1463 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1463 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPCTargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/CodeMetrics.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/CodeGen/BasicTTIImpl.h"
 | 
						|
#include "llvm/CodeGen/CostTable.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetSchedule.h"
 | 
						|
#include "llvm/IR/IntrinsicsPowerPC.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppctti"
 | 
						|
 | 
						|
static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
 | 
						|
cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
 | 
						|
                cl::desc("Enable using coldcc calling conv for cold "
 | 
						|
                         "internal functions"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
 | 
						|
               cl::desc("Do not add instruction count to lsr cost model"));
 | 
						|
 | 
						|
// The latency of mtctr is only justified if there are more than 4
 | 
						|
// comparisons that will be removed as a result.
 | 
						|
static cl::opt<unsigned>
 | 
						|
SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
 | 
						|
                      cl::desc("Loops with a constant trip count smaller than "
 | 
						|
                               "this value will not use the count register."));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// PPC cost model.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
TargetTransformInfo::PopcntSupportKind
 | 
						|
PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
 | 
						|
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
 | 
						|
  if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
 | 
						|
    return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
 | 
						|
             TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
 | 
						|
  return TTI::PSK_Software;
 | 
						|
}
 | 
						|
 | 
						|
Optional<Instruction *>
 | 
						|
PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
 | 
						|
  Intrinsic::ID IID = II.getIntrinsicID();
 | 
						|
  switch (IID) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_lvx:
 | 
						|
  case Intrinsic::ppc_altivec_lvxl:
 | 
						|
    // Turn PPC lvx -> load if the pointer is known aligned.
 | 
						|
    if (getOrEnforceKnownAlignment(
 | 
						|
            II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
 | 
						|
            &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
 | 
						|
      Value *Ptr = IC.Builder.CreateBitCast(
 | 
						|
          II.getArgOperand(0), PointerType::getUnqual(II.getType()));
 | 
						|
      return new LoadInst(II.getType(), Ptr, "", false, Align(16));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_vsx_lxvw4x:
 | 
						|
  case Intrinsic::ppc_vsx_lxvd2x: {
 | 
						|
    // Turn PPC VSX loads into normal loads.
 | 
						|
    Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0),
 | 
						|
                                          PointerType::getUnqual(II.getType()));
 | 
						|
    return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
 | 
						|
  }
 | 
						|
  case Intrinsic::ppc_altivec_stvx:
 | 
						|
  case Intrinsic::ppc_altivec_stvxl:
 | 
						|
    // Turn stvx -> store if the pointer is known aligned.
 | 
						|
    if (getOrEnforceKnownAlignment(
 | 
						|
            II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
 | 
						|
            &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
 | 
						|
      Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
 | 
						|
      Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
 | 
						|
      return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_vsx_stxvw4x:
 | 
						|
  case Intrinsic::ppc_vsx_stxvd2x: {
 | 
						|
    // Turn PPC VSX stores into normal stores.
 | 
						|
    Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
 | 
						|
    Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
 | 
						|
    return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
 | 
						|
  }
 | 
						|
  case Intrinsic::ppc_altivec_vperm:
 | 
						|
    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
 | 
						|
    // Note that ppc_altivec_vperm has a big-endian bias, so when creating
 | 
						|
    // a vectorshuffle for little endian, we must undo the transformation
 | 
						|
    // performed on vec_perm in altivec.h.  That is, we must complement
 | 
						|
    // the permutation mask with respect to 31 and reverse the order of
 | 
						|
    // V1 and V2.
 | 
						|
    if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
 | 
						|
      assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
 | 
						|
             "Bad type for intrinsic!");
 | 
						|
 | 
						|
      // Check that all of the elements are integer constants or undefs.
 | 
						|
      bool AllEltsOk = true;
 | 
						|
      for (unsigned i = 0; i != 16; ++i) {
 | 
						|
        Constant *Elt = Mask->getAggregateElement(i);
 | 
						|
        if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
 | 
						|
          AllEltsOk = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (AllEltsOk) {
 | 
						|
        // Cast the input vectors to byte vectors.
 | 
						|
        Value *Op0 =
 | 
						|
            IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
 | 
						|
        Value *Op1 =
 | 
						|
            IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
 | 
						|
        Value *Result = UndefValue::get(Op0->getType());
 | 
						|
 | 
						|
        // Only extract each element once.
 | 
						|
        Value *ExtractedElts[32];
 | 
						|
        memset(ExtractedElts, 0, sizeof(ExtractedElts));
 | 
						|
 | 
						|
        for (unsigned i = 0; i != 16; ++i) {
 | 
						|
          if (isa<UndefValue>(Mask->getAggregateElement(i)))
 | 
						|
            continue;
 | 
						|
          unsigned Idx =
 | 
						|
              cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
 | 
						|
          Idx &= 31; // Match the hardware behavior.
 | 
						|
          if (DL.isLittleEndian())
 | 
						|
            Idx = 31 - Idx;
 | 
						|
 | 
						|
          if (!ExtractedElts[Idx]) {
 | 
						|
            Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
 | 
						|
            Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
 | 
						|
            ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
 | 
						|
                Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
 | 
						|
          }
 | 
						|
 | 
						|
          // Insert this value into the result vector.
 | 
						|
          Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
 | 
						|
                                                  IC.Builder.getInt32(i));
 | 
						|
        }
 | 
						|
        return CastInst::Create(Instruction::BitCast, Result, II.getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
 | 
						|
                                          TTI::TargetCostKind CostKind) {
 | 
						|
  if (DisablePPCConstHoist)
 | 
						|
    return BaseT::getIntImmCost(Imm, Ty, CostKind);
 | 
						|
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0)
 | 
						|
    return ~0U;
 | 
						|
 | 
						|
  if (Imm == 0)
 | 
						|
    return TTI::TCC_Free;
 | 
						|
 | 
						|
  if (Imm.getBitWidth() <= 64) {
 | 
						|
    if (isInt<16>(Imm.getSExtValue()))
 | 
						|
      return TTI::TCC_Basic;
 | 
						|
 | 
						|
    if (isInt<32>(Imm.getSExtValue())) {
 | 
						|
      // A constant that can be materialized using lis.
 | 
						|
      if ((Imm.getZExtValue() & 0xFFFF) == 0)
 | 
						|
        return TTI::TCC_Basic;
 | 
						|
 | 
						|
      return 2 * TTI::TCC_Basic;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 4 * TTI::TCC_Basic;
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
 | 
						|
                                                const APInt &Imm, Type *Ty,
 | 
						|
                                                TTI::TargetCostKind CostKind) {
 | 
						|
  if (DisablePPCConstHoist)
 | 
						|
    return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
 | 
						|
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0)
 | 
						|
    return ~0U;
 | 
						|
 | 
						|
  switch (IID) {
 | 
						|
  default:
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  case Intrinsic::sadd_with_overflow:
 | 
						|
  case Intrinsic::uadd_with_overflow:
 | 
						|
  case Intrinsic::ssub_with_overflow:
 | 
						|
  case Intrinsic::usub_with_overflow:
 | 
						|
    if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
    break;
 | 
						|
  case Intrinsic::experimental_stackmap:
 | 
						|
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
    break;
 | 
						|
  case Intrinsic::experimental_patchpoint_void:
 | 
						|
  case Intrinsic::experimental_patchpoint_i64:
 | 
						|
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
 | 
						|
                                              const APInt &Imm, Type *Ty,
 | 
						|
                                              TTI::TargetCostKind CostKind,
 | 
						|
                                              Instruction *Inst) {
 | 
						|
  if (DisablePPCConstHoist)
 | 
						|
    return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
 | 
						|
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0)
 | 
						|
    return ~0U;
 | 
						|
 | 
						|
  unsigned ImmIdx = ~0U;
 | 
						|
  bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
 | 
						|
       ZeroFree = false;
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    // Always hoist the base address of a GetElementPtr. This prevents the
 | 
						|
    // creation of new constants for every base constant that gets constant
 | 
						|
    // folded with the offset.
 | 
						|
    if (Idx == 0)
 | 
						|
      return 2 * TTI::TCC_Basic;
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  case Instruction::And:
 | 
						|
    RunFree = true; // (for the rotate-and-mask instructions)
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    ShiftedFree = true;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    ImmIdx = 1;
 | 
						|
    break;
 | 
						|
  case Instruction::ICmp:
 | 
						|
    UnsignedFree = true;
 | 
						|
    ImmIdx = 1;
 | 
						|
    // Zero comparisons can use record-form instructions.
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case Instruction::Select:
 | 
						|
    ZeroFree = true;
 | 
						|
    break;
 | 
						|
  case Instruction::PHI:
 | 
						|
  case Instruction::Call:
 | 
						|
  case Instruction::Ret:
 | 
						|
  case Instruction::Load:
 | 
						|
  case Instruction::Store:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ZeroFree && Imm == 0)
 | 
						|
    return TTI::TCC_Free;
 | 
						|
 | 
						|
  if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
 | 
						|
    if (isInt<16>(Imm.getSExtValue()))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
 | 
						|
    if (RunFree) {
 | 
						|
      if (Imm.getBitWidth() <= 32 &&
 | 
						|
          (isShiftedMask_32(Imm.getZExtValue()) ||
 | 
						|
           isShiftedMask_32(~Imm.getZExtValue())))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
 | 
						|
      if (ST->isPPC64() &&
 | 
						|
          (isShiftedMask_64(Imm.getZExtValue()) ||
 | 
						|
           isShiftedMask_64(~Imm.getZExtValue())))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
    }
 | 
						|
 | 
						|
    if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
 | 
						|
    if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
 | 
						|
      return TTI::TCC_Free;
 | 
						|
  }
 | 
						|
 | 
						|
  return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
 | 
						|
}
 | 
						|
 | 
						|
// Check if the current Type is an MMA vector type. Valid MMA types are
 | 
						|
// v256i1 and v512i1 respectively.
 | 
						|
static bool isMMAType(Type *Ty) {
 | 
						|
  return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
 | 
						|
         (Ty->getPrimitiveSizeInBits() > 128);
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getUserCost(const User *U,
 | 
						|
                                        ArrayRef<const Value *> Operands,
 | 
						|
                                        TTI::TargetCostKind CostKind) {
 | 
						|
  // We already implement getCastInstrCost and getMemoryOpCost where we perform
 | 
						|
  // the vector adjustment there.
 | 
						|
  if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
 | 
						|
    return BaseT::getUserCost(U, Operands, CostKind);
 | 
						|
 | 
						|
  if (U->getType()->isVectorTy()) {
 | 
						|
    // Instructions that need to be split should cost more.
 | 
						|
    std::pair<InstructionCost, MVT> LT =
 | 
						|
        TLI->getTypeLegalizationCost(DL, U->getType());
 | 
						|
    return LT.first * BaseT::getUserCost(U, Operands, CostKind);
 | 
						|
  }
 | 
						|
 | 
						|
  return BaseT::getUserCost(U, Operands, CostKind);
 | 
						|
}
 | 
						|
 | 
						|
// Determining the address of a TLS variable results in a function call in
 | 
						|
// certain TLS models.
 | 
						|
static bool memAddrUsesCTR(const Value *MemAddr, const PPCTargetMachine &TM,
 | 
						|
                           SmallPtrSetImpl<const Value *> &Visited) {
 | 
						|
  // No need to traverse again if we already checked this operand.
 | 
						|
  if (!Visited.insert(MemAddr).second)
 | 
						|
    return false;
 | 
						|
  const auto *GV = dyn_cast<GlobalValue>(MemAddr);
 | 
						|
  if (!GV) {
 | 
						|
    // Recurse to check for constants that refer to TLS global variables.
 | 
						|
    if (const auto *CV = dyn_cast<Constant>(MemAddr))
 | 
						|
      for (const auto &CO : CV->operands())
 | 
						|
        if (memAddrUsesCTR(CO, TM, Visited))
 | 
						|
          return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!GV->isThreadLocal())
 | 
						|
    return false;
 | 
						|
  TLSModel::Model Model = TM.getTLSModel(GV);
 | 
						|
  return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo,
 | 
						|
                             SmallPtrSetImpl<const Value *> &Visited) {
 | 
						|
  const PPCTargetMachine &TM = ST->getTargetMachine();
 | 
						|
 | 
						|
  // Loop through the inline asm constraints and look for something that
 | 
						|
  // clobbers ctr.
 | 
						|
  auto asmClobbersCTR = [](InlineAsm *IA) {
 | 
						|
    InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
 | 
						|
    for (const InlineAsm::ConstraintInfo &C : CIV) {
 | 
						|
      if (C.Type != InlineAsm::isInput)
 | 
						|
        for (const auto &Code : C.Codes)
 | 
						|
          if (StringRef(Code).equals_insensitive("{ctr}"))
 | 
						|
            return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
 | 
						|
    if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
 | 
						|
      return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  auto supportedHalfPrecisionOp = [](Instruction *Inst) {
 | 
						|
    switch (Inst->getOpcode()) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::Load:
 | 
						|
    case Instruction::Store:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
 | 
						|
       J != JE; ++J) {
 | 
						|
    // There are no direct operations on half precision so assume that
 | 
						|
    // anything with that type requires a call except for a few select
 | 
						|
    // operations with Power9.
 | 
						|
    if (Instruction *CurrInst = dyn_cast<Instruction>(J)) {
 | 
						|
      for (const auto &Op : CurrInst->operands()) {
 | 
						|
        if (Op->getType()->getScalarType()->isHalfTy() ||
 | 
						|
            CurrInst->getType()->getScalarType()->isHalfTy())
 | 
						|
          return !(ST->isISA3_0() && supportedHalfPrecisionOp(CurrInst));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(J)) {
 | 
						|
      // Inline ASM is okay, unless it clobbers the ctr register.
 | 
						|
      if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) {
 | 
						|
        if (asmClobbersCTR(IA))
 | 
						|
          return true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Function *F = CI->getCalledFunction()) {
 | 
						|
        // Most intrinsics don't become function calls, but some might.
 | 
						|
        // sin, cos, exp and log are always calls.
 | 
						|
        unsigned Opcode = 0;
 | 
						|
        if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
 | 
						|
          switch (F->getIntrinsicID()) {
 | 
						|
          default: continue;
 | 
						|
          // If we have a call to loop_decrement or set_loop_iterations,
 | 
						|
          // we're definitely using CTR.
 | 
						|
          case Intrinsic::set_loop_iterations:
 | 
						|
          case Intrinsic::loop_decrement:
 | 
						|
            return true;
 | 
						|
 | 
						|
          // Binary operations on 128-bit value will use CTR.
 | 
						|
          case Intrinsic::experimental_constrained_fadd:
 | 
						|
          case Intrinsic::experimental_constrained_fsub:
 | 
						|
          case Intrinsic::experimental_constrained_fmul:
 | 
						|
          case Intrinsic::experimental_constrained_fdiv:
 | 
						|
          case Intrinsic::experimental_constrained_frem:
 | 
						|
            if (F->getType()->getScalarType()->isFP128Ty() ||
 | 
						|
                F->getType()->getScalarType()->isPPC_FP128Ty())
 | 
						|
              return true;
 | 
						|
            break;
 | 
						|
 | 
						|
          case Intrinsic::experimental_constrained_fptosi:
 | 
						|
          case Intrinsic::experimental_constrained_fptoui:
 | 
						|
          case Intrinsic::experimental_constrained_sitofp:
 | 
						|
          case Intrinsic::experimental_constrained_uitofp: {
 | 
						|
            Type *SrcType = CI->getArgOperand(0)->getType()->getScalarType();
 | 
						|
            Type *DstType = CI->getType()->getScalarType();
 | 
						|
            if (SrcType->isPPC_FP128Ty() || DstType->isPPC_FP128Ty() ||
 | 
						|
                isLargeIntegerTy(!TM.isPPC64(), SrcType) ||
 | 
						|
                isLargeIntegerTy(!TM.isPPC64(), DstType))
 | 
						|
              return true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
 | 
						|
          // because, although it does clobber the counter register, the
 | 
						|
          // control can't then return to inside the loop unless there is also
 | 
						|
          // an eh_sjlj_setjmp.
 | 
						|
          case Intrinsic::eh_sjlj_setjmp:
 | 
						|
 | 
						|
          case Intrinsic::memcpy:
 | 
						|
          case Intrinsic::memmove:
 | 
						|
          case Intrinsic::memset:
 | 
						|
          case Intrinsic::powi:
 | 
						|
          case Intrinsic::log:
 | 
						|
          case Intrinsic::log2:
 | 
						|
          case Intrinsic::log10:
 | 
						|
          case Intrinsic::exp:
 | 
						|
          case Intrinsic::exp2:
 | 
						|
          case Intrinsic::pow:
 | 
						|
          case Intrinsic::sin:
 | 
						|
          case Intrinsic::cos:
 | 
						|
          case Intrinsic::experimental_constrained_powi:
 | 
						|
          case Intrinsic::experimental_constrained_log:
 | 
						|
          case Intrinsic::experimental_constrained_log2:
 | 
						|
          case Intrinsic::experimental_constrained_log10:
 | 
						|
          case Intrinsic::experimental_constrained_exp:
 | 
						|
          case Intrinsic::experimental_constrained_exp2:
 | 
						|
          case Intrinsic::experimental_constrained_pow:
 | 
						|
          case Intrinsic::experimental_constrained_sin:
 | 
						|
          case Intrinsic::experimental_constrained_cos:
 | 
						|
            return true;
 | 
						|
          case Intrinsic::copysign:
 | 
						|
            if (CI->getArgOperand(0)->getType()->getScalarType()->
 | 
						|
                isPPC_FP128Ty())
 | 
						|
              return true;
 | 
						|
            else
 | 
						|
              continue; // ISD::FCOPYSIGN is never a library call.
 | 
						|
          case Intrinsic::fmuladd:
 | 
						|
          case Intrinsic::fma:                Opcode = ISD::FMA;        break;
 | 
						|
          case Intrinsic::sqrt:               Opcode = ISD::FSQRT;      break;
 | 
						|
          case Intrinsic::floor:              Opcode = ISD::FFLOOR;     break;
 | 
						|
          case Intrinsic::ceil:               Opcode = ISD::FCEIL;      break;
 | 
						|
          case Intrinsic::trunc:              Opcode = ISD::FTRUNC;     break;
 | 
						|
          case Intrinsic::rint:               Opcode = ISD::FRINT;      break;
 | 
						|
          case Intrinsic::lrint:              Opcode = ISD::LRINT;      break;
 | 
						|
          case Intrinsic::llrint:             Opcode = ISD::LLRINT;     break;
 | 
						|
          case Intrinsic::nearbyint:          Opcode = ISD::FNEARBYINT; break;
 | 
						|
          case Intrinsic::round:              Opcode = ISD::FROUND;     break;
 | 
						|
          case Intrinsic::lround:             Opcode = ISD::LROUND;     break;
 | 
						|
          case Intrinsic::llround:            Opcode = ISD::LLROUND;    break;
 | 
						|
          case Intrinsic::minnum:             Opcode = ISD::FMINNUM;    break;
 | 
						|
          case Intrinsic::maxnum:             Opcode = ISD::FMAXNUM;    break;
 | 
						|
          case Intrinsic::experimental_constrained_fcmp:
 | 
						|
            Opcode = ISD::STRICT_FSETCC;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_fcmps:
 | 
						|
            Opcode = ISD::STRICT_FSETCCS;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_fma:
 | 
						|
            Opcode = ISD::STRICT_FMA;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_sqrt:
 | 
						|
            Opcode = ISD::STRICT_FSQRT;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_floor:
 | 
						|
            Opcode = ISD::STRICT_FFLOOR;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_ceil:
 | 
						|
            Opcode = ISD::STRICT_FCEIL;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_trunc:
 | 
						|
            Opcode = ISD::STRICT_FTRUNC;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_rint:
 | 
						|
            Opcode = ISD::STRICT_FRINT;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_lrint:
 | 
						|
            Opcode = ISD::STRICT_LRINT;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_llrint:
 | 
						|
            Opcode = ISD::STRICT_LLRINT;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_nearbyint:
 | 
						|
            Opcode = ISD::STRICT_FNEARBYINT;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_round:
 | 
						|
            Opcode = ISD::STRICT_FROUND;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_lround:
 | 
						|
            Opcode = ISD::STRICT_LROUND;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_llround:
 | 
						|
            Opcode = ISD::STRICT_LLROUND;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_minnum:
 | 
						|
            Opcode = ISD::STRICT_FMINNUM;
 | 
						|
            break;
 | 
						|
          case Intrinsic::experimental_constrained_maxnum:
 | 
						|
            Opcode = ISD::STRICT_FMAXNUM;
 | 
						|
            break;
 | 
						|
          case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO;      break;
 | 
						|
          case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO;      break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // PowerPC does not use [US]DIVREM or other library calls for
 | 
						|
        // operations on regular types which are not otherwise library calls
 | 
						|
        // (i.e. soft float or atomics). If adapting for targets that do,
 | 
						|
        // additional care is required here.
 | 
						|
 | 
						|
        LibFunc Func;
 | 
						|
        if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
 | 
						|
            LibInfo->getLibFunc(F->getName(), Func) &&
 | 
						|
            LibInfo->hasOptimizedCodeGen(Func)) {
 | 
						|
          // Non-read-only functions are never treated as intrinsics.
 | 
						|
          if (!CI->onlyReadsMemory())
 | 
						|
            return true;
 | 
						|
 | 
						|
          // Conversion happens only for FP calls.
 | 
						|
          if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
 | 
						|
            return true;
 | 
						|
 | 
						|
          switch (Func) {
 | 
						|
          default: return true;
 | 
						|
          case LibFunc_copysign:
 | 
						|
          case LibFunc_copysignf:
 | 
						|
            continue; // ISD::FCOPYSIGN is never a library call.
 | 
						|
          case LibFunc_copysignl:
 | 
						|
            return true;
 | 
						|
          case LibFunc_fabs:
 | 
						|
          case LibFunc_fabsf:
 | 
						|
          case LibFunc_fabsl:
 | 
						|
            continue; // ISD::FABS is never a library call.
 | 
						|
          case LibFunc_sqrt:
 | 
						|
          case LibFunc_sqrtf:
 | 
						|
          case LibFunc_sqrtl:
 | 
						|
            Opcode = ISD::FSQRT; break;
 | 
						|
          case LibFunc_floor:
 | 
						|
          case LibFunc_floorf:
 | 
						|
          case LibFunc_floorl:
 | 
						|
            Opcode = ISD::FFLOOR; break;
 | 
						|
          case LibFunc_nearbyint:
 | 
						|
          case LibFunc_nearbyintf:
 | 
						|
          case LibFunc_nearbyintl:
 | 
						|
            Opcode = ISD::FNEARBYINT; break;
 | 
						|
          case LibFunc_ceil:
 | 
						|
          case LibFunc_ceilf:
 | 
						|
          case LibFunc_ceill:
 | 
						|
            Opcode = ISD::FCEIL; break;
 | 
						|
          case LibFunc_rint:
 | 
						|
          case LibFunc_rintf:
 | 
						|
          case LibFunc_rintl:
 | 
						|
            Opcode = ISD::FRINT; break;
 | 
						|
          case LibFunc_round:
 | 
						|
          case LibFunc_roundf:
 | 
						|
          case LibFunc_roundl:
 | 
						|
            Opcode = ISD::FROUND; break;
 | 
						|
          case LibFunc_trunc:
 | 
						|
          case LibFunc_truncf:
 | 
						|
          case LibFunc_truncl:
 | 
						|
            Opcode = ISD::FTRUNC; break;
 | 
						|
          case LibFunc_fmin:
 | 
						|
          case LibFunc_fminf:
 | 
						|
          case LibFunc_fminl:
 | 
						|
            Opcode = ISD::FMINNUM; break;
 | 
						|
          case LibFunc_fmax:
 | 
						|
          case LibFunc_fmaxf:
 | 
						|
          case LibFunc_fmaxl:
 | 
						|
            Opcode = ISD::FMAXNUM; break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (Opcode) {
 | 
						|
          EVT EVTy =
 | 
						|
              TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
 | 
						|
 | 
						|
          if (EVTy == MVT::Other)
 | 
						|
            return true;
 | 
						|
 | 
						|
          if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
 | 
						|
            continue;
 | 
						|
          else if (EVTy.isVector() &&
 | 
						|
                   TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
 | 
						|
            continue;
 | 
						|
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return true;
 | 
						|
    } else if ((J->getType()->getScalarType()->isFP128Ty() ||
 | 
						|
                J->getType()->getScalarType()->isPPC_FP128Ty())) {
 | 
						|
      // Most operations on f128 or ppc_f128 values become calls.
 | 
						|
      return true;
 | 
						|
    } else if (isa<FCmpInst>(J) &&
 | 
						|
               J->getOperand(0)->getType()->getScalarType()->isFP128Ty()) {
 | 
						|
      return true;
 | 
						|
    } else if ((isa<FPTruncInst>(J) || isa<FPExtInst>(J)) &&
 | 
						|
               (cast<CastInst>(J)->getSrcTy()->getScalarType()->isFP128Ty() ||
 | 
						|
                cast<CastInst>(J)->getDestTy()->getScalarType()->isFP128Ty())) {
 | 
						|
      return true;
 | 
						|
    } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
 | 
						|
               isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
 | 
						|
      CastInst *CI = cast<CastInst>(J);
 | 
						|
      if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
 | 
						|
          CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
 | 
						|
          isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
 | 
						|
          isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
 | 
						|
        return true;
 | 
						|
    } else if (isLargeIntegerTy(!TM.isPPC64(),
 | 
						|
                                J->getType()->getScalarType()) &&
 | 
						|
               (J->getOpcode() == Instruction::UDiv ||
 | 
						|
                J->getOpcode() == Instruction::SDiv ||
 | 
						|
                J->getOpcode() == Instruction::URem ||
 | 
						|
                J->getOpcode() == Instruction::SRem)) {
 | 
						|
      return true;
 | 
						|
    } else if (!TM.isPPC64() &&
 | 
						|
               isLargeIntegerTy(false, J->getType()->getScalarType()) &&
 | 
						|
               (J->getOpcode() == Instruction::Shl ||
 | 
						|
                J->getOpcode() == Instruction::AShr ||
 | 
						|
                J->getOpcode() == Instruction::LShr)) {
 | 
						|
      // Only on PPC32, for 128-bit integers (specifically not 64-bit
 | 
						|
      // integers), these might be runtime calls.
 | 
						|
      return true;
 | 
						|
    } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
 | 
						|
      // On PowerPC, indirect jumps use the counter register.
 | 
						|
      return true;
 | 
						|
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
 | 
						|
      if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // FREM is always a call.
 | 
						|
    if (J->getOpcode() == Instruction::FRem)
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (ST->useSoftFloat()) {
 | 
						|
      switch(J->getOpcode()) {
 | 
						|
      case Instruction::FAdd:
 | 
						|
      case Instruction::FSub:
 | 
						|
      case Instruction::FMul:
 | 
						|
      case Instruction::FDiv:
 | 
						|
      case Instruction::FPTrunc:
 | 
						|
      case Instruction::FPExt:
 | 
						|
      case Instruction::FPToUI:
 | 
						|
      case Instruction::FPToSI:
 | 
						|
      case Instruction::UIToFP:
 | 
						|
      case Instruction::SIToFP:
 | 
						|
      case Instruction::FCmp:
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (Value *Operand : J->operands())
 | 
						|
      if (memAddrUsesCTR(Operand, TM, Visited))
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
 | 
						|
                                          AssumptionCache &AC,
 | 
						|
                                          TargetLibraryInfo *LibInfo,
 | 
						|
                                          HardwareLoopInfo &HWLoopInfo) {
 | 
						|
  const PPCTargetMachine &TM = ST->getTargetMachine();
 | 
						|
  TargetSchedModel SchedModel;
 | 
						|
  SchedModel.init(ST);
 | 
						|
 | 
						|
  // Do not convert small short loops to CTR loop.
 | 
						|
  unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
 | 
						|
  if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
 | 
						|
    SmallPtrSet<const Value *, 32> EphValues;
 | 
						|
    CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
 | 
						|
    CodeMetrics Metrics;
 | 
						|
    for (BasicBlock *BB : L->blocks())
 | 
						|
      Metrics.analyzeBasicBlock(BB, *this, EphValues);
 | 
						|
    // 6 is an approximate latency for the mtctr instruction.
 | 
						|
    if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't want to spill/restore the counter register, and so we don't
 | 
						|
  // want to use the counter register if the loop contains calls.
 | 
						|
  SmallPtrSet<const Value *, 4> Visited;
 | 
						|
  for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
 | 
						|
       I != IE; ++I)
 | 
						|
    if (mightUseCTR(*I, LibInfo, Visited))
 | 
						|
      return false;
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 4> ExitingBlocks;
 | 
						|
  L->getExitingBlocks(ExitingBlocks);
 | 
						|
 | 
						|
  // If there is an exit edge known to be frequently taken,
 | 
						|
  // we should not transform this loop.
 | 
						|
  for (auto &BB : ExitingBlocks) {
 | 
						|
    Instruction *TI = BB->getTerminator();
 | 
						|
    if (!TI) continue;
 | 
						|
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
      uint64_t TrueWeight = 0, FalseWeight = 0;
 | 
						|
      if (!BI->isConditional() ||
 | 
						|
          !BI->extractProfMetadata(TrueWeight, FalseWeight))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the exit path is more frequent than the loop path,
 | 
						|
      // we return here without further analysis for this loop.
 | 
						|
      bool TrueIsExit = !L->contains(BI->getSuccessor(0));
 | 
						|
      if (( TrueIsExit && FalseWeight < TrueWeight) ||
 | 
						|
          (!TrueIsExit && FalseWeight > TrueWeight))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If an exit block has a PHI that accesses a TLS variable as one of the
 | 
						|
  // incoming values from the loop, we cannot produce a CTR loop because the
 | 
						|
  // address for that value will be computed in the loop.
 | 
						|
  SmallVector<BasicBlock *, 4> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
  for (auto &BB : ExitBlocks) {
 | 
						|
    for (auto &PHI : BB->phis()) {
 | 
						|
      for (int Idx = 0, EndIdx = PHI.getNumIncomingValues(); Idx < EndIdx;
 | 
						|
           Idx++) {
 | 
						|
        const BasicBlock *IncomingBB = PHI.getIncomingBlock(Idx);
 | 
						|
        const Value *IncomingValue = PHI.getIncomingValue(Idx);
 | 
						|
        if (L->contains(IncomingBB) &&
 | 
						|
            memAddrUsesCTR(IncomingValue, TM, Visited))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVMContext &C = L->getHeader()->getContext();
 | 
						|
  HWLoopInfo.CountType = TM.isPPC64() ?
 | 
						|
    Type::getInt64Ty(C) : Type::getInt32Ty(C);
 | 
						|
  HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
 | 
						|
                                         TTI::UnrollingPreferences &UP,
 | 
						|
                                         OptimizationRemarkEmitter *ORE) {
 | 
						|
  if (ST->getCPUDirective() == PPC::DIR_A2) {
 | 
						|
    // The A2 is in-order with a deep pipeline, and concatenation unrolling
 | 
						|
    // helps expose latency-hiding opportunities to the instruction scheduler.
 | 
						|
    UP.Partial = UP.Runtime = true;
 | 
						|
 | 
						|
    // We unroll a lot on the A2 (hundreds of instructions), and the benefits
 | 
						|
    // often outweigh the cost of a division to compute the trip count.
 | 
						|
    UP.AllowExpensiveTripCount = true;
 | 
						|
  }
 | 
						|
 | 
						|
  BaseT::getUnrollingPreferences(L, SE, UP, ORE);
 | 
						|
}
 | 
						|
 | 
						|
void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
 | 
						|
                                       TTI::PeelingPreferences &PP) {
 | 
						|
  BaseT::getPeelingPreferences(L, SE, PP);
 | 
						|
}
 | 
						|
// This function returns true to allow using coldcc calling convention.
 | 
						|
// Returning true results in coldcc being used for functions which are cold at
 | 
						|
// all call sites when the callers of the functions are not calling any other
 | 
						|
// non coldcc functions.
 | 
						|
bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
 | 
						|
  return EnablePPCColdCC;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
 | 
						|
  // On the A2, always unroll aggressively.
 | 
						|
  if (ST->getCPUDirective() == PPC::DIR_A2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return LoopHasReductions;
 | 
						|
}
 | 
						|
 | 
						|
PPCTTIImpl::TTI::MemCmpExpansionOptions
 | 
						|
PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
 | 
						|
  TTI::MemCmpExpansionOptions Options;
 | 
						|
  Options.LoadSizes = {8, 4, 2, 1};
 | 
						|
  Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
 | 
						|
  return Options;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::enableInterleavedAccessVectorization() {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
 | 
						|
  assert(ClassID == GPRRC || ClassID == FPRRC ||
 | 
						|
         ClassID == VRRC || ClassID == VSXRC);
 | 
						|
  if (ST->hasVSX()) {
 | 
						|
    assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
 | 
						|
    return ClassID == VSXRC ? 64 : 32;
 | 
						|
  }
 | 
						|
  assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
 | 
						|
  return 32;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
 | 
						|
  if (Vector)
 | 
						|
    return ST->hasVSX() ? VSXRC : VRRC;
 | 
						|
  else if (Ty && (Ty->getScalarType()->isFloatTy() ||
 | 
						|
                  Ty->getScalarType()->isDoubleTy()))
 | 
						|
    return ST->hasVSX() ? VSXRC : FPRRC;
 | 
						|
  else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
 | 
						|
                  Ty->getScalarType()->isPPC_FP128Ty()))
 | 
						|
    return VRRC;
 | 
						|
  else if (Ty && Ty->getScalarType()->isHalfTy())
 | 
						|
    return VSXRC;
 | 
						|
  else
 | 
						|
    return GPRRC;
 | 
						|
}
 | 
						|
 | 
						|
const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
 | 
						|
 | 
						|
  switch (ClassID) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("unknown register class");
 | 
						|
      return "PPC::unknown register class";
 | 
						|
    case GPRRC:       return "PPC::GPRRC";
 | 
						|
    case FPRRC:       return "PPC::FPRRC";
 | 
						|
    case VRRC:        return "PPC::VRRC";
 | 
						|
    case VSXRC:       return "PPC::VSXRC";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TypeSize
 | 
						|
PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
 | 
						|
  switch (K) {
 | 
						|
  case TargetTransformInfo::RGK_Scalar:
 | 
						|
    return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
 | 
						|
  case TargetTransformInfo::RGK_FixedWidthVector:
 | 
						|
    return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
 | 
						|
  case TargetTransformInfo::RGK_ScalableVector:
 | 
						|
    return TypeSize::getScalable(0);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Unsupported register kind");
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getCacheLineSize() const {
 | 
						|
  // Starting with P7 we have a cache line size of 128.
 | 
						|
  unsigned Directive = ST->getCPUDirective();
 | 
						|
  // Assume that Future CPU has the same cache line size as the others.
 | 
						|
  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
 | 
						|
      Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
 | 
						|
      Directive == PPC::DIR_PWR_FUTURE)
 | 
						|
    return 128;
 | 
						|
 | 
						|
  // On other processors return a default of 64 bytes.
 | 
						|
  return 64;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getPrefetchDistance() const {
 | 
						|
  return 300;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
 | 
						|
  unsigned Directive = ST->getCPUDirective();
 | 
						|
  // The 440 has no SIMD support, but floating-point instructions
 | 
						|
  // have a 5-cycle latency, so unroll by 5x for latency hiding.
 | 
						|
  if (Directive == PPC::DIR_440)
 | 
						|
    return 5;
 | 
						|
 | 
						|
  // The A2 has no SIMD support, but floating-point instructions
 | 
						|
  // have a 6-cycle latency, so unroll by 6x for latency hiding.
 | 
						|
  if (Directive == PPC::DIR_A2)
 | 
						|
    return 6;
 | 
						|
 | 
						|
  // FIXME: For lack of any better information, do no harm...
 | 
						|
  if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
 | 
						|
    return 1;
 | 
						|
 | 
						|
  // For P7 and P8, floating-point instructions have a 6-cycle latency and
 | 
						|
  // there are two execution units, so unroll by 12x for latency hiding.
 | 
						|
  // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
 | 
						|
  // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
 | 
						|
  // Assume that future is the same as the others.
 | 
						|
  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
 | 
						|
      Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
 | 
						|
      Directive == PPC::DIR_PWR_FUTURE)
 | 
						|
    return 12;
 | 
						|
 | 
						|
  // For most things, modern systems have two execution units (and
 | 
						|
  // out-of-order execution).
 | 
						|
  return 2;
 | 
						|
}
 | 
						|
 | 
						|
// Returns a cost adjustment factor to adjust the cost of vector instructions
 | 
						|
// on targets which there is overlap between the vector and scalar units,
 | 
						|
// thereby reducing the overall throughput of vector code wrt. scalar code.
 | 
						|
// An invalid instruction cost is returned if the type is an MMA vector type.
 | 
						|
InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
 | 
						|
                                                       Type *Ty1, Type *Ty2) {
 | 
						|
  // If the vector type is of an MMA type (v256i1, v512i1), an invalid
 | 
						|
  // instruction cost is returned. This is to signify to other cost computing
 | 
						|
  // functions to return the maximum instruction cost in order to prevent any
 | 
						|
  // opportunities for the optimizer to produce MMA types within the IR.
 | 
						|
  if (isMMAType(Ty1))
 | 
						|
    return InstructionCost::getInvalid();
 | 
						|
 | 
						|
  if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
 | 
						|
    return InstructionCost(1);
 | 
						|
 | 
						|
  std::pair<InstructionCost, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
 | 
						|
  // If type legalization involves splitting the vector, we don't want to
 | 
						|
  // double the cost at every step - only the last step.
 | 
						|
  if (LT1.first != 1 || !LT1.second.isVector())
 | 
						|
    return InstructionCost(1);
 | 
						|
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  if (TLI->isOperationExpand(ISD, LT1.second))
 | 
						|
    return InstructionCost(1);
 | 
						|
 | 
						|
  if (Ty2) {
 | 
						|
    std::pair<InstructionCost, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
 | 
						|
    if (LT2.first != 1 || !LT2.second.isVector())
 | 
						|
      return InstructionCost(1);
 | 
						|
  }
 | 
						|
 | 
						|
  return InstructionCost(2);
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getArithmeticInstrCost(
 | 
						|
    unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
 | 
						|
    TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
 | 
						|
    TTI::OperandValueProperties Opd1PropInfo,
 | 
						|
    TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
 | 
						|
    const Instruction *CxtI) {
 | 
						|
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
 | 
						|
 | 
						|
  InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
 | 
						|
  if (!CostFactor.isValid())
 | 
						|
    return InstructionCost::getMax();
 | 
						|
 | 
						|
  // TODO: Handle more cost kinds.
 | 
						|
  if (CostKind != TTI::TCK_RecipThroughput)
 | 
						|
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
 | 
						|
                                         Op2Info, Opd1PropInfo,
 | 
						|
                                         Opd2PropInfo, Args, CxtI);
 | 
						|
 | 
						|
  // Fallback to the default implementation.
 | 
						|
  InstructionCost Cost = BaseT::getArithmeticInstrCost(
 | 
						|
      Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
 | 
						|
  return Cost * CostFactor;
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
 | 
						|
                                           ArrayRef<int> Mask, int Index,
 | 
						|
                                           Type *SubTp,
 | 
						|
                                           ArrayRef<const Value *> Args) {
 | 
						|
 | 
						|
  InstructionCost CostFactor =
 | 
						|
      vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
 | 
						|
  if (!CostFactor.isValid())
 | 
						|
    return InstructionCost::getMax();
 | 
						|
 | 
						|
  // Legalize the type.
 | 
						|
  std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
 | 
						|
 | 
						|
  // PPC, for both Altivec/VSX, support cheap arbitrary permutations
 | 
						|
  // (at least in the sense that there need only be one non-loop-invariant
 | 
						|
  // instruction). We need one such shuffle instruction for each actual
 | 
						|
  // register (this is not true for arbitrary shuffles, but is true for the
 | 
						|
  // structured types of shuffles covered by TTI::ShuffleKind).
 | 
						|
  return LT.first * CostFactor;
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
 | 
						|
                                           TTI::TargetCostKind CostKind,
 | 
						|
                                           const Instruction *I) {
 | 
						|
  if (CostKind != TTI::TCK_RecipThroughput)
 | 
						|
    return Opcode == Instruction::PHI ? 0 : 1;
 | 
						|
  // Branches are assumed to be predicted.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
 | 
						|
                                             Type *Src,
 | 
						|
                                             TTI::CastContextHint CCH,
 | 
						|
                                             TTI::TargetCostKind CostKind,
 | 
						|
                                             const Instruction *I) {
 | 
						|
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
 | 
						|
 | 
						|
  InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
 | 
						|
  if (!CostFactor.isValid())
 | 
						|
    return InstructionCost::getMax();
 | 
						|
 | 
						|
  InstructionCost Cost =
 | 
						|
      BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
 | 
						|
  Cost *= CostFactor;
 | 
						|
  // TODO: Allow non-throughput costs that aren't binary.
 | 
						|
  if (CostKind != TTI::TCK_RecipThroughput)
 | 
						|
    return Cost == 0 ? 0 : 1;
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | 
						|
                                               Type *CondTy,
 | 
						|
                                               CmpInst::Predicate VecPred,
 | 
						|
                                               TTI::TargetCostKind CostKind,
 | 
						|
                                               const Instruction *I) {
 | 
						|
  InstructionCost CostFactor =
 | 
						|
      vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
 | 
						|
  if (!CostFactor.isValid())
 | 
						|
    return InstructionCost::getMax();
 | 
						|
 | 
						|
  InstructionCost Cost =
 | 
						|
      BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
 | 
						|
  // TODO: Handle other cost kinds.
 | 
						|
  if (CostKind != TTI::TCK_RecipThroughput)
 | 
						|
    return Cost;
 | 
						|
  return Cost * CostFactor;
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
 | 
						|
                                               unsigned Index) {
 | 
						|
  assert(Val->isVectorTy() && "This must be a vector type");
 | 
						|
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
 | 
						|
  if (!CostFactor.isValid())
 | 
						|
    return InstructionCost::getMax();
 | 
						|
 | 
						|
  InstructionCost Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
 | 
						|
  Cost *= CostFactor;
 | 
						|
 | 
						|
  if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
 | 
						|
    // Double-precision scalars are already located in index #0 (or #1 if LE).
 | 
						|
    if (ISD == ISD::EXTRACT_VECTOR_ELT &&
 | 
						|
        Index == (ST->isLittleEndian() ? 1 : 0))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    return Cost;
 | 
						|
 | 
						|
  } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
 | 
						|
    if (ST->hasP9Altivec()) {
 | 
						|
      if (ISD == ISD::INSERT_VECTOR_ELT)
 | 
						|
        // A move-to VSR and a permute/insert.  Assume vector operation cost
 | 
						|
        // for both (cost will be 2x on P9).
 | 
						|
        return 2 * CostFactor;
 | 
						|
 | 
						|
      // It's an extract.  Maybe we can do a cheap move-from VSR.
 | 
						|
      unsigned EltSize = Val->getScalarSizeInBits();
 | 
						|
      if (EltSize == 64) {
 | 
						|
        unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
 | 
						|
        if (Index == MfvsrdIndex)
 | 
						|
          return 1;
 | 
						|
      } else if (EltSize == 32) {
 | 
						|
        unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
 | 
						|
        if (Index == MfvsrwzIndex)
 | 
						|
          return 1;
 | 
						|
      }
 | 
						|
 | 
						|
      // We need a vector extract (or mfvsrld).  Assume vector operation cost.
 | 
						|
      // The cost of the load constant for a vector extract is disregarded
 | 
						|
      // (invariant, easily schedulable).
 | 
						|
      return CostFactor;
 | 
						|
 | 
						|
    } else if (ST->hasDirectMove())
 | 
						|
      // Assume permute has standard cost.
 | 
						|
      // Assume move-to/move-from VSR have 2x standard cost.
 | 
						|
      return 3;
 | 
						|
  }
 | 
						|
 | 
						|
  // Estimated cost of a load-hit-store delay.  This was obtained
 | 
						|
  // experimentally as a minimum needed to prevent unprofitable
 | 
						|
  // vectorization for the paq8p benchmark.  It may need to be
 | 
						|
  // raised further if other unprofitable cases remain.
 | 
						|
  unsigned LHSPenalty = 2;
 | 
						|
  if (ISD == ISD::INSERT_VECTOR_ELT)
 | 
						|
    LHSPenalty += 7;
 | 
						|
 | 
						|
  // Vector element insert/extract with Altivec is very expensive,
 | 
						|
  // because they require store and reload with the attendant
 | 
						|
  // processor stall for load-hit-store.  Until VSX is available,
 | 
						|
  // these need to be estimated as very costly.
 | 
						|
  if (ISD == ISD::EXTRACT_VECTOR_ELT ||
 | 
						|
      ISD == ISD::INSERT_VECTOR_ELT)
 | 
						|
    return LHSPenalty + Cost;
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
 | 
						|
                                            MaybeAlign Alignment,
 | 
						|
                                            unsigned AddressSpace,
 | 
						|
                                            TTI::TargetCostKind CostKind,
 | 
						|
                                            const Instruction *I) {
 | 
						|
 | 
						|
  InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
 | 
						|
  if (!CostFactor.isValid())
 | 
						|
    return InstructionCost::getMax();
 | 
						|
 | 
						|
  if (TLI->getValueType(DL, Src,  true) == MVT::Other)
 | 
						|
    return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
 | 
						|
                                  CostKind);
 | 
						|
  // Legalize the type.
 | 
						|
  std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
 | 
						|
  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
 | 
						|
         "Invalid Opcode");
 | 
						|
 | 
						|
  InstructionCost Cost =
 | 
						|
      BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
 | 
						|
  // TODO: Handle other cost kinds.
 | 
						|
  if (CostKind != TTI::TCK_RecipThroughput)
 | 
						|
    return Cost;
 | 
						|
 | 
						|
  Cost *= CostFactor;
 | 
						|
 | 
						|
  bool IsAltivecType = ST->hasAltivec() &&
 | 
						|
                       (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
 | 
						|
                        LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
 | 
						|
  bool IsVSXType = ST->hasVSX() &&
 | 
						|
                   (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
 | 
						|
 | 
						|
  // VSX has 32b/64b load instructions. Legalization can handle loading of
 | 
						|
  // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
 | 
						|
  // PPCTargetLowering can't compute the cost appropriately. So here we
 | 
						|
  // explicitly check this case.
 | 
						|
  unsigned MemBytes = Src->getPrimitiveSizeInBits();
 | 
						|
  if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
 | 
						|
      (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
 | 
						|
    return 1;
 | 
						|
 | 
						|
  // Aligned loads and stores are easy.
 | 
						|
  unsigned SrcBytes = LT.second.getStoreSize();
 | 
						|
  if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
 | 
						|
    return Cost;
 | 
						|
 | 
						|
  // If we can use the permutation-based load sequence, then this is also
 | 
						|
  // relatively cheap (not counting loop-invariant instructions): one load plus
 | 
						|
  // one permute (the last load in a series has extra cost, but we're
 | 
						|
  // neglecting that here). Note that on the P7, we could do unaligned loads
 | 
						|
  // for Altivec types using the VSX instructions, but that's more expensive
 | 
						|
  // than using the permutation-based load sequence. On the P8, that's no
 | 
						|
  // longer true.
 | 
						|
  if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
 | 
						|
      *Alignment >= LT.second.getScalarType().getStoreSize())
 | 
						|
    return Cost + LT.first; // Add the cost of the permutations.
 | 
						|
 | 
						|
  // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
 | 
						|
  // P7, unaligned vector loads are more expensive than the permutation-based
 | 
						|
  // load sequence, so that might be used instead, but regardless, the net cost
 | 
						|
  // is about the same (not counting loop-invariant instructions).
 | 
						|
  if (IsVSXType || (ST->hasVSX() && IsAltivecType))
 | 
						|
    return Cost;
 | 
						|
 | 
						|
  // Newer PPC supports unaligned memory access.
 | 
						|
  if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
 | 
						|
    return Cost;
 | 
						|
 | 
						|
  // PPC in general does not support unaligned loads and stores. They'll need
 | 
						|
  // to be decomposed based on the alignment factor.
 | 
						|
 | 
						|
  // Add the cost of each scalar load or store.
 | 
						|
  assert(Alignment);
 | 
						|
  Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
 | 
						|
 | 
						|
  // For a vector type, there is also scalarization overhead (only for
 | 
						|
  // stores, loads are expanded using the vector-load + permutation sequence,
 | 
						|
  // which is much less expensive).
 | 
						|
  if (Src->isVectorTy() && Opcode == Instruction::Store)
 | 
						|
    for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
 | 
						|
         ++i)
 | 
						|
      Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
 | 
						|
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
 | 
						|
    Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
 | 
						|
    bool UseMaskForCond, bool UseMaskForGaps) {
 | 
						|
  InstructionCost CostFactor =
 | 
						|
      vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
 | 
						|
  if (!CostFactor.isValid())
 | 
						|
    return InstructionCost::getMax();
 | 
						|
 | 
						|
  if (UseMaskForCond || UseMaskForGaps)
 | 
						|
    return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | 
						|
                                             Alignment, AddressSpace, CostKind,
 | 
						|
                                             UseMaskForCond, UseMaskForGaps);
 | 
						|
 | 
						|
  assert(isa<VectorType>(VecTy) &&
 | 
						|
         "Expect a vector type for interleaved memory op");
 | 
						|
 | 
						|
  // Legalize the type.
 | 
						|
  std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
 | 
						|
 | 
						|
  // Firstly, the cost of load/store operation.
 | 
						|
  InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
 | 
						|
                                         AddressSpace, CostKind);
 | 
						|
 | 
						|
  // PPC, for both Altivec/VSX, support cheap arbitrary permutations
 | 
						|
  // (at least in the sense that there need only be one non-loop-invariant
 | 
						|
  // instruction). For each result vector, we need one shuffle per incoming
 | 
						|
  // vector (except that the first shuffle can take two incoming vectors
 | 
						|
  // because it does not need to take itself).
 | 
						|
  Cost += Factor*(LT.first-1);
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost
 | 
						|
PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
 | 
						|
                                  TTI::TargetCostKind CostKind) {
 | 
						|
  return BaseT::getIntrinsicInstrCost(ICA, CostKind);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::areTypesABICompatible(const Function *Caller,
 | 
						|
                                       const Function *Callee,
 | 
						|
                                       const ArrayRef<Type *> &Types) const {
 | 
						|
 | 
						|
  // We need to ensure that argument promotion does not
 | 
						|
  // attempt to promote pointers to MMA types (__vector_pair
 | 
						|
  // and __vector_quad) since these types explicitly cannot be
 | 
						|
  // passed as arguments. Both of these types are larger than
 | 
						|
  // the 128-bit Altivec vectors and have a scalar size of 1 bit.
 | 
						|
  if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return llvm::none_of(Types, [](Type *Ty) {
 | 
						|
    if (Ty->isSized())
 | 
						|
      return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128;
 | 
						|
    return false;
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
 | 
						|
                            LoopInfo *LI, DominatorTree *DT,
 | 
						|
                            AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
 | 
						|
  // Process nested loops first.
 | 
						|
  for (Loop *I : *L)
 | 
						|
    if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo))
 | 
						|
      return false; // Stop search.
 | 
						|
 | 
						|
  HardwareLoopInfo HWLoopInfo(L);
 | 
						|
 | 
						|
  if (!HWLoopInfo.canAnalyze(*LI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  *BI = HWLoopInfo.ExitBranch;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
 | 
						|
                               const TargetTransformInfo::LSRCost &C2) {
 | 
						|
  // PowerPC default behaviour here is "instruction number 1st priority".
 | 
						|
  // If LsrNoInsnsCost is set, call default implementation.
 | 
						|
  if (!LsrNoInsnsCost)
 | 
						|
    return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
 | 
						|
                    C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
 | 
						|
           std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
 | 
						|
                    C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
 | 
						|
  else
 | 
						|
    return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::shouldBuildRelLookupTables() const {
 | 
						|
  const PPCTargetMachine &TM = ST->getTargetMachine();
 | 
						|
  // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
 | 
						|
  if (!TM.isELFv2ABI())
 | 
						|
    return false;
 | 
						|
  return BaseT::shouldBuildRelLookupTables();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
 | 
						|
                                    MemIntrinsicInfo &Info) {
 | 
						|
  switch (Inst->getIntrinsicID()) {
 | 
						|
  case Intrinsic::ppc_altivec_lvx:
 | 
						|
  case Intrinsic::ppc_altivec_lvxl:
 | 
						|
  case Intrinsic::ppc_altivec_lvebx:
 | 
						|
  case Intrinsic::ppc_altivec_lvehx:
 | 
						|
  case Intrinsic::ppc_altivec_lvewx:
 | 
						|
  case Intrinsic::ppc_vsx_lxvd2x:
 | 
						|
  case Intrinsic::ppc_vsx_lxvw4x:
 | 
						|
  case Intrinsic::ppc_vsx_lxvd2x_be:
 | 
						|
  case Intrinsic::ppc_vsx_lxvw4x_be:
 | 
						|
  case Intrinsic::ppc_vsx_lxvl:
 | 
						|
  case Intrinsic::ppc_vsx_lxvll:
 | 
						|
  case Intrinsic::ppc_vsx_lxvp: {
 | 
						|
    Info.PtrVal = Inst->getArgOperand(0);
 | 
						|
    Info.ReadMem = true;
 | 
						|
    Info.WriteMem = false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::ppc_altivec_stvx:
 | 
						|
  case Intrinsic::ppc_altivec_stvxl:
 | 
						|
  case Intrinsic::ppc_altivec_stvebx:
 | 
						|
  case Intrinsic::ppc_altivec_stvehx:
 | 
						|
  case Intrinsic::ppc_altivec_stvewx:
 | 
						|
  case Intrinsic::ppc_vsx_stxvd2x:
 | 
						|
  case Intrinsic::ppc_vsx_stxvw4x:
 | 
						|
  case Intrinsic::ppc_vsx_stxvd2x_be:
 | 
						|
  case Intrinsic::ppc_vsx_stxvw4x_be:
 | 
						|
  case Intrinsic::ppc_vsx_stxvl:
 | 
						|
  case Intrinsic::ppc_vsx_stxvll:
 | 
						|
  case Intrinsic::ppc_vsx_stxvp: {
 | 
						|
    Info.PtrVal = Inst->getArgOperand(1);
 | 
						|
    Info.ReadMem = false;
 | 
						|
    Info.WriteMem = true;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
 | 
						|
                                       Align Alignment) const {
 | 
						|
  // Only load and stores instructions can have variable vector length on Power.
 | 
						|
  if (Opcode != Instruction::Load && Opcode != Instruction::Store)
 | 
						|
    return false;
 | 
						|
  // Loads/stores with length instructions use bits 0-7 of the GPR operand and
 | 
						|
  // therefore cannot be used in 32-bit mode.
 | 
						|
  if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
 | 
						|
    return false;
 | 
						|
  if (isa<FixedVectorType>(DataType)) {
 | 
						|
    unsigned VecWidth = DataType->getPrimitiveSizeInBits();
 | 
						|
    return VecWidth == 128;
 | 
						|
  }
 | 
						|
  Type *ScalarTy = DataType->getScalarType();
 | 
						|
 | 
						|
  if (ScalarTy->isPointerTy())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!ScalarTy->isIntegerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned IntWidth = ScalarTy->getIntegerBitWidth();
 | 
						|
  return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
 | 
						|
}
 | 
						|
 | 
						|
InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
 | 
						|
                                              Align Alignment,
 | 
						|
                                              unsigned AddressSpace,
 | 
						|
                                              TTI::TargetCostKind CostKind,
 | 
						|
                                              const Instruction *I) {
 | 
						|
  InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
 | 
						|
                                                  AddressSpace, CostKind, I);
 | 
						|
  if (TLI->getValueType(DL, Src, true) == MVT::Other)
 | 
						|
    return Cost;
 | 
						|
  // TODO: Handle other cost kinds.
 | 
						|
  if (CostKind != TTI::TCK_RecipThroughput)
 | 
						|
    return Cost;
 | 
						|
 | 
						|
  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
 | 
						|
         "Invalid Opcode");
 | 
						|
 | 
						|
  auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
 | 
						|
  assert(SrcVTy && "Expected a vector type for VP memory operations");
 | 
						|
 | 
						|
  if (hasActiveVectorLength(Opcode, Src, Alignment)) {
 | 
						|
    std::pair<InstructionCost, MVT> LT =
 | 
						|
        TLI->getTypeLegalizationCost(DL, SrcVTy);
 | 
						|
 | 
						|
    InstructionCost CostFactor =
 | 
						|
        vectorCostAdjustmentFactor(Opcode, Src, nullptr);
 | 
						|
    if (!CostFactor.isValid())
 | 
						|
      return InstructionCost::getMax();
 | 
						|
 | 
						|
    InstructionCost Cost = LT.first * CostFactor;
 | 
						|
    assert(Cost.isValid() && "Expected valid cost");
 | 
						|
 | 
						|
    // On P9 but not on P10, if the op is misaligned then it will cause a
 | 
						|
    // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
 | 
						|
    // ones.
 | 
						|
    const Align DesiredAlignment(16);
 | 
						|
    if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
 | 
						|
      return Cost;
 | 
						|
 | 
						|
    // Since alignment may be under estimated, we try to compute the probability
 | 
						|
    // that the actual address is aligned to the desired boundary. For example
 | 
						|
    // an 8-byte aligned load is assumed to be actually 16-byte aligned half the
 | 
						|
    // time, while a 4-byte aligned load has a 25% chance of being 16-byte
 | 
						|
    // aligned.
 | 
						|
    float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
 | 
						|
    float MisalignmentProb = 1.0 - AlignmentProb;
 | 
						|
    return (MisalignmentProb * P9PipelineFlushEstimate) +
 | 
						|
           (AlignmentProb * *Cost.getValue());
 | 
						|
  }
 | 
						|
 | 
						|
  // Usually we should not get to this point, but the following is an attempt to
 | 
						|
  // model the cost of legalization. Currently we can only lower intrinsics with
 | 
						|
  // evl but no mask, on Power 9/10. Otherwise, we must scalarize.
 | 
						|
  return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
 | 
						|
}
 |