &&
 | |
|                              EnableO3NonTrivialUnswitching));
 | |
|   if (EnableLoopFlatten)
 | |
|     LPM1.addPass(LoopFlattenPass());
 | |
| 
 | |
|   LPM2.addPass(LoopIdiomRecognizePass());
 | |
|   LPM2.addPass(IndVarSimplifyPass());
 | |
| 
 | |
|   for (auto &C : LateLoopOptimizationsEPCallbacks)
 | |
|     C(LPM2, Level);
 | |
| 
 | |
|   LPM2.addPass(LoopDeletionPass());
 | |
| 
 | |
|   if (EnableLoopInterchange)
 | |
|     LPM2.addPass(LoopInterchangePass());
 | |
| 
 | |
|   // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
 | |
|   // because it changes IR to makes profile annotation in back compile
 | |
|   // inaccurate. The normal unroller doesn't pay attention to forced full unroll
 | |
|   // attributes so we need to make sure and allow the full unroll pass to pay
 | |
|   // attention to it.
 | |
|   if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
 | |
|       PGOOpt->Action != PGOOptions::SampleUse)
 | |
|     LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
 | |
|                                     /* OnlyWhenForced= */ !PTO.LoopUnrolling,
 | |
|                                     PTO.ForgetAllSCEVInLoopUnroll));
 | |
| 
 | |
|   for (auto &C : LoopOptimizerEndEPCallbacks)
 | |
|     C(LPM2, Level);
 | |
| 
 | |
|   // We provide the opt remark emitter pass for LICM to use. We only need to do
 | |
|   // this once as it is immutable.
 | |
|   FPM.addPass(
 | |
|       RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
 | |
|                                               /*UseMemorySSA=*/true,
 | |
|                                               /*UseBlockFrequencyInfo=*/true));
 | |
|   FPM.addPass(
 | |
|       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
 | |
|   FPM.addPass(InstCombinePass());
 | |
|   // The loop passes in LPM2 (LoopIdiomRecognizePass, IndVarSimplifyPass,
 | |
|   // LoopDeletionPass and LoopFullUnrollPass) do not preserve MemorySSA.
 | |
|   // *All* loop passes must preserve it, in order to be able to use it.
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
 | |
|                                               /*UseMemorySSA=*/false,
 | |
|                                               /*UseBlockFrequencyInfo=*/false));
 | |
| 
 | |
|   // Delete small array after loop unroll.
 | |
|   FPM.addPass(SROAPass());
 | |
| 
 | |
|   // The matrix extension can introduce large vector operations early, which can
 | |
|   // benefit from running vector-combine early on.
 | |
|   if (EnableMatrix)
 | |
|     FPM.addPass(VectorCombinePass(/*ScalarizationOnly=*/true));
 | |
| 
 | |
|   // Eliminate redundancies.
 | |
|   FPM.addPass(MergedLoadStoreMotionPass());
 | |
|   if (RunNewGVN)
 | |
|     FPM.addPass(NewGVNPass());
 | |
|   else
 | |
|     FPM.addPass(GVNPass());
 | |
| 
 | |
|   // Sparse conditional constant propagation.
 | |
|   // FIXME: It isn't clear why we do this *after* loop passes rather than
 | |
|   // before...
 | |
|   FPM.addPass(SCCPPass());
 | |
| 
 | |
|   // Delete dead bit computations (instcombine runs after to fold away the dead
 | |
|   // computations, and then ADCE will run later to exploit any new DCE
 | |
|   // opportunities that creates).
 | |
|   FPM.addPass(BDCEPass());
 | |
| 
 | |
|   // Run instcombine after redundancy and dead bit elimination to exploit
 | |
|   // opportunities opened up by them.
 | |
|   FPM.addPass(InstCombinePass());
 | |
|   invokePeepholeEPCallbacks(FPM, Level);
 | |
| 
 | |
|   // Re-consider control flow based optimizations after redundancy elimination,
 | |
|   // redo DCE, etc.
 | |
|   if (EnableDFAJumpThreading && Level.getSizeLevel() == 0)
 | |
|     FPM.addPass(DFAJumpThreadingPass());
 | |
| 
 | |
|   FPM.addPass(JumpThreadingPass());
 | |
|   FPM.addPass(CorrelatedValuePropagationPass());
 | |
| 
 | |
|   // Finally, do an expensive DCE pass to catch all the dead code exposed by
 | |
|   // the simplifications and basic cleanup after all the simplifications.
 | |
|   // TODO: Investigate if this is too expensive.
 | |
|   FPM.addPass(ADCEPass());
 | |
| 
 | |
|   // Specially optimize memory movement as it doesn't look like dataflow in SSA.
 | |
|   FPM.addPass(MemCpyOptPass());
 | |
| 
 | |
|   FPM.addPass(DSEPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
 | |
|                /*AllowSpeculation=*/true),
 | |
|       /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/true));
 | |
| 
 | |
|   FPM.addPass(CoroElidePass());
 | |
| 
 | |
|   for (auto &C : ScalarOptimizerLateEPCallbacks)
 | |
|     C(FPM, Level);
 | |
| 
 | |
|   FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
 | |
|                                   .convertSwitchRangeToICmp(true)
 | |
|                                   .hoistCommonInsts(true)
 | |
|                                   .sinkCommonInsts(true)));
 | |
|   FPM.addPass(InstCombinePass());
 | |
|   invokePeepholeEPCallbacks(FPM, Level);
 | |
| 
 | |
|   if (EnableCHR && Level == OptimizationLevel::O3 && PGOOpt &&
 | |
|       (PGOOpt->Action == PGOOptions::IRUse ||
 | |
|        PGOOpt->Action == PGOOptions::SampleUse))
 | |
|     FPM.addPass(ControlHeightReductionPass());
 | |
| 
 | |
|   return FPM;
 | |
| }
 | |
| 
 | |
| void PassBuilder::addRequiredLTOPreLinkPasses(ModulePassManager &MPM) {
 | |
|   MPM.addPass(CanonicalizeAliasesPass());
 | |
|   MPM.addPass(NameAnonGlobalPass());
 | |
| }
 | |
| 
 | |
| void PassBuilder::addPGOInstrPasses(ModulePassManager &MPM,
 | |
|                                     OptimizationLevel Level, bool RunProfileGen,
 | |
|                                     bool IsCS, std::string ProfileFile,
 | |
|                                     std::string ProfileRemappingFile) {
 | |
|   assert(Level != OptimizationLevel::O0 && "Not expecting O0 here!");
 | |
|   if (!IsCS && !DisablePreInliner) {
 | |
|     InlineParams IP;
 | |
| 
 | |
|     IP.DefaultThreshold = PreInlineThreshold;
 | |
| 
 | |
|     // FIXME: The hint threshold has the same value used by the regular inliner
 | |
|     // when not optimzing for size. This should probably be lowered after
 | |
|     // performance testing.
 | |
|     // FIXME: this comment is cargo culted from the old pass manager, revisit).
 | |
|     IP.HintThreshold = Level.isOptimizingForSize() ? PreInlineThreshold : 325;
 | |
|     ModuleInlinerWrapperPass MIWP(IP);
 | |
|     CGSCCPassManager &CGPipeline = MIWP.getPM();
 | |
| 
 | |
|     FunctionPassManager FPM;
 | |
|     FPM.addPass(SROAPass());
 | |
|     FPM.addPass(EarlyCSEPass());    // Catch trivial redundancies.
 | |
|     FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
 | |
|         true)));                    // Merge & remove basic blocks.
 | |
|     FPM.addPass(InstCombinePass()); // Combine silly sequences.
 | |
|     invokePeepholeEPCallbacks(FPM, Level);
 | |
| 
 | |
|     CGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
 | |
|         std::move(FPM), PTO.EagerlyInvalidateAnalyses));
 | |
| 
 | |
|     MPM.addPass(std::move(MIWP));
 | |
| 
 | |
|     // Delete anything that is now dead to make sure that we don't instrument
 | |
|     // dead code. Instrumentation can end up keeping dead code around and
 | |
|     // dramatically increase code size.
 | |
|     MPM.addPass(GlobalDCEPass());
 | |
|   }
 | |
| 
 | |
|   if (!RunProfileGen) {
 | |
|     assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
 | |
|     MPM.addPass(PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS));
 | |
|     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
 | |
|     // RequireAnalysisPass for PSI before subsequent non-module passes.
 | |
|     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Perform PGO instrumentation.
 | |
|   MPM.addPass(PGOInstrumentationGen(IsCS));
 | |
| 
 | |
|   // Disable header duplication in loop rotation at -Oz.
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(
 | |
|       createFunctionToLoopPassAdaptor(
 | |
|           LoopRotatePass(Level != OptimizationLevel::Oz),
 | |
|           /*UseMemorySSA=*/false,
 | |
|           /*UseBlockFrequencyInfo=*/false),
 | |
|       PTO.EagerlyInvalidateAnalyses));
 | |
| 
 | |
|   // Add the profile lowering pass.
 | |
|   InstrProfOptions Options;
 | |
|   if (!ProfileFile.empty())
 | |
|     Options.InstrProfileOutput = ProfileFile;
 | |
|   // Do counter promotion at Level greater than O0.
 | |
|   Options.DoCounterPromotion = true;
 | |
|   Options.UseBFIInPromotion = IsCS;
 | |
|   MPM.addPass(InstrProfiling(Options, IsCS));
 | |
| }
 | |
| 
 | |
| void PassBuilder::addPGOInstrPassesForO0(ModulePassManager &MPM,
 | |
|                                          bool RunProfileGen, bool IsCS,
 | |
|                                          std::string ProfileFile,
 | |
|                                          std::string ProfileRemappingFile) {
 | |
|   if (!RunProfileGen) {
 | |
|     assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
 | |
|     MPM.addPass(PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS));
 | |
|     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
 | |
|     // RequireAnalysisPass for PSI before subsequent non-module passes.
 | |
|     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Perform PGO instrumentation.
 | |
|   MPM.addPass(PGOInstrumentationGen(IsCS));
 | |
|   // Add the profile lowering pass.
 | |
|   InstrProfOptions Options;
 | |
|   if (!ProfileFile.empty())
 | |
|     Options.InstrProfileOutput = ProfileFile;
 | |
|   // Do not do counter promotion at O0.
 | |
|   Options.DoCounterPromotion = false;
 | |
|   Options.UseBFIInPromotion = IsCS;
 | |
|   MPM.addPass(InstrProfiling(Options, IsCS));
 | |
| }
 | |
| 
 | |
| static InlineParams getInlineParamsFromOptLevel(OptimizationLevel Level) {
 | |
|   return getInlineParams(Level.getSpeedupLevel(), Level.getSizeLevel());
 | |
| }
 | |
| 
 | |
| ModuleInlinerWrapperPass
 | |
| PassBuilder::buildInlinerPipeline(OptimizationLevel Level,
 | |
|                                   ThinOrFullLTOPhase Phase) {
 | |
|   InlineParams IP = getInlineParamsFromOptLevel(Level);
 | |
|   // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
 | |
|   // disable hot callsite inline (as much as possible [1]) because it makes
 | |
|   // profile annotation in the backend inaccurate.
 | |
|   //
 | |
|   // [1] Note the cost of a function could be below zero due to erased
 | |
|   // prologue / epilogue.
 | |
|   if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
 | |
|       PGOOpt->Action == PGOOptions::SampleUse)
 | |
|     IP.HotCallSiteThreshold = 0;
 | |
| 
 | |
|   if (PGOOpt)
 | |
|     IP.EnableDeferral = EnablePGOInlineDeferral;
 | |
| 
 | |
|   ModuleInlinerWrapperPass MIWP(IP, PerformMandatoryInliningsFirst,
 | |
|                                 UseInlineAdvisor, MaxDevirtIterations);
 | |
| 
 | |
|   // Require the GlobalsAA analysis for the module so we can query it within
 | |
|   // the CGSCC pipeline.
 | |
|   MIWP.addModulePass(RequireAnalysisPass<GlobalsAA, Module>());
 | |
|   // Invalidate AAManager so it can be recreated and pick up the newly available
 | |
|   // GlobalsAA.
 | |
|   MIWP.addModulePass(
 | |
|       createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));
 | |
| 
 | |
|   // Require the ProfileSummaryAnalysis for the module so we can query it within
 | |
|   // the inliner pass.
 | |
|   MIWP.addModulePass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
 | |
| 
 | |
|   // Now begin the main postorder CGSCC pipeline.
 | |
|   // FIXME: The current CGSCC pipeline has its origins in the legacy pass
 | |
|   // manager and trying to emulate its precise behavior. Much of this doesn't
 | |
|   // make a lot of sense and we should revisit the core CGSCC structure.
 | |
|   CGSCCPassManager &MainCGPipeline = MIWP.getPM();
 | |
| 
 | |
|   // Note: historically, the PruneEH pass was run first to deduce nounwind and
 | |
|   // generally clean up exception handling overhead. It isn't clear this is
 | |
|   // valuable as the inliner doesn't currently care whether it is inlining an
 | |
|   // invoke or a call.
 | |
| 
 | |
|   if (AttributorRun & AttributorRunOption::CGSCC)
 | |
|     MainCGPipeline.addPass(AttributorCGSCCPass());
 | |
| 
 | |
|   // Now deduce any function attributes based in the current code.
 | |
|   MainCGPipeline.addPass(PostOrderFunctionAttrsPass());
 | |
| 
 | |
|   // When at O3 add argument promotion to the pass pipeline.
 | |
|   // FIXME: It isn't at all clear why this should be limited to O3.
 | |
|   if (Level == OptimizationLevel::O3)
 | |
|     MainCGPipeline.addPass(ArgumentPromotionPass());
 | |
| 
 | |
|   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
 | |
|   // there are no OpenMP runtime calls present in the module.
 | |
|   if (Level == OptimizationLevel::O2 || Level == OptimizationLevel::O3)
 | |
|     MainCGPipeline.addPass(OpenMPOptCGSCCPass());
 | |
| 
 | |
|   for (auto &C : CGSCCOptimizerLateEPCallbacks)
 | |
|     C(MainCGPipeline, Level);
 | |
| 
 | |
|   // Lastly, add the core function simplification pipeline nested inside the
 | |
|   // CGSCC walk.
 | |
|   MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
 | |
|       buildFunctionSimplificationPipeline(Level, Phase),
 | |
|       PTO.EagerlyInvalidateAnalyses, EnableNoRerunSimplificationPipeline));
 | |
| 
 | |
|   MainCGPipeline.addPass(CoroSplitPass(Level != OptimizationLevel::O0));
 | |
| 
 | |
|   if (EnableNoRerunSimplificationPipeline)
 | |
|     MIWP.addLateModulePass(createModuleToFunctionPassAdaptor(
 | |
|         InvalidateAnalysisPass<ShouldNotRunFunctionPassesAnalysis>()));
 | |
| 
 | |
|   return MIWP;
 | |
| }
 | |
| 
 | |
| ModulePassManager
 | |
| PassBuilder::buildModuleInlinerPipeline(OptimizationLevel Level,
 | |
|                                         ThinOrFullLTOPhase Phase) {
 | |
|   ModulePassManager MPM;
 | |
| 
 | |
|   InlineParams IP = getInlineParamsFromOptLevel(Level);
 | |
|   // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
 | |
|   // disable hot callsite inline (as much as possible [1]) because it makes
 | |
|   // profile annotation in the backend inaccurate.
 | |
|   //
 | |
|   // [1] Note the cost of a function could be below zero due to erased
 | |
|   // prologue / epilogue.
 | |
|   if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
 | |
|       PGOOpt->Action == PGOOptions::SampleUse)
 | |
|     IP.HotCallSiteThreshold = 0;
 | |
| 
 | |
|   if (PGOOpt)
 | |
|     IP.EnableDeferral = EnablePGOInlineDeferral;
 | |
| 
 | |
|   // The inline deferral logic is used to avoid losing some
 | |
|   // inlining chance in future. It is helpful in SCC inliner, in which
 | |
|   // inlining is processed in bottom-up order.
 | |
|   // While in module inliner, the inlining order is a priority-based order
 | |
|   // by default. The inline deferral is unnecessary there. So we disable the
 | |
|   // inline deferral logic in module inliner.
 | |
|   IP.EnableDeferral = false;
 | |
| 
 | |
|   MPM.addPass(ModuleInlinerPass(IP, UseInlineAdvisor));
 | |
| 
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(
 | |
|       buildFunctionSimplificationPipeline(Level, Phase),
 | |
|       PTO.EagerlyInvalidateAnalyses));
 | |
| 
 | |
|   MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
 | |
|       CoroSplitPass(Level != OptimizationLevel::O0)));
 | |
| 
 | |
|   return MPM;
 | |
| }
 | |
| 
 | |
| ModulePassManager
 | |
| PassBuilder::buildModuleSimplificationPipeline(OptimizationLevel Level,
 | |
|                                                ThinOrFullLTOPhase Phase) {
 | |
|   ModulePassManager MPM;
 | |
| 
 | |
|   // Place pseudo probe instrumentation as the first pass of the pipeline to
 | |
|   // minimize the impact of optimization changes.
 | |
|   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
 | |
|       Phase != ThinOrFullLTOPhase::ThinLTOPostLink)
 | |
|     MPM.addPass(SampleProfileProbePass(TM));
 | |
| 
 | |
|   bool HasSampleProfile = PGOOpt && (PGOOpt->Action == PGOOptions::SampleUse);
 | |
| 
 | |
|   // In ThinLTO mode, when flattened profile is used, all the available
 | |
|   // profile information will be annotated in PreLink phase so there is
 | |
|   // no need to load the profile again in PostLink.
 | |
|   bool LoadSampleProfile =
 | |
|       HasSampleProfile &&
 | |
|       !(FlattenedProfileUsed && Phase == ThinOrFullLTOPhase::ThinLTOPostLink);
 | |
| 
 | |
|   // During the ThinLTO backend phase we perform early indirect call promotion
 | |
|   // here, before globalopt. Otherwise imported available_externally functions
 | |
|   // look unreferenced and are removed. If we are going to load the sample
 | |
|   // profile then defer until later.
 | |
|   // TODO: See if we can move later and consolidate with the location where
 | |
|   // we perform ICP when we are loading a sample profile.
 | |
|   // TODO: We pass HasSampleProfile (whether there was a sample profile file
 | |
|   // passed to the compile) to the SamplePGO flag of ICP. This is used to
 | |
|   // determine whether the new direct calls are annotated with prof metadata.
 | |
|   // Ideally this should be determined from whether the IR is annotated with
 | |
|   // sample profile, and not whether the a sample profile was provided on the
 | |
|   // command line. E.g. for flattened profiles where we will not be reloading
 | |
|   // the sample profile in the ThinLTO backend, we ideally shouldn't have to
 | |
|   // provide the sample profile file.
 | |
|   if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink && !LoadSampleProfile)
 | |
|     MPM.addPass(PGOIndirectCallPromotion(true /* InLTO */, HasSampleProfile));
 | |
| 
 | |
|   // Do basic inference of function attributes from known properties of system
 | |
|   // libraries and other oracles.
 | |
|   MPM.addPass(InferFunctionAttrsPass());
 | |
|   MPM.addPass(CoroEarlyPass());
 | |
| 
 | |
|   // Create an early function pass manager to cleanup the output of the
 | |
|   // frontend.
 | |
|   FunctionPassManager EarlyFPM;
 | |
|   // Lower llvm.expect to metadata before attempting transforms.
 | |
|   // Compare/branch metadata may alter the behavior of passes like SimplifyCFG.
 | |
|   EarlyFPM.addPass(LowerExpectIntrinsicPass());
 | |
|   EarlyFPM.addPass(SimplifyCFGPass());
 | |
|   EarlyFPM.addPass(SROAPass());
 | |
|   EarlyFPM.addPass(EarlyCSEPass());
 | |
|   if (Level == OptimizationLevel::O3)
 | |
|     EarlyFPM.addPass(CallSiteSplittingPass());
 | |
| 
 | |
|   // In SamplePGO ThinLTO backend, we need instcombine before profile annotation
 | |
|   // to convert bitcast to direct calls so that they can be inlined during the
 | |
|   // profile annotation prepration step.
 | |
|   // More details about SamplePGO design can be found in:
 | |
|   // https://research.google.com/pubs/pub45290.html
 | |
|   // FIXME: revisit how SampleProfileLoad/Inliner/ICP is structured.
 | |
|   if (LoadSampleProfile)
 | |
|     EarlyFPM.addPass(InstCombinePass());
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(EarlyFPM),
 | |
|                                                 PTO.EagerlyInvalidateAnalyses));
 | |
| 
 | |
|   if (LoadSampleProfile) {
 | |
|     // Annotate sample profile right after early FPM to ensure freshness of
 | |
|     // the debug info.
 | |
|     MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
 | |
|                                         PGOOpt->ProfileRemappingFile, Phase));
 | |
|     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
 | |
|     // RequireAnalysisPass for PSI before subsequent non-module passes.
 | |
|     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
 | |
|     // Do not invoke ICP in the LTOPrelink phase as it makes it hard
 | |
|     // for the profile annotation to be accurate in the LTO backend.
 | |
|     if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink &&
 | |
|         Phase != ThinOrFullLTOPhase::FullLTOPreLink)
 | |
|       // We perform early indirect call promotion here, before globalopt.
 | |
|       // This is important for the ThinLTO backend phase because otherwise
 | |
|       // imported available_externally functions look unreferenced and are
 | |
|       // removed.
 | |
|       MPM.addPass(
 | |
|           PGOIndirectCallPromotion(true /* IsInLTO */, true /* SamplePGO */));
 | |
|   }
 | |
| 
 | |
|   // Try to perform OpenMP specific optimizations on the module. This is a
 | |
|   // (quick!) no-op if there are no OpenMP runtime calls present in the module.
 | |
|   if (Level != OptimizationLevel::O0)
 | |
|     MPM.addPass(OpenMPOptPass());
 | |
| 
 | |
|   if (AttributorRun & AttributorRunOption::MODULE)
 | |
|     MPM.addPass(AttributorPass());
 | |
| 
 | |
|   // Lower type metadata and the type.test intrinsic in the ThinLTO
 | |
|   // post link pipeline after ICP. This is to enable usage of the type
 | |
|   // tests in ICP sequences.
 | |
|   if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink)
 | |
|     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
 | |
| 
 | |
|   for (auto &C : PipelineEarlySimplificationEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   // Specialize functions with IPSCCP.
 | |
|   if (EnableFunctionSpecialization && Level == OptimizationLevel::O3)
 | |
|     MPM.addPass(FunctionSpecializationPass());
 | |
| 
 | |
|   // Interprocedural constant propagation now that basic cleanup has occurred
 | |
|   // and prior to optimizing globals.
 | |
|   // FIXME: This position in the pipeline hasn't been carefully considered in
 | |
|   // years, it should be re-analyzed.
 | |
|   MPM.addPass(IPSCCPPass());
 | |
| 
 | |
|   // Attach metadata to indirect call sites indicating the set of functions
 | |
|   // they may target at run-time. This should follow IPSCCP.
 | |
|   MPM.addPass(CalledValuePropagationPass());
 | |
| 
 | |
|   // Optimize globals to try and fold them into constants.
 | |
|   MPM.addPass(GlobalOptPass());
 | |
| 
 | |
|   // Promote any localized globals to SSA registers.
 | |
|   // FIXME: Should this instead by a run of SROA?
 | |
|   // FIXME: We should probably run instcombine and simplifycfg afterward to
 | |
|   // delete control flows that are dead once globals have been folded to
 | |
|   // constants.
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));
 | |
| 
 | |
|   // Remove any dead arguments exposed by cleanups and constant folding
 | |
|   // globals.
 | |
|   MPM.addPass(DeadArgumentEliminationPass());
 | |
| 
 | |
|   // Create a small function pass pipeline to cleanup after all the global
 | |
|   // optimizations.
 | |
|   FunctionPassManager GlobalCleanupPM;
 | |
|   GlobalCleanupPM.addPass(InstCombinePass());
 | |
|   invokePeepholeEPCallbacks(GlobalCleanupPM, Level);
 | |
| 
 | |
|   GlobalCleanupPM.addPass(
 | |
|       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(GlobalCleanupPM),
 | |
|                                                 PTO.EagerlyInvalidateAnalyses));
 | |
| 
 | |
|   // Add all the requested passes for instrumentation PGO, if requested.
 | |
|   if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
 | |
|       (PGOOpt->Action == PGOOptions::IRInstr ||
 | |
|        PGOOpt->Action == PGOOptions::IRUse)) {
 | |
|     addPGOInstrPasses(MPM, Level,
 | |
|                       /* RunProfileGen */ PGOOpt->Action == PGOOptions::IRInstr,
 | |
|                       /* IsCS */ false, PGOOpt->ProfileFile,
 | |
|                       PGOOpt->ProfileRemappingFile);
 | |
|     MPM.addPass(PGOIndirectCallPromotion(false, false));
 | |
|   }
 | |
|   if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
 | |
|       PGOOpt->CSAction == PGOOptions::CSIRInstr)
 | |
|     MPM.addPass(PGOInstrumentationGenCreateVar(PGOOpt->CSProfileGenFile));
 | |
| 
 | |
|   // Synthesize function entry counts for non-PGO compilation.
 | |
|   if (EnableSyntheticCounts && !PGOOpt)
 | |
|     MPM.addPass(SyntheticCountsPropagation());
 | |
| 
 | |
|   if (EnableModuleInliner)
 | |
|     MPM.addPass(buildModuleInlinerPipeline(Level, Phase));
 | |
|   else
 | |
|     MPM.addPass(buildInlinerPipeline(Level, Phase));
 | |
| 
 | |
|   MPM.addPass(CoroCleanupPass());
 | |
| 
 | |
|   if (EnableMemProfiler && Phase != ThinOrFullLTOPhase::ThinLTOPreLink) {
 | |
|     MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
 | |
|     MPM.addPass(ModuleMemProfilerPass());
 | |
|   }
 | |
| 
 | |
|   return MPM;
 | |
| }
 | |
| 
 | |
| /// TODO: Should LTO cause any differences to this set of passes?
 | |
| void PassBuilder::addVectorPasses(OptimizationLevel Level,
 | |
|                                   FunctionPassManager &FPM, bool IsFullLTO) {
 | |
|   FPM.addPass(LoopVectorizePass(
 | |
|       LoopVectorizeOptions(!PTO.LoopInterleaving, !PTO.LoopVectorization)));
 | |
| 
 | |
|   if (IsFullLTO) {
 | |
|     // The vectorizer may have significantly shortened a loop body; unroll
 | |
|     // again. Unroll small loops to hide loop backedge latency and saturate any
 | |
|     // parallel execution resources of an out-of-order processor. We also then
 | |
|     // need to clean up redundancies and loop invariant code.
 | |
|     // FIXME: It would be really good to use a loop-integrated instruction
 | |
|     // combiner for cleanup here so that the unrolling and LICM can be pipelined
 | |
|     // across the loop nests.
 | |
|     // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
 | |
|     if (EnableUnrollAndJam && PTO.LoopUnrolling)
 | |
|       FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|           LoopUnrollAndJamPass(Level.getSpeedupLevel())));
 | |
|     FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
 | |
|         Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
 | |
|         PTO.ForgetAllSCEVInLoopUnroll)));
 | |
|     FPM.addPass(WarnMissedTransformationsPass());
 | |
|   }
 | |
| 
 | |
|   if (!IsFullLTO) {
 | |
|     // Eliminate loads by forwarding stores from the previous iteration to loads
 | |
|     // of the current iteration.
 | |
|     FPM.addPass(LoopLoadEliminationPass());
 | |
|   }
 | |
|   // Cleanup after the loop optimization passes.
 | |
|   FPM.addPass(InstCombinePass());
 | |
| 
 | |
|   if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
 | |
|     ExtraVectorPassManager ExtraPasses;
 | |
|     // At higher optimization levels, try to clean up any runtime overlap and
 | |
|     // alignment checks inserted by the vectorizer. We want to track correlated
 | |
|     // runtime checks for two inner loops in the same outer loop, fold any
 | |
|     // common computations, hoist loop-invariant aspects out of any outer loop,
 | |
|     // and unswitch the runtime checks if possible. Once hoisted, we may have
 | |
|     // dead (or speculatable) control flows or more combining opportunities.
 | |
|     ExtraPasses.addPass(EarlyCSEPass());
 | |
|     ExtraPasses.addPass(CorrelatedValuePropagationPass());
 | |
|     ExtraPasses.addPass(InstCombinePass());
 | |
|     LoopPassManager LPM;
 | |
|     LPM.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
 | |
|                          /*AllowSpeculation=*/true));
 | |
|     LPM.addPass(SimpleLoopUnswitchPass(/* NonTrivial */ Level ==
 | |
|                                        OptimizationLevel::O3));
 | |
|     ExtraPasses.addPass(
 | |
|         RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
 | |
|     ExtraPasses.addPass(
 | |
|         createFunctionToLoopPassAdaptor(std::move(LPM), /*UseMemorySSA=*/true,
 | |
|                                         /*UseBlockFrequencyInfo=*/true));
 | |
|     ExtraPasses.addPass(
 | |
|         SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
 | |
|     ExtraPasses.addPass(InstCombinePass());
 | |
|     FPM.addPass(std::move(ExtraPasses));
 | |
|   }
 | |
| 
 | |
|   // Now that we've formed fast to execute loop structures, we do further
 | |
|   // optimizations. These are run afterward as they might block doing complex
 | |
|   // analyses and transforms such as what are needed for loop vectorization.
 | |
| 
 | |
|   // Cleanup after loop vectorization, etc. Simplification passes like CVP and
 | |
|   // GVN, loop transforms, and others have already run, so it's now better to
 | |
|   // convert to more optimized IR using more aggressive simplify CFG options.
 | |
|   // The extra sinking transform can create larger basic blocks, so do this
 | |
|   // before SLP vectorization.
 | |
|   FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
 | |
|                                   .forwardSwitchCondToPhi(true)
 | |
|                                   .convertSwitchRangeToICmp(true)
 | |
|                                   .convertSwitchToLookupTable(true)
 | |
|                                   .needCanonicalLoops(false)
 | |
|                                   .hoistCommonInsts(true)
 | |
|                                   .sinkCommonInsts(true)));
 | |
| 
 | |
|   if (IsFullLTO) {
 | |
|     FPM.addPass(SCCPPass());
 | |
|     FPM.addPass(InstCombinePass());
 | |
|     FPM.addPass(BDCEPass());
 | |
|   }
 | |
| 
 | |
|   // Optimize parallel scalar instruction chains into SIMD instructions.
 | |
|   if (PTO.SLPVectorization) {
 | |
|     FPM.addPass(SLPVectorizerPass());
 | |
|     if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
 | |
|       FPM.addPass(EarlyCSEPass());
 | |
|     }
 | |
|   }
 | |
|   // Enhance/cleanup vector code.
 | |
|   FPM.addPass(VectorCombinePass());
 | |
| 
 | |
|   if (!IsFullLTO) {
 | |
|     FPM.addPass(InstCombinePass());
 | |
|     // Unroll small loops to hide loop backedge latency and saturate any
 | |
|     // parallel execution resources of an out-of-order processor. We also then
 | |
|     // need to clean up redundancies and loop invariant code.
 | |
|     // FIXME: It would be really good to use a loop-integrated instruction
 | |
|     // combiner for cleanup here so that the unrolling and LICM can be pipelined
 | |
|     // across the loop nests.
 | |
|     // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
 | |
|     if (EnableUnrollAndJam && PTO.LoopUnrolling) {
 | |
|       FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|           LoopUnrollAndJamPass(Level.getSpeedupLevel())));
 | |
|     }
 | |
|     FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
 | |
|         Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
 | |
|         PTO.ForgetAllSCEVInLoopUnroll)));
 | |
|     FPM.addPass(WarnMissedTransformationsPass());
 | |
|     FPM.addPass(InstCombinePass());
 | |
|     FPM.addPass(
 | |
|         RequireAnalysisPass<OptimizationRemarkEmitterAnalysis, Function>());
 | |
|     FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|         LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
 | |
|                  /*AllowSpeculation=*/true),
 | |
|         /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/true));
 | |
|   }
 | |
| 
 | |
|   // Now that we've vectorized and unrolled loops, we may have more refined
 | |
|   // alignment information, try to re-derive it here.
 | |
|   FPM.addPass(AlignmentFromAssumptionsPass());
 | |
| 
 | |
|   if (IsFullLTO)
 | |
|     FPM.addPass(InstCombinePass());
 | |
| }
 | |
| 
 | |
| ModulePassManager
 | |
| PassBuilder::buildModuleOptimizationPipeline(OptimizationLevel Level,
 | |
|                                              bool LTOPreLink) {
 | |
|   ModulePassManager MPM;
 | |
| 
 | |
|   // Optimize globals now that the module is fully simplified.
 | |
|   MPM.addPass(GlobalOptPass());
 | |
|   MPM.addPass(GlobalDCEPass());
 | |
| 
 | |
|   // Run partial inlining pass to partially inline functions that have
 | |
|   // large bodies.
 | |
|   if (RunPartialInlining)
 | |
|     MPM.addPass(PartialInlinerPass());
 | |
| 
 | |
|   // Remove avail extern fns and globals definitions since we aren't compiling
 | |
|   // an object file for later LTO. For LTO we want to preserve these so they
 | |
|   // are eligible for inlining at link-time. Note if they are unreferenced they
 | |
|   // will be removed by GlobalDCE later, so this only impacts referenced
 | |
|   // available externally globals. Eventually they will be suppressed during
 | |
|   // codegen, but eliminating here enables more opportunity for GlobalDCE as it
 | |
|   // may make globals referenced by available external functions dead and saves
 | |
|   // running remaining passes on the eliminated functions. These should be
 | |
|   // preserved during prelinking for link-time inlining decisions.
 | |
|   if (!LTOPreLink)
 | |
|     MPM.addPass(EliminateAvailableExternallyPass());
 | |
| 
 | |
|   if (EnableOrderFileInstrumentation)
 | |
|     MPM.addPass(InstrOrderFilePass());
 | |
| 
 | |
|   // Do RPO function attribute inference across the module to forward-propagate
 | |
|   // attributes where applicable.
 | |
|   // FIXME: Is this really an optimization rather than a canonicalization?
 | |
|   MPM.addPass(ReversePostOrderFunctionAttrsPass());
 | |
| 
 | |
|   // Do a post inline PGO instrumentation and use pass. This is a context
 | |
|   // sensitive PGO pass. We don't want to do this in LTOPreLink phrase as
 | |
|   // cross-module inline has not been done yet. The context sensitive
 | |
|   // instrumentation is after all the inlines are done.
 | |
|   if (!LTOPreLink && PGOOpt) {
 | |
|     if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
 | |
|       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ true,
 | |
|                         /* IsCS */ true, PGOOpt->CSProfileGenFile,
 | |
|                         PGOOpt->ProfileRemappingFile);
 | |
|     else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
 | |
|       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ false,
 | |
|                         /* IsCS */ true, PGOOpt->ProfileFile,
 | |
|                         PGOOpt->ProfileRemappingFile);
 | |
|   }
 | |
| 
 | |
|   // Re-compute GlobalsAA here prior to function passes. This is particularly
 | |
|   // useful as the above will have inlined, DCE'ed, and function-attr
 | |
|   // propagated everything. We should at this point have a reasonably minimal
 | |
|   // and richly annotated call graph. By computing aliasing and mod/ref
 | |
|   // information for all local globals here, the late loop passes and notably
 | |
|   // the vectorizer will be able to use them to help recognize vectorizable
 | |
|   // memory operations.
 | |
|   MPM.addPass(RecomputeGlobalsAAPass());
 | |
| 
 | |
|   for (auto &C : OptimizerEarlyEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   FunctionPassManager OptimizePM;
 | |
|   OptimizePM.addPass(Float2IntPass());
 | |
|   OptimizePM.addPass(LowerConstantIntrinsicsPass());
 | |
| 
 | |
|   if (EnableMatrix) {
 | |
|     OptimizePM.addPass(LowerMatrixIntrinsicsPass());
 | |
|     OptimizePM.addPass(EarlyCSEPass());
 | |
|   }
 | |
| 
 | |
|   // FIXME: We need to run some loop optimizations to re-rotate loops after
 | |
|   // simplifycfg and others undo their rotation.
 | |
| 
 | |
|   // Optimize the loop execution. These passes operate on entire loop nests
 | |
|   // rather than on each loop in an inside-out manner, and so they are actually
 | |
|   // function passes.
 | |
| 
 | |
|   for (auto &C : VectorizerStartEPCallbacks)
 | |
|     C(OptimizePM, Level);
 | |
| 
 | |
|   LoopPassManager LPM;
 | |
|   // First rotate loops that may have been un-rotated by prior passes.
 | |
|   // Disable header duplication at -Oz.
 | |
|   LPM.addPass(LoopRotatePass(Level != OptimizationLevel::Oz, LTOPreLink));
 | |
|   // Some loops may have become dead by now. Try to delete them.
 | |
|   // FIXME: see discussion in https://reviews.llvm.org/D112851,
 | |
|   //        this may need to be revisited once we run GVN before loop deletion
 | |
|   //        in the simplification pipeline.
 | |
|   LPM.addPass(LoopDeletionPass());
 | |
|   OptimizePM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/false));
 | |
| 
 | |
|   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
 | |
|   // into separate loop that would otherwise inhibit vectorization.  This is
 | |
|   // currently only performed for loops marked with the metadata
 | |
|   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
 | |
|   OptimizePM.addPass(LoopDistributePass());
 | |
| 
 | |
|   // Populates the VFABI attribute with the scalar-to-vector mappings
 | |
|   // from the TargetLibraryInfo.
 | |
|   OptimizePM.addPass(InjectTLIMappings());
 | |
| 
 | |
|   addVectorPasses(Level, OptimizePM, /* IsFullLTO */ false);
 | |
| 
 | |
|   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
 | |
|   // canonicalization pass that enables other optimizations. As a result,
 | |
|   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
 | |
|   // result too early.
 | |
|   OptimizePM.addPass(LoopSinkPass());
 | |
| 
 | |
|   // And finally clean up LCSSA form before generating code.
 | |
|   OptimizePM.addPass(InstSimplifyPass());
 | |
| 
 | |
|   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
 | |
|   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
 | |
|   // flattening of blocks.
 | |
|   OptimizePM.addPass(DivRemPairsPass());
 | |
| 
 | |
|   // LoopSink (and other loop passes since the last simplifyCFG) might have
 | |
|   // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
 | |
|   OptimizePM.addPass(
 | |
|       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
 | |
| 
 | |
|   // Add the core optimizing pipeline.
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(OptimizePM),
 | |
|                                                 PTO.EagerlyInvalidateAnalyses));
 | |
| 
 | |
|   for (auto &C : OptimizerLastEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   // Split out cold code. Splitting is done late to avoid hiding context from
 | |
|   // other optimizations and inadvertently regressing performance. The tradeoff
 | |
|   // is that this has a higher code size cost than splitting early.
 | |
|   if (EnableHotColdSplit && !LTOPreLink)
 | |
|     MPM.addPass(HotColdSplittingPass());
 | |
| 
 | |
|   // Search the code for similar regions of code. If enough similar regions can
 | |
|   // be found where extracting the regions into their own function will decrease
 | |
|   // the size of the program, we extract the regions, a deduplicate the
 | |
|   // structurally similar regions.
 | |
|   if (EnableIROutliner)
 | |
|     MPM.addPass(IROutlinerPass());
 | |
| 
 | |
|   // Merge functions if requested.
 | |
|   if (PTO.MergeFunctions)
 | |
|     MPM.addPass(MergeFunctionsPass());
 | |
| 
 | |
|   if (PTO.CallGraphProfile)
 | |
|     MPM.addPass(CGProfilePass());
 | |
| 
 | |
|   // Now we need to do some global optimization transforms.
 | |
|   // FIXME: It would seem like these should come first in the optimization
 | |
|   // pipeline and maybe be the bottom of the canonicalization pipeline? Weird
 | |
|   // ordering here.
 | |
|   MPM.addPass(GlobalDCEPass());
 | |
|   MPM.addPass(ConstantMergePass());
 | |
| 
 | |
|   // TODO: Relative look table converter pass caused an issue when full lto is
 | |
|   // enabled. See https://reviews.llvm.org/D94355 for more details.
 | |
|   // Until the issue fixed, disable this pass during pre-linking phase.
 | |
|   if (!LTOPreLink)
 | |
|     MPM.addPass(RelLookupTableConverterPass());
 | |
| 
 | |
|   return MPM;
 | |
| }
 | |
| 
 | |
| ModulePassManager
 | |
| PassBuilder::buildPerModuleDefaultPipeline(OptimizationLevel Level,
 | |
|                                            bool LTOPreLink) {
 | |
|   assert(Level != OptimizationLevel::O0 &&
 | |
|          "Must request optimizations for the default pipeline!");
 | |
| 
 | |
|   ModulePassManager MPM;
 | |
| 
 | |
|   // Convert @llvm.global.annotations to !annotation metadata.
 | |
|   MPM.addPass(Annotation2MetadataPass());
 | |
| 
 | |
|   // Force any function attributes we want the rest of the pipeline to observe.
 | |
|   MPM.addPass(ForceFunctionAttrsPass());
 | |
| 
 | |
|   // Apply module pipeline start EP callback.
 | |
|   for (auto &C : PipelineStartEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
 | |
|     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
 | |
| 
 | |
|   // Add the core simplification pipeline.
 | |
|   MPM.addPass(buildModuleSimplificationPipeline(
 | |
|       Level, LTOPreLink ? ThinOrFullLTOPhase::FullLTOPreLink
 | |
|                         : ThinOrFullLTOPhase::None));
 | |
| 
 | |
|   // Now add the optimization pipeline.
 | |
|   MPM.addPass(buildModuleOptimizationPipeline(Level, LTOPreLink));
 | |
| 
 | |
|   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
 | |
|       PGOOpt->Action == PGOOptions::SampleUse)
 | |
|     MPM.addPass(PseudoProbeUpdatePass());
 | |
| 
 | |
|   // Emit annotation remarks.
 | |
|   addAnnotationRemarksPass(MPM);
 | |
| 
 | |
|   if (LTOPreLink)
 | |
|     addRequiredLTOPreLinkPasses(MPM);
 | |
| 
 | |
|   return MPM;
 | |
| }
 | |
| 
 | |
| ModulePassManager
 | |
| PassBuilder::buildThinLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
 | |
|   assert(Level != OptimizationLevel::O0 &&
 | |
|          "Must request optimizations for the default pipeline!");
 | |
| 
 | |
|   ModulePassManager MPM;
 | |
| 
 | |
|   // Convert @llvm.global.annotations to !annotation metadata.
 | |
|   MPM.addPass(Annotation2MetadataPass());
 | |
| 
 | |
|   // Force any function attributes we want the rest of the pipeline to observe.
 | |
|   MPM.addPass(ForceFunctionAttrsPass());
 | |
| 
 | |
|   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
 | |
|     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
 | |
| 
 | |
|   // Apply module pipeline start EP callback.
 | |
|   for (auto &C : PipelineStartEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   // If we are planning to perform ThinLTO later, we don't bloat the code with
 | |
|   // unrolling/vectorization/... now. Just simplify the module as much as we
 | |
|   // can.
 | |
|   MPM.addPass(buildModuleSimplificationPipeline(
 | |
|       Level, ThinOrFullLTOPhase::ThinLTOPreLink));
 | |
| 
 | |
|   // Run partial inlining pass to partially inline functions that have
 | |
|   // large bodies.
 | |
|   // FIXME: It isn't clear whether this is really the right place to run this
 | |
|   // in ThinLTO. Because there is another canonicalization and simplification
 | |
|   // phase that will run after the thin link, running this here ends up with
 | |
|   // less information than will be available later and it may grow functions in
 | |
|   // ways that aren't beneficial.
 | |
|   if (RunPartialInlining)
 | |
|     MPM.addPass(PartialInlinerPass());
 | |
| 
 | |
|   // Reduce the size of the IR as much as possible.
 | |
|   MPM.addPass(GlobalOptPass());
 | |
| 
 | |
|   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
 | |
|       PGOOpt->Action == PGOOptions::SampleUse)
 | |
|     MPM.addPass(PseudoProbeUpdatePass());
 | |
| 
 | |
|   // Handle OptimizerLastEPCallbacks added by clang on PreLink. Actual
 | |
|   // optimization is going to be done in PostLink stage, but clang can't
 | |
|   // add callbacks there in case of in-process ThinLTO called by linker.
 | |
|   for (auto &C : OptimizerLastEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   // Emit annotation remarks.
 | |
|   addAnnotationRemarksPass(MPM);
 | |
| 
 | |
|   addRequiredLTOPreLinkPasses(MPM);
 | |
| 
 | |
|   return MPM;
 | |
| }
 | |
| 
 | |
| ModulePassManager PassBuilder::buildThinLTODefaultPipeline(
 | |
|     OptimizationLevel Level, const ModuleSummaryIndex *ImportSummary) {
 | |
|   ModulePassManager MPM;
 | |
| 
 | |
|   // Convert @llvm.global.annotations to !annotation metadata.
 | |
|   MPM.addPass(Annotation2MetadataPass());
 | |
| 
 | |
|   if (ImportSummary) {
 | |
|     // These passes import type identifier resolutions for whole-program
 | |
|     // devirtualization and CFI. They must run early because other passes may
 | |
|     // disturb the specific instruction patterns that these passes look for,
 | |
|     // creating dependencies on resolutions that may not appear in the summary.
 | |
|     //
 | |
|     // For example, GVN may transform the pattern assume(type.test) appearing in
 | |
|     // two basic blocks into assume(phi(type.test, type.test)), which would
 | |
|     // transform a dependency on a WPD resolution into a dependency on a type
 | |
|     // identifier resolution for CFI.
 | |
|     //
 | |
|     // Also, WPD has access to more precise information than ICP and can
 | |
|     // devirtualize more effectively, so it should operate on the IR first.
 | |
|     //
 | |
|     // The WPD and LowerTypeTest passes need to run at -O0 to lower type
 | |
|     // metadata and intrinsics.
 | |
|     MPM.addPass(WholeProgramDevirtPass(nullptr, ImportSummary));
 | |
|     MPM.addPass(LowerTypeTestsPass(nullptr, ImportSummary));
 | |
|   }
 | |
| 
 | |
|   if (Level == OptimizationLevel::O0) {
 | |
|     // Run a second time to clean up any type tests left behind by WPD for use
 | |
|     // in ICP.
 | |
|     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
 | |
|     // Drop available_externally and unreferenced globals. This is necessary
 | |
|     // with ThinLTO in order to avoid leaving undefined references to dead
 | |
|     // globals in the object file.
 | |
|     MPM.addPass(EliminateAvailableExternallyPass());
 | |
|     MPM.addPass(GlobalDCEPass());
 | |
|     return MPM;
 | |
|   }
 | |
| 
 | |
|   // Force any function attributes we want the rest of the pipeline to observe.
 | |
|   MPM.addPass(ForceFunctionAttrsPass());
 | |
| 
 | |
|   // Add the core simplification pipeline.
 | |
|   MPM.addPass(buildModuleSimplificationPipeline(
 | |
|       Level, ThinOrFullLTOPhase::ThinLTOPostLink));
 | |
| 
 | |
|   // Now add the optimization pipeline.
 | |
|   MPM.addPass(buildModuleOptimizationPipeline(Level));
 | |
| 
 | |
|   // Emit annotation remarks.
 | |
|   addAnnotationRemarksPass(MPM);
 | |
| 
 | |
|   return MPM;
 | |
| }
 | |
| 
 | |
| ModulePassManager
 | |
| PassBuilder::buildLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
 | |
|   assert(Level != OptimizationLevel::O0 &&
 | |
|          "Must request optimizations for the default pipeline!");
 | |
|   // FIXME: We should use a customized pre-link pipeline!
 | |
|   return buildPerModuleDefaultPipeline(Level,
 | |
|                                        /* LTOPreLink */ true);
 | |
| }
 | |
| 
 | |
| ModulePassManager
 | |
| PassBuilder::buildLTODefaultPipeline(OptimizationLevel Level,
 | |
|                                      ModuleSummaryIndex *ExportSummary) {
 | |
|   ModulePassManager MPM;
 | |
| 
 | |
|   // Convert @llvm.global.annotations to !annotation metadata.
 | |
|   MPM.addPass(Annotation2MetadataPass());
 | |
| 
 | |
|   for (auto &C : FullLinkTimeOptimizationEarlyEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   // Create a function that performs CFI checks for cross-DSO calls with targets
 | |
|   // in the current module.
 | |
|   MPM.addPass(CrossDSOCFIPass());
 | |
| 
 | |
|   if (Level == OptimizationLevel::O0) {
 | |
|     // The WPD and LowerTypeTest passes need to run at -O0 to lower type
 | |
|     // metadata and intrinsics.
 | |
|     MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
 | |
|     MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
 | |
|     // Run a second time to clean up any type tests left behind by WPD for use
 | |
|     // in ICP.
 | |
|     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
 | |
| 
 | |
|     for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
 | |
|       C(MPM, Level);
 | |
| 
 | |
|     // Emit annotation remarks.
 | |
|     addAnnotationRemarksPass(MPM);
 | |
| 
 | |
|     return MPM;
 | |
|   }
 | |
| 
 | |
|   if (PGOOpt && PGOOpt->Action == PGOOptions::SampleUse) {
 | |
|     // Load sample profile before running the LTO optimization pipeline.
 | |
|     MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
 | |
|                                         PGOOpt->ProfileRemappingFile,
 | |
|                                         ThinOrFullLTOPhase::FullLTOPostLink));
 | |
|     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
 | |
|     // RequireAnalysisPass for PSI before subsequent non-module passes.
 | |
|     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
 | |
|   }
 | |
| 
 | |
|   // Try to run OpenMP optimizations, quick no-op if no OpenMP metadata present.
 | |
|   MPM.addPass(OpenMPOptPass());
 | |
| 
 | |
|   // Remove unused virtual tables to improve the quality of code generated by
 | |
|   // whole-program devirtualization and bitset lowering.
 | |
|   MPM.addPass(GlobalDCEPass());
 | |
| 
 | |
|   // Force any function attributes we want the rest of the pipeline to observe.
 | |
|   MPM.addPass(ForceFunctionAttrsPass());
 | |
| 
 | |
|   // Do basic inference of function attributes from known properties of system
 | |
|   // libraries and other oracles.
 | |
|   MPM.addPass(InferFunctionAttrsPass());
 | |
| 
 | |
|   if (Level.getSpeedupLevel() > 1) {
 | |
|     MPM.addPass(createModuleToFunctionPassAdaptor(
 | |
|         CallSiteSplittingPass(), PTO.EagerlyInvalidateAnalyses));
 | |
| 
 | |
|     // Indirect call promotion. This should promote all the targets that are
 | |
|     // left by the earlier promotion pass that promotes intra-module targets.
 | |
|     // This two-step promotion is to save the compile time. For LTO, it should
 | |
|     // produce the same result as if we only do promotion here.
 | |
|     MPM.addPass(PGOIndirectCallPromotion(
 | |
|         true /* InLTO */, PGOOpt && PGOOpt->Action == PGOOptions::SampleUse));
 | |
| 
 | |
|     if (EnableFunctionSpecialization && Level == OptimizationLevel::O3)
 | |
|       MPM.addPass(FunctionSpecializationPass());
 | |
|     // Propagate constants at call sites into the functions they call.  This
 | |
|     // opens opportunities for globalopt (and inlining) by substituting function
 | |
|     // pointers passed as arguments to direct uses of functions.
 | |
|     MPM.addPass(IPSCCPPass());
 | |
| 
 | |
|     // Attach metadata to indirect call sites indicating the set of functions
 | |
|     // they may target at run-time. This should follow IPSCCP.
 | |
|     MPM.addPass(CalledValuePropagationPass());
 | |
|   }
 | |
| 
 | |
|   // Now deduce any function attributes based in the current code.
 | |
|   MPM.addPass(
 | |
|       createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));
 | |
| 
 | |
|   // Do RPO function attribute inference across the module to forward-propagate
 | |
|   // attributes where applicable.
 | |
|   // FIXME: Is this really an optimization rather than a canonicalization?
 | |
|   MPM.addPass(ReversePostOrderFunctionAttrsPass());
 | |
| 
 | |
|   // Use in-range annotations on GEP indices to split globals where beneficial.
 | |
|   MPM.addPass(GlobalSplitPass());
 | |
| 
 | |
|   // Run whole program optimization of virtual call when the list of callees
 | |
|   // is fixed.
 | |
|   MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
 | |
| 
 | |
|   // Stop here at -O1.
 | |
|   if (Level == OptimizationLevel::O1) {
 | |
|     // The LowerTypeTestsPass needs to run to lower type metadata and the
 | |
|     // type.test intrinsics. The pass does nothing if CFI is disabled.
 | |
|     MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
 | |
|     // Run a second time to clean up any type tests left behind by WPD for use
 | |
|     // in ICP (which is performed earlier than this in the regular LTO
 | |
|     // pipeline).
 | |
|     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
 | |
| 
 | |
|     for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
 | |
|       C(MPM, Level);
 | |
| 
 | |
|     // Emit annotation remarks.
 | |
|     addAnnotationRemarksPass(MPM);
 | |
| 
 | |
|     return MPM;
 | |
|   }
 | |
| 
 | |
|   // Optimize globals to try and fold them into constants.
 | |
|   MPM.addPass(GlobalOptPass());
 | |
| 
 | |
|   // Promote any localized globals to SSA registers.
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));
 | |
| 
 | |
|   // Linking modules together can lead to duplicate global constant, only
 | |
|   // keep one copy of each constant.
 | |
|   MPM.addPass(ConstantMergePass());
 | |
| 
 | |
|   // Remove unused arguments from functions.
 | |
|   MPM.addPass(DeadArgumentEliminationPass());
 | |
| 
 | |
|   // Reduce the code after globalopt and ipsccp.  Both can open up significant
 | |
|   // simplification opportunities, and both can propagate functions through
 | |
|   // function pointers.  When this happens, we often have to resolve varargs
 | |
|   // calls, etc, so let instcombine do this.
 | |
|   FunctionPassManager PeepholeFPM;
 | |
|   PeepholeFPM.addPass(InstCombinePass());
 | |
|   if (Level == OptimizationLevel::O3)
 | |
|     PeepholeFPM.addPass(AggressiveInstCombinePass());
 | |
|   invokePeepholeEPCallbacks(PeepholeFPM, Level);
 | |
| 
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(PeepholeFPM),
 | |
|                                                 PTO.EagerlyInvalidateAnalyses));
 | |
| 
 | |
|   // Note: historically, the PruneEH pass was run first to deduce nounwind and
 | |
|   // generally clean up exception handling overhead. It isn't clear this is
 | |
|   // valuable as the inliner doesn't currently care whether it is inlining an
 | |
|   // invoke or a call.
 | |
|   // Run the inliner now.
 | |
|   MPM.addPass(ModuleInlinerWrapperPass(getInlineParamsFromOptLevel(Level)));
 | |
| 
 | |
|   // Optimize globals again after we ran the inliner.
 | |
|   MPM.addPass(GlobalOptPass());
 | |
| 
 | |
|   // Garbage collect dead functions.
 | |
|   MPM.addPass(GlobalDCEPass());
 | |
| 
 | |
|   // If we didn't decide to inline a function, check to see if we can
 | |
|   // transform it to pass arguments by value instead of by reference.
 | |
|   MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(ArgumentPromotionPass()));
 | |
| 
 | |
|   FunctionPassManager FPM;
 | |
|   // The IPO Passes may leave cruft around. Clean up after them.
 | |
|   FPM.addPass(InstCombinePass());
 | |
|   invokePeepholeEPCallbacks(FPM, Level);
 | |
| 
 | |
|   FPM.addPass(JumpThreadingPass());
 | |
| 
 | |
|   // Do a post inline PGO instrumentation and use pass. This is a context
 | |
|   // sensitive PGO pass.
 | |
|   if (PGOOpt) {
 | |
|     if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
 | |
|       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ true,
 | |
|                         /* IsCS */ true, PGOOpt->CSProfileGenFile,
 | |
|                         PGOOpt->ProfileRemappingFile);
 | |
|     else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
 | |
|       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ false,
 | |
|                         /* IsCS */ true, PGOOpt->ProfileFile,
 | |
|                         PGOOpt->ProfileRemappingFile);
 | |
|   }
 | |
| 
 | |
|   // Break up allocas
 | |
|   FPM.addPass(SROAPass());
 | |
| 
 | |
|   // LTO provides additional opportunities for tailcall elimination due to
 | |
|   // link-time inlining, and visibility of nocapture attribute.
 | |
|   FPM.addPass(TailCallElimPass());
 | |
| 
 | |
|   // Run a few AA driver optimizations here and now to cleanup the code.
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM),
 | |
|                                                 PTO.EagerlyInvalidateAnalyses));
 | |
| 
 | |
|   MPM.addPass(
 | |
|       createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));
 | |
| 
 | |
|   // Require the GlobalsAA analysis for the module so we can query it within
 | |
|   // MainFPM.
 | |
|   MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>());
 | |
|   // Invalidate AAManager so it can be recreated and pick up the newly available
 | |
|   // GlobalsAA.
 | |
|   MPM.addPass(
 | |
|       createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));
 | |
| 
 | |
|   FunctionPassManager MainFPM;
 | |
|   MainFPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
 | |
|                /*AllowSpeculation=*/true),
 | |
|       /*USeMemorySSA=*/true, /*UseBlockFrequencyInfo=*/true));
 | |
| 
 | |
|   if (RunNewGVN)
 | |
|     MainFPM.addPass(NewGVNPass());
 | |
|   else
 | |
|     MainFPM.addPass(GVNPass());
 | |
| 
 | |
|   // Remove dead memcpy()'s.
 | |
|   MainFPM.addPass(MemCpyOptPass());
 | |
| 
 | |
|   // Nuke dead stores.
 | |
|   MainFPM.addPass(DSEPass());
 | |
|   MainFPM.addPass(MergedLoadStoreMotionPass());
 | |
| 
 | |
| 
 | |
|   if (EnableConstraintElimination)
 | |
|     MainFPM.addPass(ConstraintEliminationPass());
 | |
| 
 | |
|   LoopPassManager LPM;
 | |
|   if (EnableLoopFlatten && Level.getSpeedupLevel() > 1)
 | |
|     LPM.addPass(LoopFlattenPass());
 | |
|   LPM.addPass(IndVarSimplifyPass());
 | |
|   LPM.addPass(LoopDeletionPass());
 | |
|   // FIXME: Add loop interchange.
 | |
| 
 | |
|   // Unroll small loops and perform peeling.
 | |
|   LPM.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
 | |
|                                  /* OnlyWhenForced= */ !PTO.LoopUnrolling,
 | |
|                                  PTO.ForgetAllSCEVInLoopUnroll));
 | |
|   // The loop passes in LPM (LoopFullUnrollPass) do not preserve MemorySSA.
 | |
|   // *All* loop passes must preserve it, in order to be able to use it.
 | |
|   MainFPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/true));
 | |
| 
 | |
|   MainFPM.addPass(LoopDistributePass());
 | |
| 
 | |
|   addVectorPasses(Level, MainFPM, /* IsFullLTO */ true);
 | |
| 
 | |
|   // Run the OpenMPOpt CGSCC pass again late.
 | |
|   MPM.addPass(
 | |
|       createModuleToPostOrderCGSCCPassAdaptor(OpenMPOptCGSCCPass()));
 | |
| 
 | |
|   invokePeepholeEPCallbacks(MainFPM, Level);
 | |
|   MainFPM.addPass(JumpThreadingPass());
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(MainFPM),
 | |
|                                                 PTO.EagerlyInvalidateAnalyses));
 | |
| 
 | |
|   // Lower type metadata and the type.test intrinsic. This pass supports
 | |
|   // clang's control flow integrity mechanisms (-fsanitize=cfi*) and needs
 | |
|   // to be run at link time if CFI is enabled. This pass does nothing if
 | |
|   // CFI is disabled.
 | |
|   MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
 | |
|   // Run a second time to clean up any type tests left behind by WPD for use
 | |
|   // in ICP (which is performed earlier than this in the regular LTO pipeline).
 | |
|   MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
 | |
| 
 | |
|   // Enable splitting late in the FullLTO post-link pipeline. This is done in
 | |
|   // the same stage in the old pass manager (\ref addLateLTOOptimizationPasses).
 | |
|   if (EnableHotColdSplit)
 | |
|     MPM.addPass(HotColdSplittingPass());
 | |
| 
 | |
|   // Add late LTO optimization passes.
 | |
|   // Delete basic blocks, which optimization passes may have killed.
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(SimplifyCFGPass(
 | |
|       SimplifyCFGOptions().convertSwitchRangeToICmp(true).hoistCommonInsts(
 | |
|           true))));
 | |
| 
 | |
|   // Drop bodies of available eternally objects to improve GlobalDCE.
 | |
|   MPM.addPass(EliminateAvailableExternallyPass());
 | |
| 
 | |
|   // Now that we have optimized the program, discard unreachable functions.
 | |
|   MPM.addPass(GlobalDCEPass());
 | |
| 
 | |
|   if (PTO.MergeFunctions)
 | |
|     MPM.addPass(MergeFunctionsPass());
 | |
| 
 | |
|   for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   // Emit annotation remarks.
 | |
|   addAnnotationRemarksPass(MPM);
 | |
| 
 | |
|   return MPM;
 | |
| }
 | |
| 
 | |
| ModulePassManager PassBuilder::buildO0DefaultPipeline(OptimizationLevel Level,
 | |
|                                                       bool LTOPreLink) {
 | |
|   assert(Level == OptimizationLevel::O0 &&
 | |
|          "buildO0DefaultPipeline should only be used with O0");
 | |
| 
 | |
|   ModulePassManager MPM;
 | |
| 
 | |
|   // Perform pseudo probe instrumentation in O0 mode. This is for the
 | |
|   // consistency between different build modes. For example, a LTO build can be
 | |
|   // mixed with an O0 prelink and an O2 postlink. Loading a sample profile in
 | |
|   // the postlink will require pseudo probe instrumentation in the prelink.
 | |
|   if (PGOOpt && PGOOpt->PseudoProbeForProfiling)
 | |
|     MPM.addPass(SampleProfileProbePass(TM));
 | |
| 
 | |
|   if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr ||
 | |
|                  PGOOpt->Action == PGOOptions::IRUse))
 | |
|     addPGOInstrPassesForO0(
 | |
|         MPM,
 | |
|         /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr),
 | |
|         /* IsCS */ false, PGOOpt->ProfileFile, PGOOpt->ProfileRemappingFile);
 | |
| 
 | |
|   for (auto &C : PipelineStartEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
 | |
|     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
 | |
| 
 | |
|   for (auto &C : PipelineEarlySimplificationEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   // Build a minimal pipeline based on the semantics required by LLVM,
 | |
|   // which is just that always inlining occurs. Further, disable generating
 | |
|   // lifetime intrinsics to avoid enabling further optimizations during
 | |
|   // code generation.
 | |
|   MPM.addPass(AlwaysInlinerPass(
 | |
|       /*InsertLifetimeIntrinsics=*/false));
 | |
| 
 | |
|   if (PTO.MergeFunctions)
 | |
|     MPM.addPass(MergeFunctionsPass());
 | |
| 
 | |
|   if (EnableMatrix)
 | |
|     MPM.addPass(
 | |
|         createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass(true)));
 | |
| 
 | |
|   if (!CGSCCOptimizerLateEPCallbacks.empty()) {
 | |
|     CGSCCPassManager CGPM;
 | |
|     for (auto &C : CGSCCOptimizerLateEPCallbacks)
 | |
|       C(CGPM, Level);
 | |
|     if (!CGPM.isEmpty())
 | |
|       MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
 | |
|   }
 | |
|   if (!LateLoopOptimizationsEPCallbacks.empty()) {
 | |
|     LoopPassManager LPM;
 | |
|     for (auto &C : LateLoopOptimizationsEPCallbacks)
 | |
|       C(LPM, Level);
 | |
|     if (!LPM.isEmpty()) {
 | |
|       MPM.addPass(createModuleToFunctionPassAdaptor(
 | |
|           createFunctionToLoopPassAdaptor(std::move(LPM))));
 | |
|     }
 | |
|   }
 | |
|   if (!LoopOptimizerEndEPCallbacks.empty()) {
 | |
|     LoopPassManager LPM;
 | |
|     for (auto &C : LoopOptimizerEndEPCallbacks)
 | |
|       C(LPM, Level);
 | |
|     if (!LPM.isEmpty()) {
 | |
|       MPM.addPass(createModuleToFunctionPassAdaptor(
 | |
|           createFunctionToLoopPassAdaptor(std::move(LPM))));
 | |
|     }
 | |
|   }
 | |
|   if (!ScalarOptimizerLateEPCallbacks.empty()) {
 | |
|     FunctionPassManager FPM;
 | |
|     for (auto &C : ScalarOptimizerLateEPCallbacks)
 | |
|       C(FPM, Level);
 | |
|     if (!FPM.isEmpty())
 | |
|       MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
 | |
|   }
 | |
| 
 | |
|   for (auto &C : OptimizerEarlyEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   if (!VectorizerStartEPCallbacks.empty()) {
 | |
|     FunctionPassManager FPM;
 | |
|     for (auto &C : VectorizerStartEPCallbacks)
 | |
|       C(FPM, Level);
 | |
|     if (!FPM.isEmpty())
 | |
|       MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
 | |
|   }
 | |
| 
 | |
|   ModulePassManager CoroPM;
 | |
|   CoroPM.addPass(CoroEarlyPass());
 | |
|   CGSCCPassManager CGPM;
 | |
|   CGPM.addPass(CoroSplitPass());
 | |
|   CoroPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
 | |
|   CoroPM.addPass(CoroCleanupPass());
 | |
|   CoroPM.addPass(GlobalDCEPass());
 | |
|   MPM.addPass(CoroConditionalWrapper(std::move(CoroPM)));
 | |
| 
 | |
|   for (auto &C : OptimizerLastEPCallbacks)
 | |
|     C(MPM, Level);
 | |
| 
 | |
|   if (LTOPreLink)
 | |
|     addRequiredLTOPreLinkPasses(MPM);
 | |
| 
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));
 | |
| 
 | |
|   return MPM;
 | |
| }
 | |
| 
 | |
| AAManager PassBuilder::buildDefaultAAPipeline() {
 | |
|   AAManager AA;
 | |
| 
 | |
|   // The order in which these are registered determines their priority when
 | |
|   // being queried.
 | |
| 
 | |
|   // First we register the basic alias analysis that provides the majority of
 | |
|   // per-function local AA logic. This is a stateless, on-demand local set of
 | |
|   // AA techniques.
 | |
|   AA.registerFunctionAnalysis<BasicAA>();
 | |
| 
 | |
|   // Next we query fast, specialized alias analyses that wrap IR-embedded
 | |
|   // information about aliasing.
 | |
|   AA.registerFunctionAnalysis<ScopedNoAliasAA>();
 | |
|   AA.registerFunctionAnalysis<TypeBasedAA>();
 | |
| 
 | |
|   // Add support for querying global aliasing information when available.
 | |
|   // Because the `AAManager` is a function analysis and `GlobalsAA` is a module
 | |
|   // analysis, all that the `AAManager` can do is query for any *cached*
 | |
|   // results from `GlobalsAA` through a readonly proxy.
 | |
|   AA.registerModuleAnalysis<GlobalsAA>();
 | |
| 
 | |
|   // Add target-specific alias analyses.
 | |
|   if (TM)
 | |
|     TM->registerDefaultAliasAnalyses(AA);
 | |
| 
 | |
|   return AA;
 | |
| }
 |