704 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			704 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Function evaluator for LLVM IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/Evaluator.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
#define DEBUG_TYPE "evaluator"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static inline bool
 | 
						|
isSimpleEnoughValueToCommit(Constant *C,
 | 
						|
                            SmallPtrSetImpl<Constant *> &SimpleConstants,
 | 
						|
                            const DataLayout &DL);
 | 
						|
 | 
						|
/// Return true if the specified constant can be handled by the code generator.
 | 
						|
/// We don't want to generate something like:
 | 
						|
///   void *X = &X/42;
 | 
						|
/// because the code generator doesn't have a relocation that can handle that.
 | 
						|
///
 | 
						|
/// This function should be called if C was not found (but just got inserted)
 | 
						|
/// in SimpleConstants to avoid having to rescan the same constants all the
 | 
						|
/// time.
 | 
						|
static bool
 | 
						|
isSimpleEnoughValueToCommitHelper(Constant *C,
 | 
						|
                                  SmallPtrSetImpl<Constant *> &SimpleConstants,
 | 
						|
                                  const DataLayout &DL) {
 | 
						|
  // Simple global addresses are supported, do not allow dllimport or
 | 
						|
  // thread-local globals.
 | 
						|
  if (auto *GV = dyn_cast<GlobalValue>(C))
 | 
						|
    return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
 | 
						|
 | 
						|
  // Simple integer, undef, constant aggregate zero, etc are all supported.
 | 
						|
  if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Aggregate values are safe if all their elements are.
 | 
						|
  if (isa<ConstantAggregate>(C)) {
 | 
						|
    for (Value *Op : C->operands())
 | 
						|
      if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't know exactly what relocations are allowed in constant expressions,
 | 
						|
  // so we allow &global+constantoffset, which is safe and uniformly supported
 | 
						|
  // across targets.
 | 
						|
  ConstantExpr *CE = cast<ConstantExpr>(C);
 | 
						|
  switch (CE->getOpcode()) {
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // Bitcast is fine if the casted value is fine.
 | 
						|
    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
 | 
						|
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // int <=> ptr is fine if the int type is the same size as the
 | 
						|
    // pointer type.
 | 
						|
    if (DL.getTypeSizeInBits(CE->getType()) !=
 | 
						|
        DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
 | 
						|
      return false;
 | 
						|
    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
 | 
						|
 | 
						|
  // GEP is fine if it is simple + constant offset.
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
 | 
						|
      if (!isa<ConstantInt>(CE->getOperand(i)))
 | 
						|
        return false;
 | 
						|
    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
 | 
						|
 | 
						|
  case Instruction::Add:
 | 
						|
    // We allow simple+cst.
 | 
						|
    if (!isa<ConstantInt>(CE->getOperand(1)))
 | 
						|
      return false;
 | 
						|
    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool
 | 
						|
isSimpleEnoughValueToCommit(Constant *C,
 | 
						|
                            SmallPtrSetImpl<Constant *> &SimpleConstants,
 | 
						|
                            const DataLayout &DL) {
 | 
						|
  // If we already checked this constant, we win.
 | 
						|
  if (!SimpleConstants.insert(C).second)
 | 
						|
    return true;
 | 
						|
  // Check the constant.
 | 
						|
  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
 | 
						|
}
 | 
						|
 | 
						|
void Evaluator::MutableValue::clear() {
 | 
						|
  if (auto *Agg = Val.dyn_cast<MutableAggregate *>())
 | 
						|
    delete Agg;
 | 
						|
  Val = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Constant *Evaluator::MutableValue::read(Type *Ty, APInt Offset,
 | 
						|
                                        const DataLayout &DL) const {
 | 
						|
  TypeSize TySize = DL.getTypeStoreSize(Ty);
 | 
						|
  const MutableValue *V = this;
 | 
						|
  while (const auto *Agg = V->Val.dyn_cast<MutableAggregate *>()) {
 | 
						|
    Type *AggTy = Agg->Ty;
 | 
						|
    Optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset);
 | 
						|
    if (!Index || Index->uge(Agg->Elements.size()) ||
 | 
						|
        !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy)))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    V = &Agg->Elements[Index->getZExtValue()];
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantFoldLoadFromConst(V->Val.get<Constant *>(), Ty, Offset, DL);
 | 
						|
}
 | 
						|
 | 
						|
bool Evaluator::MutableValue::makeMutable() {
 | 
						|
  Constant *C = Val.get<Constant *>();
 | 
						|
  Type *Ty = C->getType();
 | 
						|
  unsigned NumElements;
 | 
						|
  if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
 | 
						|
    NumElements = VT->getNumElements();
 | 
						|
  } else if (auto *AT = dyn_cast<ArrayType>(Ty))
 | 
						|
    NumElements = AT->getNumElements();
 | 
						|
  else if (auto *ST = dyn_cast<StructType>(Ty))
 | 
						|
    NumElements = ST->getNumElements();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  MutableAggregate *MA = new MutableAggregate(Ty);
 | 
						|
  MA->Elements.reserve(NumElements);
 | 
						|
  for (unsigned I = 0; I < NumElements; ++I)
 | 
						|
    MA->Elements.push_back(C->getAggregateElement(I));
 | 
						|
  Val = MA;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Evaluator::MutableValue::write(Constant *V, APInt Offset,
 | 
						|
                                    const DataLayout &DL) {
 | 
						|
  Type *Ty = V->getType();
 | 
						|
  TypeSize TySize = DL.getTypeStoreSize(Ty);
 | 
						|
  MutableValue *MV = this;
 | 
						|
  while (Offset != 0 ||
 | 
						|
         !CastInst::isBitOrNoopPointerCastable(Ty, MV->getType(), DL)) {
 | 
						|
    if (MV->Val.is<Constant *>() && !MV->makeMutable())
 | 
						|
      return false;
 | 
						|
 | 
						|
    MutableAggregate *Agg = MV->Val.get<MutableAggregate *>();
 | 
						|
    Type *AggTy = Agg->Ty;
 | 
						|
    Optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset);
 | 
						|
    if (!Index || Index->uge(Agg->Elements.size()) ||
 | 
						|
        !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    MV = &Agg->Elements[Index->getZExtValue()];
 | 
						|
  }
 | 
						|
 | 
						|
  Type *MVType = MV->getType();
 | 
						|
  MV->clear();
 | 
						|
  if (Ty->isIntegerTy() && MVType->isPointerTy())
 | 
						|
    MV->Val = ConstantExpr::getIntToPtr(V, MVType);
 | 
						|
  else if (Ty->isPointerTy() && MVType->isIntegerTy())
 | 
						|
    MV->Val = ConstantExpr::getPtrToInt(V, MVType);
 | 
						|
  else if (Ty != MVType)
 | 
						|
    MV->Val = ConstantExpr::getBitCast(V, MVType);
 | 
						|
  else
 | 
						|
    MV->Val = V;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Constant *Evaluator::MutableAggregate::toConstant() const {
 | 
						|
  SmallVector<Constant *, 32> Consts;
 | 
						|
  for (const MutableValue &MV : Elements)
 | 
						|
    Consts.push_back(MV.toConstant());
 | 
						|
 | 
						|
  if (auto *ST = dyn_cast<StructType>(Ty))
 | 
						|
    return ConstantStruct::get(ST, Consts);
 | 
						|
  if (auto *AT = dyn_cast<ArrayType>(Ty))
 | 
						|
    return ConstantArray::get(AT, Consts);
 | 
						|
  assert(isa<FixedVectorType>(Ty) && "Must be vector");
 | 
						|
  return ConstantVector::get(Consts);
 | 
						|
}
 | 
						|
 | 
						|
/// Return the value that would be computed by a load from P after the stores
 | 
						|
/// reflected by 'memory' have been performed.  If we can't decide, return null.
 | 
						|
Constant *Evaluator::ComputeLoadResult(Constant *P, Type *Ty) {
 | 
						|
  APInt Offset(DL.getIndexTypeSizeInBits(P->getType()), 0);
 | 
						|
  P = cast<Constant>(P->stripAndAccumulateConstantOffsets(
 | 
						|
      DL, Offset, /* AllowNonInbounds */ true));
 | 
						|
  Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(P->getType()));
 | 
						|
  auto *GV = dyn_cast<GlobalVariable>(P);
 | 
						|
  if (!GV)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto It = MutatedMemory.find(GV);
 | 
						|
  if (It != MutatedMemory.end())
 | 
						|
    return It->second.read(Ty, Offset, DL);
 | 
						|
 | 
						|
  if (!GV->hasDefinitiveInitializer())
 | 
						|
    return nullptr;
 | 
						|
  return ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL);
 | 
						|
}
 | 
						|
 | 
						|
static Function *getFunction(Constant *C) {
 | 
						|
  if (auto *Fn = dyn_cast<Function>(C))
 | 
						|
    return Fn;
 | 
						|
 | 
						|
  if (auto *Alias = dyn_cast<GlobalAlias>(C))
 | 
						|
    if (auto *Fn = dyn_cast<Function>(Alias->getAliasee()))
 | 
						|
      return Fn;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Function *
 | 
						|
Evaluator::getCalleeWithFormalArgs(CallBase &CB,
 | 
						|
                                   SmallVectorImpl<Constant *> &Formals) {
 | 
						|
  auto *V = CB.getCalledOperand()->stripPointerCasts();
 | 
						|
  if (auto *Fn = getFunction(getVal(V)))
 | 
						|
    return getFormalParams(CB, Fn, Formals) ? Fn : nullptr;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool Evaluator::getFormalParams(CallBase &CB, Function *F,
 | 
						|
                                SmallVectorImpl<Constant *> &Formals) {
 | 
						|
  if (!F)
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *FTy = F->getFunctionType();
 | 
						|
  if (FTy->getNumParams() > CB.arg_size()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  auto ArgI = CB.arg_begin();
 | 
						|
  for (Type *PTy : FTy->params()) {
 | 
						|
    auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), PTy, DL);
 | 
						|
    if (!ArgC) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    Formals.push_back(ArgC);
 | 
						|
    ++ArgI;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// If call expression contains bitcast then we may need to cast
 | 
						|
/// evaluated return value to a type of the call expression.
 | 
						|
Constant *Evaluator::castCallResultIfNeeded(Type *ReturnType, Constant *RV) {
 | 
						|
  if (!RV || RV->getType() == ReturnType)
 | 
						|
    return RV;
 | 
						|
 | 
						|
  RV = ConstantFoldLoadThroughBitcast(RV, ReturnType, DL);
 | 
						|
  if (!RV)
 | 
						|
    LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
 | 
						|
  return RV;
 | 
						|
}
 | 
						|
 | 
						|
/// Evaluate all instructions in block BB, returning true if successful, false
 | 
						|
/// if we can't evaluate it.  NewBB returns the next BB that control flows into,
 | 
						|
/// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if
 | 
						|
/// we looked through pointer casts to evaluate something.
 | 
						|
bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB,
 | 
						|
                              bool &StrippedPointerCastsForAliasAnalysis) {
 | 
						|
  // This is the main evaluation loop.
 | 
						|
  while (true) {
 | 
						|
    Constant *InstResult = nullptr;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
 | 
						|
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
 | 
						|
      if (!SI->isSimple()) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
 | 
						|
        return false;  // no volatile/atomic accesses.
 | 
						|
      }
 | 
						|
      Constant *Ptr = getVal(SI->getOperand(1));
 | 
						|
      Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
 | 
						|
      if (Ptr != FoldedPtr) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
 | 
						|
        Ptr = FoldedPtr;
 | 
						|
        LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n");
 | 
						|
      }
 | 
						|
 | 
						|
      APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
 | 
						|
      Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets(
 | 
						|
          DL, Offset, /* AllowNonInbounds */ true));
 | 
						|
      Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(Ptr->getType()));
 | 
						|
      auto *GV = dyn_cast<GlobalVariable>(Ptr);
 | 
						|
      if (!GV || !GV->hasUniqueInitializer()) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Store is not to global with unique initializer: "
 | 
						|
                          << *Ptr << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this might be too difficult for the backend to handle (e.g. the addr
 | 
						|
      // of one global variable divided by another) then we can't commit it.
 | 
						|
      Constant *Val = getVal(SI->getOperand(0));
 | 
						|
      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
 | 
						|
                          << *Val << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      auto Res = MutatedMemory.try_emplace(GV, GV->getInitializer());
 | 
						|
      if (!Res.first->second.write(Val, Offset, DL))
 | 
						|
        return false;
 | 
						|
    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
 | 
						|
      InstResult = ConstantExpr::get(BO->getOpcode(),
 | 
						|
                                     getVal(BO->getOperand(0)),
 | 
						|
                                     getVal(BO->getOperand(1)));
 | 
						|
      LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: "
 | 
						|
                        << *InstResult << "\n");
 | 
						|
    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
 | 
						|
      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
 | 
						|
                                            getVal(CI->getOperand(0)),
 | 
						|
                                            getVal(CI->getOperand(1)));
 | 
						|
      LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
 | 
						|
                        << "\n");
 | 
						|
    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
 | 
						|
      InstResult = ConstantExpr::getCast(CI->getOpcode(),
 | 
						|
                                         getVal(CI->getOperand(0)),
 | 
						|
                                         CI->getType());
 | 
						|
      LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
 | 
						|
                        << "\n");
 | 
						|
    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
 | 
						|
      InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
 | 
						|
                                           getVal(SI->getOperand(1)),
 | 
						|
                                           getVal(SI->getOperand(2)));
 | 
						|
      LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
 | 
						|
                        << "\n");
 | 
						|
    } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
 | 
						|
      InstResult = ConstantExpr::getExtractValue(
 | 
						|
          getVal(EVI->getAggregateOperand()), EVI->getIndices());
 | 
						|
      LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: "
 | 
						|
                        << *InstResult << "\n");
 | 
						|
    } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
 | 
						|
      InstResult = ConstantExpr::getInsertValue(
 | 
						|
          getVal(IVI->getAggregateOperand()),
 | 
						|
          getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
 | 
						|
      LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: "
 | 
						|
                        << *InstResult << "\n");
 | 
						|
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
 | 
						|
      Constant *P = getVal(GEP->getOperand(0));
 | 
						|
      SmallVector<Constant*, 8> GEPOps;
 | 
						|
      for (Use &Op : llvm::drop_begin(GEP->operands()))
 | 
						|
        GEPOps.push_back(getVal(Op));
 | 
						|
      InstResult =
 | 
						|
          ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
 | 
						|
                                         cast<GEPOperator>(GEP)->isInBounds());
 | 
						|
      LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n");
 | 
						|
    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
 | 
						|
      if (!LI->isSimple()) {
 | 
						|
        LLVM_DEBUG(
 | 
						|
            dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
 | 
						|
        return false;  // no volatile/atomic accesses.
 | 
						|
      }
 | 
						|
 | 
						|
      Constant *Ptr = getVal(LI->getOperand(0));
 | 
						|
      Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
 | 
						|
      if (Ptr != FoldedPtr) {
 | 
						|
        Ptr = FoldedPtr;
 | 
						|
        LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
 | 
						|
                             "folding: "
 | 
						|
                          << *Ptr << "\n");
 | 
						|
      }
 | 
						|
      InstResult = ComputeLoadResult(Ptr, LI->getType());
 | 
						|
      if (!InstResult) {
 | 
						|
        LLVM_DEBUG(
 | 
						|
            dbgs() << "Failed to compute load result. Can not evaluate load."
 | 
						|
                      "\n");
 | 
						|
        return false; // Could not evaluate load.
 | 
						|
      }
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
 | 
						|
    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
 | 
						|
      if (AI->isArrayAllocation()) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
 | 
						|
        return false;  // Cannot handle array allocs.
 | 
						|
      }
 | 
						|
      Type *Ty = AI->getAllocatedType();
 | 
						|
      AllocaTmps.push_back(std::make_unique<GlobalVariable>(
 | 
						|
          Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
 | 
						|
          AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal,
 | 
						|
          AI->getType()->getPointerAddressSpace()));
 | 
						|
      InstResult = AllocaTmps.back().get();
 | 
						|
      LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
 | 
						|
    } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
 | 
						|
      CallBase &CB = *cast<CallBase>(&*CurInst);
 | 
						|
 | 
						|
      // Debug info can safely be ignored here.
 | 
						|
      if (isa<DbgInfoIntrinsic>(CB)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
 | 
						|
        ++CurInst;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Cannot handle inline asm.
 | 
						|
      if (CB.isInlineAsm()) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CB)) {
 | 
						|
        if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
 | 
						|
          if (MSI->isVolatile()) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
 | 
						|
                              << "intrinsic.\n");
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
          Constant *Ptr = getVal(MSI->getDest());
 | 
						|
          Constant *Val = getVal(MSI->getValue());
 | 
						|
          Constant *DestVal =
 | 
						|
              ComputeLoadResult(getVal(Ptr), MSI->getValue()->getType());
 | 
						|
          if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
 | 
						|
            // This memset is a no-op.
 | 
						|
            LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
 | 
						|
            ++CurInst;
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (II->isLifetimeStartOrEnd()) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
 | 
						|
          ++CurInst;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::invariant_start) {
 | 
						|
          // We don't insert an entry into Values, as it doesn't have a
 | 
						|
          // meaningful return value.
 | 
						|
          if (!II->use_empty()) {
 | 
						|
            LLVM_DEBUG(dbgs()
 | 
						|
                       << "Found unused invariant_start. Can't evaluate.\n");
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
          ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
 | 
						|
          Value *PtrArg = getVal(II->getArgOperand(1));
 | 
						|
          Value *Ptr = PtrArg->stripPointerCasts();
 | 
						|
          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
 | 
						|
            Type *ElemTy = GV->getValueType();
 | 
						|
            if (!Size->isMinusOne() &&
 | 
						|
                Size->getValue().getLimitedValue() >=
 | 
						|
                    DL.getTypeStoreSize(ElemTy)) {
 | 
						|
              Invariants.insert(GV);
 | 
						|
              LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
 | 
						|
                                << *GV << "\n");
 | 
						|
            } else {
 | 
						|
              LLVM_DEBUG(dbgs()
 | 
						|
                         << "Found a global var, but can not treat it as an "
 | 
						|
                            "invariant.\n");
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // Continue even if we do nothing.
 | 
						|
          ++CurInst;
 | 
						|
          continue;
 | 
						|
        } else if (II->getIntrinsicID() == Intrinsic::assume) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
 | 
						|
          ++CurInst;
 | 
						|
          continue;
 | 
						|
        } else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
 | 
						|
          ++CurInst;
 | 
						|
          continue;
 | 
						|
        } else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n");
 | 
						|
          ++CurInst;
 | 
						|
          continue;
 | 
						|
        } else {
 | 
						|
          Value *Stripped = CurInst->stripPointerCastsForAliasAnalysis();
 | 
						|
          // Only attempt to getVal() if we've actually managed to strip
 | 
						|
          // anything away, or else we'll call getVal() on the current
 | 
						|
          // instruction.
 | 
						|
          if (Stripped != &*CurInst) {
 | 
						|
            InstResult = getVal(Stripped);
 | 
						|
          }
 | 
						|
          if (InstResult) {
 | 
						|
            LLVM_DEBUG(dbgs()
 | 
						|
                       << "Stripped pointer casts for alias analysis for "
 | 
						|
                          "intrinsic call.\n");
 | 
						|
            StrippedPointerCastsForAliasAnalysis = true;
 | 
						|
            InstResult = ConstantExpr::getBitCast(InstResult, II->getType());
 | 
						|
          } else {
 | 
						|
            LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n");
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!InstResult) {
 | 
						|
        // Resolve function pointers.
 | 
						|
        SmallVector<Constant *, 8> Formals;
 | 
						|
        Function *Callee = getCalleeWithFormalArgs(CB, Formals);
 | 
						|
        if (!Callee || Callee->isInterposable()) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
 | 
						|
          return false; // Cannot resolve.
 | 
						|
        }
 | 
						|
 | 
						|
        if (Callee->isDeclaration()) {
 | 
						|
          // If this is a function we can constant fold, do it.
 | 
						|
          if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) {
 | 
						|
            InstResult = castCallResultIfNeeded(CB.getType(), C);
 | 
						|
            if (!InstResult)
 | 
						|
              return false;
 | 
						|
            LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
 | 
						|
                              << *InstResult << "\n");
 | 
						|
          } else {
 | 
						|
            LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          if (Callee->getFunctionType()->isVarArg()) {
 | 
						|
            LLVM_DEBUG(dbgs()
 | 
						|
                       << "Can not constant fold vararg function call.\n");
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
 | 
						|
          Constant *RetVal = nullptr;
 | 
						|
          // Execute the call, if successful, use the return value.
 | 
						|
          ValueStack.emplace_back();
 | 
						|
          if (!EvaluateFunction(Callee, RetVal, Formals)) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
          ValueStack.pop_back();
 | 
						|
          InstResult = castCallResultIfNeeded(CB.getType(), RetVal);
 | 
						|
          if (RetVal && !InstResult)
 | 
						|
            return false;
 | 
						|
 | 
						|
          if (InstResult) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
 | 
						|
                              << *InstResult << "\n\n");
 | 
						|
          } else {
 | 
						|
            LLVM_DEBUG(dbgs()
 | 
						|
                       << "Successfully evaluated function. Result: 0\n\n");
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (CurInst->isTerminator()) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
 | 
						|
 | 
						|
      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
 | 
						|
        if (BI->isUnconditional()) {
 | 
						|
          NextBB = BI->getSuccessor(0);
 | 
						|
        } else {
 | 
						|
          ConstantInt *Cond =
 | 
						|
            dyn_cast<ConstantInt>(getVal(BI->getCondition()));
 | 
						|
          if (!Cond) return false;  // Cannot determine.
 | 
						|
 | 
						|
          NextBB = BI->getSuccessor(!Cond->getZExtValue());
 | 
						|
        }
 | 
						|
      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
 | 
						|
        ConstantInt *Val =
 | 
						|
          dyn_cast<ConstantInt>(getVal(SI->getCondition()));
 | 
						|
        if (!Val) return false;  // Cannot determine.
 | 
						|
        NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
 | 
						|
      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
 | 
						|
        Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
 | 
						|
        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
 | 
						|
          NextBB = BA->getBasicBlock();
 | 
						|
        else
 | 
						|
          return false;  // Cannot determine.
 | 
						|
      } else if (isa<ReturnInst>(CurInst)) {
 | 
						|
        NextBB = nullptr;
 | 
						|
      } else {
 | 
						|
        // invoke, unwind, resume, unreachable.
 | 
						|
        LLVM_DEBUG(dbgs() << "Can not handle terminator.");
 | 
						|
        return false;  // Cannot handle this terminator.
 | 
						|
      }
 | 
						|
 | 
						|
      // We succeeded at evaluating this block!
 | 
						|
      LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      // Did not know how to evaluate this!
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs() << "Failed to evaluate block due to unhandled instruction."
 | 
						|
                    "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!CurInst->use_empty()) {
 | 
						|
      InstResult = ConstantFoldConstant(InstResult, DL, TLI);
 | 
						|
      setVal(&*CurInst, InstResult);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we just processed an invoke, we finished evaluating the block.
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
 | 
						|
      NextBB = II->getNormalDest();
 | 
						|
      LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Advance program counter.
 | 
						|
    ++CurInst;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Evaluate a call to function F, returning true if successful, false if we
 | 
						|
/// can't evaluate it.  ActualArgs contains the formal arguments for the
 | 
						|
/// function.
 | 
						|
bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
 | 
						|
                                 const SmallVectorImpl<Constant*> &ActualArgs) {
 | 
						|
  assert(ActualArgs.size() == F->arg_size() && "wrong number of arguments");
 | 
						|
 | 
						|
  // Check to see if this function is already executing (recursion).  If so,
 | 
						|
  // bail out.  TODO: we might want to accept limited recursion.
 | 
						|
  if (is_contained(CallStack, F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  CallStack.push_back(F);
 | 
						|
 | 
						|
  // Initialize arguments to the incoming values specified.
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
 | 
						|
       ++AI, ++ArgNo)
 | 
						|
    setVal(&*AI, ActualArgs[ArgNo]);
 | 
						|
 | 
						|
  // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
 | 
						|
  // we can only evaluate any one basic block at most once.  This set keeps
 | 
						|
  // track of what we have executed so we can detect recursive cases etc.
 | 
						|
  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
 | 
						|
 | 
						|
  // CurBB - The current basic block we're evaluating.
 | 
						|
  BasicBlock *CurBB = &F->front();
 | 
						|
 | 
						|
  BasicBlock::iterator CurInst = CurBB->begin();
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
 | 
						|
    LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
 | 
						|
 | 
						|
    bool StrippedPointerCastsForAliasAnalysis = false;
 | 
						|
 | 
						|
    if (!EvaluateBlock(CurInst, NextBB, StrippedPointerCastsForAliasAnalysis))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!NextBB) {
 | 
						|
      // Successfully running until there's no next block means that we found
 | 
						|
      // the return.  Fill it the return value and pop the call stack.
 | 
						|
      ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
 | 
						|
      if (RI->getNumOperands()) {
 | 
						|
        // The Evaluator can look through pointer casts as long as alias
 | 
						|
        // analysis holds because it's just a simple interpreter and doesn't
 | 
						|
        // skip memory accesses due to invariant group metadata, but we can't
 | 
						|
        // let users of Evaluator use a value that's been gleaned looking
 | 
						|
        // through stripping pointer casts.
 | 
						|
        if (StrippedPointerCastsForAliasAnalysis &&
 | 
						|
            !RI->getReturnValue()->getType()->isVoidTy()) {
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
        RetVal = getVal(RI->getOperand(0));
 | 
						|
      }
 | 
						|
      CallStack.pop_back();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, we succeeded in evaluating this control flow.  See if we have
 | 
						|
    // executed the new block before.  If so, we have a looping function,
 | 
						|
    // which we cannot evaluate in reasonable time.
 | 
						|
    if (!ExecutedBlocks.insert(NextBB).second)
 | 
						|
      return false;  // looped!
 | 
						|
 | 
						|
    // Okay, we have never been in this block before.  Check to see if there
 | 
						|
    // are any PHI nodes.  If so, evaluate them with information about where
 | 
						|
    // we came from.
 | 
						|
    PHINode *PN = nullptr;
 | 
						|
    for (CurInst = NextBB->begin();
 | 
						|
         (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
 | 
						|
      setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
 | 
						|
 | 
						|
    // Advance to the next block.
 | 
						|
    CurBB = NextBB;
 | 
						|
  }
 | 
						|
}
 |