575 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			575 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- APFixedPoint.cpp - Fixed point constant handling ---------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// Defines the implementation for the fixed point number interface.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/APFixedPoint.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| APFixedPoint APFixedPoint::convert(const FixedPointSemantics &DstSema,
 | |
|                                    bool *Overflow) const {
 | |
|   APSInt NewVal = Val;
 | |
|   unsigned DstWidth = DstSema.getWidth();
 | |
|   unsigned DstScale = DstSema.getScale();
 | |
|   bool Upscaling = DstScale > getScale();
 | |
|   if (Overflow)
 | |
|     *Overflow = false;
 | |
| 
 | |
|   if (Upscaling) {
 | |
|     NewVal = NewVal.extend(NewVal.getBitWidth() + DstScale - getScale());
 | |
|     NewVal <<= (DstScale - getScale());
 | |
|   } else {
 | |
|     NewVal >>= (getScale() - DstScale);
 | |
|   }
 | |
| 
 | |
|   auto Mask = APInt::getBitsSetFrom(
 | |
|       NewVal.getBitWidth(),
 | |
|       std::min(DstScale + DstSema.getIntegralBits(), NewVal.getBitWidth()));
 | |
|   APInt Masked(NewVal & Mask);
 | |
| 
 | |
|   // Change in the bits above the sign
 | |
|   if (!(Masked == Mask || Masked == 0)) {
 | |
|     // Found overflow in the bits above the sign
 | |
|     if (DstSema.isSaturated())
 | |
|       NewVal = NewVal.isNegative() ? Mask : ~Mask;
 | |
|     else if (Overflow)
 | |
|       *Overflow = true;
 | |
|   }
 | |
| 
 | |
|   // If the dst semantics are unsigned, but our value is signed and negative, we
 | |
|   // clamp to zero.
 | |
|   if (!DstSema.isSigned() && NewVal.isSigned() && NewVal.isNegative()) {
 | |
|     // Found negative overflow for unsigned result
 | |
|     if (DstSema.isSaturated())
 | |
|       NewVal = 0;
 | |
|     else if (Overflow)
 | |
|       *Overflow = true;
 | |
|   }
 | |
| 
 | |
|   NewVal = NewVal.extOrTrunc(DstWidth);
 | |
|   NewVal.setIsSigned(DstSema.isSigned());
 | |
|   return APFixedPoint(NewVal, DstSema);
 | |
| }
 | |
| 
 | |
| int APFixedPoint::compare(const APFixedPoint &Other) const {
 | |
|   APSInt ThisVal = getValue();
 | |
|   APSInt OtherVal = Other.getValue();
 | |
|   bool ThisSigned = Val.isSigned();
 | |
|   bool OtherSigned = OtherVal.isSigned();
 | |
|   unsigned OtherScale = Other.getScale();
 | |
|   unsigned OtherWidth = OtherVal.getBitWidth();
 | |
| 
 | |
|   unsigned CommonWidth = std::max(Val.getBitWidth(), OtherWidth);
 | |
| 
 | |
|   // Prevent overflow in the event the widths are the same but the scales differ
 | |
|   CommonWidth += getScale() >= OtherScale ? getScale() - OtherScale
 | |
|                                           : OtherScale - getScale();
 | |
| 
 | |
|   ThisVal = ThisVal.extOrTrunc(CommonWidth);
 | |
|   OtherVal = OtherVal.extOrTrunc(CommonWidth);
 | |
| 
 | |
|   unsigned CommonScale = std::max(getScale(), OtherScale);
 | |
|   ThisVal = ThisVal.shl(CommonScale - getScale());
 | |
|   OtherVal = OtherVal.shl(CommonScale - OtherScale);
 | |
| 
 | |
|   if (ThisSigned && OtherSigned) {
 | |
|     if (ThisVal.sgt(OtherVal))
 | |
|       return 1;
 | |
|     else if (ThisVal.slt(OtherVal))
 | |
|       return -1;
 | |
|   } else if (!ThisSigned && !OtherSigned) {
 | |
|     if (ThisVal.ugt(OtherVal))
 | |
|       return 1;
 | |
|     else if (ThisVal.ult(OtherVal))
 | |
|       return -1;
 | |
|   } else if (ThisSigned && !OtherSigned) {
 | |
|     if (ThisVal.isSignBitSet())
 | |
|       return -1;
 | |
|     else if (ThisVal.ugt(OtherVal))
 | |
|       return 1;
 | |
|     else if (ThisVal.ult(OtherVal))
 | |
|       return -1;
 | |
|   } else {
 | |
|     // !ThisSigned && OtherSigned
 | |
|     if (OtherVal.isSignBitSet())
 | |
|       return 1;
 | |
|     else if (ThisVal.ugt(OtherVal))
 | |
|       return 1;
 | |
|     else if (ThisVal.ult(OtherVal))
 | |
|       return -1;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| APFixedPoint APFixedPoint::getMax(const FixedPointSemantics &Sema) {
 | |
|   bool IsUnsigned = !Sema.isSigned();
 | |
|   auto Val = APSInt::getMaxValue(Sema.getWidth(), IsUnsigned);
 | |
|   if (IsUnsigned && Sema.hasUnsignedPadding())
 | |
|     Val = Val.lshr(1);
 | |
|   return APFixedPoint(Val, Sema);
 | |
| }
 | |
| 
 | |
| APFixedPoint APFixedPoint::getMin(const FixedPointSemantics &Sema) {
 | |
|   auto Val = APSInt::getMinValue(Sema.getWidth(), !Sema.isSigned());
 | |
|   return APFixedPoint(Val, Sema);
 | |
| }
 | |
| 
 | |
| bool FixedPointSemantics::fitsInFloatSemantics(
 | |
|     const fltSemantics &FloatSema) const {
 | |
|   // A fixed point semantic fits in a floating point semantic if the maximum
 | |
|   // and minimum values as integers of the fixed point semantic can fit in the
 | |
|   // floating point semantic.
 | |
| 
 | |
|   // If these values do not fit, then a floating point rescaling of the true
 | |
|   // maximum/minimum value will not fit either, so the floating point semantic
 | |
|   // cannot be used to perform such a rescaling.
 | |
| 
 | |
|   APSInt MaxInt = APFixedPoint::getMax(*this).getValue();
 | |
|   APFloat F(FloatSema);
 | |
|   APFloat::opStatus Status = F.convertFromAPInt(MaxInt, MaxInt.isSigned(),
 | |
|                                                 APFloat::rmNearestTiesToAway);
 | |
|   if ((Status & APFloat::opOverflow) || !isSigned())
 | |
|     return !(Status & APFloat::opOverflow);
 | |
| 
 | |
|   APSInt MinInt = APFixedPoint::getMin(*this).getValue();
 | |
|   Status = F.convertFromAPInt(MinInt, MinInt.isSigned(),
 | |
|                               APFloat::rmNearestTiesToAway);
 | |
|   return !(Status & APFloat::opOverflow);
 | |
| }
 | |
| 
 | |
| FixedPointSemantics FixedPointSemantics::getCommonSemantics(
 | |
|     const FixedPointSemantics &Other) const {
 | |
|   unsigned CommonScale = std::max(getScale(), Other.getScale());
 | |
|   unsigned CommonWidth =
 | |
|       std::max(getIntegralBits(), Other.getIntegralBits()) + CommonScale;
 | |
| 
 | |
|   bool ResultIsSigned = isSigned() || Other.isSigned();
 | |
|   bool ResultIsSaturated = isSaturated() || Other.isSaturated();
 | |
|   bool ResultHasUnsignedPadding = false;
 | |
|   if (!ResultIsSigned) {
 | |
|     // Both are unsigned.
 | |
|     ResultHasUnsignedPadding = hasUnsignedPadding() &&
 | |
|                                Other.hasUnsignedPadding() && !ResultIsSaturated;
 | |
|   }
 | |
| 
 | |
|   // If the result is signed, add an extra bit for the sign. Otherwise, if it is
 | |
|   // unsigned and has unsigned padding, we only need to add the extra padding
 | |
|   // bit back if we are not saturating.
 | |
|   if (ResultIsSigned || ResultHasUnsignedPadding)
 | |
|     CommonWidth++;
 | |
| 
 | |
|   return FixedPointSemantics(CommonWidth, CommonScale, ResultIsSigned,
 | |
|                              ResultIsSaturated, ResultHasUnsignedPadding);
 | |
| }
 | |
| 
 | |
| APFixedPoint APFixedPoint::add(const APFixedPoint &Other,
 | |
|                                bool *Overflow) const {
 | |
|   auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
 | |
|   APFixedPoint ConvertedThis = convert(CommonFXSema);
 | |
|   APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
 | |
|   APSInt ThisVal = ConvertedThis.getValue();
 | |
|   APSInt OtherVal = ConvertedOther.getValue();
 | |
|   bool Overflowed = false;
 | |
| 
 | |
|   APSInt Result;
 | |
|   if (CommonFXSema.isSaturated()) {
 | |
|     Result = CommonFXSema.isSigned() ? ThisVal.sadd_sat(OtherVal)
 | |
|                                      : ThisVal.uadd_sat(OtherVal);
 | |
|   } else {
 | |
|     Result = ThisVal.isSigned() ? ThisVal.sadd_ov(OtherVal, Overflowed)
 | |
|                                 : ThisVal.uadd_ov(OtherVal, Overflowed);
 | |
|   }
 | |
| 
 | |
|   if (Overflow)
 | |
|     *Overflow = Overflowed;
 | |
| 
 | |
|   return APFixedPoint(Result, CommonFXSema);
 | |
| }
 | |
| 
 | |
| APFixedPoint APFixedPoint::sub(const APFixedPoint &Other,
 | |
|                                bool *Overflow) const {
 | |
|   auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
 | |
|   APFixedPoint ConvertedThis = convert(CommonFXSema);
 | |
|   APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
 | |
|   APSInt ThisVal = ConvertedThis.getValue();
 | |
|   APSInt OtherVal = ConvertedOther.getValue();
 | |
|   bool Overflowed = false;
 | |
| 
 | |
|   APSInt Result;
 | |
|   if (CommonFXSema.isSaturated()) {
 | |
|     Result = CommonFXSema.isSigned() ? ThisVal.ssub_sat(OtherVal)
 | |
|                                      : ThisVal.usub_sat(OtherVal);
 | |
|   } else {
 | |
|     Result = ThisVal.isSigned() ? ThisVal.ssub_ov(OtherVal, Overflowed)
 | |
|                                 : ThisVal.usub_ov(OtherVal, Overflowed);
 | |
|   }
 | |
| 
 | |
|   if (Overflow)
 | |
|     *Overflow = Overflowed;
 | |
| 
 | |
|   return APFixedPoint(Result, CommonFXSema);
 | |
| }
 | |
| 
 | |
| APFixedPoint APFixedPoint::mul(const APFixedPoint &Other,
 | |
|                                bool *Overflow) const {
 | |
|   auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
 | |
|   APFixedPoint ConvertedThis = convert(CommonFXSema);
 | |
|   APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
 | |
|   APSInt ThisVal = ConvertedThis.getValue();
 | |
|   APSInt OtherVal = ConvertedOther.getValue();
 | |
|   bool Overflowed = false;
 | |
| 
 | |
|   // Widen the LHS and RHS so we can perform a full multiplication.
 | |
|   unsigned Wide = CommonFXSema.getWidth() * 2;
 | |
|   if (CommonFXSema.isSigned()) {
 | |
|     ThisVal = ThisVal.sext(Wide);
 | |
|     OtherVal = OtherVal.sext(Wide);
 | |
|   } else {
 | |
|     ThisVal = ThisVal.zext(Wide);
 | |
|     OtherVal = OtherVal.zext(Wide);
 | |
|   }
 | |
| 
 | |
|   // Perform the full multiplication and downscale to get the same scale.
 | |
|   //
 | |
|   // Note that the right shifts here perform an implicit downwards rounding.
 | |
|   // This rounding could discard bits that would technically place the result
 | |
|   // outside the representable range. We interpret the spec as allowing us to
 | |
|   // perform the rounding step first, avoiding the overflow case that would
 | |
|   // arise.
 | |
|   APSInt Result;
 | |
|   if (CommonFXSema.isSigned())
 | |
|     Result = ThisVal.smul_ov(OtherVal, Overflowed)
 | |
|                     .ashr(CommonFXSema.getScale());
 | |
|   else
 | |
|     Result = ThisVal.umul_ov(OtherVal, Overflowed)
 | |
|                     .lshr(CommonFXSema.getScale());
 | |
|   assert(!Overflowed && "Full multiplication cannot overflow!");
 | |
|   Result.setIsSigned(CommonFXSema.isSigned());
 | |
| 
 | |
|   // If our result lies outside of the representative range of the common
 | |
|   // semantic, we either have overflow or saturation.
 | |
|   APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue()
 | |
|                                                  .extOrTrunc(Wide);
 | |
|   APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue()
 | |
|                                                  .extOrTrunc(Wide);
 | |
|   if (CommonFXSema.isSaturated()) {
 | |
|     if (Result < Min)
 | |
|       Result = Min;
 | |
|     else if (Result > Max)
 | |
|       Result = Max;
 | |
|   } else
 | |
|     Overflowed = Result < Min || Result > Max;
 | |
| 
 | |
|   if (Overflow)
 | |
|     *Overflow = Overflowed;
 | |
| 
 | |
|   return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
 | |
|                       CommonFXSema);
 | |
| }
 | |
| 
 | |
| APFixedPoint APFixedPoint::div(const APFixedPoint &Other,
 | |
|                                bool *Overflow) const {
 | |
|   auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
 | |
|   APFixedPoint ConvertedThis = convert(CommonFXSema);
 | |
|   APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
 | |
|   APSInt ThisVal = ConvertedThis.getValue();
 | |
|   APSInt OtherVal = ConvertedOther.getValue();
 | |
|   bool Overflowed = false;
 | |
| 
 | |
|   // Widen the LHS and RHS so we can perform a full division.
 | |
|   unsigned Wide = CommonFXSema.getWidth() * 2;
 | |
|   if (CommonFXSema.isSigned()) {
 | |
|     ThisVal = ThisVal.sext(Wide);
 | |
|     OtherVal = OtherVal.sext(Wide);
 | |
|   } else {
 | |
|     ThisVal = ThisVal.zext(Wide);
 | |
|     OtherVal = OtherVal.zext(Wide);
 | |
|   }
 | |
| 
 | |
|   // Upscale to compensate for the loss of precision from division, and
 | |
|   // perform the full division.
 | |
|   ThisVal = ThisVal.shl(CommonFXSema.getScale());
 | |
|   APSInt Result;
 | |
|   if (CommonFXSema.isSigned()) {
 | |
|     APInt Rem;
 | |
|     APInt::sdivrem(ThisVal, OtherVal, Result, Rem);
 | |
|     // If the quotient is negative and the remainder is nonzero, round
 | |
|     // towards negative infinity by subtracting epsilon from the result.
 | |
|     if (ThisVal.isNegative() != OtherVal.isNegative() && !Rem.isZero())
 | |
|       Result = Result - 1;
 | |
|   } else
 | |
|     Result = ThisVal.udiv(OtherVal);
 | |
|   Result.setIsSigned(CommonFXSema.isSigned());
 | |
| 
 | |
|   // If our result lies outside of the representative range of the common
 | |
|   // semantic, we either have overflow or saturation.
 | |
|   APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue()
 | |
|                                                  .extOrTrunc(Wide);
 | |
|   APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue()
 | |
|                                                  .extOrTrunc(Wide);
 | |
|   if (CommonFXSema.isSaturated()) {
 | |
|     if (Result < Min)
 | |
|       Result = Min;
 | |
|     else if (Result > Max)
 | |
|       Result = Max;
 | |
|   } else
 | |
|     Overflowed = Result < Min || Result > Max;
 | |
| 
 | |
|   if (Overflow)
 | |
|     *Overflow = Overflowed;
 | |
| 
 | |
|   return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
 | |
|                       CommonFXSema);
 | |
| }
 | |
| 
 | |
| APFixedPoint APFixedPoint::shl(unsigned Amt, bool *Overflow) const {
 | |
|   APSInt ThisVal = Val;
 | |
|   bool Overflowed = false;
 | |
| 
 | |
|   // Widen the LHS.
 | |
|   unsigned Wide = Sema.getWidth() * 2;
 | |
|   if (Sema.isSigned())
 | |
|     ThisVal = ThisVal.sext(Wide);
 | |
|   else
 | |
|     ThisVal = ThisVal.zext(Wide);
 | |
| 
 | |
|   // Clamp the shift amount at the original width, and perform the shift.
 | |
|   Amt = std::min(Amt, ThisVal.getBitWidth());
 | |
|   APSInt Result = ThisVal << Amt;
 | |
|   Result.setIsSigned(Sema.isSigned());
 | |
| 
 | |
|   // If our result lies outside of the representative range of the
 | |
|   // semantic, we either have overflow or saturation.
 | |
|   APSInt Max = APFixedPoint::getMax(Sema).getValue().extOrTrunc(Wide);
 | |
|   APSInt Min = APFixedPoint::getMin(Sema).getValue().extOrTrunc(Wide);
 | |
|   if (Sema.isSaturated()) {
 | |
|     if (Result < Min)
 | |
|       Result = Min;
 | |
|     else if (Result > Max)
 | |
|       Result = Max;
 | |
|   } else
 | |
|     Overflowed = Result < Min || Result > Max;
 | |
| 
 | |
|   if (Overflow)
 | |
|     *Overflow = Overflowed;
 | |
| 
 | |
|   return APFixedPoint(Result.sextOrTrunc(Sema.getWidth()), Sema);
 | |
| }
 | |
| 
 | |
| void APFixedPoint::toString(SmallVectorImpl<char> &Str) const {
 | |
|   APSInt Val = getValue();
 | |
|   unsigned Scale = getScale();
 | |
| 
 | |
|   if (Val.isSigned() && Val.isNegative() && Val != -Val) {
 | |
|     Val = -Val;
 | |
|     Str.push_back('-');
 | |
|   }
 | |
| 
 | |
|   APSInt IntPart = Val >> Scale;
 | |
| 
 | |
|   // Add 4 digits to hold the value after multiplying 10 (the radix)
 | |
|   unsigned Width = Val.getBitWidth() + 4;
 | |
|   APInt FractPart = Val.zextOrTrunc(Scale).zext(Width);
 | |
|   APInt FractPartMask = APInt::getAllOnes(Scale).zext(Width);
 | |
|   APInt RadixInt = APInt(Width, 10);
 | |
| 
 | |
|   IntPart.toString(Str, /*Radix=*/10);
 | |
|   Str.push_back('.');
 | |
|   do {
 | |
|     (FractPart * RadixInt)
 | |
|         .lshr(Scale)
 | |
|         .toString(Str, /*Radix=*/10, Val.isSigned());
 | |
|     FractPart = (FractPart * RadixInt) & FractPartMask;
 | |
|   } while (FractPart != 0);
 | |
| }
 | |
| 
 | |
| APFixedPoint APFixedPoint::negate(bool *Overflow) const {
 | |
|   if (!isSaturated()) {
 | |
|     if (Overflow)
 | |
|       *Overflow =
 | |
|           (!isSigned() && Val != 0) || (isSigned() && Val.isMinSignedValue());
 | |
|     return APFixedPoint(-Val, Sema);
 | |
|   }
 | |
| 
 | |
|   // We never overflow for saturation
 | |
|   if (Overflow)
 | |
|     *Overflow = false;
 | |
| 
 | |
|   if (isSigned())
 | |
|     return Val.isMinSignedValue() ? getMax(Sema) : APFixedPoint(-Val, Sema);
 | |
|   else
 | |
|     return APFixedPoint(Sema);
 | |
| }
 | |
| 
 | |
| APSInt APFixedPoint::convertToInt(unsigned DstWidth, bool DstSign,
 | |
|                                   bool *Overflow) const {
 | |
|   APSInt Result = getIntPart();
 | |
|   unsigned SrcWidth = getWidth();
 | |
| 
 | |
|   APSInt DstMin = APSInt::getMinValue(DstWidth, !DstSign);
 | |
|   APSInt DstMax = APSInt::getMaxValue(DstWidth, !DstSign);
 | |
| 
 | |
|   if (SrcWidth < DstWidth) {
 | |
|     Result = Result.extend(DstWidth);
 | |
|   } else if (SrcWidth > DstWidth) {
 | |
|     DstMin = DstMin.extend(SrcWidth);
 | |
|     DstMax = DstMax.extend(SrcWidth);
 | |
|   }
 | |
| 
 | |
|   if (Overflow) {
 | |
|     if (Result.isSigned() && !DstSign) {
 | |
|       *Overflow = Result.isNegative() || Result.ugt(DstMax);
 | |
|     } else if (Result.isUnsigned() && DstSign) {
 | |
|       *Overflow = Result.ugt(DstMax);
 | |
|     } else {
 | |
|       *Overflow = Result < DstMin || Result > DstMax;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Result.setIsSigned(DstSign);
 | |
|   return Result.extOrTrunc(DstWidth);
 | |
| }
 | |
| 
 | |
| const fltSemantics *APFixedPoint::promoteFloatSemantics(const fltSemantics *S) {
 | |
|   if (S == &APFloat::BFloat())
 | |
|     return &APFloat::IEEEdouble();
 | |
|   else if (S == &APFloat::IEEEhalf())
 | |
|     return &APFloat::IEEEsingle();
 | |
|   else if (S == &APFloat::IEEEsingle())
 | |
|     return &APFloat::IEEEdouble();
 | |
|   else if (S == &APFloat::IEEEdouble())
 | |
|     return &APFloat::IEEEquad();
 | |
|   llvm_unreachable("Could not promote float type!");
 | |
| }
 | |
| 
 | |
| APFloat APFixedPoint::convertToFloat(const fltSemantics &FloatSema) const {
 | |
|   // For some operations, rounding mode has an effect on the result, while
 | |
|   // other operations are lossless and should never result in rounding.
 | |
|   // To signify which these operations are, we define two rounding modes here.
 | |
|   APFloat::roundingMode RM = APFloat::rmNearestTiesToEven;
 | |
|   APFloat::roundingMode LosslessRM = APFloat::rmTowardZero;
 | |
| 
 | |
|   // Make sure that we are operating in a type that works with this fixed-point
 | |
|   // semantic.
 | |
|   const fltSemantics *OpSema = &FloatSema;
 | |
|   while (!Sema.fitsInFloatSemantics(*OpSema))
 | |
|     OpSema = promoteFloatSemantics(OpSema);
 | |
| 
 | |
|   // Convert the fixed point value bits as an integer. If the floating point
 | |
|   // value does not have the required precision, we will round according to the
 | |
|   // given mode.
 | |
|   APFloat Flt(*OpSema);
 | |
|   APFloat::opStatus S = Flt.convertFromAPInt(Val, Sema.isSigned(), RM);
 | |
| 
 | |
|   // If we cared about checking for precision loss, we could look at this
 | |
|   // status.
 | |
|   (void)S;
 | |
| 
 | |
|   // Scale down the integer value in the float to match the correct scaling
 | |
|   // factor.
 | |
|   APFloat ScaleFactor(std::pow(2, -(int)Sema.getScale()));
 | |
|   bool Ignored;
 | |
|   ScaleFactor.convert(*OpSema, LosslessRM, &Ignored);
 | |
|   Flt.multiply(ScaleFactor, LosslessRM);
 | |
| 
 | |
|   if (OpSema != &FloatSema)
 | |
|     Flt.convert(FloatSema, RM, &Ignored);
 | |
| 
 | |
|   return Flt;
 | |
| }
 | |
| 
 | |
| APFixedPoint APFixedPoint::getFromIntValue(const APSInt &Value,
 | |
|                                            const FixedPointSemantics &DstFXSema,
 | |
|                                            bool *Overflow) {
 | |
|   FixedPointSemantics IntFXSema = FixedPointSemantics::GetIntegerSemantics(
 | |
|       Value.getBitWidth(), Value.isSigned());
 | |
|   return APFixedPoint(Value, IntFXSema).convert(DstFXSema, Overflow);
 | |
| }
 | |
| 
 | |
| APFixedPoint
 | |
| APFixedPoint::getFromFloatValue(const APFloat &Value,
 | |
|                                 const FixedPointSemantics &DstFXSema,
 | |
|                                 bool *Overflow) {
 | |
|   // For some operations, rounding mode has an effect on the result, while
 | |
|   // other operations are lossless and should never result in rounding.
 | |
|   // To signify which these operations are, we define two rounding modes here,
 | |
|   // even though they are the same mode.
 | |
|   APFloat::roundingMode RM = APFloat::rmTowardZero;
 | |
|   APFloat::roundingMode LosslessRM = APFloat::rmTowardZero;
 | |
| 
 | |
|   const fltSemantics &FloatSema = Value.getSemantics();
 | |
| 
 | |
|   if (Value.isNaN()) {
 | |
|     // Handle NaN immediately.
 | |
|     if (Overflow)
 | |
|       *Overflow = true;
 | |
|     return APFixedPoint(DstFXSema);
 | |
|   }
 | |
| 
 | |
|   // Make sure that we are operating in a type that works with this fixed-point
 | |
|   // semantic.
 | |
|   const fltSemantics *OpSema = &FloatSema;
 | |
|   while (!DstFXSema.fitsInFloatSemantics(*OpSema))
 | |
|     OpSema = promoteFloatSemantics(OpSema);
 | |
| 
 | |
|   APFloat Val = Value;
 | |
| 
 | |
|   bool Ignored;
 | |
|   if (&FloatSema != OpSema)
 | |
|     Val.convert(*OpSema, LosslessRM, &Ignored);
 | |
| 
 | |
|   // Scale up the float so that the 'fractional' part of the mantissa ends up in
 | |
|   // the integer range instead. Rounding mode is irrelevant here.
 | |
|   // It is fine if this overflows to infinity even for saturating types,
 | |
|   // since we will use floating point comparisons to check for saturation.
 | |
|   APFloat ScaleFactor(std::pow(2, DstFXSema.getScale()));
 | |
|   ScaleFactor.convert(*OpSema, LosslessRM, &Ignored);
 | |
|   Val.multiply(ScaleFactor, LosslessRM);
 | |
| 
 | |
|   // Convert to the integral representation of the value. This rounding mode
 | |
|   // is significant.
 | |
|   APSInt Res(DstFXSema.getWidth(), !DstFXSema.isSigned());
 | |
|   Val.convertToInteger(Res, RM, &Ignored);
 | |
| 
 | |
|   // Round the integral value and scale back. This makes the
 | |
|   // overflow calculations below work properly. If we do not round here,
 | |
|   // we risk checking for overflow with a value that is outside the
 | |
|   // representable range of the fixed-point semantic even though no overflow
 | |
|   // would occur had we rounded first.
 | |
|   ScaleFactor = APFloat(std::pow(2, -(int)DstFXSema.getScale()));
 | |
|   ScaleFactor.convert(*OpSema, LosslessRM, &Ignored);
 | |
|   Val.roundToIntegral(RM);
 | |
|   Val.multiply(ScaleFactor, LosslessRM);
 | |
| 
 | |
|   // Check for overflow/saturation by checking if the floating point value
 | |
|   // is outside the range representable by the fixed-point value.
 | |
|   APFloat FloatMax = getMax(DstFXSema).convertToFloat(*OpSema);
 | |
|   APFloat FloatMin = getMin(DstFXSema).convertToFloat(*OpSema);
 | |
|   bool Overflowed = false;
 | |
|   if (DstFXSema.isSaturated()) {
 | |
|     if (Val > FloatMax)
 | |
|       Res = getMax(DstFXSema).getValue();
 | |
|     else if (Val < FloatMin)
 | |
|       Res = getMin(DstFXSema).getValue();
 | |
|   } else
 | |
|     Overflowed = Val > FloatMax || Val < FloatMin;
 | |
| 
 | |
|   if (Overflow)
 | |
|     *Overflow = Overflowed;
 | |
| 
 | |
|   return APFixedPoint(Res, DstFXSema);
 | |
| }
 | |
| 
 | |
| } // namespace llvm
 |