230 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			LLVM
		
	
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			LLVM
		
	
	
	
| ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
 | |
| ; RUN: opt < %s -passes=instsimplify -S | FileCheck %s
 | |
| 
 | |
| define i32 @zero_dividend(i32 %A) {
 | |
| ; CHECK-LABEL: @zero_dividend(
 | |
| ; CHECK-NEXT:    ret i32 0
 | |
| ;
 | |
|   %B = sdiv i32 0, %A
 | |
|   ret i32 %B
 | |
| }
 | |
| 
 | |
| define <2 x i32> @zero_dividend_vector(<2 x i32> %A) {
 | |
| ; CHECK-LABEL: @zero_dividend_vector(
 | |
| ; CHECK-NEXT:    ret <2 x i32> zeroinitializer
 | |
| ;
 | |
|   %B = udiv <2 x i32> zeroinitializer, %A
 | |
|   ret <2 x i32> %B
 | |
| }
 | |
| 
 | |
| define <2 x i32> @zero_dividend_vector_undef_elt(<2 x i32> %A) {
 | |
| ; CHECK-LABEL: @zero_dividend_vector_undef_elt(
 | |
| ; CHECK-NEXT:    ret <2 x i32> zeroinitializer
 | |
| ;
 | |
|   %B = sdiv <2 x i32> <i32 0, i32 undef>, %A
 | |
|   ret <2 x i32> %B
 | |
| }
 | |
| 
 | |
| ; Division-by-zero is poison. UB in any vector lane means the whole op is poison.
 | |
| 
 | |
| define <2 x i8> @sdiv_zero_elt_vec_constfold(<2 x i8> %x) {
 | |
| ; CHECK-LABEL: @sdiv_zero_elt_vec_constfold(
 | |
| ; CHECK-NEXT:    ret <2 x i8> poison
 | |
| ;
 | |
|   %div = sdiv <2 x i8> <i8 1, i8 2>, <i8 0, i8 -42>
 | |
|   ret <2 x i8> %div
 | |
| }
 | |
| 
 | |
| define <2 x i8> @udiv_zero_elt_vec_constfold(<2 x i8> %x) {
 | |
| ; CHECK-LABEL: @udiv_zero_elt_vec_constfold(
 | |
| ; CHECK-NEXT:    ret <2 x i8> poison
 | |
| ;
 | |
|   %div = udiv <2 x i8> <i8 1, i8 2>, <i8 42, i8 0>
 | |
|   ret <2 x i8> %div
 | |
| }
 | |
| 
 | |
| define <2 x i8> @sdiv_zero_elt_vec(<2 x i8> %x) {
 | |
| ; CHECK-LABEL: @sdiv_zero_elt_vec(
 | |
| ; CHECK-NEXT:    ret <2 x i8> poison
 | |
| ;
 | |
|   %div = sdiv <2 x i8> %x, <i8 -42, i8 0>
 | |
|   ret <2 x i8> %div
 | |
| }
 | |
| 
 | |
| define <2 x i8> @udiv_zero_elt_vec(<2 x i8> %x) {
 | |
| ; CHECK-LABEL: @udiv_zero_elt_vec(
 | |
| ; CHECK-NEXT:    ret <2 x i8> poison
 | |
| ;
 | |
|   %div = udiv <2 x i8> %x, <i8 0, i8 42>
 | |
|   ret <2 x i8> %div
 | |
| }
 | |
| 
 | |
| define <2 x i8> @sdiv_undef_elt_vec(<2 x i8> %x) {
 | |
| ; CHECK-LABEL: @sdiv_undef_elt_vec(
 | |
| ; CHECK-NEXT:    ret <2 x i8> poison
 | |
| ;
 | |
|   %div = sdiv <2 x i8> %x, <i8 -42, i8 undef>
 | |
|   ret <2 x i8> %div
 | |
| }
 | |
| 
 | |
| define <2 x i8> @udiv_undef_elt_vec(<2 x i8> %x) {
 | |
| ; CHECK-LABEL: @udiv_undef_elt_vec(
 | |
| ; CHECK-NEXT:    ret <2 x i8> poison
 | |
| ;
 | |
|   %div = udiv <2 x i8> %x, <i8 undef, i8 42>
 | |
|   ret <2 x i8> %div
 | |
| }
 | |
| 
 | |
| ; Division-by-zero is undef. UB in any vector lane means the whole op is undef.
 | |
| ; Thus, we can simplify this: if any element of 'y' is 0, we can do anything.
 | |
| ; Therefore, assume that all elements of 'y' must be 1.
 | |
| 
 | |
| define <2 x i1> @sdiv_bool_vec(<2 x i1> %x, <2 x i1> %y) {
 | |
| ; CHECK-LABEL: @sdiv_bool_vec(
 | |
| ; CHECK-NEXT:    ret <2 x i1> [[X:%.*]]
 | |
| ;
 | |
|   %div = sdiv <2 x i1> %x, %y
 | |
|   ret <2 x i1> %div
 | |
| }
 | |
| 
 | |
| define <2 x i1> @udiv_bool_vec(<2 x i1> %x, <2 x i1> %y) {
 | |
| ; CHECK-LABEL: @udiv_bool_vec(
 | |
| ; CHECK-NEXT:    ret <2 x i1> [[X:%.*]]
 | |
| ;
 | |
|   %div = udiv <2 x i1> %x, %y
 | |
|   ret <2 x i1> %div
 | |
| }
 | |
| 
 | |
| define i32 @zext_bool_udiv_divisor(i1 %x, i32 %y) {
 | |
| ; CHECK-LABEL: @zext_bool_udiv_divisor(
 | |
| ; CHECK-NEXT:    ret i32 [[Y:%.*]]
 | |
| ;
 | |
|   %ext = zext i1 %x to i32
 | |
|   %r = udiv i32 %y, %ext
 | |
|   ret i32 %r
 | |
| }
 | |
| 
 | |
| define <2 x i32> @zext_bool_sdiv_divisor_vec(<2 x i1> %x, <2 x i32> %y) {
 | |
| ; CHECK-LABEL: @zext_bool_sdiv_divisor_vec(
 | |
| ; CHECK-NEXT:    ret <2 x i32> [[Y:%.*]]
 | |
| ;
 | |
|   %ext = zext <2 x i1> %x to <2 x i32>
 | |
|   %r = sdiv <2 x i32> %y, %ext
 | |
|   ret <2 x i32> %r
 | |
| }
 | |
| 
 | |
| define i32 @udiv_dividend_known_smaller_than_constant_divisor(i32 %x) {
 | |
| ; CHECK-LABEL: @udiv_dividend_known_smaller_than_constant_divisor(
 | |
| ; CHECK-NEXT:    ret i32 0
 | |
| ;
 | |
|   %and = and i32 %x, 250
 | |
|   %div = udiv i32 %and, 251
 | |
|   ret i32 %div
 | |
| }
 | |
| 
 | |
| define i32 @not_udiv_dividend_known_smaller_than_constant_divisor(i32 %x) {
 | |
| ; CHECK-LABEL: @not_udiv_dividend_known_smaller_than_constant_divisor(
 | |
| ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 251
 | |
| ; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 [[AND]], 251
 | |
| ; CHECK-NEXT:    ret i32 [[DIV]]
 | |
| ;
 | |
|   %and = and i32 %x, 251
 | |
|   %div = udiv i32 %and, 251
 | |
|   ret i32 %div
 | |
| }
 | |
| 
 | |
| define i32 @udiv_constant_dividend_known_smaller_than_divisor(i32 %x) {
 | |
| ; CHECK-LABEL: @udiv_constant_dividend_known_smaller_than_divisor(
 | |
| ; CHECK-NEXT:    ret i32 0
 | |
| ;
 | |
|   %or = or i32 %x, 251
 | |
|   %div = udiv i32 250, %or
 | |
|   ret i32 %div
 | |
| }
 | |
| 
 | |
| define i32 @not_udiv_constant_dividend_known_smaller_than_divisor(i32 %x) {
 | |
| ; CHECK-LABEL: @not_udiv_constant_dividend_known_smaller_than_divisor(
 | |
| ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[X:%.*]], 251
 | |
| ; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 251, [[OR]]
 | |
| ; CHECK-NEXT:    ret i32 [[DIV]]
 | |
| ;
 | |
|   %or = or i32 %x, 251
 | |
|   %div = udiv i32 251, %or
 | |
|   ret i32 %div
 | |
| }
 | |
| 
 | |
| define i8 @udiv_dividend_known_smaller_than_constant_divisor2(i1 %b) {
 | |
| ; CHECK-LABEL: @udiv_dividend_known_smaller_than_constant_divisor2(
 | |
| ; CHECK-NEXT:    ret i8 0
 | |
| ;
 | |
|   %t0 = zext i1 %b to i8
 | |
|   %xor = xor i8 %t0, 12
 | |
|   %r = udiv i8 %xor, 14
 | |
|   ret i8 %r
 | |
| }
 | |
| 
 | |
| ; negative test - dividend can equal 13
 | |
| 
 | |
| define i8 @not_udiv_dividend_known_smaller_than_constant_divisor2(i1 %b) {
 | |
| ; CHECK-LABEL: @not_udiv_dividend_known_smaller_than_constant_divisor2(
 | |
| ; CHECK-NEXT:    [[T0:%.*]] = zext i1 [[B:%.*]] to i8
 | |
| ; CHECK-NEXT:    [[XOR:%.*]] = xor i8 [[T0]], 12
 | |
| ; CHECK-NEXT:    [[R:%.*]] = udiv i8 [[XOR]], 13
 | |
| ; CHECK-NEXT:    ret i8 [[R]]
 | |
| ;
 | |
|   %t0 = zext i1 %b to i8
 | |
|   %xor = xor i8 %t0, 12
 | |
|   %r = udiv i8 %xor, 13
 | |
|   ret i8 %r
 | |
| }
 | |
| 
 | |
| ; This would require computing known bits on both x and y. Is it worth doing?
 | |
| 
 | |
| define i32 @udiv_dividend_known_smaller_than_divisor(i32 %x, i32 %y) {
 | |
| ; CHECK-LABEL: @udiv_dividend_known_smaller_than_divisor(
 | |
| ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 250
 | |
| ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[Y:%.*]], 251
 | |
| ; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 [[AND]], [[OR]]
 | |
| ; CHECK-NEXT:    ret i32 [[DIV]]
 | |
| ;
 | |
|   %and = and i32 %x, 250
 | |
|   %or = or i32 %y, 251
 | |
|   %div = udiv i32 %and, %or
 | |
|   ret i32 %div
 | |
| }
 | |
| 
 | |
| define i32 @not_udiv_dividend_known_smaller_than_divisor(i32 %x, i32 %y) {
 | |
| ; CHECK-LABEL: @not_udiv_dividend_known_smaller_than_divisor(
 | |
| ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 251
 | |
| ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[Y:%.*]], 251
 | |
| ; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 [[AND]], [[OR]]
 | |
| ; CHECK-NEXT:    ret i32 [[DIV]]
 | |
| ;
 | |
|   %and = and i32 %x, 251
 | |
|   %or = or i32 %y, 251
 | |
|   %div = udiv i32 %and, %or
 | |
|   ret i32 %div
 | |
| }
 | |
| 
 | |
| declare i32 @external()
 | |
| 
 | |
| define i32 @div1() {
 | |
| ; CHECK-LABEL: @div1(
 | |
| ; CHECK-NEXT:    [[CALL:%.*]] = call i32 @external(), !range [[RNG0:![0-9]+]]
 | |
| ; CHECK-NEXT:    ret i32 0
 | |
| ;
 | |
|   %call = call i32 @external(), !range !0
 | |
|   %urem = udiv i32 %call, 3
 | |
|   ret i32 %urem
 | |
| }
 | |
| 
 | |
| define i8 @sdiv_minusone_divisor() {
 | |
| ; CHECK-LABEL: @sdiv_minusone_divisor(
 | |
| ; CHECK-NEXT:    ret i8 poison
 | |
| ;
 | |
|   %v = sdiv i8 -128, -1
 | |
|   ret i8 %v
 | |
| }
 | |
| 
 | |
| !0 = !{i32 0, i32 3}
 |