3509 lines
		
	
	
		
			142 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3509 lines
		
	
	
		
			142 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- AddressSanitizer.cpp - memory error detector -----------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file is a part of AddressSanitizer, an address basic correctness
 | 
						|
// checker.
 | 
						|
// Details of the algorithm:
 | 
						|
//  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
 | 
						|
//
 | 
						|
// FIXME: This sanitizer does not yet handle scalable vectors
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/StackSafetyAnalysis.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/BinaryFormat/MachO.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Comdat.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DIBuilder.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/InstVisitor.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/MC/MCSectionMachO.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Instrumentation.h"
 | 
						|
#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
 | 
						|
#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
 | 
						|
#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/ModuleUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <iomanip>
 | 
						|
#include <limits>
 | 
						|
#include <sstream>
 | 
						|
#include <string>
 | 
						|
#include <tuple>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "asan"
 | 
						|
 | 
						|
static const uint64_t kDefaultShadowScale = 3;
 | 
						|
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
 | 
						|
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
 | 
						|
static const uint64_t kDynamicShadowSentinel =
 | 
						|
    std::numeric_limits<uint64_t>::max();
 | 
						|
static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
 | 
						|
static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
 | 
						|
static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
 | 
						|
static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
 | 
						|
static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
 | 
						|
static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
 | 
						|
static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
 | 
						|
static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
 | 
						|
static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000;
 | 
						|
static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
 | 
						|
static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
 | 
						|
static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
 | 
						|
static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
 | 
						|
static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
 | 
						|
static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
 | 
						|
static const uint64_t kPS_ShadowOffset64 = 1ULL << 40;
 | 
						|
static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
 | 
						|
static const uint64_t kEmscriptenShadowOffset = 0;
 | 
						|
 | 
						|
// The shadow memory space is dynamically allocated.
 | 
						|
static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
 | 
						|
 | 
						|
static const size_t kMinStackMallocSize = 1 << 6;   // 64B
 | 
						|
static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
 | 
						|
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
 | 
						|
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
 | 
						|
 | 
						|
const char kAsanModuleCtorName[] = "asan.module_ctor";
 | 
						|
const char kAsanModuleDtorName[] = "asan.module_dtor";
 | 
						|
static const uint64_t kAsanCtorAndDtorPriority = 1;
 | 
						|
// On Emscripten, the system needs more than one priorities for constructors.
 | 
						|
static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
 | 
						|
const char kAsanReportErrorTemplate[] = "__asan_report_";
 | 
						|
const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
 | 
						|
const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
 | 
						|
const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
 | 
						|
const char kAsanUnregisterImageGlobalsName[] =
 | 
						|
    "__asan_unregister_image_globals";
 | 
						|
const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
 | 
						|
const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
 | 
						|
const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
 | 
						|
const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
 | 
						|
const char kAsanInitName[] = "__asan_init";
 | 
						|
const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
 | 
						|
const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
 | 
						|
const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
 | 
						|
const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
 | 
						|
static const int kMaxAsanStackMallocSizeClass = 10;
 | 
						|
const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
 | 
						|
const char kAsanStackMallocAlwaysNameTemplate[] =
 | 
						|
    "__asan_stack_malloc_always_";
 | 
						|
const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
 | 
						|
const char kAsanGenPrefix[] = "___asan_gen_";
 | 
						|
const char kODRGenPrefix[] = "__odr_asan_gen_";
 | 
						|
const char kSanCovGenPrefix[] = "__sancov_gen_";
 | 
						|
const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
 | 
						|
const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
 | 
						|
const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
 | 
						|
 | 
						|
// ASan version script has __asan_* wildcard. Triple underscore prevents a
 | 
						|
// linker (gold) warning about attempting to export a local symbol.
 | 
						|
const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
 | 
						|
 | 
						|
const char kAsanOptionDetectUseAfterReturn[] =
 | 
						|
    "__asan_option_detect_stack_use_after_return";
 | 
						|
 | 
						|
const char kAsanShadowMemoryDynamicAddress[] =
 | 
						|
    "__asan_shadow_memory_dynamic_address";
 | 
						|
 | 
						|
const char kAsanAllocaPoison[] = "__asan_alloca_poison";
 | 
						|
const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
 | 
						|
 | 
						|
const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
 | 
						|
const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
 | 
						|
 | 
						|
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
 | 
						|
static const size_t kNumberOfAccessSizes = 5;
 | 
						|
 | 
						|
static const uint64_t kAllocaRzSize = 32;
 | 
						|
 | 
						|
// ASanAccessInfo implementation constants.
 | 
						|
constexpr size_t kCompileKernelShift = 0;
 | 
						|
constexpr size_t kCompileKernelMask = 0x1;
 | 
						|
constexpr size_t kAccessSizeIndexShift = 1;
 | 
						|
constexpr size_t kAccessSizeIndexMask = 0xf;
 | 
						|
constexpr size_t kIsWriteShift = 5;
 | 
						|
constexpr size_t kIsWriteMask = 0x1;
 | 
						|
 | 
						|
// Command-line flags.
 | 
						|
 | 
						|
static cl::opt<bool> ClEnableKasan(
 | 
						|
    "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
 | 
						|
    cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> ClRecover(
 | 
						|
    "asan-recover",
 | 
						|
    cl::desc("Enable recovery mode (continue-after-error)."),
 | 
						|
    cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> ClInsertVersionCheck(
 | 
						|
    "asan-guard-against-version-mismatch",
 | 
						|
    cl::desc("Guard against compiler/runtime version mismatch."),
 | 
						|
    cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
// This flag may need to be replaced with -f[no-]asan-reads.
 | 
						|
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
 | 
						|
                                       cl::desc("instrument read instructions"),
 | 
						|
                                       cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClInstrumentWrites(
 | 
						|
    "asan-instrument-writes", cl::desc("instrument write instructions"),
 | 
						|
    cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false),
 | 
						|
                     cl::Hidden, cl::desc("Use Stack Safety analysis results"),
 | 
						|
                     cl::Optional);
 | 
						|
 | 
						|
static cl::opt<bool> ClInstrumentAtomics(
 | 
						|
    "asan-instrument-atomics",
 | 
						|
    cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
 | 
						|
    cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    ClInstrumentByval("asan-instrument-byval",
 | 
						|
                      cl::desc("instrument byval call arguments"), cl::Hidden,
 | 
						|
                      cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClAlwaysSlowPath(
 | 
						|
    "asan-always-slow-path",
 | 
						|
    cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
 | 
						|
    cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> ClForceDynamicShadow(
 | 
						|
    "asan-force-dynamic-shadow",
 | 
						|
    cl::desc("Load shadow address into a local variable for each function"),
 | 
						|
    cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    ClWithIfunc("asan-with-ifunc",
 | 
						|
                cl::desc("Access dynamic shadow through an ifunc global on "
 | 
						|
                         "platforms that support this"),
 | 
						|
                cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClWithIfuncSuppressRemat(
 | 
						|
    "asan-with-ifunc-suppress-remat",
 | 
						|
    cl::desc("Suppress rematerialization of dynamic shadow address by passing "
 | 
						|
             "it through inline asm in prologue."),
 | 
						|
    cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
// This flag limits the number of instructions to be instrumented
 | 
						|
// in any given BB. Normally, this should be set to unlimited (INT_MAX),
 | 
						|
// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
 | 
						|
// set it to 10000.
 | 
						|
static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
 | 
						|
    "asan-max-ins-per-bb", cl::init(10000),
 | 
						|
    cl::desc("maximal number of instructions to instrument in any given BB"),
 | 
						|
    cl::Hidden);
 | 
						|
 | 
						|
// This flag may need to be replaced with -f[no]asan-stack.
 | 
						|
static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
 | 
						|
                             cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
 | 
						|
    "asan-max-inline-poisoning-size",
 | 
						|
    cl::desc(
 | 
						|
        "Inline shadow poisoning for blocks up to the given size in bytes."),
 | 
						|
    cl::Hidden, cl::init(64));
 | 
						|
 | 
						|
static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
 | 
						|
    "asan-use-after-return",
 | 
						|
    cl::desc("Sets the mode of detection for stack-use-after-return."),
 | 
						|
    cl::values(
 | 
						|
        clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",
 | 
						|
                   "Never detect stack use after return."),
 | 
						|
        clEnumValN(
 | 
						|
            AsanDetectStackUseAfterReturnMode::Runtime, "runtime",
 | 
						|
            "Detect stack use after return if "
 | 
						|
            "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
 | 
						|
        clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",
 | 
						|
                   "Always detect stack use after return.")),
 | 
						|
    cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
 | 
						|
 | 
						|
static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
 | 
						|
                                        cl::desc("Create redzones for byval "
 | 
						|
                                                 "arguments (extra copy "
 | 
						|
                                                 "required)"), cl::Hidden,
 | 
						|
                                        cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
 | 
						|
                                     cl::desc("Check stack-use-after-scope"),
 | 
						|
                                     cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
// This flag may need to be replaced with -f[no]asan-globals.
 | 
						|
static cl::opt<bool> ClGlobals("asan-globals",
 | 
						|
                               cl::desc("Handle global objects"), cl::Hidden,
 | 
						|
                               cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClInitializers("asan-initialization-order",
 | 
						|
                                    cl::desc("Handle C++ initializer order"),
 | 
						|
                                    cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClInvalidPointerPairs(
 | 
						|
    "asan-detect-invalid-pointer-pair",
 | 
						|
    cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
 | 
						|
    cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> ClInvalidPointerCmp(
 | 
						|
    "asan-detect-invalid-pointer-cmp",
 | 
						|
    cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
 | 
						|
    cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> ClInvalidPointerSub(
 | 
						|
    "asan-detect-invalid-pointer-sub",
 | 
						|
    cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
 | 
						|
    cl::init(false));
 | 
						|
 | 
						|
static cl::opt<unsigned> ClRealignStack(
 | 
						|
    "asan-realign-stack",
 | 
						|
    cl::desc("Realign stack to the value of this flag (power of two)"),
 | 
						|
    cl::Hidden, cl::init(32));
 | 
						|
 | 
						|
static cl::opt<int> ClInstrumentationWithCallsThreshold(
 | 
						|
    "asan-instrumentation-with-call-threshold",
 | 
						|
    cl::desc(
 | 
						|
        "If the function being instrumented contains more than "
 | 
						|
        "this number of memory accesses, use callbacks instead of "
 | 
						|
        "inline checks (-1 means never use callbacks)."),
 | 
						|
    cl::Hidden, cl::init(7000));
 | 
						|
 | 
						|
static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
 | 
						|
    "asan-memory-access-callback-prefix",
 | 
						|
    cl::desc("Prefix for memory access callbacks"), cl::Hidden,
 | 
						|
    cl::init("__asan_"));
 | 
						|
 | 
						|
static cl::opt<bool> ClKasanMemIntrinCallbackPrefix(
 | 
						|
    "asan-kernel-mem-intrinsic-prefix",
 | 
						|
    cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden,
 | 
						|
    cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
 | 
						|
                               cl::desc("instrument dynamic allocas"),
 | 
						|
                               cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClSkipPromotableAllocas(
 | 
						|
    "asan-skip-promotable-allocas",
 | 
						|
    cl::desc("Do not instrument promotable allocas"), cl::Hidden,
 | 
						|
    cl::init(true));
 | 
						|
 | 
						|
// These flags allow to change the shadow mapping.
 | 
						|
// The shadow mapping looks like
 | 
						|
//    Shadow = (Mem >> scale) + offset
 | 
						|
 | 
						|
static cl::opt<int> ClMappingScale("asan-mapping-scale",
 | 
						|
                                   cl::desc("scale of asan shadow mapping"),
 | 
						|
                                   cl::Hidden, cl::init(0));
 | 
						|
 | 
						|
static cl::opt<uint64_t>
 | 
						|
    ClMappingOffset("asan-mapping-offset",
 | 
						|
                    cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
 | 
						|
                    cl::Hidden, cl::init(0));
 | 
						|
 | 
						|
// Optimization flags. Not user visible, used mostly for testing
 | 
						|
// and benchmarking the tool.
 | 
						|
 | 
						|
static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
 | 
						|
                           cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks",
 | 
						|
                                         cl::desc("Optimize callbacks"),
 | 
						|
                                         cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> ClOptSameTemp(
 | 
						|
    "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
 | 
						|
    cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
 | 
						|
                                  cl::desc("Don't instrument scalar globals"),
 | 
						|
                                  cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClOptStack(
 | 
						|
    "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
 | 
						|
    cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> ClDynamicAllocaStack(
 | 
						|
    "asan-stack-dynamic-alloca",
 | 
						|
    cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
 | 
						|
    cl::init(true));
 | 
						|
 | 
						|
static cl::opt<uint32_t> ClForceExperiment(
 | 
						|
    "asan-force-experiment",
 | 
						|
    cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
 | 
						|
    cl::init(0));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    ClUsePrivateAlias("asan-use-private-alias",
 | 
						|
                      cl::desc("Use private aliases for global variables"),
 | 
						|
                      cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    ClUseOdrIndicator("asan-use-odr-indicator",
 | 
						|
                      cl::desc("Use odr indicators to improve ODR reporting"),
 | 
						|
                      cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    ClUseGlobalsGC("asan-globals-live-support",
 | 
						|
                   cl::desc("Use linker features to support dead "
 | 
						|
                            "code stripping of globals"),
 | 
						|
                   cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
// This is on by default even though there is a bug in gold:
 | 
						|
// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
 | 
						|
static cl::opt<bool>
 | 
						|
    ClWithComdat("asan-with-comdat",
 | 
						|
                 cl::desc("Place ASan constructors in comdat sections"),
 | 
						|
                 cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
 | 
						|
    "asan-destructor-kind",
 | 
						|
    cl::desc("Sets the ASan destructor kind. The default is to use the value "
 | 
						|
             "provided to the pass constructor"),
 | 
						|
    cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
 | 
						|
               clEnumValN(AsanDtorKind::Global, "global",
 | 
						|
                          "Use global destructors")),
 | 
						|
    cl::init(AsanDtorKind::Invalid), cl::Hidden);
 | 
						|
 | 
						|
// Debug flags.
 | 
						|
 | 
						|
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
 | 
						|
                            cl::init(0));
 | 
						|
 | 
						|
static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
 | 
						|
                                 cl::Hidden, cl::init(0));
 | 
						|
 | 
						|
static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
 | 
						|
                                        cl::desc("Debug func"));
 | 
						|
 | 
						|
static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
 | 
						|
                               cl::Hidden, cl::init(-1));
 | 
						|
 | 
						|
static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
 | 
						|
                               cl::Hidden, cl::init(-1));
 | 
						|
 | 
						|
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
 | 
						|
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
 | 
						|
STATISTIC(NumOptimizedAccessesToGlobalVar,
 | 
						|
          "Number of optimized accesses to global vars");
 | 
						|
STATISTIC(NumOptimizedAccessesToStackVar,
 | 
						|
          "Number of optimized accesses to stack vars");
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// This struct defines the shadow mapping using the rule:
 | 
						|
///   shadow = (mem >> Scale) ADD-or-OR Offset.
 | 
						|
/// If InGlobal is true, then
 | 
						|
///   extern char __asan_shadow[];
 | 
						|
///   shadow = (mem >> Scale) + &__asan_shadow
 | 
						|
struct ShadowMapping {
 | 
						|
  int Scale;
 | 
						|
  uint64_t Offset;
 | 
						|
  bool OrShadowOffset;
 | 
						|
  bool InGlobal;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize,
 | 
						|
                                      bool IsKasan) {
 | 
						|
  bool IsAndroid = TargetTriple.isAndroid();
 | 
						|
  bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() ||
 | 
						|
               TargetTriple.isDriverKit();
 | 
						|
  bool IsMacOS = TargetTriple.isMacOSX();
 | 
						|
  bool IsFreeBSD = TargetTriple.isOSFreeBSD();
 | 
						|
  bool IsNetBSD = TargetTriple.isOSNetBSD();
 | 
						|
  bool IsPS = TargetTriple.isPS();
 | 
						|
  bool IsLinux = TargetTriple.isOSLinux();
 | 
						|
  bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
 | 
						|
                 TargetTriple.getArch() == Triple::ppc64le;
 | 
						|
  bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
 | 
						|
  bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
 | 
						|
  bool IsMIPS32 = TargetTriple.isMIPS32();
 | 
						|
  bool IsMIPS64 = TargetTriple.isMIPS64();
 | 
						|
  bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
 | 
						|
  bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
 | 
						|
  bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
 | 
						|
  bool IsWindows = TargetTriple.isOSWindows();
 | 
						|
  bool IsFuchsia = TargetTriple.isOSFuchsia();
 | 
						|
  bool IsEmscripten = TargetTriple.isOSEmscripten();
 | 
						|
  bool IsAMDGPU = TargetTriple.isAMDGPU();
 | 
						|
 | 
						|
  ShadowMapping Mapping;
 | 
						|
 | 
						|
  Mapping.Scale = kDefaultShadowScale;
 | 
						|
  if (ClMappingScale.getNumOccurrences() > 0) {
 | 
						|
    Mapping.Scale = ClMappingScale;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LongSize == 32) {
 | 
						|
    if (IsAndroid)
 | 
						|
      Mapping.Offset = kDynamicShadowSentinel;
 | 
						|
    else if (IsMIPS32)
 | 
						|
      Mapping.Offset = kMIPS32_ShadowOffset32;
 | 
						|
    else if (IsFreeBSD)
 | 
						|
      Mapping.Offset = kFreeBSD_ShadowOffset32;
 | 
						|
    else if (IsNetBSD)
 | 
						|
      Mapping.Offset = kNetBSD_ShadowOffset32;
 | 
						|
    else if (IsIOS)
 | 
						|
      Mapping.Offset = kDynamicShadowSentinel;
 | 
						|
    else if (IsWindows)
 | 
						|
      Mapping.Offset = kWindowsShadowOffset32;
 | 
						|
    else if (IsEmscripten)
 | 
						|
      Mapping.Offset = kEmscriptenShadowOffset;
 | 
						|
    else
 | 
						|
      Mapping.Offset = kDefaultShadowOffset32;
 | 
						|
  } else {  // LongSize == 64
 | 
						|
    // Fuchsia is always PIE, which means that the beginning of the address
 | 
						|
    // space is always available.
 | 
						|
    if (IsFuchsia)
 | 
						|
      Mapping.Offset = 0;
 | 
						|
    else if (IsPPC64)
 | 
						|
      Mapping.Offset = kPPC64_ShadowOffset64;
 | 
						|
    else if (IsSystemZ)
 | 
						|
      Mapping.Offset = kSystemZ_ShadowOffset64;
 | 
						|
    else if (IsFreeBSD && !IsMIPS64) {
 | 
						|
      if (IsKasan)
 | 
						|
        Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
 | 
						|
      else
 | 
						|
        Mapping.Offset = kFreeBSD_ShadowOffset64;
 | 
						|
    } else if (IsNetBSD) {
 | 
						|
      if (IsKasan)
 | 
						|
        Mapping.Offset = kNetBSDKasan_ShadowOffset64;
 | 
						|
      else
 | 
						|
        Mapping.Offset = kNetBSD_ShadowOffset64;
 | 
						|
    } else if (IsPS)
 | 
						|
      Mapping.Offset = kPS_ShadowOffset64;
 | 
						|
    else if (IsLinux && IsX86_64) {
 | 
						|
      if (IsKasan)
 | 
						|
        Mapping.Offset = kLinuxKasan_ShadowOffset64;
 | 
						|
      else
 | 
						|
        Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
 | 
						|
                          (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
 | 
						|
    } else if (IsWindows && IsX86_64) {
 | 
						|
      Mapping.Offset = kWindowsShadowOffset64;
 | 
						|
    } else if (IsMIPS64)
 | 
						|
      Mapping.Offset = kMIPS64_ShadowOffset64;
 | 
						|
    else if (IsIOS)
 | 
						|
      Mapping.Offset = kDynamicShadowSentinel;
 | 
						|
    else if (IsMacOS && IsAArch64)
 | 
						|
      Mapping.Offset = kDynamicShadowSentinel;
 | 
						|
    else if (IsAArch64)
 | 
						|
      Mapping.Offset = kAArch64_ShadowOffset64;
 | 
						|
    else if (IsRISCV64)
 | 
						|
      Mapping.Offset = kRISCV64_ShadowOffset64;
 | 
						|
    else if (IsAMDGPU)
 | 
						|
      Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
 | 
						|
                        (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
 | 
						|
    else
 | 
						|
      Mapping.Offset = kDefaultShadowOffset64;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ClForceDynamicShadow) {
 | 
						|
    Mapping.Offset = kDynamicShadowSentinel;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ClMappingOffset.getNumOccurrences() > 0) {
 | 
						|
    Mapping.Offset = ClMappingOffset;
 | 
						|
  }
 | 
						|
 | 
						|
  // OR-ing shadow offset if more efficient (at least on x86) if the offset
 | 
						|
  // is a power of two, but on ppc64 we have to use add since the shadow
 | 
						|
  // offset is not necessary 1/8-th of the address space.  On SystemZ,
 | 
						|
  // we could OR the constant in a single instruction, but it's more
 | 
						|
  // efficient to load it once and use indexed addressing.
 | 
						|
  Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS &&
 | 
						|
                           !IsRISCV64 &&
 | 
						|
                           !(Mapping.Offset & (Mapping.Offset - 1)) &&
 | 
						|
                           Mapping.Offset != kDynamicShadowSentinel;
 | 
						|
  bool IsAndroidWithIfuncSupport =
 | 
						|
      IsAndroid && !TargetTriple.isAndroidVersionLT(21);
 | 
						|
  Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
 | 
						|
 | 
						|
  return Mapping;
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize,
 | 
						|
                               bool IsKasan, uint64_t *ShadowBase,
 | 
						|
                               int *MappingScale, bool *OrShadowOffset) {
 | 
						|
  auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan);
 | 
						|
  *ShadowBase = Mapping.Offset;
 | 
						|
  *MappingScale = Mapping.Scale;
 | 
						|
  *OrShadowOffset = Mapping.OrShadowOffset;
 | 
						|
}
 | 
						|
 | 
						|
ASanAccessInfo::ASanAccessInfo(int32_t Packed)
 | 
						|
    : Packed(Packed),
 | 
						|
      AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask),
 | 
						|
      IsWrite((Packed >> kIsWriteShift) & kIsWriteMask),
 | 
						|
      CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {}
 | 
						|
 | 
						|
ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel,
 | 
						|
                               uint8_t AccessSizeIndex)
 | 
						|
    : Packed((IsWrite << kIsWriteShift) +
 | 
						|
             (CompileKernel << kCompileKernelShift) +
 | 
						|
             (AccessSizeIndex << kAccessSizeIndexShift)),
 | 
						|
      AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite),
 | 
						|
      CompileKernel(CompileKernel) {}
 | 
						|
 | 
						|
} // namespace llvm
 | 
						|
 | 
						|
static uint64_t getRedzoneSizeForScale(int MappingScale) {
 | 
						|
  // Redzone used for stack and globals is at least 32 bytes.
 | 
						|
  // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
 | 
						|
  return std::max(32U, 1U << MappingScale);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
 | 
						|
  if (TargetTriple.isOSEmscripten()) {
 | 
						|
    return kAsanEmscriptenCtorAndDtorPriority;
 | 
						|
  } else {
 | 
						|
    return kAsanCtorAndDtorPriority;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// AddressSanitizer: instrument the code in module to find memory bugs.
 | 
						|
struct AddressSanitizer {
 | 
						|
  AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
 | 
						|
                   const StackSafetyGlobalInfo *SSGI,
 | 
						|
                   bool CompileKernel = false, bool Recover = false,
 | 
						|
                   bool UseAfterScope = false,
 | 
						|
                   AsanDetectStackUseAfterReturnMode UseAfterReturn =
 | 
						|
                       AsanDetectStackUseAfterReturnMode::Runtime)
 | 
						|
      : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
 | 
						|
                                                            : CompileKernel),
 | 
						|
        Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
 | 
						|
        UseAfterScope(UseAfterScope || ClUseAfterScope),
 | 
						|
        UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
 | 
						|
                                                            : UseAfterReturn),
 | 
						|
        GlobalsMD(*GlobalsMD), SSGI(SSGI) {
 | 
						|
    C = &(M.getContext());
 | 
						|
    LongSize = M.getDataLayout().getPointerSizeInBits();
 | 
						|
    IntptrTy = Type::getIntNTy(*C, LongSize);
 | 
						|
    Int8PtrTy = Type::getInt8PtrTy(*C);
 | 
						|
    Int32Ty = Type::getInt32Ty(*C);
 | 
						|
    TargetTriple = Triple(M.getTargetTriple());
 | 
						|
 | 
						|
    Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
 | 
						|
 | 
						|
    assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid);
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
 | 
						|
    uint64_t ArraySize = 1;
 | 
						|
    if (AI.isArrayAllocation()) {
 | 
						|
      const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
 | 
						|
      assert(CI && "non-constant array size");
 | 
						|
      ArraySize = CI->getZExtValue();
 | 
						|
    }
 | 
						|
    Type *Ty = AI.getAllocatedType();
 | 
						|
    uint64_t SizeInBytes =
 | 
						|
        AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
 | 
						|
    return SizeInBytes * ArraySize;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Check if we want (and can) handle this alloca.
 | 
						|
  bool isInterestingAlloca(const AllocaInst &AI);
 | 
						|
 | 
						|
  bool ignoreAccess(Instruction *Inst, Value *Ptr);
 | 
						|
  void getInterestingMemoryOperands(
 | 
						|
      Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
 | 
						|
 | 
						|
  void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
 | 
						|
                     InterestingMemoryOperand &O, bool UseCalls,
 | 
						|
                     const DataLayout &DL);
 | 
						|
  void instrumentPointerComparisonOrSubtraction(Instruction *I);
 | 
						|
  void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
 | 
						|
                         Value *Addr, uint32_t TypeSize, bool IsWrite,
 | 
						|
                         Value *SizeArgument, bool UseCalls, uint32_t Exp);
 | 
						|
  Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
 | 
						|
                                       Instruction *InsertBefore, Value *Addr,
 | 
						|
                                       uint32_t TypeSize, bool IsWrite,
 | 
						|
                                       Value *SizeArgument);
 | 
						|
  void instrumentUnusualSizeOrAlignment(Instruction *I,
 | 
						|
                                        Instruction *InsertBefore, Value *Addr,
 | 
						|
                                        uint32_t TypeSize, bool IsWrite,
 | 
						|
                                        Value *SizeArgument, bool UseCalls,
 | 
						|
                                        uint32_t Exp);
 | 
						|
  Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
 | 
						|
                           Value *ShadowValue, uint32_t TypeSize);
 | 
						|
  Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
 | 
						|
                                 bool IsWrite, size_t AccessSizeIndex,
 | 
						|
                                 Value *SizeArgument, uint32_t Exp);
 | 
						|
  void instrumentMemIntrinsic(MemIntrinsic *MI);
 | 
						|
  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
 | 
						|
  bool suppressInstrumentationSiteForDebug(int &Instrumented);
 | 
						|
  bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
 | 
						|
  bool maybeInsertAsanInitAtFunctionEntry(Function &F);
 | 
						|
  bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
 | 
						|
  void markEscapedLocalAllocas(Function &F);
 | 
						|
 | 
						|
private:
 | 
						|
  friend struct FunctionStackPoisoner;
 | 
						|
 | 
						|
  void initializeCallbacks(Module &M);
 | 
						|
 | 
						|
  bool LooksLikeCodeInBug11395(Instruction *I);
 | 
						|
  bool GlobalIsLinkerInitialized(GlobalVariable *G);
 | 
						|
  bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
 | 
						|
                    uint64_t TypeSize) const;
 | 
						|
 | 
						|
  /// Helper to cleanup per-function state.
 | 
						|
  struct FunctionStateRAII {
 | 
						|
    AddressSanitizer *Pass;
 | 
						|
 | 
						|
    FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
 | 
						|
      assert(Pass->ProcessedAllocas.empty() &&
 | 
						|
             "last pass forgot to clear cache");
 | 
						|
      assert(!Pass->LocalDynamicShadow);
 | 
						|
    }
 | 
						|
 | 
						|
    ~FunctionStateRAII() {
 | 
						|
      Pass->LocalDynamicShadow = nullptr;
 | 
						|
      Pass->ProcessedAllocas.clear();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  LLVMContext *C;
 | 
						|
  Triple TargetTriple;
 | 
						|
  int LongSize;
 | 
						|
  bool CompileKernel;
 | 
						|
  bool Recover;
 | 
						|
  bool UseAfterScope;
 | 
						|
  AsanDetectStackUseAfterReturnMode UseAfterReturn;
 | 
						|
  Type *IntptrTy;
 | 
						|
  Type *Int8PtrTy;
 | 
						|
  Type *Int32Ty;
 | 
						|
  ShadowMapping Mapping;
 | 
						|
  FunctionCallee AsanHandleNoReturnFunc;
 | 
						|
  FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
 | 
						|
  Constant *AsanShadowGlobal;
 | 
						|
 | 
						|
  // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
 | 
						|
  FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
 | 
						|
  FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
 | 
						|
 | 
						|
  // These arrays is indexed by AccessIsWrite and Experiment.
 | 
						|
  FunctionCallee AsanErrorCallbackSized[2][2];
 | 
						|
  FunctionCallee AsanMemoryAccessCallbackSized[2][2];
 | 
						|
 | 
						|
  FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
 | 
						|
  Value *LocalDynamicShadow = nullptr;
 | 
						|
  const GlobalsMetadata &GlobalsMD;
 | 
						|
  const StackSafetyGlobalInfo *SSGI;
 | 
						|
  DenseMap<const AllocaInst *, bool> ProcessedAllocas;
 | 
						|
 | 
						|
  FunctionCallee AMDGPUAddressShared;
 | 
						|
  FunctionCallee AMDGPUAddressPrivate;
 | 
						|
};
 | 
						|
 | 
						|
class ModuleAddressSanitizer {
 | 
						|
public:
 | 
						|
  ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
 | 
						|
                         bool CompileKernel = false, bool Recover = false,
 | 
						|
                         bool UseGlobalsGC = true, bool UseOdrIndicator = false,
 | 
						|
                         AsanDtorKind DestructorKind = AsanDtorKind::Global)
 | 
						|
      : GlobalsMD(*GlobalsMD),
 | 
						|
        CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
 | 
						|
                                                            : CompileKernel),
 | 
						|
        Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
 | 
						|
        UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
 | 
						|
        // Enable aliases as they should have no downside with ODR indicators.
 | 
						|
        UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
 | 
						|
        UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
 | 
						|
        // Not a typo: ClWithComdat is almost completely pointless without
 | 
						|
        // ClUseGlobalsGC (because then it only works on modules without
 | 
						|
        // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
 | 
						|
        // and both suffer from gold PR19002 for which UseGlobalsGC constructor
 | 
						|
        // argument is designed as workaround. Therefore, disable both
 | 
						|
        // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
 | 
						|
        // do globals-gc.
 | 
						|
        UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
 | 
						|
        DestructorKind(DestructorKind) {
 | 
						|
    C = &(M.getContext());
 | 
						|
    int LongSize = M.getDataLayout().getPointerSizeInBits();
 | 
						|
    IntptrTy = Type::getIntNTy(*C, LongSize);
 | 
						|
    TargetTriple = Triple(M.getTargetTriple());
 | 
						|
    Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
 | 
						|
 | 
						|
    if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
 | 
						|
      this->DestructorKind = ClOverrideDestructorKind;
 | 
						|
    assert(this->DestructorKind != AsanDtorKind::Invalid);
 | 
						|
  }
 | 
						|
 | 
						|
  bool instrumentModule(Module &);
 | 
						|
 | 
						|
private:
 | 
						|
  void initializeCallbacks(Module &M);
 | 
						|
 | 
						|
  bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
 | 
						|
  void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
 | 
						|
                             ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
                             ArrayRef<Constant *> MetadataInitializers);
 | 
						|
  void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
 | 
						|
                            ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
                            ArrayRef<Constant *> MetadataInitializers,
 | 
						|
                            const std::string &UniqueModuleId);
 | 
						|
  void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
 | 
						|
                              ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
                              ArrayRef<Constant *> MetadataInitializers);
 | 
						|
  void
 | 
						|
  InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
 | 
						|
                                     ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
                                     ArrayRef<Constant *> MetadataInitializers);
 | 
						|
 | 
						|
  GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
 | 
						|
                                       StringRef OriginalName);
 | 
						|
  void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
 | 
						|
                                  StringRef InternalSuffix);
 | 
						|
  Instruction *CreateAsanModuleDtor(Module &M);
 | 
						|
 | 
						|
  const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
 | 
						|
  bool shouldInstrumentGlobal(GlobalVariable *G) const;
 | 
						|
  bool ShouldUseMachOGlobalsSection() const;
 | 
						|
  StringRef getGlobalMetadataSection() const;
 | 
						|
  void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
 | 
						|
  void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
 | 
						|
  uint64_t getMinRedzoneSizeForGlobal() const {
 | 
						|
    return getRedzoneSizeForScale(Mapping.Scale);
 | 
						|
  }
 | 
						|
  uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
 | 
						|
  int GetAsanVersion(const Module &M) const;
 | 
						|
 | 
						|
  const GlobalsMetadata &GlobalsMD;
 | 
						|
  bool CompileKernel;
 | 
						|
  bool Recover;
 | 
						|
  bool UseGlobalsGC;
 | 
						|
  bool UsePrivateAlias;
 | 
						|
  bool UseOdrIndicator;
 | 
						|
  bool UseCtorComdat;
 | 
						|
  AsanDtorKind DestructorKind;
 | 
						|
  Type *IntptrTy;
 | 
						|
  LLVMContext *C;
 | 
						|
  Triple TargetTriple;
 | 
						|
  ShadowMapping Mapping;
 | 
						|
  FunctionCallee AsanPoisonGlobals;
 | 
						|
  FunctionCallee AsanUnpoisonGlobals;
 | 
						|
  FunctionCallee AsanRegisterGlobals;
 | 
						|
  FunctionCallee AsanUnregisterGlobals;
 | 
						|
  FunctionCallee AsanRegisterImageGlobals;
 | 
						|
  FunctionCallee AsanUnregisterImageGlobals;
 | 
						|
  FunctionCallee AsanRegisterElfGlobals;
 | 
						|
  FunctionCallee AsanUnregisterElfGlobals;
 | 
						|
 | 
						|
  Function *AsanCtorFunction = nullptr;
 | 
						|
  Function *AsanDtorFunction = nullptr;
 | 
						|
};
 | 
						|
 | 
						|
// Stack poisoning does not play well with exception handling.
 | 
						|
// When an exception is thrown, we essentially bypass the code
 | 
						|
// that unpoisones the stack. This is why the run-time library has
 | 
						|
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
 | 
						|
// stack in the interceptor. This however does not work inside the
 | 
						|
// actual function which catches the exception. Most likely because the
 | 
						|
// compiler hoists the load of the shadow value somewhere too high.
 | 
						|
// This causes asan to report a non-existing bug on 453.povray.
 | 
						|
// It sounds like an LLVM bug.
 | 
						|
struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
 | 
						|
  Function &F;
 | 
						|
  AddressSanitizer &ASan;
 | 
						|
  DIBuilder DIB;
 | 
						|
  LLVMContext *C;
 | 
						|
  Type *IntptrTy;
 | 
						|
  Type *IntptrPtrTy;
 | 
						|
  ShadowMapping Mapping;
 | 
						|
 | 
						|
  SmallVector<AllocaInst *, 16> AllocaVec;
 | 
						|
  SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
 | 
						|
  SmallVector<Instruction *, 8> RetVec;
 | 
						|
 | 
						|
  FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
 | 
						|
      AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
 | 
						|
  FunctionCallee AsanSetShadowFunc[0x100] = {};
 | 
						|
  FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
 | 
						|
  FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
 | 
						|
 | 
						|
  // Stores a place and arguments of poisoning/unpoisoning call for alloca.
 | 
						|
  struct AllocaPoisonCall {
 | 
						|
    IntrinsicInst *InsBefore;
 | 
						|
    AllocaInst *AI;
 | 
						|
    uint64_t Size;
 | 
						|
    bool DoPoison;
 | 
						|
  };
 | 
						|
  SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
 | 
						|
  SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
 | 
						|
  bool HasUntracedLifetimeIntrinsic = false;
 | 
						|
 | 
						|
  SmallVector<AllocaInst *, 1> DynamicAllocaVec;
 | 
						|
  SmallVector<IntrinsicInst *, 1> StackRestoreVec;
 | 
						|
  AllocaInst *DynamicAllocaLayout = nullptr;
 | 
						|
  IntrinsicInst *LocalEscapeCall = nullptr;
 | 
						|
 | 
						|
  bool HasInlineAsm = false;
 | 
						|
  bool HasReturnsTwiceCall = false;
 | 
						|
  bool PoisonStack;
 | 
						|
 | 
						|
  FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
 | 
						|
      : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
 | 
						|
        C(ASan.C), IntptrTy(ASan.IntptrTy),
 | 
						|
        IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
 | 
						|
        PoisonStack(ClStack &&
 | 
						|
                    !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
 | 
						|
 | 
						|
  bool runOnFunction() {
 | 
						|
    if (!PoisonStack)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (ClRedzoneByvalArgs)
 | 
						|
      copyArgsPassedByValToAllocas();
 | 
						|
 | 
						|
    // Collect alloca, ret, lifetime instructions etc.
 | 
						|
    for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
 | 
						|
 | 
						|
    if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
 | 
						|
 | 
						|
    initializeCallbacks(*F.getParent());
 | 
						|
 | 
						|
    if (HasUntracedLifetimeIntrinsic) {
 | 
						|
      // If there are lifetime intrinsics which couldn't be traced back to an
 | 
						|
      // alloca, we may not know exactly when a variable enters scope, and
 | 
						|
      // therefore should "fail safe" by not poisoning them.
 | 
						|
      StaticAllocaPoisonCallVec.clear();
 | 
						|
      DynamicAllocaPoisonCallVec.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    processDynamicAllocas();
 | 
						|
    processStaticAllocas();
 | 
						|
 | 
						|
    if (ClDebugStack) {
 | 
						|
      LLVM_DEBUG(dbgs() << F);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Arguments marked with the "byval" attribute are implicitly copied without
 | 
						|
  // using an alloca instruction.  To produce redzones for those arguments, we
 | 
						|
  // copy them a second time into memory allocated with an alloca instruction.
 | 
						|
  void copyArgsPassedByValToAllocas();
 | 
						|
 | 
						|
  // Finds all Alloca instructions and puts
 | 
						|
  // poisoned red zones around all of them.
 | 
						|
  // Then unpoison everything back before the function returns.
 | 
						|
  void processStaticAllocas();
 | 
						|
  void processDynamicAllocas();
 | 
						|
 | 
						|
  void createDynamicAllocasInitStorage();
 | 
						|
 | 
						|
  // ----------------------- Visitors.
 | 
						|
  /// Collect all Ret instructions, or the musttail call instruction if it
 | 
						|
  /// precedes the return instruction.
 | 
						|
  void visitReturnInst(ReturnInst &RI) {
 | 
						|
    if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
 | 
						|
      RetVec.push_back(CI);
 | 
						|
    else
 | 
						|
      RetVec.push_back(&RI);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Collect all Resume instructions.
 | 
						|
  void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
 | 
						|
 | 
						|
  /// Collect all CatchReturnInst instructions.
 | 
						|
  void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
 | 
						|
 | 
						|
  void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
 | 
						|
                                        Value *SavedStack) {
 | 
						|
    IRBuilder<> IRB(InstBefore);
 | 
						|
    Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
 | 
						|
    // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
 | 
						|
    // need to adjust extracted SP to compute the address of the most recent
 | 
						|
    // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
 | 
						|
    // this purpose.
 | 
						|
    if (!isa<ReturnInst>(InstBefore)) {
 | 
						|
      Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
 | 
						|
          InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
 | 
						|
          {IntptrTy});
 | 
						|
 | 
						|
      Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
 | 
						|
 | 
						|
      DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
 | 
						|
                                     DynamicAreaOffset);
 | 
						|
    }
 | 
						|
 | 
						|
    IRB.CreateCall(
 | 
						|
        AsanAllocasUnpoisonFunc,
 | 
						|
        {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
 | 
						|
  }
 | 
						|
 | 
						|
  // Unpoison dynamic allocas redzones.
 | 
						|
  void unpoisonDynamicAllocas() {
 | 
						|
    for (Instruction *Ret : RetVec)
 | 
						|
      unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
 | 
						|
 | 
						|
    for (Instruction *StackRestoreInst : StackRestoreVec)
 | 
						|
      unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
 | 
						|
                                       StackRestoreInst->getOperand(0));
 | 
						|
  }
 | 
						|
 | 
						|
  // Deploy and poison redzones around dynamic alloca call. To do this, we
 | 
						|
  // should replace this call with another one with changed parameters and
 | 
						|
  // replace all its uses with new address, so
 | 
						|
  //   addr = alloca type, old_size, align
 | 
						|
  // is replaced by
 | 
						|
  //   new_size = (old_size + additional_size) * sizeof(type)
 | 
						|
  //   tmp = alloca i8, new_size, max(align, 32)
 | 
						|
  //   addr = tmp + 32 (first 32 bytes are for the left redzone).
 | 
						|
  // Additional_size is added to make new memory allocation contain not only
 | 
						|
  // requested memory, but also left, partial and right redzones.
 | 
						|
  void handleDynamicAllocaCall(AllocaInst *AI);
 | 
						|
 | 
						|
  /// Collect Alloca instructions we want (and can) handle.
 | 
						|
  void visitAllocaInst(AllocaInst &AI) {
 | 
						|
    if (!ASan.isInterestingAlloca(AI)) {
 | 
						|
      if (AI.isStaticAlloca()) {
 | 
						|
        // Skip over allocas that are present *before* the first instrumented
 | 
						|
        // alloca, we don't want to move those around.
 | 
						|
        if (AllocaVec.empty())
 | 
						|
          return;
 | 
						|
 | 
						|
        StaticAllocasToMoveUp.push_back(&AI);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!AI.isStaticAlloca())
 | 
						|
      DynamicAllocaVec.push_back(&AI);
 | 
						|
    else
 | 
						|
      AllocaVec.push_back(&AI);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Collect lifetime intrinsic calls to check for use-after-scope
 | 
						|
  /// errors.
 | 
						|
  void visitIntrinsicInst(IntrinsicInst &II) {
 | 
						|
    Intrinsic::ID ID = II.getIntrinsicID();
 | 
						|
    if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
 | 
						|
    if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
 | 
						|
    if (!ASan.UseAfterScope)
 | 
						|
      return;
 | 
						|
    if (!II.isLifetimeStartOrEnd())
 | 
						|
      return;
 | 
						|
    // Found lifetime intrinsic, add ASan instrumentation if necessary.
 | 
						|
    auto *Size = cast<ConstantInt>(II.getArgOperand(0));
 | 
						|
    // If size argument is undefined, don't do anything.
 | 
						|
    if (Size->isMinusOne()) return;
 | 
						|
    // Check that size doesn't saturate uint64_t and can
 | 
						|
    // be stored in IntptrTy.
 | 
						|
    const uint64_t SizeValue = Size->getValue().getLimitedValue();
 | 
						|
    if (SizeValue == ~0ULL ||
 | 
						|
        !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
 | 
						|
      return;
 | 
						|
    // Find alloca instruction that corresponds to llvm.lifetime argument.
 | 
						|
    // Currently we can only handle lifetime markers pointing to the
 | 
						|
    // beginning of the alloca.
 | 
						|
    AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
 | 
						|
    if (!AI) {
 | 
						|
      HasUntracedLifetimeIntrinsic = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // We're interested only in allocas we can handle.
 | 
						|
    if (!ASan.isInterestingAlloca(*AI))
 | 
						|
      return;
 | 
						|
    bool DoPoison = (ID == Intrinsic::lifetime_end);
 | 
						|
    AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
 | 
						|
    if (AI->isStaticAlloca())
 | 
						|
      StaticAllocaPoisonCallVec.push_back(APC);
 | 
						|
    else if (ClInstrumentDynamicAllocas)
 | 
						|
      DynamicAllocaPoisonCallVec.push_back(APC);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitCallBase(CallBase &CB) {
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
 | 
						|
      HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
 | 
						|
      HasReturnsTwiceCall |= CI->canReturnTwice();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // ---------------------- Helpers.
 | 
						|
  void initializeCallbacks(Module &M);
 | 
						|
 | 
						|
  // Copies bytes from ShadowBytes into shadow memory for indexes where
 | 
						|
  // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
 | 
						|
  // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
 | 
						|
  void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
 | 
						|
                    IRBuilder<> &IRB, Value *ShadowBase);
 | 
						|
  void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
 | 
						|
                    size_t Begin, size_t End, IRBuilder<> &IRB,
 | 
						|
                    Value *ShadowBase);
 | 
						|
  void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
 | 
						|
                          ArrayRef<uint8_t> ShadowBytes, size_t Begin,
 | 
						|
                          size_t End, IRBuilder<> &IRB, Value *ShadowBase);
 | 
						|
 | 
						|
  void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
 | 
						|
 | 
						|
  Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
 | 
						|
                               bool Dynamic);
 | 
						|
  PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
 | 
						|
                     Instruction *ThenTerm, Value *ValueIfFalse);
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void LocationMetadata::parse(MDNode *MDN) {
 | 
						|
  assert(MDN->getNumOperands() == 3);
 | 
						|
  MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
 | 
						|
  Filename = DIFilename->getString();
 | 
						|
  LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
 | 
						|
  ColumnNo =
 | 
						|
      mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: It would be cleaner to instead attach relevant metadata to the globals
 | 
						|
// we want to sanitize instead and reading this metadata on each pass over a
 | 
						|
// function instead of reading module level metadata at first.
 | 
						|
GlobalsMetadata::GlobalsMetadata(Module &M) {
 | 
						|
  NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
 | 
						|
  if (!Globals)
 | 
						|
    return;
 | 
						|
  for (auto MDN : Globals->operands()) {
 | 
						|
    // Metadata node contains the global and the fields of "Entry".
 | 
						|
    assert(MDN->getNumOperands() == 5);
 | 
						|
    auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
 | 
						|
    // The optimizer may optimize away a global entirely.
 | 
						|
    if (!V)
 | 
						|
      continue;
 | 
						|
    auto *StrippedV = V->stripPointerCasts();
 | 
						|
    auto *GV = dyn_cast<GlobalVariable>(StrippedV);
 | 
						|
    if (!GV)
 | 
						|
      continue;
 | 
						|
    // We can already have an entry for GV if it was merged with another
 | 
						|
    // global.
 | 
						|
    Entry &E = Entries[GV];
 | 
						|
    if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
 | 
						|
      E.SourceLoc.parse(Loc);
 | 
						|
    if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
 | 
						|
      E.Name = Name->getString();
 | 
						|
    ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
 | 
						|
    E.IsDynInit |= IsDynInit->isOne();
 | 
						|
    ConstantInt *IsExcluded =
 | 
						|
        mdconst::extract<ConstantInt>(MDN->getOperand(4));
 | 
						|
    E.IsExcluded |= IsExcluded->isOne();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
AnalysisKey ASanGlobalsMetadataAnalysis::Key;
 | 
						|
 | 
						|
GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
 | 
						|
                                                 ModuleAnalysisManager &AM) {
 | 
						|
  return GlobalsMetadata(M);
 | 
						|
}
 | 
						|
 | 
						|
void ModuleAddressSanitizerPass::printPipeline(
 | 
						|
    raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
 | 
						|
  static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline(
 | 
						|
      OS, MapClassName2PassName);
 | 
						|
  OS << "<";
 | 
						|
  if (Options.CompileKernel)
 | 
						|
    OS << "kernel";
 | 
						|
  OS << ">";
 | 
						|
}
 | 
						|
 | 
						|
ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(
 | 
						|
    const AddressSanitizerOptions &Options, bool UseGlobalGC,
 | 
						|
    bool UseOdrIndicator, AsanDtorKind DestructorKind)
 | 
						|
    : Options(Options), UseGlobalGC(UseGlobalGC),
 | 
						|
      UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {}
 | 
						|
 | 
						|
PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
 | 
						|
                                                  ModuleAnalysisManager &MAM) {
 | 
						|
  GlobalsMetadata &GlobalsMD = MAM.getResult<ASanGlobalsMetadataAnalysis>(M);
 | 
						|
  ModuleAddressSanitizer ModuleSanitizer(M, &GlobalsMD, Options.CompileKernel,
 | 
						|
                                         Options.Recover, UseGlobalGC,
 | 
						|
                                         UseOdrIndicator, DestructorKind);
 | 
						|
  bool Modified = false;
 | 
						|
  auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
 | 
						|
  const StackSafetyGlobalInfo *const SSGI =
 | 
						|
      ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr;
 | 
						|
  for (Function &F : M) {
 | 
						|
    AddressSanitizer FunctionSanitizer(
 | 
						|
        M, &GlobalsMD, SSGI, Options.CompileKernel, Options.Recover,
 | 
						|
        Options.UseAfterScope, Options.UseAfterReturn);
 | 
						|
    const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
    Modified |= FunctionSanitizer.instrumentFunction(F, &TLI);
 | 
						|
  }
 | 
						|
  Modified |= ModuleSanitizer.instrumentModule(M);
 | 
						|
  return Modified ? PreservedAnalyses::none() : PreservedAnalyses::all();
 | 
						|
}
 | 
						|
 | 
						|
static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
 | 
						|
  size_t Res = countTrailingZeros(TypeSize / 8);
 | 
						|
  assert(Res < kNumberOfAccessSizes);
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// Create a global describing a source location.
 | 
						|
static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
 | 
						|
                                                       LocationMetadata MD) {
 | 
						|
  Constant *LocData[] = {
 | 
						|
      createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
 | 
						|
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
 | 
						|
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
 | 
						|
  };
 | 
						|
  auto LocStruct = ConstantStruct::getAnon(LocData);
 | 
						|
  auto GV = new GlobalVariable(M, LocStruct->getType(), true,
 | 
						|
                               GlobalValue::PrivateLinkage, LocStruct,
 | 
						|
                               kAsanGenPrefix);
 | 
						|
  GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if \p G has been created by a trusted compiler pass.
 | 
						|
static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
 | 
						|
  // Do not instrument @llvm.global_ctors, @llvm.used, etc.
 | 
						|
  if (G->getName().startswith("llvm."))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Do not instrument asan globals.
 | 
						|
  if (G->getName().startswith(kAsanGenPrefix) ||
 | 
						|
      G->getName().startswith(kSanCovGenPrefix) ||
 | 
						|
      G->getName().startswith(kODRGenPrefix))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Do not instrument gcov counter arrays.
 | 
						|
  if (G->getName() == "__llvm_gcov_ctr")
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
 | 
						|
  Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
 | 
						|
  unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
 | 
						|
  if (AddrSpace == 3 || AddrSpace == 5)
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
 | 
						|
  // Shadow >> scale
 | 
						|
  Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
 | 
						|
  if (Mapping.Offset == 0) return Shadow;
 | 
						|
  // (Shadow >> scale) | offset
 | 
						|
  Value *ShadowBase;
 | 
						|
  if (LocalDynamicShadow)
 | 
						|
    ShadowBase = LocalDynamicShadow;
 | 
						|
  else
 | 
						|
    ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
 | 
						|
  if (Mapping.OrShadowOffset)
 | 
						|
    return IRB.CreateOr(Shadow, ShadowBase);
 | 
						|
  else
 | 
						|
    return IRB.CreateAdd(Shadow, ShadowBase);
 | 
						|
}
 | 
						|
 | 
						|
// Instrument memset/memmove/memcpy
 | 
						|
void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
 | 
						|
  IRBuilder<> IRB(MI);
 | 
						|
  if (isa<MemTransferInst>(MI)) {
 | 
						|
    IRB.CreateCall(
 | 
						|
        isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
 | 
						|
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
 | 
						|
         IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
 | 
						|
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
 | 
						|
  } else if (isa<MemSetInst>(MI)) {
 | 
						|
    IRB.CreateCall(
 | 
						|
        AsanMemset,
 | 
						|
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
 | 
						|
         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
 | 
						|
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
 | 
						|
  }
 | 
						|
  MI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Check if we want (and can) handle this alloca.
 | 
						|
bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
 | 
						|
  auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
 | 
						|
 | 
						|
  if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
 | 
						|
    return PreviouslySeenAllocaInfo->getSecond();
 | 
						|
 | 
						|
  bool IsInteresting =
 | 
						|
      (AI.getAllocatedType()->isSized() &&
 | 
						|
       // alloca() may be called with 0 size, ignore it.
 | 
						|
       ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
 | 
						|
       // We are only interested in allocas not promotable to registers.
 | 
						|
       // Promotable allocas are common under -O0.
 | 
						|
       (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
 | 
						|
       // inalloca allocas are not treated as static, and we don't want
 | 
						|
       // dynamic alloca instrumentation for them as well.
 | 
						|
       !AI.isUsedWithInAlloca() &&
 | 
						|
       // swifterror allocas are register promoted by ISel
 | 
						|
       !AI.isSwiftError());
 | 
						|
 | 
						|
  ProcessedAllocas[&AI] = IsInteresting;
 | 
						|
  return IsInteresting;
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) {
 | 
						|
  // Instrument acesses from different address spaces only for AMDGPU.
 | 
						|
  Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
 | 
						|
  if (PtrTy->getPointerAddressSpace() != 0 &&
 | 
						|
      !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Ignore swifterror addresses.
 | 
						|
  // swifterror memory addresses are mem2reg promoted by instruction
 | 
						|
  // selection. As such they cannot have regular uses like an instrumentation
 | 
						|
  // function and it makes no sense to track them as memory.
 | 
						|
  if (Ptr->isSwiftError())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Treat memory accesses to promotable allocas as non-interesting since they
 | 
						|
  // will not cause memory violations. This greatly speeds up the instrumented
 | 
						|
  // executable at -O0.
 | 
						|
  if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
 | 
						|
    if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
 | 
						|
      return true;
 | 
						|
 | 
						|
  if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) &&
 | 
						|
      findAllocaForValue(Ptr))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::getInterestingMemoryOperands(
 | 
						|
    Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
 | 
						|
  // Do not instrument the load fetching the dynamic shadow address.
 | 
						|
  if (LocalDynamicShadow == I)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
    if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand()))
 | 
						|
      return;
 | 
						|
    Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
 | 
						|
                             LI->getType(), LI->getAlign());
 | 
						|
  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
    if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand()))
 | 
						|
      return;
 | 
						|
    Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
 | 
						|
                             SI->getValueOperand()->getType(), SI->getAlign());
 | 
						|
  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
 | 
						|
    if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand()))
 | 
						|
      return;
 | 
						|
    Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
 | 
						|
                             RMW->getValOperand()->getType(), None);
 | 
						|
  } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
 | 
						|
    if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand()))
 | 
						|
      return;
 | 
						|
    Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
 | 
						|
                             XCHG->getCompareOperand()->getType(), None);
 | 
						|
  } else if (auto CI = dyn_cast<CallInst>(I)) {
 | 
						|
    if (CI->getIntrinsicID() == Intrinsic::masked_load ||
 | 
						|
        CI->getIntrinsicID() == Intrinsic::masked_store) {
 | 
						|
      bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_store;
 | 
						|
      // Masked store has an initial operand for the value.
 | 
						|
      unsigned OpOffset = IsWrite ? 1 : 0;
 | 
						|
      if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
 | 
						|
        return;
 | 
						|
 | 
						|
      auto BasePtr = CI->getOperand(OpOffset);
 | 
						|
      if (ignoreAccess(I, BasePtr))
 | 
						|
        return;
 | 
						|
      Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
 | 
						|
      MaybeAlign Alignment = Align(1);
 | 
						|
      // Otherwise no alignment guarantees. We probably got Undef.
 | 
						|
      if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
 | 
						|
        Alignment = Op->getMaybeAlignValue();
 | 
						|
      Value *Mask = CI->getOperand(2 + OpOffset);
 | 
						|
      Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
 | 
						|
    } else {
 | 
						|
      for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) {
 | 
						|
        if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
 | 
						|
            ignoreAccess(I, CI->getArgOperand(ArgNo)))
 | 
						|
          continue;
 | 
						|
        Type *Ty = CI->getParamByValType(ArgNo);
 | 
						|
        Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isPointerOperand(Value *V) {
 | 
						|
  return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
 | 
						|
}
 | 
						|
 | 
						|
// This is a rough heuristic; it may cause both false positives and
 | 
						|
// false negatives. The proper implementation requires cooperation with
 | 
						|
// the frontend.
 | 
						|
static bool isInterestingPointerComparison(Instruction *I) {
 | 
						|
  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
 | 
						|
    if (!Cmp->isRelational())
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return isPointerOperand(I->getOperand(0)) &&
 | 
						|
         isPointerOperand(I->getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
// This is a rough heuristic; it may cause both false positives and
 | 
						|
// false negatives. The proper implementation requires cooperation with
 | 
						|
// the frontend.
 | 
						|
static bool isInterestingPointerSubtraction(Instruction *I) {
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | 
						|
    if (BO->getOpcode() != Instruction::Sub)
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return isPointerOperand(I->getOperand(0)) &&
 | 
						|
         isPointerOperand(I->getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
 | 
						|
  // If a global variable does not have dynamic initialization we don't
 | 
						|
  // have to instrument it.  However, if a global does not have initializer
 | 
						|
  // at all, we assume it has dynamic initializer (in other TU).
 | 
						|
  //
 | 
						|
  // FIXME: Metadata should be attched directly to the global directly instead
 | 
						|
  // of being added to llvm.asan.globals.
 | 
						|
  return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
 | 
						|
    Instruction *I) {
 | 
						|
  IRBuilder<> IRB(I);
 | 
						|
  FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
 | 
						|
  Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
 | 
						|
  for (Value *&i : Param) {
 | 
						|
    if (i->getType()->isPointerTy())
 | 
						|
      i = IRB.CreatePointerCast(i, IntptrTy);
 | 
						|
  }
 | 
						|
  IRB.CreateCall(F, Param);
 | 
						|
}
 | 
						|
 | 
						|
static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
 | 
						|
                                Instruction *InsertBefore, Value *Addr,
 | 
						|
                                MaybeAlign Alignment, unsigned Granularity,
 | 
						|
                                uint32_t TypeSize, bool IsWrite,
 | 
						|
                                Value *SizeArgument, bool UseCalls,
 | 
						|
                                uint32_t Exp) {
 | 
						|
  // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
 | 
						|
  // if the data is properly aligned.
 | 
						|
  if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
 | 
						|
       TypeSize == 128) &&
 | 
						|
      (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8))
 | 
						|
    return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
 | 
						|
                                   nullptr, UseCalls, Exp);
 | 
						|
  Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
 | 
						|
                                         IsWrite, nullptr, UseCalls, Exp);
 | 
						|
}
 | 
						|
 | 
						|
static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
 | 
						|
                                        const DataLayout &DL, Type *IntptrTy,
 | 
						|
                                        Value *Mask, Instruction *I,
 | 
						|
                                        Value *Addr, MaybeAlign Alignment,
 | 
						|
                                        unsigned Granularity, Type *OpType,
 | 
						|
                                        bool IsWrite, Value *SizeArgument,
 | 
						|
                                        bool UseCalls, uint32_t Exp) {
 | 
						|
  auto *VTy = cast<FixedVectorType>(OpType);
 | 
						|
  uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
 | 
						|
  unsigned Num = VTy->getNumElements();
 | 
						|
  auto Zero = ConstantInt::get(IntptrTy, 0);
 | 
						|
  for (unsigned Idx = 0; Idx < Num; ++Idx) {
 | 
						|
    Value *InstrumentedAddress = nullptr;
 | 
						|
    Instruction *InsertBefore = I;
 | 
						|
    if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
 | 
						|
      // dyn_cast as we might get UndefValue
 | 
						|
      if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
 | 
						|
        if (Masked->isZero())
 | 
						|
          // Mask is constant false, so no instrumentation needed.
 | 
						|
          continue;
 | 
						|
        // If we have a true or undef value, fall through to doInstrumentAddress
 | 
						|
        // with InsertBefore == I
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      IRBuilder<> IRB(I);
 | 
						|
      Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
 | 
						|
      Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
 | 
						|
      InsertBefore = ThenTerm;
 | 
						|
    }
 | 
						|
 | 
						|
    IRBuilder<> IRB(InsertBefore);
 | 
						|
    InstrumentedAddress =
 | 
						|
        IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
 | 
						|
    doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
 | 
						|
                        Granularity, ElemTypeSize, IsWrite, SizeArgument,
 | 
						|
                        UseCalls, Exp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
 | 
						|
                                     InterestingMemoryOperand &O, bool UseCalls,
 | 
						|
                                     const DataLayout &DL) {
 | 
						|
  Value *Addr = O.getPtr();
 | 
						|
 | 
						|
  // Optimization experiments.
 | 
						|
  // The experiments can be used to evaluate potential optimizations that remove
 | 
						|
  // instrumentation (assess false negatives). Instead of completely removing
 | 
						|
  // some instrumentation, you set Exp to a non-zero value (mask of optimization
 | 
						|
  // experiments that want to remove instrumentation of this instruction).
 | 
						|
  // If Exp is non-zero, this pass will emit special calls into runtime
 | 
						|
  // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
 | 
						|
  // make runtime terminate the program in a special way (with a different
 | 
						|
  // exit status). Then you run the new compiler on a buggy corpus, collect
 | 
						|
  // the special terminations (ideally, you don't see them at all -- no false
 | 
						|
  // negatives) and make the decision on the optimization.
 | 
						|
  uint32_t Exp = ClForceExperiment;
 | 
						|
 | 
						|
  if (ClOpt && ClOptGlobals) {
 | 
						|
    // If initialization order checking is disabled, a simple access to a
 | 
						|
    // dynamically initialized global is always valid.
 | 
						|
    GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
 | 
						|
    if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
 | 
						|
        isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
 | 
						|
      NumOptimizedAccessesToGlobalVar++;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ClOpt && ClOptStack) {
 | 
						|
    // A direct inbounds access to a stack variable is always valid.
 | 
						|
    if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
 | 
						|
        isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
 | 
						|
      NumOptimizedAccessesToStackVar++;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (O.IsWrite)
 | 
						|
    NumInstrumentedWrites++;
 | 
						|
  else
 | 
						|
    NumInstrumentedReads++;
 | 
						|
 | 
						|
  unsigned Granularity = 1 << Mapping.Scale;
 | 
						|
  if (O.MaybeMask) {
 | 
						|
    instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
 | 
						|
                                Addr, O.Alignment, Granularity, O.OpType,
 | 
						|
                                O.IsWrite, nullptr, UseCalls, Exp);
 | 
						|
  } else {
 | 
						|
    doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
 | 
						|
                        Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
 | 
						|
                        Exp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
 | 
						|
                                                 Value *Addr, bool IsWrite,
 | 
						|
                                                 size_t AccessSizeIndex,
 | 
						|
                                                 Value *SizeArgument,
 | 
						|
                                                 uint32_t Exp) {
 | 
						|
  IRBuilder<> IRB(InsertBefore);
 | 
						|
  Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
 | 
						|
  CallInst *Call = nullptr;
 | 
						|
  if (SizeArgument) {
 | 
						|
    if (Exp == 0)
 | 
						|
      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
 | 
						|
                            {Addr, SizeArgument});
 | 
						|
    else
 | 
						|
      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
 | 
						|
                            {Addr, SizeArgument, ExpVal});
 | 
						|
  } else {
 | 
						|
    if (Exp == 0)
 | 
						|
      Call =
 | 
						|
          IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
 | 
						|
    else
 | 
						|
      Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
 | 
						|
                            {Addr, ExpVal});
 | 
						|
  }
 | 
						|
 | 
						|
  Call->setCannotMerge();
 | 
						|
  return Call;
 | 
						|
}
 | 
						|
 | 
						|
Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
 | 
						|
                                           Value *ShadowValue,
 | 
						|
                                           uint32_t TypeSize) {
 | 
						|
  size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
 | 
						|
  // Addr & (Granularity - 1)
 | 
						|
  Value *LastAccessedByte =
 | 
						|
      IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
 | 
						|
  // (Addr & (Granularity - 1)) + size - 1
 | 
						|
  if (TypeSize / 8 > 1)
 | 
						|
    LastAccessedByte = IRB.CreateAdd(
 | 
						|
        LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
 | 
						|
  // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
 | 
						|
  LastAccessedByte =
 | 
						|
      IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
 | 
						|
  // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
 | 
						|
  return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *AddressSanitizer::instrumentAMDGPUAddress(
 | 
						|
    Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
 | 
						|
    uint32_t TypeSize, bool IsWrite, Value *SizeArgument) {
 | 
						|
  // Do not instrument unsupported addrspaces.
 | 
						|
  if (isUnsupportedAMDGPUAddrspace(Addr))
 | 
						|
    return nullptr;
 | 
						|
  Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
 | 
						|
  // Follow host instrumentation for global and constant addresses.
 | 
						|
  if (PtrTy->getPointerAddressSpace() != 0)
 | 
						|
    return InsertBefore;
 | 
						|
  // Instrument generic addresses in supported addressspaces.
 | 
						|
  IRBuilder<> IRB(InsertBefore);
 | 
						|
  Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy());
 | 
						|
  Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong});
 | 
						|
  Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong});
 | 
						|
  Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
 | 
						|
  Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate);
 | 
						|
  Value *AddrSpaceZeroLanding =
 | 
						|
      SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
 | 
						|
  InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
 | 
						|
  return InsertBefore;
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
 | 
						|
                                         Instruction *InsertBefore, Value *Addr,
 | 
						|
                                         uint32_t TypeSize, bool IsWrite,
 | 
						|
                                         Value *SizeArgument, bool UseCalls,
 | 
						|
                                         uint32_t Exp) {
 | 
						|
  if (TargetTriple.isAMDGPU()) {
 | 
						|
    InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
 | 
						|
                                           TypeSize, IsWrite, SizeArgument);
 | 
						|
    if (!InsertBefore)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  IRBuilder<> IRB(InsertBefore);
 | 
						|
  size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
 | 
						|
  const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
 | 
						|
 | 
						|
  if (UseCalls && ClOptimizeCallbacks) {
 | 
						|
    const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
 | 
						|
    Module *M = IRB.GetInsertBlock()->getParent()->getParent();
 | 
						|
    IRB.CreateCall(
 | 
						|
        Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess),
 | 
						|
        {IRB.CreatePointerCast(Addr, Int8PtrTy),
 | 
						|
         ConstantInt::get(Int32Ty, AccessInfo.Packed)});
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
 | 
						|
  if (UseCalls) {
 | 
						|
    if (Exp == 0)
 | 
						|
      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
 | 
						|
                     AddrLong);
 | 
						|
    else
 | 
						|
      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
 | 
						|
                     {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Type *ShadowTy =
 | 
						|
      IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
 | 
						|
  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
 | 
						|
  Value *ShadowPtr = memToShadow(AddrLong, IRB);
 | 
						|
  Value *CmpVal = Constant::getNullValue(ShadowTy);
 | 
						|
  Value *ShadowValue =
 | 
						|
      IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
 | 
						|
 | 
						|
  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
 | 
						|
  size_t Granularity = 1ULL << Mapping.Scale;
 | 
						|
  Instruction *CrashTerm = nullptr;
 | 
						|
 | 
						|
  if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
 | 
						|
    // We use branch weights for the slow path check, to indicate that the slow
 | 
						|
    // path is rarely taken. This seems to be the case for SPEC benchmarks.
 | 
						|
    Instruction *CheckTerm = SplitBlockAndInsertIfThen(
 | 
						|
        Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
 | 
						|
    assert(cast<BranchInst>(CheckTerm)->isUnconditional());
 | 
						|
    BasicBlock *NextBB = CheckTerm->getSuccessor(0);
 | 
						|
    IRB.SetInsertPoint(CheckTerm);
 | 
						|
    Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
 | 
						|
    if (Recover) {
 | 
						|
      CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
 | 
						|
    } else {
 | 
						|
      BasicBlock *CrashBlock =
 | 
						|
        BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
 | 
						|
      CrashTerm = new UnreachableInst(*C, CrashBlock);
 | 
						|
      BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
 | 
						|
      ReplaceInstWithInst(CheckTerm, NewTerm);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
 | 
						|
                                         AccessSizeIndex, SizeArgument, Exp);
 | 
						|
  Crash->setDebugLoc(OrigIns->getDebugLoc());
 | 
						|
}
 | 
						|
 | 
						|
// Instrument unusual size or unusual alignment.
 | 
						|
// We can not do it with a single check, so we do 1-byte check for the first
 | 
						|
// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
 | 
						|
// to report the actual access size.
 | 
						|
void AddressSanitizer::instrumentUnusualSizeOrAlignment(
 | 
						|
    Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
 | 
						|
    bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
 | 
						|
  IRBuilder<> IRB(InsertBefore);
 | 
						|
  Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
 | 
						|
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
 | 
						|
  if (UseCalls) {
 | 
						|
    if (Exp == 0)
 | 
						|
      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
 | 
						|
                     {AddrLong, Size});
 | 
						|
    else
 | 
						|
      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
 | 
						|
                     {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
 | 
						|
  } else {
 | 
						|
    Value *LastByte = IRB.CreateIntToPtr(
 | 
						|
        IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
 | 
						|
        Addr->getType());
 | 
						|
    instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
 | 
						|
    instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
 | 
						|
                                                  GlobalValue *ModuleName) {
 | 
						|
  // Set up the arguments to our poison/unpoison functions.
 | 
						|
  IRBuilder<> IRB(&GlobalInit.front(),
 | 
						|
                  GlobalInit.front().getFirstInsertionPt());
 | 
						|
 | 
						|
  // Add a call to poison all external globals before the given function starts.
 | 
						|
  Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
 | 
						|
  IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
 | 
						|
 | 
						|
  // Add calls to unpoison all globals before each return instruction.
 | 
						|
  for (auto &BB : GlobalInit.getBasicBlockList())
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
 | 
						|
      CallInst::Create(AsanUnpoisonGlobals, "", RI);
 | 
						|
}
 | 
						|
 | 
						|
void ModuleAddressSanitizer::createInitializerPoisonCalls(
 | 
						|
    Module &M, GlobalValue *ModuleName) {
 | 
						|
  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
 | 
						|
  if (!GV)
 | 
						|
    return;
 | 
						|
 | 
						|
  ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
 | 
						|
  if (!CA)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (Use &OP : CA->operands()) {
 | 
						|
    if (isa<ConstantAggregateZero>(OP)) continue;
 | 
						|
    ConstantStruct *CS = cast<ConstantStruct>(OP);
 | 
						|
 | 
						|
    // Must have a function or null ptr.
 | 
						|
    if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
 | 
						|
      if (F->getName() == kAsanModuleCtorName) continue;
 | 
						|
      auto *Priority = cast<ConstantInt>(CS->getOperand(0));
 | 
						|
      // Don't instrument CTORs that will run before asan.module_ctor.
 | 
						|
      if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
 | 
						|
        continue;
 | 
						|
      poisonOneInitializer(*F, ModuleName);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const GlobalVariable *
 | 
						|
ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
 | 
						|
  // In case this function should be expanded to include rules that do not just
 | 
						|
  // apply when CompileKernel is true, either guard all existing rules with an
 | 
						|
  // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
 | 
						|
  // should also apply to user space.
 | 
						|
  assert(CompileKernel && "Only expecting to be called when compiling kernel");
 | 
						|
 | 
						|
  const Constant *C = GA.getAliasee();
 | 
						|
 | 
						|
  // When compiling the kernel, globals that are aliased by symbols prefixed
 | 
						|
  // by "__" are special and cannot be padded with a redzone.
 | 
						|
  if (GA.getName().startswith("__"))
 | 
						|
    return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
 | 
						|
  Type *Ty = G->getValueType();
 | 
						|
  LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
 | 
						|
 | 
						|
  // FIXME: Metadata should be attched directly to the global directly instead
 | 
						|
  // of being added to llvm.asan.globals.
 | 
						|
  if (GlobalsMD.get(G).IsExcluded) return false;
 | 
						|
  if (!Ty->isSized()) return false;
 | 
						|
  if (!G->hasInitializer()) return false;
 | 
						|
  // Globals in address space 1 and 4 are supported for AMDGPU.
 | 
						|
  if (G->getAddressSpace() &&
 | 
						|
      !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
 | 
						|
    return false;
 | 
						|
  if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
 | 
						|
  // Two problems with thread-locals:
 | 
						|
  //   - The address of the main thread's copy can't be computed at link-time.
 | 
						|
  //   - Need to poison all copies, not just the main thread's one.
 | 
						|
  if (G->isThreadLocal()) return false;
 | 
						|
  // For now, just ignore this Global if the alignment is large.
 | 
						|
  if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;
 | 
						|
 | 
						|
  // For non-COFF targets, only instrument globals known to be defined by this
 | 
						|
  // TU.
 | 
						|
  // FIXME: We can instrument comdat globals on ELF if we are using the
 | 
						|
  // GC-friendly metadata scheme.
 | 
						|
  if (!TargetTriple.isOSBinFormatCOFF()) {
 | 
						|
    if (!G->hasExactDefinition() || G->hasComdat())
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    // On COFF, don't instrument non-ODR linkages.
 | 
						|
    if (G->isInterposable())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If a comdat is present, it must have a selection kind that implies ODR
 | 
						|
  // semantics: no duplicates, any, or exact match.
 | 
						|
  if (Comdat *C = G->getComdat()) {
 | 
						|
    switch (C->getSelectionKind()) {
 | 
						|
    case Comdat::Any:
 | 
						|
    case Comdat::ExactMatch:
 | 
						|
    case Comdat::NoDeduplicate:
 | 
						|
      break;
 | 
						|
    case Comdat::Largest:
 | 
						|
    case Comdat::SameSize:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (G->hasSection()) {
 | 
						|
    // The kernel uses explicit sections for mostly special global variables
 | 
						|
    // that we should not instrument. E.g. the kernel may rely on their layout
 | 
						|
    // without redzones, or remove them at link time ("discard.*"), etc.
 | 
						|
    if (CompileKernel)
 | 
						|
      return false;
 | 
						|
 | 
						|
    StringRef Section = G->getSection();
 | 
						|
 | 
						|
    // Globals from llvm.metadata aren't emitted, do not instrument them.
 | 
						|
    if (Section == "llvm.metadata") return false;
 | 
						|
    // Do not instrument globals from special LLVM sections.
 | 
						|
    if (Section.contains("__llvm") || Section.contains("__LLVM"))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Do not instrument function pointers to initialization and termination
 | 
						|
    // routines: dynamic linker will not properly handle redzones.
 | 
						|
    if (Section.startswith(".preinit_array") ||
 | 
						|
        Section.startswith(".init_array") ||
 | 
						|
        Section.startswith(".fini_array")) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Do not instrument user-defined sections (with names resembling
 | 
						|
    // valid C identifiers)
 | 
						|
    if (TargetTriple.isOSBinFormatELF()) {
 | 
						|
      if (llvm::all_of(Section,
 | 
						|
                       [](char c) { return llvm::isAlnum(c) || c == '_'; }))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // On COFF, if the section name contains '$', it is highly likely that the
 | 
						|
    // user is using section sorting to create an array of globals similar to
 | 
						|
    // the way initialization callbacks are registered in .init_array and
 | 
						|
    // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
 | 
						|
    // to such globals is counterproductive, because the intent is that they
 | 
						|
    // will form an array, and out-of-bounds accesses are expected.
 | 
						|
    // See https://github.com/google/sanitizers/issues/305
 | 
						|
    // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
 | 
						|
    if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
 | 
						|
                        << *G << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (TargetTriple.isOSBinFormatMachO()) {
 | 
						|
      StringRef ParsedSegment, ParsedSection;
 | 
						|
      unsigned TAA = 0, StubSize = 0;
 | 
						|
      bool TAAParsed;
 | 
						|
      cantFail(MCSectionMachO::ParseSectionSpecifier(
 | 
						|
          Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
 | 
						|
 | 
						|
      // Ignore the globals from the __OBJC section. The ObjC runtime assumes
 | 
						|
      // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
 | 
						|
      // them.
 | 
						|
      if (ParsedSegment == "__OBJC" ||
 | 
						|
          (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // See https://github.com/google/sanitizers/issues/32
 | 
						|
      // Constant CFString instances are compiled in the following way:
 | 
						|
      //  -- the string buffer is emitted into
 | 
						|
      //     __TEXT,__cstring,cstring_literals
 | 
						|
      //  -- the constant NSConstantString structure referencing that buffer
 | 
						|
      //     is placed into __DATA,__cfstring
 | 
						|
      // Therefore there's no point in placing redzones into __DATA,__cfstring.
 | 
						|
      // Moreover, it causes the linker to crash on OS X 10.7
 | 
						|
      if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
 | 
						|
        LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // The linker merges the contents of cstring_literals and removes the
 | 
						|
      // trailing zeroes.
 | 
						|
      if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CompileKernel) {
 | 
						|
    // Globals that prefixed by "__" are special and cannot be padded with a
 | 
						|
    // redzone.
 | 
						|
    if (G->getName().startswith("__"))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// On Mach-O platforms, we emit global metadata in a separate section of the
 | 
						|
// binary in order to allow the linker to properly dead strip. This is only
 | 
						|
// supported on recent versions of ld64.
 | 
						|
bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
 | 
						|
  if (!TargetTriple.isOSBinFormatMachO())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
 | 
						|
    return true;
 | 
						|
  if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
 | 
						|
    return true;
 | 
						|
  if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
 | 
						|
    return true;
 | 
						|
  if (TargetTriple.isDriverKit())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
 | 
						|
  switch (TargetTriple.getObjectFormat()) {
 | 
						|
  case Triple::COFF:  return ".ASAN$GL";
 | 
						|
  case Triple::ELF:   return "asan_globals";
 | 
						|
  case Triple::MachO: return "__DATA,__asan_globals,regular";
 | 
						|
  case Triple::Wasm:
 | 
						|
  case Triple::GOFF:
 | 
						|
  case Triple::SPIRV:
 | 
						|
  case Triple::XCOFF:
 | 
						|
  case Triple::DXContainer:
 | 
						|
    report_fatal_error(
 | 
						|
        "ModuleAddressSanitizer not implemented for object file format");
 | 
						|
  case Triple::UnknownObjectFormat:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unsupported object format");
 | 
						|
}
 | 
						|
 | 
						|
void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
 | 
						|
  IRBuilder<> IRB(*C);
 | 
						|
 | 
						|
  // Declare our poisoning and unpoisoning functions.
 | 
						|
  AsanPoisonGlobals =
 | 
						|
      M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
 | 
						|
  AsanUnpoisonGlobals =
 | 
						|
      M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
 | 
						|
 | 
						|
  // Declare functions that register/unregister globals.
 | 
						|
  AsanRegisterGlobals = M.getOrInsertFunction(
 | 
						|
      kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
 | 
						|
  AsanUnregisterGlobals = M.getOrInsertFunction(
 | 
						|
      kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
 | 
						|
 | 
						|
  // Declare the functions that find globals in a shared object and then invoke
 | 
						|
  // the (un)register function on them.
 | 
						|
  AsanRegisterImageGlobals = M.getOrInsertFunction(
 | 
						|
      kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
 | 
						|
  AsanUnregisterImageGlobals = M.getOrInsertFunction(
 | 
						|
      kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
 | 
						|
 | 
						|
  AsanRegisterElfGlobals =
 | 
						|
      M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
 | 
						|
                            IntptrTy, IntptrTy, IntptrTy);
 | 
						|
  AsanUnregisterElfGlobals =
 | 
						|
      M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
 | 
						|
                            IntptrTy, IntptrTy, IntptrTy);
 | 
						|
}
 | 
						|
 | 
						|
// Put the metadata and the instrumented global in the same group. This ensures
 | 
						|
// that the metadata is discarded if the instrumented global is discarded.
 | 
						|
void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
 | 
						|
    GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
 | 
						|
  Module &M = *G->getParent();
 | 
						|
  Comdat *C = G->getComdat();
 | 
						|
  if (!C) {
 | 
						|
    if (!G->hasName()) {
 | 
						|
      // If G is unnamed, it must be internal. Give it an artificial name
 | 
						|
      // so we can put it in a comdat.
 | 
						|
      assert(G->hasLocalLinkage());
 | 
						|
      G->setName(Twine(kAsanGenPrefix) + "_anon_global");
 | 
						|
    }
 | 
						|
 | 
						|
    if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
 | 
						|
      std::string Name = std::string(G->getName());
 | 
						|
      Name += InternalSuffix;
 | 
						|
      C = M.getOrInsertComdat(Name);
 | 
						|
    } else {
 | 
						|
      C = M.getOrInsertComdat(G->getName());
 | 
						|
    }
 | 
						|
 | 
						|
    // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
 | 
						|
    // linkage to internal linkage so that a symbol table entry is emitted. This
 | 
						|
    // is necessary in order to create the comdat group.
 | 
						|
    if (TargetTriple.isOSBinFormatCOFF()) {
 | 
						|
      C->setSelectionKind(Comdat::NoDeduplicate);
 | 
						|
      if (G->hasPrivateLinkage())
 | 
						|
        G->setLinkage(GlobalValue::InternalLinkage);
 | 
						|
    }
 | 
						|
    G->setComdat(C);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(G->hasComdat());
 | 
						|
  Metadata->setComdat(G->getComdat());
 | 
						|
}
 | 
						|
 | 
						|
// Create a separate metadata global and put it in the appropriate ASan
 | 
						|
// global registration section.
 | 
						|
GlobalVariable *
 | 
						|
ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
 | 
						|
                                             StringRef OriginalName) {
 | 
						|
  auto Linkage = TargetTriple.isOSBinFormatMachO()
 | 
						|
                     ? GlobalVariable::InternalLinkage
 | 
						|
                     : GlobalVariable::PrivateLinkage;
 | 
						|
  GlobalVariable *Metadata = new GlobalVariable(
 | 
						|
      M, Initializer->getType(), false, Linkage, Initializer,
 | 
						|
      Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
 | 
						|
  Metadata->setSection(getGlobalMetadataSection());
 | 
						|
  return Metadata;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
 | 
						|
  AsanDtorFunction = Function::createWithDefaultAttr(
 | 
						|
      FunctionType::get(Type::getVoidTy(*C), false),
 | 
						|
      GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
 | 
						|
  AsanDtorFunction->addFnAttr(Attribute::NoUnwind);
 | 
						|
  // Ensure Dtor cannot be discarded, even if in a comdat.
 | 
						|
  appendToUsed(M, {AsanDtorFunction});
 | 
						|
  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
 | 
						|
 | 
						|
  return ReturnInst::Create(*C, AsanDtorBB);
 | 
						|
}
 | 
						|
 | 
						|
void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
 | 
						|
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
    ArrayRef<Constant *> MetadataInitializers) {
 | 
						|
  assert(ExtendedGlobals.size() == MetadataInitializers.size());
 | 
						|
  auto &DL = M.getDataLayout();
 | 
						|
 | 
						|
  SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
 | 
						|
  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
 | 
						|
    Constant *Initializer = MetadataInitializers[i];
 | 
						|
    GlobalVariable *G = ExtendedGlobals[i];
 | 
						|
    GlobalVariable *Metadata =
 | 
						|
        CreateMetadataGlobal(M, Initializer, G->getName());
 | 
						|
    MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
 | 
						|
    Metadata->setMetadata(LLVMContext::MD_associated, MD);
 | 
						|
    MetadataGlobals[i] = Metadata;
 | 
						|
 | 
						|
    // The MSVC linker always inserts padding when linking incrementally. We
 | 
						|
    // cope with that by aligning each struct to its size, which must be a power
 | 
						|
    // of two.
 | 
						|
    unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
 | 
						|
    assert(isPowerOf2_32(SizeOfGlobalStruct) &&
 | 
						|
           "global metadata will not be padded appropriately");
 | 
						|
    Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
 | 
						|
 | 
						|
    SetComdatForGlobalMetadata(G, Metadata, "");
 | 
						|
  }
 | 
						|
 | 
						|
  // Update llvm.compiler.used, adding the new metadata globals. This is
 | 
						|
  // needed so that during LTO these variables stay alive.
 | 
						|
  if (!MetadataGlobals.empty())
 | 
						|
    appendToCompilerUsed(M, MetadataGlobals);
 | 
						|
}
 | 
						|
 | 
						|
void ModuleAddressSanitizer::InstrumentGlobalsELF(
 | 
						|
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
    ArrayRef<Constant *> MetadataInitializers,
 | 
						|
    const std::string &UniqueModuleId) {
 | 
						|
  assert(ExtendedGlobals.size() == MetadataInitializers.size());
 | 
						|
 | 
						|
  // Putting globals in a comdat changes the semantic and potentially cause
 | 
						|
  // false negative odr violations at link time. If odr indicators are used, we
 | 
						|
  // keep the comdat sections, as link time odr violations will be dectected on
 | 
						|
  // the odr indicator symbols.
 | 
						|
  bool UseComdatForGlobalsGC = UseOdrIndicator;
 | 
						|
 | 
						|
  SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
 | 
						|
  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
 | 
						|
    GlobalVariable *G = ExtendedGlobals[i];
 | 
						|
    GlobalVariable *Metadata =
 | 
						|
        CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
 | 
						|
    MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
 | 
						|
    Metadata->setMetadata(LLVMContext::MD_associated, MD);
 | 
						|
    MetadataGlobals[i] = Metadata;
 | 
						|
 | 
						|
    if (UseComdatForGlobalsGC)
 | 
						|
      SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update llvm.compiler.used, adding the new metadata globals. This is
 | 
						|
  // needed so that during LTO these variables stay alive.
 | 
						|
  if (!MetadataGlobals.empty())
 | 
						|
    appendToCompilerUsed(M, MetadataGlobals);
 | 
						|
 | 
						|
  // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
 | 
						|
  // to look up the loaded image that contains it. Second, we can store in it
 | 
						|
  // whether registration has already occurred, to prevent duplicate
 | 
						|
  // registration.
 | 
						|
  //
 | 
						|
  // Common linkage ensures that there is only one global per shared library.
 | 
						|
  GlobalVariable *RegisteredFlag = new GlobalVariable(
 | 
						|
      M, IntptrTy, false, GlobalVariable::CommonLinkage,
 | 
						|
      ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
 | 
						|
  RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
 | 
						|
 | 
						|
  // Create start and stop symbols.
 | 
						|
  GlobalVariable *StartELFMetadata = new GlobalVariable(
 | 
						|
      M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
 | 
						|
      "__start_" + getGlobalMetadataSection());
 | 
						|
  StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
 | 
						|
  GlobalVariable *StopELFMetadata = new GlobalVariable(
 | 
						|
      M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
 | 
						|
      "__stop_" + getGlobalMetadataSection());
 | 
						|
  StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
 | 
						|
 | 
						|
  // Create a call to register the globals with the runtime.
 | 
						|
  IRB.CreateCall(AsanRegisterElfGlobals,
 | 
						|
                 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
 | 
						|
                  IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
 | 
						|
                  IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
 | 
						|
 | 
						|
  // We also need to unregister globals at the end, e.g., when a shared library
 | 
						|
  // gets closed.
 | 
						|
  if (DestructorKind != AsanDtorKind::None) {
 | 
						|
    IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
 | 
						|
    IrbDtor.CreateCall(AsanUnregisterElfGlobals,
 | 
						|
                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
 | 
						|
                        IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
 | 
						|
                        IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ModuleAddressSanitizer::InstrumentGlobalsMachO(
 | 
						|
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
    ArrayRef<Constant *> MetadataInitializers) {
 | 
						|
  assert(ExtendedGlobals.size() == MetadataInitializers.size());
 | 
						|
 | 
						|
  // On recent Mach-O platforms, use a structure which binds the liveness of
 | 
						|
  // the global variable to the metadata struct. Keep the list of "Liveness" GV
 | 
						|
  // created to be added to llvm.compiler.used
 | 
						|
  StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
 | 
						|
  SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
 | 
						|
 | 
						|
  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
 | 
						|
    Constant *Initializer = MetadataInitializers[i];
 | 
						|
    GlobalVariable *G = ExtendedGlobals[i];
 | 
						|
    GlobalVariable *Metadata =
 | 
						|
        CreateMetadataGlobal(M, Initializer, G->getName());
 | 
						|
 | 
						|
    // On recent Mach-O platforms, we emit the global metadata in a way that
 | 
						|
    // allows the linker to properly strip dead globals.
 | 
						|
    auto LivenessBinder =
 | 
						|
        ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
 | 
						|
                            ConstantExpr::getPointerCast(Metadata, IntptrTy));
 | 
						|
    GlobalVariable *Liveness = new GlobalVariable(
 | 
						|
        M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
 | 
						|
        Twine("__asan_binder_") + G->getName());
 | 
						|
    Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
 | 
						|
    LivenessGlobals[i] = Liveness;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update llvm.compiler.used, adding the new liveness globals. This is
 | 
						|
  // needed so that during LTO these variables stay alive. The alternative
 | 
						|
  // would be to have the linker handling the LTO symbols, but libLTO
 | 
						|
  // current API does not expose access to the section for each symbol.
 | 
						|
  if (!LivenessGlobals.empty())
 | 
						|
    appendToCompilerUsed(M, LivenessGlobals);
 | 
						|
 | 
						|
  // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
 | 
						|
  // to look up the loaded image that contains it. Second, we can store in it
 | 
						|
  // whether registration has already occurred, to prevent duplicate
 | 
						|
  // registration.
 | 
						|
  //
 | 
						|
  // common linkage ensures that there is only one global per shared library.
 | 
						|
  GlobalVariable *RegisteredFlag = new GlobalVariable(
 | 
						|
      M, IntptrTy, false, GlobalVariable::CommonLinkage,
 | 
						|
      ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
 | 
						|
  RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
 | 
						|
 | 
						|
  IRB.CreateCall(AsanRegisterImageGlobals,
 | 
						|
                 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
 | 
						|
 | 
						|
  // We also need to unregister globals at the end, e.g., when a shared library
 | 
						|
  // gets closed.
 | 
						|
  if (DestructorKind != AsanDtorKind::None) {
 | 
						|
    IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
 | 
						|
    IrbDtor.CreateCall(AsanUnregisterImageGlobals,
 | 
						|
                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
 | 
						|
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
    ArrayRef<Constant *> MetadataInitializers) {
 | 
						|
  assert(ExtendedGlobals.size() == MetadataInitializers.size());
 | 
						|
  unsigned N = ExtendedGlobals.size();
 | 
						|
  assert(N > 0);
 | 
						|
 | 
						|
  // On platforms that don't have a custom metadata section, we emit an array
 | 
						|
  // of global metadata structures.
 | 
						|
  ArrayType *ArrayOfGlobalStructTy =
 | 
						|
      ArrayType::get(MetadataInitializers[0]->getType(), N);
 | 
						|
  auto AllGlobals = new GlobalVariable(
 | 
						|
      M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
 | 
						|
      ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
 | 
						|
  if (Mapping.Scale > 3)
 | 
						|
    AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
 | 
						|
 | 
						|
  IRB.CreateCall(AsanRegisterGlobals,
 | 
						|
                 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
 | 
						|
                  ConstantInt::get(IntptrTy, N)});
 | 
						|
 | 
						|
  // We also need to unregister globals at the end, e.g., when a shared library
 | 
						|
  // gets closed.
 | 
						|
  if (DestructorKind != AsanDtorKind::None) {
 | 
						|
    IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
 | 
						|
    IrbDtor.CreateCall(AsanUnregisterGlobals,
 | 
						|
                       {IRB.CreatePointerCast(AllGlobals, IntptrTy),
 | 
						|
                        ConstantInt::get(IntptrTy, N)});
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// This function replaces all global variables with new variables that have
 | 
						|
// trailing redzones. It also creates a function that poisons
 | 
						|
// redzones and inserts this function into llvm.global_ctors.
 | 
						|
// Sets *CtorComdat to true if the global registration code emitted into the
 | 
						|
// asan constructor is comdat-compatible.
 | 
						|
bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
 | 
						|
                                               bool *CtorComdat) {
 | 
						|
  *CtorComdat = false;
 | 
						|
 | 
						|
  // Build set of globals that are aliased by some GA, where
 | 
						|
  // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
 | 
						|
  SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
 | 
						|
  if (CompileKernel) {
 | 
						|
    for (auto &GA : M.aliases()) {
 | 
						|
      if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
 | 
						|
        AliasedGlobalExclusions.insert(GV);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<GlobalVariable *, 16> GlobalsToChange;
 | 
						|
  for (auto &G : M.globals()) {
 | 
						|
    if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
 | 
						|
      GlobalsToChange.push_back(&G);
 | 
						|
  }
 | 
						|
 | 
						|
  size_t n = GlobalsToChange.size();
 | 
						|
  if (n == 0) {
 | 
						|
    *CtorComdat = true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  auto &DL = M.getDataLayout();
 | 
						|
 | 
						|
  // A global is described by a structure
 | 
						|
  //   size_t beg;
 | 
						|
  //   size_t size;
 | 
						|
  //   size_t size_with_redzone;
 | 
						|
  //   const char *name;
 | 
						|
  //   const char *module_name;
 | 
						|
  //   size_t has_dynamic_init;
 | 
						|
  //   void *source_location;
 | 
						|
  //   size_t odr_indicator;
 | 
						|
  // We initialize an array of such structures and pass it to a run-time call.
 | 
						|
  StructType *GlobalStructTy =
 | 
						|
      StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
 | 
						|
                      IntptrTy, IntptrTy, IntptrTy);
 | 
						|
  SmallVector<GlobalVariable *, 16> NewGlobals(n);
 | 
						|
  SmallVector<Constant *, 16> Initializers(n);
 | 
						|
 | 
						|
  bool HasDynamicallyInitializedGlobals = false;
 | 
						|
 | 
						|
  // We shouldn't merge same module names, as this string serves as unique
 | 
						|
  // module ID in runtime.
 | 
						|
  GlobalVariable *ModuleName = createPrivateGlobalForString(
 | 
						|
      M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
 | 
						|
 | 
						|
  for (size_t i = 0; i < n; i++) {
 | 
						|
    GlobalVariable *G = GlobalsToChange[i];
 | 
						|
 | 
						|
    // FIXME: Metadata should be attched directly to the global directly instead
 | 
						|
    // of being added to llvm.asan.globals.
 | 
						|
    auto MD = GlobalsMD.get(G);
 | 
						|
    StringRef NameForGlobal = G->getName();
 | 
						|
    // Create string holding the global name (use global name from metadata
 | 
						|
    // if it's available, otherwise just write the name of global variable).
 | 
						|
    GlobalVariable *Name = createPrivateGlobalForString(
 | 
						|
        M, MD.Name.empty() ? NameForGlobal : MD.Name,
 | 
						|
        /*AllowMerging*/ true, kAsanGenPrefix);
 | 
						|
 | 
						|
    Type *Ty = G->getValueType();
 | 
						|
    const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
 | 
						|
    const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
 | 
						|
    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
 | 
						|
 | 
						|
    StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
 | 
						|
    Constant *NewInitializer = ConstantStruct::get(
 | 
						|
        NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
 | 
						|
 | 
						|
    // Create a new global variable with enough space for a redzone.
 | 
						|
    GlobalValue::LinkageTypes Linkage = G->getLinkage();
 | 
						|
    if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
 | 
						|
      Linkage = GlobalValue::InternalLinkage;
 | 
						|
    GlobalVariable *NewGlobal = new GlobalVariable(
 | 
						|
        M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
 | 
						|
        G->getThreadLocalMode(), G->getAddressSpace());
 | 
						|
    NewGlobal->copyAttributesFrom(G);
 | 
						|
    NewGlobal->setComdat(G->getComdat());
 | 
						|
    NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
 | 
						|
    // Don't fold globals with redzones. ODR violation detector and redzone
 | 
						|
    // poisoning implicitly creates a dependence on the global's address, so it
 | 
						|
    // is no longer valid for it to be marked unnamed_addr.
 | 
						|
    NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
 | 
						|
 | 
						|
    // Move null-terminated C strings to "__asan_cstring" section on Darwin.
 | 
						|
    if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
 | 
						|
        G->isConstant()) {
 | 
						|
      auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
 | 
						|
      if (Seq && Seq->isCString())
 | 
						|
        NewGlobal->setSection("__TEXT,__asan_cstring,regular");
 | 
						|
    }
 | 
						|
 | 
						|
    // Transfer the debug info and type metadata.  The payload starts at offset
 | 
						|
    // zero so we can copy the metadata over as is.
 | 
						|
    NewGlobal->copyMetadata(G, 0);
 | 
						|
 | 
						|
    Value *Indices2[2];
 | 
						|
    Indices2[0] = IRB.getInt32(0);
 | 
						|
    Indices2[1] = IRB.getInt32(0);
 | 
						|
 | 
						|
    G->replaceAllUsesWith(
 | 
						|
        ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
 | 
						|
    NewGlobal->takeName(G);
 | 
						|
    G->eraseFromParent();
 | 
						|
    NewGlobals[i] = NewGlobal;
 | 
						|
 | 
						|
    Constant *SourceLoc;
 | 
						|
    if (!MD.SourceLoc.empty()) {
 | 
						|
      auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
 | 
						|
      SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
 | 
						|
    } else {
 | 
						|
      SourceLoc = ConstantInt::get(IntptrTy, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
 | 
						|
    GlobalValue *InstrumentedGlobal = NewGlobal;
 | 
						|
 | 
						|
    bool CanUsePrivateAliases =
 | 
						|
        TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
 | 
						|
        TargetTriple.isOSBinFormatWasm();
 | 
						|
    if (CanUsePrivateAliases && UsePrivateAlias) {
 | 
						|
      // Create local alias for NewGlobal to avoid crash on ODR between
 | 
						|
      // instrumented and non-instrumented libraries.
 | 
						|
      InstrumentedGlobal =
 | 
						|
          GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
 | 
						|
    }
 | 
						|
 | 
						|
    // ODR should not happen for local linkage.
 | 
						|
    if (NewGlobal->hasLocalLinkage()) {
 | 
						|
      ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
 | 
						|
                                               IRB.getInt8PtrTy());
 | 
						|
    } else if (UseOdrIndicator) {
 | 
						|
      // With local aliases, we need to provide another externally visible
 | 
						|
      // symbol __odr_asan_XXX to detect ODR violation.
 | 
						|
      auto *ODRIndicatorSym =
 | 
						|
          new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
 | 
						|
                             Constant::getNullValue(IRB.getInt8Ty()),
 | 
						|
                             kODRGenPrefix + NameForGlobal, nullptr,
 | 
						|
                             NewGlobal->getThreadLocalMode());
 | 
						|
 | 
						|
      // Set meaningful attributes for indicator symbol.
 | 
						|
      ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
 | 
						|
      ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
 | 
						|
      ODRIndicatorSym->setAlignment(Align(1));
 | 
						|
      ODRIndicator = ODRIndicatorSym;
 | 
						|
    }
 | 
						|
 | 
						|
    Constant *Initializer = ConstantStruct::get(
 | 
						|
        GlobalStructTy,
 | 
						|
        ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
 | 
						|
        ConstantInt::get(IntptrTy, SizeInBytes),
 | 
						|
        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
 | 
						|
        ConstantExpr::getPointerCast(Name, IntptrTy),
 | 
						|
        ConstantExpr::getPointerCast(ModuleName, IntptrTy),
 | 
						|
        ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
 | 
						|
        ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
 | 
						|
 | 
						|
    if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
 | 
						|
 | 
						|
    Initializers[i] = Initializer;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add instrumented globals to llvm.compiler.used list to avoid LTO from
 | 
						|
  // ConstantMerge'ing them.
 | 
						|
  SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
 | 
						|
  for (size_t i = 0; i < n; i++) {
 | 
						|
    GlobalVariable *G = NewGlobals[i];
 | 
						|
    if (G->getName().empty()) continue;
 | 
						|
    GlobalsToAddToUsedList.push_back(G);
 | 
						|
  }
 | 
						|
  appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
 | 
						|
 | 
						|
  std::string ELFUniqueModuleId =
 | 
						|
      (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
 | 
						|
                                                        : "";
 | 
						|
 | 
						|
  if (!ELFUniqueModuleId.empty()) {
 | 
						|
    InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
 | 
						|
    *CtorComdat = true;
 | 
						|
  } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
 | 
						|
    InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
 | 
						|
  } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
 | 
						|
    InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
 | 
						|
  } else {
 | 
						|
    InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create calls for poisoning before initializers run and unpoisoning after.
 | 
						|
  if (HasDynamicallyInitializedGlobals)
 | 
						|
    createInitializerPoisonCalls(M, ModuleName);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << M);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
 | 
						|
  constexpr uint64_t kMaxRZ = 1 << 18;
 | 
						|
  const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
 | 
						|
 | 
						|
  uint64_t RZ = 0;
 | 
						|
  if (SizeInBytes <= MinRZ / 2) {
 | 
						|
    // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
 | 
						|
    // at least 32 bytes, optimize when SizeInBytes is less than or equal to
 | 
						|
    // half of MinRZ.
 | 
						|
    RZ = MinRZ - SizeInBytes;
 | 
						|
  } else {
 | 
						|
    // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
 | 
						|
    RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));
 | 
						|
 | 
						|
    // Round up to multiple of MinRZ.
 | 
						|
    if (SizeInBytes % MinRZ)
 | 
						|
      RZ += MinRZ - (SizeInBytes % MinRZ);
 | 
						|
  }
 | 
						|
 | 
						|
  assert((RZ + SizeInBytes) % MinRZ == 0);
 | 
						|
 | 
						|
  return RZ;
 | 
						|
}
 | 
						|
 | 
						|
int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
 | 
						|
  int LongSize = M.getDataLayout().getPointerSizeInBits();
 | 
						|
  bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
 | 
						|
  int Version = 8;
 | 
						|
  // 32-bit Android is one version ahead because of the switch to dynamic
 | 
						|
  // shadow.
 | 
						|
  Version += (LongSize == 32 && isAndroid);
 | 
						|
  return Version;
 | 
						|
}
 | 
						|
 | 
						|
bool ModuleAddressSanitizer::instrumentModule(Module &M) {
 | 
						|
  initializeCallbacks(M);
 | 
						|
 | 
						|
  // Create a module constructor. A destructor is created lazily because not all
 | 
						|
  // platforms, and not all modules need it.
 | 
						|
  if (CompileKernel) {
 | 
						|
    // The kernel always builds with its own runtime, and therefore does not
 | 
						|
    // need the init and version check calls.
 | 
						|
    AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
 | 
						|
  } else {
 | 
						|
    std::string AsanVersion = std::to_string(GetAsanVersion(M));
 | 
						|
    std::string VersionCheckName =
 | 
						|
        ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
 | 
						|
    std::tie(AsanCtorFunction, std::ignore) =
 | 
						|
        createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
 | 
						|
                                            kAsanInitName, /*InitArgTypes=*/{},
 | 
						|
                                            /*InitArgs=*/{}, VersionCheckName);
 | 
						|
  }
 | 
						|
 | 
						|
  bool CtorComdat = true;
 | 
						|
  if (ClGlobals) {
 | 
						|
    IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
 | 
						|
    InstrumentGlobals(IRB, M, &CtorComdat);
 | 
						|
  }
 | 
						|
 | 
						|
  const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
 | 
						|
 | 
						|
  // Put the constructor and destructor in comdat if both
 | 
						|
  // (1) global instrumentation is not TU-specific
 | 
						|
  // (2) target is ELF.
 | 
						|
  if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
 | 
						|
    AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
 | 
						|
    appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
 | 
						|
    if (AsanDtorFunction) {
 | 
						|
      AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
 | 
						|
      appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    appendToGlobalCtors(M, AsanCtorFunction, Priority);
 | 
						|
    if (AsanDtorFunction)
 | 
						|
      appendToGlobalDtors(M, AsanDtorFunction, Priority);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::initializeCallbacks(Module &M) {
 | 
						|
  IRBuilder<> IRB(*C);
 | 
						|
  // Create __asan_report* callbacks.
 | 
						|
  // IsWrite, TypeSize and Exp are encoded in the function name.
 | 
						|
  for (int Exp = 0; Exp < 2; Exp++) {
 | 
						|
    for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
 | 
						|
      const std::string TypeStr = AccessIsWrite ? "store" : "load";
 | 
						|
      const std::string ExpStr = Exp ? "exp_" : "";
 | 
						|
      const std::string EndingStr = Recover ? "_noabort" : "";
 | 
						|
 | 
						|
      SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
 | 
						|
      SmallVector<Type *, 2> Args1{1, IntptrTy};
 | 
						|
      if (Exp) {
 | 
						|
        Type *ExpType = Type::getInt32Ty(*C);
 | 
						|
        Args2.push_back(ExpType);
 | 
						|
        Args1.push_back(ExpType);
 | 
						|
      }
 | 
						|
      AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
 | 
						|
          kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
 | 
						|
          FunctionType::get(IRB.getVoidTy(), Args2, false));
 | 
						|
 | 
						|
      AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
 | 
						|
          ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
 | 
						|
          FunctionType::get(IRB.getVoidTy(), Args2, false));
 | 
						|
 | 
						|
      for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
 | 
						|
           AccessSizeIndex++) {
 | 
						|
        const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
 | 
						|
        AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
 | 
						|
            M.getOrInsertFunction(
 | 
						|
                kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
 | 
						|
                FunctionType::get(IRB.getVoidTy(), Args1, false));
 | 
						|
 | 
						|
        AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
 | 
						|
            M.getOrInsertFunction(
 | 
						|
                ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
 | 
						|
                FunctionType::get(IRB.getVoidTy(), Args1, false));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const std::string MemIntrinCallbackPrefix =
 | 
						|
      (CompileKernel && !ClKasanMemIntrinCallbackPrefix)
 | 
						|
          ? std::string("")
 | 
						|
          : ClMemoryAccessCallbackPrefix;
 | 
						|
  AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
 | 
						|
                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
 | 
						|
                                      IRB.getInt8PtrTy(), IntptrTy);
 | 
						|
  AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
 | 
						|
                                     IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
 | 
						|
                                     IRB.getInt8PtrTy(), IntptrTy);
 | 
						|
  AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
 | 
						|
                                     IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
 | 
						|
                                     IRB.getInt32Ty(), IntptrTy);
 | 
						|
 | 
						|
  AsanHandleNoReturnFunc =
 | 
						|
      M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
 | 
						|
 | 
						|
  AsanPtrCmpFunction =
 | 
						|
      M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
 | 
						|
  AsanPtrSubFunction =
 | 
						|
      M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
 | 
						|
  if (Mapping.InGlobal)
 | 
						|
    AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
 | 
						|
                                           ArrayType::get(IRB.getInt8Ty(), 0));
 | 
						|
 | 
						|
  AMDGPUAddressShared = M.getOrInsertFunction(
 | 
						|
      kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
 | 
						|
  AMDGPUAddressPrivate = M.getOrInsertFunction(
 | 
						|
      kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
 | 
						|
  // For each NSObject descendant having a +load method, this method is invoked
 | 
						|
  // by the ObjC runtime before any of the static constructors is called.
 | 
						|
  // Therefore we need to instrument such methods with a call to __asan_init
 | 
						|
  // at the beginning in order to initialize our runtime before any access to
 | 
						|
  // the shadow memory.
 | 
						|
  // We cannot just ignore these methods, because they may call other
 | 
						|
  // instrumented functions.
 | 
						|
  if (F.getName().find(" load]") != std::string::npos) {
 | 
						|
    FunctionCallee AsanInitFunction =
 | 
						|
        declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
 | 
						|
    IRBuilder<> IRB(&F.front(), F.front().begin());
 | 
						|
    IRB.CreateCall(AsanInitFunction, {});
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
 | 
						|
  // Generate code only when dynamic addressing is needed.
 | 
						|
  if (Mapping.Offset != kDynamicShadowSentinel)
 | 
						|
    return false;
 | 
						|
 | 
						|
  IRBuilder<> IRB(&F.front().front());
 | 
						|
  if (Mapping.InGlobal) {
 | 
						|
    if (ClWithIfuncSuppressRemat) {
 | 
						|
      // An empty inline asm with input reg == output reg.
 | 
						|
      // An opaque pointer-to-int cast, basically.
 | 
						|
      InlineAsm *Asm = InlineAsm::get(
 | 
						|
          FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
 | 
						|
          StringRef(""), StringRef("=r,0"),
 | 
						|
          /*hasSideEffects=*/false);
 | 
						|
      LocalDynamicShadow =
 | 
						|
          IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
 | 
						|
    } else {
 | 
						|
      LocalDynamicShadow =
 | 
						|
          IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
 | 
						|
        kAsanShadowMemoryDynamicAddress, IntptrTy);
 | 
						|
    LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
 | 
						|
  // Find the one possible call to llvm.localescape and pre-mark allocas passed
 | 
						|
  // to it as uninteresting. This assumes we haven't started processing allocas
 | 
						|
  // yet. This check is done up front because iterating the use list in
 | 
						|
  // isInterestingAlloca would be algorithmically slower.
 | 
						|
  assert(ProcessedAllocas.empty() && "must process localescape before allocas");
 | 
						|
 | 
						|
  // Try to get the declaration of llvm.localescape. If it's not in the module,
 | 
						|
  // we can exit early.
 | 
						|
  if (!F.getParent()->getFunction("llvm.localescape")) return;
 | 
						|
 | 
						|
  // Look for a call to llvm.localescape call in the entry block. It can't be in
 | 
						|
  // any other block.
 | 
						|
  for (Instruction &I : F.getEntryBlock()) {
 | 
						|
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
 | 
						|
    if (II && II->getIntrinsicID() == Intrinsic::localescape) {
 | 
						|
      // We found a call. Mark all the allocas passed in as uninteresting.
 | 
						|
      for (Value *Arg : II->args()) {
 | 
						|
        AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
 | 
						|
        assert(AI && AI->isStaticAlloca() &&
 | 
						|
               "non-static alloca arg to localescape");
 | 
						|
        ProcessedAllocas[AI] = false;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
 | 
						|
  bool ShouldInstrument =
 | 
						|
      ClDebugMin < 0 || ClDebugMax < 0 ||
 | 
						|
      (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
 | 
						|
  Instrumented++;
 | 
						|
  return !ShouldInstrument;
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::instrumentFunction(Function &F,
 | 
						|
                                          const TargetLibraryInfo *TLI) {
 | 
						|
  if (F.empty())
 | 
						|
    return false;
 | 
						|
  if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
 | 
						|
  if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
 | 
						|
  if (F.getName().startswith("__asan_")) return false;
 | 
						|
 | 
						|
  bool FunctionModified = false;
 | 
						|
 | 
						|
  // If needed, insert __asan_init before checking for SanitizeAddress attr.
 | 
						|
  // This function needs to be called even if the function body is not
 | 
						|
  // instrumented.
 | 
						|
  if (maybeInsertAsanInitAtFunctionEntry(F))
 | 
						|
    FunctionModified = true;
 | 
						|
 | 
						|
  // Leave if the function doesn't need instrumentation.
 | 
						|
  if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
 | 
						|
 | 
						|
  if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
 | 
						|
    return FunctionModified;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
 | 
						|
 | 
						|
  initializeCallbacks(*F.getParent());
 | 
						|
 | 
						|
  FunctionStateRAII CleanupObj(this);
 | 
						|
 | 
						|
  FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
 | 
						|
 | 
						|
  // We can't instrument allocas used with llvm.localescape. Only static allocas
 | 
						|
  // can be passed to that intrinsic.
 | 
						|
  markEscapedLocalAllocas(F);
 | 
						|
 | 
						|
  // We want to instrument every address only once per basic block (unless there
 | 
						|
  // are calls between uses).
 | 
						|
  SmallPtrSet<Value *, 16> TempsToInstrument;
 | 
						|
  SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
 | 
						|
  SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
 | 
						|
  SmallVector<Instruction *, 8> NoReturnCalls;
 | 
						|
  SmallVector<BasicBlock *, 16> AllBlocks;
 | 
						|
  SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
 | 
						|
 | 
						|
  // Fill the set of memory operations to instrument.
 | 
						|
  for (auto &BB : F) {
 | 
						|
    AllBlocks.push_back(&BB);
 | 
						|
    TempsToInstrument.clear();
 | 
						|
    int NumInsnsPerBB = 0;
 | 
						|
    for (auto &Inst : BB) {
 | 
						|
      if (LooksLikeCodeInBug11395(&Inst)) return false;
 | 
						|
      // Skip instructions inserted by another instrumentation.
 | 
						|
      if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
 | 
						|
        continue;
 | 
						|
      SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
 | 
						|
      getInterestingMemoryOperands(&Inst, InterestingOperands);
 | 
						|
 | 
						|
      if (!InterestingOperands.empty()) {
 | 
						|
        for (auto &Operand : InterestingOperands) {
 | 
						|
          if (ClOpt && ClOptSameTemp) {
 | 
						|
            Value *Ptr = Operand.getPtr();
 | 
						|
            // If we have a mask, skip instrumentation if we've already
 | 
						|
            // instrumented the full object. But don't add to TempsToInstrument
 | 
						|
            // because we might get another load/store with a different mask.
 | 
						|
            if (Operand.MaybeMask) {
 | 
						|
              if (TempsToInstrument.count(Ptr))
 | 
						|
                continue; // We've seen this (whole) temp in the current BB.
 | 
						|
            } else {
 | 
						|
              if (!TempsToInstrument.insert(Ptr).second)
 | 
						|
                continue; // We've seen this temp in the current BB.
 | 
						|
            }
 | 
						|
          }
 | 
						|
          OperandsToInstrument.push_back(Operand);
 | 
						|
          NumInsnsPerBB++;
 | 
						|
        }
 | 
						|
      } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
 | 
						|
                  isInterestingPointerComparison(&Inst)) ||
 | 
						|
                 ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
 | 
						|
                  isInterestingPointerSubtraction(&Inst))) {
 | 
						|
        PointerComparisonsOrSubtracts.push_back(&Inst);
 | 
						|
      } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
 | 
						|
        // ok, take it.
 | 
						|
        IntrinToInstrument.push_back(MI);
 | 
						|
        NumInsnsPerBB++;
 | 
						|
      } else {
 | 
						|
        if (auto *CB = dyn_cast<CallBase>(&Inst)) {
 | 
						|
          // A call inside BB.
 | 
						|
          TempsToInstrument.clear();
 | 
						|
          if (CB->doesNotReturn())
 | 
						|
            NoReturnCalls.push_back(CB);
 | 
						|
        }
 | 
						|
        if (CallInst *CI = dyn_cast<CallInst>(&Inst))
 | 
						|
          maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
 | 
						|
      }
 | 
						|
      if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
 | 
						|
                   OperandsToInstrument.size() + IntrinToInstrument.size() >
 | 
						|
                       (unsigned)ClInstrumentationWithCallsThreshold);
 | 
						|
  const DataLayout &DL = F.getParent()->getDataLayout();
 | 
						|
  ObjectSizeOpts ObjSizeOpts;
 | 
						|
  ObjSizeOpts.RoundToAlign = true;
 | 
						|
  ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
 | 
						|
 | 
						|
  // Instrument.
 | 
						|
  int NumInstrumented = 0;
 | 
						|
  for (auto &Operand : OperandsToInstrument) {
 | 
						|
    if (!suppressInstrumentationSiteForDebug(NumInstrumented))
 | 
						|
      instrumentMop(ObjSizeVis, Operand, UseCalls,
 | 
						|
                    F.getParent()->getDataLayout());
 | 
						|
    FunctionModified = true;
 | 
						|
  }
 | 
						|
  for (auto Inst : IntrinToInstrument) {
 | 
						|
    if (!suppressInstrumentationSiteForDebug(NumInstrumented))
 | 
						|
      instrumentMemIntrinsic(Inst);
 | 
						|
    FunctionModified = true;
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionStackPoisoner FSP(F, *this);
 | 
						|
  bool ChangedStack = FSP.runOnFunction();
 | 
						|
 | 
						|
  // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
 | 
						|
  // See e.g. https://github.com/google/sanitizers/issues/37
 | 
						|
  for (auto CI : NoReturnCalls) {
 | 
						|
    IRBuilder<> IRB(CI);
 | 
						|
    IRB.CreateCall(AsanHandleNoReturnFunc, {});
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto Inst : PointerComparisonsOrSubtracts) {
 | 
						|
    instrumentPointerComparisonOrSubtraction(Inst);
 | 
						|
    FunctionModified = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ChangedStack || !NoReturnCalls.empty())
 | 
						|
    FunctionModified = true;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
 | 
						|
                    << F << "\n");
 | 
						|
 | 
						|
  return FunctionModified;
 | 
						|
}
 | 
						|
 | 
						|
// Workaround for bug 11395: we don't want to instrument stack in functions
 | 
						|
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
 | 
						|
// FIXME: remove once the bug 11395 is fixed.
 | 
						|
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
 | 
						|
  if (LongSize != 32) return false;
 | 
						|
  CallInst *CI = dyn_cast<CallInst>(I);
 | 
						|
  if (!CI || !CI->isInlineAsm()) return false;
 | 
						|
  if (CI->arg_size() <= 5)
 | 
						|
    return false;
 | 
						|
  // We have inline assembly with quite a few arguments.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::initializeCallbacks(Module &M) {
 | 
						|
  IRBuilder<> IRB(*C);
 | 
						|
  if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
 | 
						|
      ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
 | 
						|
    const char *MallocNameTemplate =
 | 
						|
        ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
 | 
						|
            ? kAsanStackMallocAlwaysNameTemplate
 | 
						|
            : kAsanStackMallocNameTemplate;
 | 
						|
    for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
 | 
						|
      std::string Suffix = itostr(Index);
 | 
						|
      AsanStackMallocFunc[Index] = M.getOrInsertFunction(
 | 
						|
          MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
 | 
						|
      AsanStackFreeFunc[Index] =
 | 
						|
          M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
 | 
						|
                                IRB.getVoidTy(), IntptrTy, IntptrTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (ASan.UseAfterScope) {
 | 
						|
    AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
 | 
						|
        kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
 | 
						|
    AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
 | 
						|
        kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
 | 
						|
  }
 | 
						|
 | 
						|
  for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
 | 
						|
    std::ostringstream Name;
 | 
						|
    Name << kAsanSetShadowPrefix;
 | 
						|
    Name << std::setw(2) << std::setfill('0') << std::hex << Val;
 | 
						|
    AsanSetShadowFunc[Val] =
 | 
						|
        M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
 | 
						|
  }
 | 
						|
 | 
						|
  AsanAllocaPoisonFunc = M.getOrInsertFunction(
 | 
						|
      kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
 | 
						|
  AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
 | 
						|
      kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
 | 
						|
                                               ArrayRef<uint8_t> ShadowBytes,
 | 
						|
                                               size_t Begin, size_t End,
 | 
						|
                                               IRBuilder<> &IRB,
 | 
						|
                                               Value *ShadowBase) {
 | 
						|
  if (Begin >= End)
 | 
						|
    return;
 | 
						|
 | 
						|
  const size_t LargestStoreSizeInBytes =
 | 
						|
      std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
 | 
						|
 | 
						|
  const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
 | 
						|
 | 
						|
  // Poison given range in shadow using larges store size with out leading and
 | 
						|
  // trailing zeros in ShadowMask. Zeros never change, so they need neither
 | 
						|
  // poisoning nor up-poisoning. Still we don't mind if some of them get into a
 | 
						|
  // middle of a store.
 | 
						|
  for (size_t i = Begin; i < End;) {
 | 
						|
    if (!ShadowMask[i]) {
 | 
						|
      assert(!ShadowBytes[i]);
 | 
						|
      ++i;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    size_t StoreSizeInBytes = LargestStoreSizeInBytes;
 | 
						|
    // Fit store size into the range.
 | 
						|
    while (StoreSizeInBytes > End - i)
 | 
						|
      StoreSizeInBytes /= 2;
 | 
						|
 | 
						|
    // Minimize store size by trimming trailing zeros.
 | 
						|
    for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
 | 
						|
      while (j <= StoreSizeInBytes / 2)
 | 
						|
        StoreSizeInBytes /= 2;
 | 
						|
    }
 | 
						|
 | 
						|
    uint64_t Val = 0;
 | 
						|
    for (size_t j = 0; j < StoreSizeInBytes; j++) {
 | 
						|
      if (IsLittleEndian)
 | 
						|
        Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
 | 
						|
      else
 | 
						|
        Val = (Val << 8) | ShadowBytes[i + j];
 | 
						|
    }
 | 
						|
 | 
						|
    Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
 | 
						|
    Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
 | 
						|
    IRB.CreateAlignedStore(
 | 
						|
        Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
 | 
						|
        Align(1));
 | 
						|
 | 
						|
    i += StoreSizeInBytes;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
 | 
						|
                                         ArrayRef<uint8_t> ShadowBytes,
 | 
						|
                                         IRBuilder<> &IRB, Value *ShadowBase) {
 | 
						|
  copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
 | 
						|
                                         ArrayRef<uint8_t> ShadowBytes,
 | 
						|
                                         size_t Begin, size_t End,
 | 
						|
                                         IRBuilder<> &IRB, Value *ShadowBase) {
 | 
						|
  assert(ShadowMask.size() == ShadowBytes.size());
 | 
						|
  size_t Done = Begin;
 | 
						|
  for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
 | 
						|
    if (!ShadowMask[i]) {
 | 
						|
      assert(!ShadowBytes[i]);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    uint8_t Val = ShadowBytes[i];
 | 
						|
    if (!AsanSetShadowFunc[Val])
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip same values.
 | 
						|
    for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
 | 
						|
    }
 | 
						|
 | 
						|
    if (j - i >= ClMaxInlinePoisoningSize) {
 | 
						|
      copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
 | 
						|
      IRB.CreateCall(AsanSetShadowFunc[Val],
 | 
						|
                     {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
 | 
						|
                      ConstantInt::get(IntptrTy, j - i)});
 | 
						|
      Done = j;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
 | 
						|
}
 | 
						|
 | 
						|
// Fake stack allocator (asan_fake_stack.h) has 11 size classes
 | 
						|
// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
 | 
						|
static int StackMallocSizeClass(uint64_t LocalStackSize) {
 | 
						|
  assert(LocalStackSize <= kMaxStackMallocSize);
 | 
						|
  uint64_t MaxSize = kMinStackMallocSize;
 | 
						|
  for (int i = 0;; i++, MaxSize *= 2)
 | 
						|
    if (LocalStackSize <= MaxSize) return i;
 | 
						|
  llvm_unreachable("impossible LocalStackSize");
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
 | 
						|
  Instruction *CopyInsertPoint = &F.front().front();
 | 
						|
  if (CopyInsertPoint == ASan.LocalDynamicShadow) {
 | 
						|
    // Insert after the dynamic shadow location is determined
 | 
						|
    CopyInsertPoint = CopyInsertPoint->getNextNode();
 | 
						|
    assert(CopyInsertPoint);
 | 
						|
  }
 | 
						|
  IRBuilder<> IRB(CopyInsertPoint);
 | 
						|
  const DataLayout &DL = F.getParent()->getDataLayout();
 | 
						|
  for (Argument &Arg : F.args()) {
 | 
						|
    if (Arg.hasByValAttr()) {
 | 
						|
      Type *Ty = Arg.getParamByValType();
 | 
						|
      const Align Alignment =
 | 
						|
          DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
 | 
						|
 | 
						|
      AllocaInst *AI = IRB.CreateAlloca(
 | 
						|
          Ty, nullptr,
 | 
						|
          (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
 | 
						|
              ".byval");
 | 
						|
      AI->setAlignment(Alignment);
 | 
						|
      Arg.replaceAllUsesWith(AI);
 | 
						|
 | 
						|
      uint64_t AllocSize = DL.getTypeAllocSize(Ty);
 | 
						|
      IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
 | 
						|
                                          Value *ValueIfTrue,
 | 
						|
                                          Instruction *ThenTerm,
 | 
						|
                                          Value *ValueIfFalse) {
 | 
						|
  PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
 | 
						|
  BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
 | 
						|
  PHI->addIncoming(ValueIfFalse, CondBlock);
 | 
						|
  BasicBlock *ThenBlock = ThenTerm->getParent();
 | 
						|
  PHI->addIncoming(ValueIfTrue, ThenBlock);
 | 
						|
  return PHI;
 | 
						|
}
 | 
						|
 | 
						|
Value *FunctionStackPoisoner::createAllocaForLayout(
 | 
						|
    IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
 | 
						|
  AllocaInst *Alloca;
 | 
						|
  if (Dynamic) {
 | 
						|
    Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
 | 
						|
                              ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
 | 
						|
                              "MyAlloca");
 | 
						|
  } else {
 | 
						|
    Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
 | 
						|
                              nullptr, "MyAlloca");
 | 
						|
    assert(Alloca->isStaticAlloca());
 | 
						|
  }
 | 
						|
  assert((ClRealignStack & (ClRealignStack - 1)) == 0);
 | 
						|
  uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack));
 | 
						|
  Alloca->setAlignment(Align(FrameAlignment));
 | 
						|
  return IRB.CreatePointerCast(Alloca, IntptrTy);
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
 | 
						|
  BasicBlock &FirstBB = *F.begin();
 | 
						|
  IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
 | 
						|
  DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
 | 
						|
  IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
 | 
						|
  DynamicAllocaLayout->setAlignment(Align(32));
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::processDynamicAllocas() {
 | 
						|
  if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
 | 
						|
    assert(DynamicAllocaPoisonCallVec.empty());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert poison calls for lifetime intrinsics for dynamic allocas.
 | 
						|
  for (const auto &APC : DynamicAllocaPoisonCallVec) {
 | 
						|
    assert(APC.InsBefore);
 | 
						|
    assert(APC.AI);
 | 
						|
    assert(ASan.isInterestingAlloca(*APC.AI));
 | 
						|
    assert(!APC.AI->isStaticAlloca());
 | 
						|
 | 
						|
    IRBuilder<> IRB(APC.InsBefore);
 | 
						|
    poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
 | 
						|
    // Dynamic allocas will be unpoisoned unconditionally below in
 | 
						|
    // unpoisonDynamicAllocas.
 | 
						|
    // Flag that we need unpoison static allocas.
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle dynamic allocas.
 | 
						|
  createDynamicAllocasInitStorage();
 | 
						|
  for (auto &AI : DynamicAllocaVec)
 | 
						|
    handleDynamicAllocaCall(AI);
 | 
						|
  unpoisonDynamicAllocas();
 | 
						|
}
 | 
						|
 | 
						|
/// Collect instructions in the entry block after \p InsBefore which initialize
 | 
						|
/// permanent storage for a function argument. These instructions must remain in
 | 
						|
/// the entry block so that uninitialized values do not appear in backtraces. An
 | 
						|
/// added benefit is that this conserves spill slots. This does not move stores
 | 
						|
/// before instrumented / "interesting" allocas.
 | 
						|
static void findStoresToUninstrumentedArgAllocas(
 | 
						|
    AddressSanitizer &ASan, Instruction &InsBefore,
 | 
						|
    SmallVectorImpl<Instruction *> &InitInsts) {
 | 
						|
  Instruction *Start = InsBefore.getNextNonDebugInstruction();
 | 
						|
  for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
 | 
						|
    // Argument initialization looks like:
 | 
						|
    // 1) store <Argument>, <Alloca> OR
 | 
						|
    // 2) <CastArgument> = cast <Argument> to ...
 | 
						|
    //    store <CastArgument> to <Alloca>
 | 
						|
    // Do not consider any other kind of instruction.
 | 
						|
    //
 | 
						|
    // Note: This covers all known cases, but may not be exhaustive. An
 | 
						|
    // alternative to pattern-matching stores is to DFS over all Argument uses:
 | 
						|
    // this might be more general, but is probably much more complicated.
 | 
						|
    if (isa<AllocaInst>(It) || isa<CastInst>(It))
 | 
						|
      continue;
 | 
						|
    if (auto *Store = dyn_cast<StoreInst>(It)) {
 | 
						|
      // The store destination must be an alloca that isn't interesting for
 | 
						|
      // ASan to instrument. These are moved up before InsBefore, and they're
 | 
						|
      // not interesting because allocas for arguments can be mem2reg'd.
 | 
						|
      auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
 | 
						|
      if (!Alloca || ASan.isInterestingAlloca(*Alloca))
 | 
						|
        continue;
 | 
						|
 | 
						|
      Value *Val = Store->getValueOperand();
 | 
						|
      bool IsDirectArgInit = isa<Argument>(Val);
 | 
						|
      bool IsArgInitViaCast =
 | 
						|
          isa<CastInst>(Val) &&
 | 
						|
          isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
 | 
						|
          // Check that the cast appears directly before the store. Otherwise
 | 
						|
          // moving the cast before InsBefore may break the IR.
 | 
						|
          Val == It->getPrevNonDebugInstruction();
 | 
						|
      bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
 | 
						|
      if (!IsArgInit)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (IsArgInitViaCast)
 | 
						|
        InitInsts.push_back(cast<Instruction>(Val));
 | 
						|
      InitInsts.push_back(Store);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Do not reorder past unknown instructions: argument initialization should
 | 
						|
    // only involve casts and stores.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::processStaticAllocas() {
 | 
						|
  if (AllocaVec.empty()) {
 | 
						|
    assert(StaticAllocaPoisonCallVec.empty());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  int StackMallocIdx = -1;
 | 
						|
  DebugLoc EntryDebugLocation;
 | 
						|
  if (auto SP = F.getSubprogram())
 | 
						|
    EntryDebugLocation =
 | 
						|
        DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
 | 
						|
 | 
						|
  Instruction *InsBefore = AllocaVec[0];
 | 
						|
  IRBuilder<> IRB(InsBefore);
 | 
						|
 | 
						|
  // Make sure non-instrumented allocas stay in the entry block. Otherwise,
 | 
						|
  // debug info is broken, because only entry-block allocas are treated as
 | 
						|
  // regular stack slots.
 | 
						|
  auto InsBeforeB = InsBefore->getParent();
 | 
						|
  assert(InsBeforeB == &F.getEntryBlock());
 | 
						|
  for (auto *AI : StaticAllocasToMoveUp)
 | 
						|
    if (AI->getParent() == InsBeforeB)
 | 
						|
      AI->moveBefore(InsBefore);
 | 
						|
 | 
						|
  // Move stores of arguments into entry-block allocas as well. This prevents
 | 
						|
  // extra stack slots from being generated (to house the argument values until
 | 
						|
  // they can be stored into the allocas). This also prevents uninitialized
 | 
						|
  // values from being shown in backtraces.
 | 
						|
  SmallVector<Instruction *, 8> ArgInitInsts;
 | 
						|
  findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
 | 
						|
  for (Instruction *ArgInitInst : ArgInitInsts)
 | 
						|
    ArgInitInst->moveBefore(InsBefore);
 | 
						|
 | 
						|
  // If we have a call to llvm.localescape, keep it in the entry block.
 | 
						|
  if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
 | 
						|
 | 
						|
  SmallVector<ASanStackVariableDescription, 16> SVD;
 | 
						|
  SVD.reserve(AllocaVec.size());
 | 
						|
  for (AllocaInst *AI : AllocaVec) {
 | 
						|
    ASanStackVariableDescription D = {AI->getName().data(),
 | 
						|
                                      ASan.getAllocaSizeInBytes(*AI),
 | 
						|
                                      0,
 | 
						|
                                      AI->getAlign().value(),
 | 
						|
                                      AI,
 | 
						|
                                      0,
 | 
						|
                                      0};
 | 
						|
    SVD.push_back(D);
 | 
						|
  }
 | 
						|
 | 
						|
  // Minimal header size (left redzone) is 4 pointers,
 | 
						|
  // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
 | 
						|
  uint64_t Granularity = 1ULL << Mapping.Scale;
 | 
						|
  uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity);
 | 
						|
  const ASanStackFrameLayout &L =
 | 
						|
      ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
 | 
						|
 | 
						|
  // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
 | 
						|
  DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
 | 
						|
  for (auto &Desc : SVD)
 | 
						|
    AllocaToSVDMap[Desc.AI] = &Desc;
 | 
						|
 | 
						|
  // Update SVD with information from lifetime intrinsics.
 | 
						|
  for (const auto &APC : StaticAllocaPoisonCallVec) {
 | 
						|
    assert(APC.InsBefore);
 | 
						|
    assert(APC.AI);
 | 
						|
    assert(ASan.isInterestingAlloca(*APC.AI));
 | 
						|
    assert(APC.AI->isStaticAlloca());
 | 
						|
 | 
						|
    ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
 | 
						|
    Desc.LifetimeSize = Desc.Size;
 | 
						|
    if (const DILocation *FnLoc = EntryDebugLocation.get()) {
 | 
						|
      if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
 | 
						|
        if (LifetimeLoc->getFile() == FnLoc->getFile())
 | 
						|
          if (unsigned Line = LifetimeLoc->getLine())
 | 
						|
            Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto DescriptionString = ComputeASanStackFrameDescription(SVD);
 | 
						|
  LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
 | 
						|
  uint64_t LocalStackSize = L.FrameSize;
 | 
						|
  bool DoStackMalloc =
 | 
						|
      ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
 | 
						|
      !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
 | 
						|
  bool DoDynamicAlloca = ClDynamicAllocaStack;
 | 
						|
  // Don't do dynamic alloca or stack malloc if:
 | 
						|
  // 1) There is inline asm: too often it makes assumptions on which registers
 | 
						|
  //    are available.
 | 
						|
  // 2) There is a returns_twice call (typically setjmp), which is
 | 
						|
  //    optimization-hostile, and doesn't play well with introduced indirect
 | 
						|
  //    register-relative calculation of local variable addresses.
 | 
						|
  DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
 | 
						|
  DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
 | 
						|
 | 
						|
  Value *StaticAlloca =
 | 
						|
      DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
 | 
						|
 | 
						|
  Value *FakeStack;
 | 
						|
  Value *LocalStackBase;
 | 
						|
  Value *LocalStackBaseAlloca;
 | 
						|
  uint8_t DIExprFlags = DIExpression::ApplyOffset;
 | 
						|
 | 
						|
  if (DoStackMalloc) {
 | 
						|
    LocalStackBaseAlloca =
 | 
						|
        IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
 | 
						|
    if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
 | 
						|
      // void *FakeStack = __asan_option_detect_stack_use_after_return
 | 
						|
      //     ? __asan_stack_malloc_N(LocalStackSize)
 | 
						|
      //     : nullptr;
 | 
						|
      // void *LocalStackBase = (FakeStack) ? FakeStack :
 | 
						|
      //                        alloca(LocalStackSize);
 | 
						|
      Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
 | 
						|
          kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
 | 
						|
      Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
 | 
						|
          IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
 | 
						|
          Constant::getNullValue(IRB.getInt32Ty()));
 | 
						|
      Instruction *Term =
 | 
						|
          SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
 | 
						|
      IRBuilder<> IRBIf(Term);
 | 
						|
      StackMallocIdx = StackMallocSizeClass(LocalStackSize);
 | 
						|
      assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
 | 
						|
      Value *FakeStackValue =
 | 
						|
          IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
 | 
						|
                           ConstantInt::get(IntptrTy, LocalStackSize));
 | 
						|
      IRB.SetInsertPoint(InsBefore);
 | 
						|
      FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
 | 
						|
                            ConstantInt::get(IntptrTy, 0));
 | 
						|
    } else {
 | 
						|
      // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
 | 
						|
      // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
 | 
						|
      // void *LocalStackBase = (FakeStack) ? FakeStack :
 | 
						|
      //                        alloca(LocalStackSize);
 | 
						|
      StackMallocIdx = StackMallocSizeClass(LocalStackSize);
 | 
						|
      FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx],
 | 
						|
                                 ConstantInt::get(IntptrTy, LocalStackSize));
 | 
						|
    }
 | 
						|
    Value *NoFakeStack =
 | 
						|
        IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
 | 
						|
    Instruction *Term =
 | 
						|
        SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
 | 
						|
    IRBuilder<> IRBIf(Term);
 | 
						|
    Value *AllocaValue =
 | 
						|
        DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
 | 
						|
 | 
						|
    IRB.SetInsertPoint(InsBefore);
 | 
						|
    LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
 | 
						|
    IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
 | 
						|
    DIExprFlags |= DIExpression::DerefBefore;
 | 
						|
  } else {
 | 
						|
    // void *FakeStack = nullptr;
 | 
						|
    // void *LocalStackBase = alloca(LocalStackSize);
 | 
						|
    FakeStack = ConstantInt::get(IntptrTy, 0);
 | 
						|
    LocalStackBase =
 | 
						|
        DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
 | 
						|
    LocalStackBaseAlloca = LocalStackBase;
 | 
						|
  }
 | 
						|
 | 
						|
  // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
 | 
						|
  // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
 | 
						|
  // later passes and can result in dropped variable coverage in debug info.
 | 
						|
  Value *LocalStackBaseAllocaPtr =
 | 
						|
      isa<PtrToIntInst>(LocalStackBaseAlloca)
 | 
						|
          ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
 | 
						|
          : LocalStackBaseAlloca;
 | 
						|
  assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
 | 
						|
         "Variable descriptions relative to ASan stack base will be dropped");
 | 
						|
 | 
						|
  // Replace Alloca instructions with base+offset.
 | 
						|
  for (const auto &Desc : SVD) {
 | 
						|
    AllocaInst *AI = Desc.AI;
 | 
						|
    replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
 | 
						|
                      Desc.Offset);
 | 
						|
    Value *NewAllocaPtr = IRB.CreateIntToPtr(
 | 
						|
        IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
 | 
						|
        AI->getType());
 | 
						|
    AI->replaceAllUsesWith(NewAllocaPtr);
 | 
						|
  }
 | 
						|
 | 
						|
  // The left-most redzone has enough space for at least 4 pointers.
 | 
						|
  // Write the Magic value to redzone[0].
 | 
						|
  Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
 | 
						|
  IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
 | 
						|
                  BasePlus0);
 | 
						|
  // Write the frame description constant to redzone[1].
 | 
						|
  Value *BasePlus1 = IRB.CreateIntToPtr(
 | 
						|
      IRB.CreateAdd(LocalStackBase,
 | 
						|
                    ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
 | 
						|
      IntptrPtrTy);
 | 
						|
  GlobalVariable *StackDescriptionGlobal =
 | 
						|
      createPrivateGlobalForString(*F.getParent(), DescriptionString,
 | 
						|
                                   /*AllowMerging*/ true, kAsanGenPrefix);
 | 
						|
  Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
 | 
						|
  IRB.CreateStore(Description, BasePlus1);
 | 
						|
  // Write the PC to redzone[2].
 | 
						|
  Value *BasePlus2 = IRB.CreateIntToPtr(
 | 
						|
      IRB.CreateAdd(LocalStackBase,
 | 
						|
                    ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
 | 
						|
      IntptrPtrTy);
 | 
						|
  IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
 | 
						|
 | 
						|
  const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
 | 
						|
 | 
						|
  // Poison the stack red zones at the entry.
 | 
						|
  Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
 | 
						|
  // As mask we must use most poisoned case: red zones and after scope.
 | 
						|
  // As bytes we can use either the same or just red zones only.
 | 
						|
  copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
 | 
						|
 | 
						|
  if (!StaticAllocaPoisonCallVec.empty()) {
 | 
						|
    const auto &ShadowInScope = GetShadowBytes(SVD, L);
 | 
						|
 | 
						|
    // Poison static allocas near lifetime intrinsics.
 | 
						|
    for (const auto &APC : StaticAllocaPoisonCallVec) {
 | 
						|
      const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
 | 
						|
      assert(Desc.Offset % L.Granularity == 0);
 | 
						|
      size_t Begin = Desc.Offset / L.Granularity;
 | 
						|
      size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
 | 
						|
 | 
						|
      IRBuilder<> IRB(APC.InsBefore);
 | 
						|
      copyToShadow(ShadowAfterScope,
 | 
						|
                   APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
 | 
						|
                   IRB, ShadowBase);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
 | 
						|
  SmallVector<uint8_t, 64> ShadowAfterReturn;
 | 
						|
 | 
						|
  // (Un)poison the stack before all ret instructions.
 | 
						|
  for (Instruction *Ret : RetVec) {
 | 
						|
    IRBuilder<> IRBRet(Ret);
 | 
						|
    // Mark the current frame as retired.
 | 
						|
    IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
 | 
						|
                       BasePlus0);
 | 
						|
    if (DoStackMalloc) {
 | 
						|
      assert(StackMallocIdx >= 0);
 | 
						|
      // if FakeStack != 0  // LocalStackBase == FakeStack
 | 
						|
      //     // In use-after-return mode, poison the whole stack frame.
 | 
						|
      //     if StackMallocIdx <= 4
 | 
						|
      //         // For small sizes inline the whole thing:
 | 
						|
      //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
 | 
						|
      //         **SavedFlagPtr(FakeStack) = 0
 | 
						|
      //     else
 | 
						|
      //         __asan_stack_free_N(FakeStack, LocalStackSize)
 | 
						|
      // else
 | 
						|
      //     <This is not a fake stack; unpoison the redzones>
 | 
						|
      Value *Cmp =
 | 
						|
          IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
 | 
						|
      Instruction *ThenTerm, *ElseTerm;
 | 
						|
      SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
 | 
						|
 | 
						|
      IRBuilder<> IRBPoison(ThenTerm);
 | 
						|
      if (StackMallocIdx <= 4) {
 | 
						|
        int ClassSize = kMinStackMallocSize << StackMallocIdx;
 | 
						|
        ShadowAfterReturn.resize(ClassSize / L.Granularity,
 | 
						|
                                 kAsanStackUseAfterReturnMagic);
 | 
						|
        copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
 | 
						|
                     ShadowBase);
 | 
						|
        Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
 | 
						|
            FakeStack,
 | 
						|
            ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
 | 
						|
        Value *SavedFlagPtr = IRBPoison.CreateLoad(
 | 
						|
            IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
 | 
						|
        IRBPoison.CreateStore(
 | 
						|
            Constant::getNullValue(IRBPoison.getInt8Ty()),
 | 
						|
            IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
 | 
						|
      } else {
 | 
						|
        // For larger frames call __asan_stack_free_*.
 | 
						|
        IRBPoison.CreateCall(
 | 
						|
            AsanStackFreeFunc[StackMallocIdx],
 | 
						|
            {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
 | 
						|
      }
 | 
						|
 | 
						|
      IRBuilder<> IRBElse(ElseTerm);
 | 
						|
      copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
 | 
						|
    } else {
 | 
						|
      copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We are done. Remove the old unused alloca instructions.
 | 
						|
  for (auto AI : AllocaVec) AI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
 | 
						|
                                         IRBuilder<> &IRB, bool DoPoison) {
 | 
						|
  // For now just insert the call to ASan runtime.
 | 
						|
  Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
 | 
						|
  Value *SizeArg = ConstantInt::get(IntptrTy, Size);
 | 
						|
  IRB.CreateCall(
 | 
						|
      DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
 | 
						|
      {AddrArg, SizeArg});
 | 
						|
}
 | 
						|
 | 
						|
// Handling llvm.lifetime intrinsics for a given %alloca:
 | 
						|
// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
 | 
						|
// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
 | 
						|
//     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
 | 
						|
//     could be poisoned by previous llvm.lifetime.end instruction, as the
 | 
						|
//     variable may go in and out of scope several times, e.g. in loops).
 | 
						|
// (3) if we poisoned at least one %alloca in a function,
 | 
						|
//     unpoison the whole stack frame at function exit.
 | 
						|
void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
 | 
						|
  IRBuilder<> IRB(AI);
 | 
						|
 | 
						|
  const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign());
 | 
						|
  const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
 | 
						|
 | 
						|
  Value *Zero = Constant::getNullValue(IntptrTy);
 | 
						|
  Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
 | 
						|
  Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
 | 
						|
 | 
						|
  // Since we need to extend alloca with additional memory to locate
 | 
						|
  // redzones, and OldSize is number of allocated blocks with
 | 
						|
  // ElementSize size, get allocated memory size in bytes by
 | 
						|
  // OldSize * ElementSize.
 | 
						|
  const unsigned ElementSize =
 | 
						|
      F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
 | 
						|
  Value *OldSize =
 | 
						|
      IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
 | 
						|
                    ConstantInt::get(IntptrTy, ElementSize));
 | 
						|
 | 
						|
  // PartialSize = OldSize % 32
 | 
						|
  Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
 | 
						|
 | 
						|
  // Misalign = kAllocaRzSize - PartialSize;
 | 
						|
  Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
 | 
						|
 | 
						|
  // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
 | 
						|
  Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
 | 
						|
  Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
 | 
						|
 | 
						|
  // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
 | 
						|
  // Alignment is added to locate left redzone, PartialPadding for possible
 | 
						|
  // partial redzone and kAllocaRzSize for right redzone respectively.
 | 
						|
  Value *AdditionalChunkSize = IRB.CreateAdd(
 | 
						|
      ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize),
 | 
						|
      PartialPadding);
 | 
						|
 | 
						|
  Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
 | 
						|
 | 
						|
  // Insert new alloca with new NewSize and Alignment params.
 | 
						|
  AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
 | 
						|
  NewAlloca->setAlignment(Alignment);
 | 
						|
 | 
						|
  // NewAddress = Address + Alignment
 | 
						|
  Value *NewAddress =
 | 
						|
      IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
 | 
						|
                    ConstantInt::get(IntptrTy, Alignment.value()));
 | 
						|
 | 
						|
  // Insert __asan_alloca_poison call for new created alloca.
 | 
						|
  IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
 | 
						|
 | 
						|
  // Store the last alloca's address to DynamicAllocaLayout. We'll need this
 | 
						|
  // for unpoisoning stuff.
 | 
						|
  IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
 | 
						|
 | 
						|
  Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
 | 
						|
 | 
						|
  // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
 | 
						|
  AI->replaceAllUsesWith(NewAddressPtr);
 | 
						|
 | 
						|
  // We are done. Erase old alloca from parent.
 | 
						|
  AI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
// isSafeAccess returns true if Addr is always inbounds with respect to its
 | 
						|
// base object. For example, it is a field access or an array access with
 | 
						|
// constant inbounds index.
 | 
						|
bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
 | 
						|
                                    Value *Addr, uint64_t TypeSize) const {
 | 
						|
  SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
 | 
						|
  if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
 | 
						|
  uint64_t Size = SizeOffset.first.getZExtValue();
 | 
						|
  int64_t Offset = SizeOffset.second.getSExtValue();
 | 
						|
  // Three checks are required to ensure safety:
 | 
						|
  // . Offset >= 0  (since the offset is given from the base ptr)
 | 
						|
  // . Size >= Offset  (unsigned)
 | 
						|
  // . Size - Offset >= NeededSize  (unsigned)
 | 
						|
  return Offset >= 0 && Size >= uint64_t(Offset) &&
 | 
						|
         Size - uint64_t(Offset) >= TypeSize / 8;
 | 
						|
}
 |