970 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			970 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- Target.cpp ----------------------------------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#include "../Target.h"
 | 
						|
 | 
						|
#include "../Error.h"
 | 
						|
#include "../ParallelSnippetGenerator.h"
 | 
						|
#include "../SerialSnippetGenerator.h"
 | 
						|
#include "../SnippetGenerator.h"
 | 
						|
#include "MCTargetDesc/X86BaseInfo.h"
 | 
						|
#include "MCTargetDesc/X86MCTargetDesc.h"
 | 
						|
#include "X86.h"
 | 
						|
#include "X86Counter.h"
 | 
						|
#include "X86RegisterInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "llvm/ADT/Sequence.h"
 | 
						|
#include "llvm/MC/MCInstBuilder.h"
 | 
						|
#include "llvm/Support/Errc.h"
 | 
						|
#include "llvm/Support/Error.h"
 | 
						|
#include "llvm/Support/FormatVariadic.h"
 | 
						|
#include "llvm/Support/Host.h"
 | 
						|
 | 
						|
#include <memory>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
 | 
						|
#include <immintrin.h>
 | 
						|
#include <intrin.h>
 | 
						|
#endif
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
namespace exegesis {
 | 
						|
 | 
						|
static cl::OptionCategory
 | 
						|
    BenchmarkOptions("llvm-exegesis benchmark x86-options");
 | 
						|
 | 
						|
// If a positive value is specified, we are going to use the LBR in
 | 
						|
// latency-mode.
 | 
						|
//
 | 
						|
// Note:
 | 
						|
//  -  A small value is preferred, but too low a value could result in
 | 
						|
//     throttling.
 | 
						|
//  -  A prime number is preferred to avoid always skipping certain blocks.
 | 
						|
//
 | 
						|
static cl::opt<unsigned> LbrSamplingPeriod(
 | 
						|
    "x86-lbr-sample-period",
 | 
						|
    cl::desc("The sample period (nbranches/sample), used for LBR sampling"),
 | 
						|
    cl::cat(BenchmarkOptions), cl::init(0));
 | 
						|
 | 
						|
// FIXME: Validates that repetition-mode is loop if LBR is requested.
 | 
						|
 | 
						|
// Returns a non-null reason if we cannot handle the memory references in this
 | 
						|
// instruction.
 | 
						|
static const char *isInvalidMemoryInstr(const Instruction &Instr) {
 | 
						|
  switch (Instr.Description.TSFlags & X86II::FormMask) {
 | 
						|
  default:
 | 
						|
    return "Unknown FormMask value";
 | 
						|
  // These have no memory access.
 | 
						|
  case X86II::Pseudo:
 | 
						|
  case X86II::RawFrm:
 | 
						|
  case X86II::AddCCFrm:
 | 
						|
  case X86II::PrefixByte:
 | 
						|
  case X86II::MRMDestReg:
 | 
						|
  case X86II::MRMSrcReg:
 | 
						|
  case X86II::MRMSrcReg4VOp3:
 | 
						|
  case X86II::MRMSrcRegOp4:
 | 
						|
  case X86II::MRMSrcRegCC:
 | 
						|
  case X86II::MRMXrCC:
 | 
						|
  case X86II::MRMr0:
 | 
						|
  case X86II::MRMXr:
 | 
						|
  case X86II::MRM0r:
 | 
						|
  case X86II::MRM1r:
 | 
						|
  case X86II::MRM2r:
 | 
						|
  case X86II::MRM3r:
 | 
						|
  case X86II::MRM4r:
 | 
						|
  case X86II::MRM5r:
 | 
						|
  case X86II::MRM6r:
 | 
						|
  case X86II::MRM7r:
 | 
						|
  case X86II::MRM0X:
 | 
						|
  case X86II::MRM1X:
 | 
						|
  case X86II::MRM2X:
 | 
						|
  case X86II::MRM3X:
 | 
						|
  case X86II::MRM4X:
 | 
						|
  case X86II::MRM5X:
 | 
						|
  case X86II::MRM6X:
 | 
						|
  case X86II::MRM7X:
 | 
						|
  case X86II::MRM_C0:
 | 
						|
  case X86II::MRM_C1:
 | 
						|
  case X86II::MRM_C2:
 | 
						|
  case X86II::MRM_C3:
 | 
						|
  case X86II::MRM_C4:
 | 
						|
  case X86II::MRM_C5:
 | 
						|
  case X86II::MRM_C6:
 | 
						|
  case X86II::MRM_C7:
 | 
						|
  case X86II::MRM_C8:
 | 
						|
  case X86II::MRM_C9:
 | 
						|
  case X86II::MRM_CA:
 | 
						|
  case X86II::MRM_CB:
 | 
						|
  case X86II::MRM_CC:
 | 
						|
  case X86II::MRM_CD:
 | 
						|
  case X86II::MRM_CE:
 | 
						|
  case X86II::MRM_CF:
 | 
						|
  case X86II::MRM_D0:
 | 
						|
  case X86II::MRM_D1:
 | 
						|
  case X86II::MRM_D2:
 | 
						|
  case X86II::MRM_D3:
 | 
						|
  case X86II::MRM_D4:
 | 
						|
  case X86II::MRM_D5:
 | 
						|
  case X86II::MRM_D6:
 | 
						|
  case X86II::MRM_D7:
 | 
						|
  case X86II::MRM_D8:
 | 
						|
  case X86II::MRM_D9:
 | 
						|
  case X86II::MRM_DA:
 | 
						|
  case X86II::MRM_DB:
 | 
						|
  case X86II::MRM_DC:
 | 
						|
  case X86II::MRM_DD:
 | 
						|
  case X86II::MRM_DE:
 | 
						|
  case X86II::MRM_DF:
 | 
						|
  case X86II::MRM_E0:
 | 
						|
  case X86II::MRM_E1:
 | 
						|
  case X86II::MRM_E2:
 | 
						|
  case X86II::MRM_E3:
 | 
						|
  case X86II::MRM_E4:
 | 
						|
  case X86II::MRM_E5:
 | 
						|
  case X86II::MRM_E6:
 | 
						|
  case X86II::MRM_E7:
 | 
						|
  case X86II::MRM_E8:
 | 
						|
  case X86II::MRM_E9:
 | 
						|
  case X86II::MRM_EA:
 | 
						|
  case X86II::MRM_EB:
 | 
						|
  case X86II::MRM_EC:
 | 
						|
  case X86II::MRM_ED:
 | 
						|
  case X86II::MRM_EE:
 | 
						|
  case X86II::MRM_EF:
 | 
						|
  case X86II::MRM_F0:
 | 
						|
  case X86II::MRM_F1:
 | 
						|
  case X86II::MRM_F2:
 | 
						|
  case X86II::MRM_F3:
 | 
						|
  case X86II::MRM_F4:
 | 
						|
  case X86II::MRM_F5:
 | 
						|
  case X86II::MRM_F6:
 | 
						|
  case X86II::MRM_F7:
 | 
						|
  case X86II::MRM_F8:
 | 
						|
  case X86II::MRM_F9:
 | 
						|
  case X86II::MRM_FA:
 | 
						|
  case X86II::MRM_FB:
 | 
						|
  case X86II::MRM_FC:
 | 
						|
  case X86II::MRM_FD:
 | 
						|
  case X86II::MRM_FE:
 | 
						|
  case X86II::MRM_FF:
 | 
						|
  case X86II::RawFrmImm8:
 | 
						|
    return nullptr;
 | 
						|
  case X86II::AddRegFrm:
 | 
						|
    return (Instr.Description.Opcode == X86::POP16r ||
 | 
						|
            Instr.Description.Opcode == X86::POP32r ||
 | 
						|
            Instr.Description.Opcode == X86::PUSH16r ||
 | 
						|
            Instr.Description.Opcode == X86::PUSH32r)
 | 
						|
               ? "unsupported opcode: unsupported memory access"
 | 
						|
               : nullptr;
 | 
						|
  // These access memory and are handled.
 | 
						|
  case X86II::MRMDestMem:
 | 
						|
  case X86II::MRMSrcMem:
 | 
						|
  case X86II::MRMSrcMem4VOp3:
 | 
						|
  case X86II::MRMSrcMemOp4:
 | 
						|
  case X86II::MRMSrcMemCC:
 | 
						|
  case X86II::MRMXmCC:
 | 
						|
  case X86II::MRMXm:
 | 
						|
  case X86II::MRM0m:
 | 
						|
  case X86II::MRM1m:
 | 
						|
  case X86II::MRM2m:
 | 
						|
  case X86II::MRM3m:
 | 
						|
  case X86II::MRM4m:
 | 
						|
  case X86II::MRM5m:
 | 
						|
  case X86II::MRM6m:
 | 
						|
  case X86II::MRM7m:
 | 
						|
    return nullptr;
 | 
						|
  // These access memory and are not handled yet.
 | 
						|
  case X86II::RawFrmImm16:
 | 
						|
  case X86II::RawFrmMemOffs:
 | 
						|
  case X86II::RawFrmSrc:
 | 
						|
  case X86II::RawFrmDst:
 | 
						|
  case X86II::RawFrmDstSrc:
 | 
						|
    return "unsupported opcode: non uniform memory access";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// If the opcode is invalid, returns a pointer to a character literal indicating
 | 
						|
// the reason. nullptr indicates a valid opcode.
 | 
						|
static const char *isInvalidOpcode(const Instruction &Instr) {
 | 
						|
  const auto OpcodeName = Instr.Name;
 | 
						|
  if ((Instr.Description.TSFlags & X86II::FormMask) == X86II::Pseudo)
 | 
						|
    return "unsupported opcode: pseudo instruction";
 | 
						|
  if ((OpcodeName.startswith("POP") && !OpcodeName.startswith("POPCNT")) ||
 | 
						|
      OpcodeName.startswith("PUSH") || OpcodeName.startswith("ADJCALLSTACK") ||
 | 
						|
      OpcodeName.startswith("LEAVE"))
 | 
						|
    return "unsupported opcode: Push/Pop/AdjCallStack/Leave";
 | 
						|
  switch (Instr.Description.Opcode) {
 | 
						|
  case X86::LFS16rm:
 | 
						|
  case X86::LFS32rm:
 | 
						|
  case X86::LFS64rm:
 | 
						|
  case X86::LGS16rm:
 | 
						|
  case X86::LGS32rm:
 | 
						|
  case X86::LGS64rm:
 | 
						|
  case X86::LSS16rm:
 | 
						|
  case X86::LSS32rm:
 | 
						|
  case X86::LSS64rm:
 | 
						|
  case X86::SYSENTER:
 | 
						|
    return "unsupported opcode";
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (const auto reason = isInvalidMemoryInstr(Instr))
 | 
						|
    return reason;
 | 
						|
  // We do not handle instructions with OPERAND_PCREL.
 | 
						|
  for (const Operand &Op : Instr.Operands)
 | 
						|
    if (Op.isExplicit() &&
 | 
						|
        Op.getExplicitOperandInfo().OperandType == MCOI::OPERAND_PCREL)
 | 
						|
      return "unsupported opcode: PC relative operand";
 | 
						|
  // We do not handle second-form X87 instructions. We only handle first-form
 | 
						|
  // ones (_Fp), see comment in X86InstrFPStack.td.
 | 
						|
  for (const Operand &Op : Instr.Operands)
 | 
						|
    if (Op.isReg() && Op.isExplicit() &&
 | 
						|
        Op.getExplicitOperandInfo().RegClass == X86::RSTRegClassID)
 | 
						|
      return "unsupported second-form X87 instruction";
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getX86FPFlags(const Instruction &Instr) {
 | 
						|
  return Instr.Description.TSFlags & X86II::FPTypeMask;
 | 
						|
}
 | 
						|
 | 
						|
// Helper to fill a memory operand with a value.
 | 
						|
static void setMemOp(InstructionTemplate &IT, int OpIdx,
 | 
						|
                     const MCOperand &OpVal) {
 | 
						|
  const auto Op = IT.getInstr().Operands[OpIdx];
 | 
						|
  assert(Op.isExplicit() && "invalid memory pattern");
 | 
						|
  IT.getValueFor(Op) = OpVal;
 | 
						|
}
 | 
						|
 | 
						|
// Common (latency, uops) code for LEA templates. `GetDestReg` takes the
 | 
						|
// addressing base and index registers and returns the LEA destination register.
 | 
						|
static Expected<std::vector<CodeTemplate>> generateLEATemplatesCommon(
 | 
						|
    const Instruction &Instr, const BitVector &ForbiddenRegisters,
 | 
						|
    const LLVMState &State, const SnippetGenerator::Options &Opts,
 | 
						|
    std::function<void(unsigned, unsigned, BitVector &CandidateDestRegs)>
 | 
						|
        RestrictDestRegs) {
 | 
						|
  assert(Instr.Operands.size() == 6 && "invalid LEA");
 | 
						|
  assert(X86II::getMemoryOperandNo(Instr.Description.TSFlags) == 1 &&
 | 
						|
         "invalid LEA");
 | 
						|
 | 
						|
  constexpr const int kDestOp = 0;
 | 
						|
  constexpr const int kBaseOp = 1;
 | 
						|
  constexpr const int kIndexOp = 3;
 | 
						|
  auto PossibleDestRegs =
 | 
						|
      Instr.Operands[kDestOp].getRegisterAliasing().sourceBits();
 | 
						|
  remove(PossibleDestRegs, ForbiddenRegisters);
 | 
						|
  auto PossibleBaseRegs =
 | 
						|
      Instr.Operands[kBaseOp].getRegisterAliasing().sourceBits();
 | 
						|
  remove(PossibleBaseRegs, ForbiddenRegisters);
 | 
						|
  auto PossibleIndexRegs =
 | 
						|
      Instr.Operands[kIndexOp].getRegisterAliasing().sourceBits();
 | 
						|
  remove(PossibleIndexRegs, ForbiddenRegisters);
 | 
						|
 | 
						|
  const auto &RegInfo = State.getRegInfo();
 | 
						|
  std::vector<CodeTemplate> Result;
 | 
						|
  for (const unsigned BaseReg : PossibleBaseRegs.set_bits()) {
 | 
						|
    for (const unsigned IndexReg : PossibleIndexRegs.set_bits()) {
 | 
						|
      for (int LogScale = 0; LogScale <= 3; ++LogScale) {
 | 
						|
        // FIXME: Add an option for controlling how we explore immediates.
 | 
						|
        for (const int Disp : {0, 42}) {
 | 
						|
          InstructionTemplate IT(&Instr);
 | 
						|
          const int64_t Scale = 1ull << LogScale;
 | 
						|
          setMemOp(IT, 1, MCOperand::createReg(BaseReg));
 | 
						|
          setMemOp(IT, 2, MCOperand::createImm(Scale));
 | 
						|
          setMemOp(IT, 3, MCOperand::createReg(IndexReg));
 | 
						|
          setMemOp(IT, 4, MCOperand::createImm(Disp));
 | 
						|
          // SegmentReg must be 0 for LEA.
 | 
						|
          setMemOp(IT, 5, MCOperand::createReg(0));
 | 
						|
 | 
						|
          // Output reg candidates are selected by the caller.
 | 
						|
          auto PossibleDestRegsNow = PossibleDestRegs;
 | 
						|
          RestrictDestRegs(BaseReg, IndexReg, PossibleDestRegsNow);
 | 
						|
          assert(PossibleDestRegsNow.set_bits().begin() !=
 | 
						|
                     PossibleDestRegsNow.set_bits().end() &&
 | 
						|
                 "no remaining registers");
 | 
						|
          setMemOp(
 | 
						|
              IT, 0,
 | 
						|
              MCOperand::createReg(*PossibleDestRegsNow.set_bits().begin()));
 | 
						|
 | 
						|
          CodeTemplate CT;
 | 
						|
          CT.Instructions.push_back(std::move(IT));
 | 
						|
          CT.Config = formatv("{3}(%{0}, %{1}, {2})", RegInfo.getName(BaseReg),
 | 
						|
                              RegInfo.getName(IndexReg), Scale, Disp)
 | 
						|
                          .str();
 | 
						|
          Result.push_back(std::move(CT));
 | 
						|
          if (Result.size() >= Opts.MaxConfigsPerOpcode)
 | 
						|
            return std::move(Result);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return std::move(Result);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class X86SerialSnippetGenerator : public SerialSnippetGenerator {
 | 
						|
public:
 | 
						|
  using SerialSnippetGenerator::SerialSnippetGenerator;
 | 
						|
 | 
						|
  Expected<std::vector<CodeTemplate>>
 | 
						|
  generateCodeTemplates(InstructionTemplate Variant,
 | 
						|
                        const BitVector &ForbiddenRegisters) const override;
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
Expected<std::vector<CodeTemplate>>
 | 
						|
X86SerialSnippetGenerator::generateCodeTemplates(
 | 
						|
    InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
 | 
						|
  const Instruction &Instr = Variant.getInstr();
 | 
						|
 | 
						|
  if (const auto reason = isInvalidOpcode(Instr))
 | 
						|
    return make_error<Failure>(reason);
 | 
						|
 | 
						|
  // LEA gets special attention.
 | 
						|
  const auto Opcode = Instr.Description.getOpcode();
 | 
						|
  if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r) {
 | 
						|
    return generateLEATemplatesCommon(
 | 
						|
        Instr, ForbiddenRegisters, State, Opts,
 | 
						|
        [this](unsigned BaseReg, unsigned IndexReg,
 | 
						|
               BitVector &CandidateDestRegs) {
 | 
						|
          // We just select a destination register that aliases the base
 | 
						|
          // register.
 | 
						|
          CandidateDestRegs &=
 | 
						|
              State.getRATC().getRegister(BaseReg).aliasedBits();
 | 
						|
        });
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instr.hasMemoryOperands())
 | 
						|
    return make_error<Failure>(
 | 
						|
        "unsupported memory operand in latency measurements");
 | 
						|
 | 
						|
  switch (getX86FPFlags(Instr)) {
 | 
						|
  case X86II::NotFP:
 | 
						|
    return SerialSnippetGenerator::generateCodeTemplates(Variant,
 | 
						|
                                                         ForbiddenRegisters);
 | 
						|
  case X86II::ZeroArgFP:
 | 
						|
  case X86II::OneArgFP:
 | 
						|
  case X86II::SpecialFP:
 | 
						|
  case X86II::CompareFP:
 | 
						|
  case X86II::CondMovFP:
 | 
						|
    return make_error<Failure>("Unsupported x87 Instruction");
 | 
						|
  case X86II::OneArgFPRW:
 | 
						|
  case X86II::TwoArgFP:
 | 
						|
    // These are instructions like
 | 
						|
    //   - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
 | 
						|
    //   - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
 | 
						|
    // They are intrinsically serial and do not modify the state of the stack.
 | 
						|
    return generateSelfAliasingCodeTemplates(Variant);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown FP Type!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class X86ParallelSnippetGenerator : public ParallelSnippetGenerator {
 | 
						|
public:
 | 
						|
  using ParallelSnippetGenerator::ParallelSnippetGenerator;
 | 
						|
 | 
						|
  Expected<std::vector<CodeTemplate>>
 | 
						|
  generateCodeTemplates(InstructionTemplate Variant,
 | 
						|
                        const BitVector &ForbiddenRegisters) const override;
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
Expected<std::vector<CodeTemplate>>
 | 
						|
X86ParallelSnippetGenerator::generateCodeTemplates(
 | 
						|
    InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
 | 
						|
  const Instruction &Instr = Variant.getInstr();
 | 
						|
 | 
						|
  if (const auto reason = isInvalidOpcode(Instr))
 | 
						|
    return make_error<Failure>(reason);
 | 
						|
 | 
						|
  // LEA gets special attention.
 | 
						|
  const auto Opcode = Instr.Description.getOpcode();
 | 
						|
  if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r) {
 | 
						|
    return generateLEATemplatesCommon(
 | 
						|
        Instr, ForbiddenRegisters, State, Opts,
 | 
						|
        [this](unsigned BaseReg, unsigned IndexReg,
 | 
						|
               BitVector &CandidateDestRegs) {
 | 
						|
          // Any destination register that is not used for addressing is fine.
 | 
						|
          remove(CandidateDestRegs,
 | 
						|
                 State.getRATC().getRegister(BaseReg).aliasedBits());
 | 
						|
          remove(CandidateDestRegs,
 | 
						|
                 State.getRATC().getRegister(IndexReg).aliasedBits());
 | 
						|
        });
 | 
						|
  }
 | 
						|
 | 
						|
  switch (getX86FPFlags(Instr)) {
 | 
						|
  case X86II::NotFP:
 | 
						|
    return ParallelSnippetGenerator::generateCodeTemplates(Variant,
 | 
						|
                                                           ForbiddenRegisters);
 | 
						|
  case X86II::ZeroArgFP:
 | 
						|
  case X86II::OneArgFP:
 | 
						|
  case X86II::SpecialFP:
 | 
						|
    return make_error<Failure>("Unsupported x87 Instruction");
 | 
						|
  case X86II::OneArgFPRW:
 | 
						|
  case X86II::TwoArgFP:
 | 
						|
    // These are instructions like
 | 
						|
    //   - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
 | 
						|
    //   - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
 | 
						|
    // They are intrinsically serial and do not modify the state of the stack.
 | 
						|
    // We generate the same code for latency and uops.
 | 
						|
    return generateSelfAliasingCodeTemplates(Variant);
 | 
						|
  case X86II::CompareFP:
 | 
						|
  case X86II::CondMovFP:
 | 
						|
    // We can compute uops for any FP instruction that does not grow or shrink
 | 
						|
    // the stack (either do not touch the stack or push as much as they pop).
 | 
						|
    return generateUnconstrainedCodeTemplates(
 | 
						|
        Variant, "instruction does not grow/shrink the FP stack");
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown FP Type!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getLoadImmediateOpcode(unsigned RegBitWidth) {
 | 
						|
  switch (RegBitWidth) {
 | 
						|
  case 8:
 | 
						|
    return X86::MOV8ri;
 | 
						|
  case 16:
 | 
						|
    return X86::MOV16ri;
 | 
						|
  case 32:
 | 
						|
    return X86::MOV32ri;
 | 
						|
  case 64:
 | 
						|
    return X86::MOV64ri;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid Value Width");
 | 
						|
}
 | 
						|
 | 
						|
// Generates instruction to load an immediate value into a register.
 | 
						|
static MCInst loadImmediate(unsigned Reg, unsigned RegBitWidth,
 | 
						|
                            const APInt &Value) {
 | 
						|
  if (Value.getBitWidth() > RegBitWidth)
 | 
						|
    llvm_unreachable("Value must fit in the Register");
 | 
						|
  return MCInstBuilder(getLoadImmediateOpcode(RegBitWidth))
 | 
						|
      .addReg(Reg)
 | 
						|
      .addImm(Value.getZExtValue());
 | 
						|
}
 | 
						|
 | 
						|
// Allocates scratch memory on the stack.
 | 
						|
static MCInst allocateStackSpace(unsigned Bytes) {
 | 
						|
  return MCInstBuilder(X86::SUB64ri8)
 | 
						|
      .addReg(X86::RSP)
 | 
						|
      .addReg(X86::RSP)
 | 
						|
      .addImm(Bytes);
 | 
						|
}
 | 
						|
 | 
						|
// Fills scratch memory at offset `OffsetBytes` with value `Imm`.
 | 
						|
static MCInst fillStackSpace(unsigned MovOpcode, unsigned OffsetBytes,
 | 
						|
                             uint64_t Imm) {
 | 
						|
  return MCInstBuilder(MovOpcode)
 | 
						|
      // Address = ESP
 | 
						|
      .addReg(X86::RSP)    // BaseReg
 | 
						|
      .addImm(1)           // ScaleAmt
 | 
						|
      .addReg(0)           // IndexReg
 | 
						|
      .addImm(OffsetBytes) // Disp
 | 
						|
      .addReg(0)           // Segment
 | 
						|
      // Immediate.
 | 
						|
      .addImm(Imm);
 | 
						|
}
 | 
						|
 | 
						|
// Loads scratch memory into register `Reg` using opcode `RMOpcode`.
 | 
						|
static MCInst loadToReg(unsigned Reg, unsigned RMOpcode) {
 | 
						|
  return MCInstBuilder(RMOpcode)
 | 
						|
      .addReg(Reg)
 | 
						|
      // Address = ESP
 | 
						|
      .addReg(X86::RSP) // BaseReg
 | 
						|
      .addImm(1)        // ScaleAmt
 | 
						|
      .addReg(0)        // IndexReg
 | 
						|
      .addImm(0)        // Disp
 | 
						|
      .addReg(0);       // Segment
 | 
						|
}
 | 
						|
 | 
						|
// Releases scratch memory.
 | 
						|
static MCInst releaseStackSpace(unsigned Bytes) {
 | 
						|
  return MCInstBuilder(X86::ADD64ri8)
 | 
						|
      .addReg(X86::RSP)
 | 
						|
      .addReg(X86::RSP)
 | 
						|
      .addImm(Bytes);
 | 
						|
}
 | 
						|
 | 
						|
// Reserves some space on the stack, fills it with the content of the provided
 | 
						|
// constant and provide methods to load the stack value into a register.
 | 
						|
namespace {
 | 
						|
struct ConstantInliner {
 | 
						|
  explicit ConstantInliner(const APInt &Constant) : Constant_(Constant) {}
 | 
						|
 | 
						|
  std::vector<MCInst> loadAndFinalize(unsigned Reg, unsigned RegBitWidth,
 | 
						|
                                      unsigned Opcode);
 | 
						|
 | 
						|
  std::vector<MCInst> loadX87STAndFinalize(unsigned Reg);
 | 
						|
 | 
						|
  std::vector<MCInst> loadX87FPAndFinalize(unsigned Reg);
 | 
						|
 | 
						|
  std::vector<MCInst> popFlagAndFinalize();
 | 
						|
 | 
						|
  std::vector<MCInst> loadImplicitRegAndFinalize(unsigned Opcode,
 | 
						|
                                                 unsigned Value);
 | 
						|
 | 
						|
private:
 | 
						|
  ConstantInliner &add(const MCInst &Inst) {
 | 
						|
    Instructions.push_back(Inst);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  void initStack(unsigned Bytes);
 | 
						|
 | 
						|
  static constexpr const unsigned kF80Bytes = 10; // 80 bits.
 | 
						|
 | 
						|
  APInt Constant_;
 | 
						|
  std::vector<MCInst> Instructions;
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
std::vector<MCInst> ConstantInliner::loadAndFinalize(unsigned Reg,
 | 
						|
                                                     unsigned RegBitWidth,
 | 
						|
                                                     unsigned Opcode) {
 | 
						|
  assert((RegBitWidth & 7) == 0 && "RegBitWidth must be a multiple of 8 bits");
 | 
						|
  initStack(RegBitWidth / 8);
 | 
						|
  add(loadToReg(Reg, Opcode));
 | 
						|
  add(releaseStackSpace(RegBitWidth / 8));
 | 
						|
  return std::move(Instructions);
 | 
						|
}
 | 
						|
 | 
						|
std::vector<MCInst> ConstantInliner::loadX87STAndFinalize(unsigned Reg) {
 | 
						|
  initStack(kF80Bytes);
 | 
						|
  add(MCInstBuilder(X86::LD_F80m)
 | 
						|
          // Address = ESP
 | 
						|
          .addReg(X86::RSP) // BaseReg
 | 
						|
          .addImm(1)        // ScaleAmt
 | 
						|
          .addReg(0)        // IndexReg
 | 
						|
          .addImm(0)        // Disp
 | 
						|
          .addReg(0));      // Segment
 | 
						|
  if (Reg != X86::ST0)
 | 
						|
    add(MCInstBuilder(X86::ST_Frr).addReg(Reg));
 | 
						|
  add(releaseStackSpace(kF80Bytes));
 | 
						|
  return std::move(Instructions);
 | 
						|
}
 | 
						|
 | 
						|
std::vector<MCInst> ConstantInliner::loadX87FPAndFinalize(unsigned Reg) {
 | 
						|
  initStack(kF80Bytes);
 | 
						|
  add(MCInstBuilder(X86::LD_Fp80m)
 | 
						|
          .addReg(Reg)
 | 
						|
          // Address = ESP
 | 
						|
          .addReg(X86::RSP) // BaseReg
 | 
						|
          .addImm(1)        // ScaleAmt
 | 
						|
          .addReg(0)        // IndexReg
 | 
						|
          .addImm(0)        // Disp
 | 
						|
          .addReg(0));      // Segment
 | 
						|
  add(releaseStackSpace(kF80Bytes));
 | 
						|
  return std::move(Instructions);
 | 
						|
}
 | 
						|
 | 
						|
std::vector<MCInst> ConstantInliner::popFlagAndFinalize() {
 | 
						|
  initStack(8);
 | 
						|
  add(MCInstBuilder(X86::POPF64));
 | 
						|
  return std::move(Instructions);
 | 
						|
}
 | 
						|
 | 
						|
std::vector<MCInst>
 | 
						|
ConstantInliner::loadImplicitRegAndFinalize(unsigned Opcode, unsigned Value) {
 | 
						|
  add(allocateStackSpace(4));
 | 
						|
  add(fillStackSpace(X86::MOV32mi, 0, Value)); // Mask all FP exceptions
 | 
						|
  add(MCInstBuilder(Opcode)
 | 
						|
          // Address = ESP
 | 
						|
          .addReg(X86::RSP) // BaseReg
 | 
						|
          .addImm(1)        // ScaleAmt
 | 
						|
          .addReg(0)        // IndexReg
 | 
						|
          .addImm(0)        // Disp
 | 
						|
          .addReg(0));      // Segment
 | 
						|
  add(releaseStackSpace(4));
 | 
						|
  return std::move(Instructions);
 | 
						|
}
 | 
						|
 | 
						|
void ConstantInliner::initStack(unsigned Bytes) {
 | 
						|
  assert(Constant_.getBitWidth() <= Bytes * 8 &&
 | 
						|
         "Value does not have the correct size");
 | 
						|
  const APInt WideConstant = Constant_.getBitWidth() < Bytes * 8
 | 
						|
                                 ? Constant_.sext(Bytes * 8)
 | 
						|
                                 : Constant_;
 | 
						|
  add(allocateStackSpace(Bytes));
 | 
						|
  size_t ByteOffset = 0;
 | 
						|
  for (; Bytes - ByteOffset >= 4; ByteOffset += 4)
 | 
						|
    add(fillStackSpace(
 | 
						|
        X86::MOV32mi, ByteOffset,
 | 
						|
        WideConstant.extractBits(32, ByteOffset * 8).getZExtValue()));
 | 
						|
  if (Bytes - ByteOffset >= 2) {
 | 
						|
    add(fillStackSpace(
 | 
						|
        X86::MOV16mi, ByteOffset,
 | 
						|
        WideConstant.extractBits(16, ByteOffset * 8).getZExtValue()));
 | 
						|
    ByteOffset += 2;
 | 
						|
  }
 | 
						|
  if (Bytes - ByteOffset >= 1)
 | 
						|
    add(fillStackSpace(
 | 
						|
        X86::MOV8mi, ByteOffset,
 | 
						|
        WideConstant.extractBits(8, ByteOffset * 8).getZExtValue()));
 | 
						|
}
 | 
						|
 | 
						|
#include "X86GenExegesis.inc"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class X86SavedState : public ExegesisTarget::SavedState {
 | 
						|
public:
 | 
						|
  X86SavedState() {
 | 
						|
#ifdef __x86_64__
 | 
						|
# if defined(_MSC_VER)
 | 
						|
    _fxsave64(FPState);
 | 
						|
    Eflags = __readeflags();
 | 
						|
# elif defined(__GNUC__)
 | 
						|
    __builtin_ia32_fxsave64(FPState);
 | 
						|
    Eflags = __builtin_ia32_readeflags_u64();
 | 
						|
# endif
 | 
						|
#else
 | 
						|
    llvm_unreachable("X86 exegesis running on non-X86 target");
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  ~X86SavedState() {
 | 
						|
    // Restoring the X87 state does not flush pending exceptions, make sure
 | 
						|
    // these exceptions are flushed now.
 | 
						|
#ifdef __x86_64__
 | 
						|
# if defined(_MSC_VER)
 | 
						|
    _clearfp();
 | 
						|
    _fxrstor64(FPState);
 | 
						|
    __writeeflags(Eflags);
 | 
						|
# elif defined(__GNUC__)
 | 
						|
    asm volatile("fwait");
 | 
						|
    __builtin_ia32_fxrstor64(FPState);
 | 
						|
    __builtin_ia32_writeeflags_u64(Eflags);
 | 
						|
# endif
 | 
						|
#else
 | 
						|
    llvm_unreachable("X86 exegesis running on non-X86 target");
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
#ifdef __x86_64__
 | 
						|
  alignas(16) char FPState[512];
 | 
						|
  uint64_t Eflags;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
class ExegesisX86Target : public ExegesisTarget {
 | 
						|
public:
 | 
						|
  ExegesisX86Target() : ExegesisTarget(X86CpuPfmCounters) {}
 | 
						|
 | 
						|
  Expected<std::unique_ptr<pfm::Counter>>
 | 
						|
  createCounter(StringRef CounterName, const LLVMState &State) const override {
 | 
						|
    // If LbrSamplingPeriod was provided, then ignore the
 | 
						|
    // CounterName because we only have one for LBR.
 | 
						|
    if (LbrSamplingPeriod > 0) {
 | 
						|
      // Can't use LBR without HAVE_LIBPFM, LIBPFM_HAS_FIELD_CYCLES, or without
 | 
						|
      // __linux__ (for now)
 | 
						|
#if defined(HAVE_LIBPFM) && defined(LIBPFM_HAS_FIELD_CYCLES) &&                \
 | 
						|
    defined(__linux__)
 | 
						|
      return std::make_unique<X86LbrCounter>(
 | 
						|
          X86LbrPerfEvent(LbrSamplingPeriod));
 | 
						|
#else
 | 
						|
      return llvm::make_error<llvm::StringError>(
 | 
						|
          "LBR counter requested without HAVE_LIBPFM, LIBPFM_HAS_FIELD_CYCLES, "
 | 
						|
          "or running on Linux.",
 | 
						|
          llvm::errc::invalid_argument);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    return ExegesisTarget::createCounter(CounterName, State);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void addTargetSpecificPasses(PassManagerBase &PM) const override;
 | 
						|
 | 
						|
  unsigned getScratchMemoryRegister(const Triple &TT) const override;
 | 
						|
 | 
						|
  unsigned getLoopCounterRegister(const Triple &) const override;
 | 
						|
 | 
						|
  unsigned getMaxMemoryAccessSize() const override { return 64; }
 | 
						|
 | 
						|
  Error randomizeTargetMCOperand(const Instruction &Instr, const Variable &Var,
 | 
						|
                                 MCOperand &AssignedValue,
 | 
						|
                                 const BitVector &ForbiddenRegs) const override;
 | 
						|
 | 
						|
  void fillMemoryOperands(InstructionTemplate &IT, unsigned Reg,
 | 
						|
                          unsigned Offset) const override;
 | 
						|
 | 
						|
  void decrementLoopCounterAndJump(MachineBasicBlock &MBB,
 | 
						|
                                   MachineBasicBlock &TargetMBB,
 | 
						|
                                   const MCInstrInfo &MII) const override;
 | 
						|
 | 
						|
  std::vector<MCInst> setRegTo(const MCSubtargetInfo &STI, unsigned Reg,
 | 
						|
                               const APInt &Value) const override;
 | 
						|
 | 
						|
  ArrayRef<unsigned> getUnavailableRegisters() const override {
 | 
						|
    return makeArrayRef(kUnavailableRegisters,
 | 
						|
                        sizeof(kUnavailableRegisters) /
 | 
						|
                            sizeof(kUnavailableRegisters[0]));
 | 
						|
  }
 | 
						|
 | 
						|
  bool allowAsBackToBack(const Instruction &Instr) const override {
 | 
						|
    const unsigned Opcode = Instr.Description.Opcode;
 | 
						|
    return !isInvalidOpcode(Instr) && Opcode != X86::LEA64r &&
 | 
						|
           Opcode != X86::LEA64_32r && Opcode != X86::LEA16r;
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<InstructionTemplate>
 | 
						|
  generateInstructionVariants(const Instruction &Instr,
 | 
						|
                              unsigned MaxConfigsPerOpcode) const override;
 | 
						|
 | 
						|
  std::unique_ptr<SnippetGenerator> createSerialSnippetGenerator(
 | 
						|
      const LLVMState &State,
 | 
						|
      const SnippetGenerator::Options &Opts) const override {
 | 
						|
    return std::make_unique<X86SerialSnippetGenerator>(State, Opts);
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<SnippetGenerator> createParallelSnippetGenerator(
 | 
						|
      const LLVMState &State,
 | 
						|
      const SnippetGenerator::Options &Opts) const override {
 | 
						|
    return std::make_unique<X86ParallelSnippetGenerator>(State, Opts);
 | 
						|
  }
 | 
						|
 | 
						|
  bool matchesArch(Triple::ArchType Arch) const override {
 | 
						|
    return Arch == Triple::x86_64 || Arch == Triple::x86;
 | 
						|
  }
 | 
						|
 | 
						|
  Error checkFeatureSupport() const override {
 | 
						|
    // LBR is the only feature we conditionally support now.
 | 
						|
    // So if LBR is not requested, then we should be able to run the benchmarks.
 | 
						|
    if (LbrSamplingPeriod == 0)
 | 
						|
      return Error::success();
 | 
						|
 | 
						|
#if defined(__linux__) && defined(HAVE_LIBPFM) &&                              \
 | 
						|
    defined(LIBPFM_HAS_FIELD_CYCLES)
 | 
						|
      // FIXME: Fix this.
 | 
						|
      // https://bugs.llvm.org/show_bug.cgi?id=48918
 | 
						|
      // For now, only do the check if we see an Intel machine because
 | 
						|
      // the counter uses some intel-specific magic and it could
 | 
						|
      // be confuse and think an AMD machine actually has LBR support.
 | 
						|
#if defined(__i386__) || defined(_M_IX86) || defined(__x86_64__) ||            \
 | 
						|
    defined(_M_X64)
 | 
						|
    using namespace sys::detail::x86;
 | 
						|
 | 
						|
    if (getVendorSignature() == VendorSignatures::GENUINE_INTEL)
 | 
						|
      // If the kernel supports it, the hardware still may not have it.
 | 
						|
      return X86LbrCounter::checkLbrSupport();
 | 
						|
#else
 | 
						|
    llvm_unreachable("Running X86 exegesis on non-X86 target");
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
    return llvm::make_error<llvm::StringError>(
 | 
						|
        "LBR not supported on this kernel and/or platform",
 | 
						|
        llvm::errc::not_supported);
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<SavedState> withSavedState() const override {
 | 
						|
    return std::make_unique<X86SavedState>();
 | 
						|
  }
 | 
						|
 | 
						|
  static const unsigned kUnavailableRegisters[4];
 | 
						|
};
 | 
						|
 | 
						|
// We disable a few registers that cannot be encoded on instructions with a REX
 | 
						|
// prefix.
 | 
						|
const unsigned ExegesisX86Target::kUnavailableRegisters[4] = {X86::AH, X86::BH,
 | 
						|
                                                              X86::CH, X86::DH};
 | 
						|
 | 
						|
// We're using one of R8-R15 because these registers are never hardcoded in
 | 
						|
// instructions (e.g. MOVS writes to EDI, ESI, EDX), so they have less
 | 
						|
// conflicts.
 | 
						|
constexpr const unsigned kLoopCounterReg = X86::R8;
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
void ExegesisX86Target::addTargetSpecificPasses(PassManagerBase &PM) const {
 | 
						|
  // Lowers FP pseudo-instructions, e.g. ABS_Fp32 -> ABS_F.
 | 
						|
  PM.add(createX86FloatingPointStackifierPass());
 | 
						|
}
 | 
						|
 | 
						|
unsigned ExegesisX86Target::getScratchMemoryRegister(const Triple &TT) const {
 | 
						|
  if (!TT.isArch64Bit()) {
 | 
						|
    // FIXME: This would require popping from the stack, so we would have to
 | 
						|
    // add some additional setup code.
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  return TT.isOSWindows() ? X86::RCX : X86::RDI;
 | 
						|
}
 | 
						|
 | 
						|
unsigned ExegesisX86Target::getLoopCounterRegister(const Triple &TT) const {
 | 
						|
  if (!TT.isArch64Bit()) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  return kLoopCounterReg;
 | 
						|
}
 | 
						|
 | 
						|
Error ExegesisX86Target::randomizeTargetMCOperand(
 | 
						|
    const Instruction &Instr, const Variable &Var, MCOperand &AssignedValue,
 | 
						|
    const BitVector &ForbiddenRegs) const {
 | 
						|
  const Operand &Op = Instr.getPrimaryOperand(Var);
 | 
						|
  switch (Op.getExplicitOperandInfo().OperandType) {
 | 
						|
  case X86::OperandType::OPERAND_ROUNDING_CONTROL:
 | 
						|
    AssignedValue =
 | 
						|
        MCOperand::createImm(randomIndex(X86::STATIC_ROUNDING::TO_ZERO));
 | 
						|
    return Error::success();
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return make_error<Failure>(
 | 
						|
      Twine("unimplemented operand type ")
 | 
						|
          .concat(Twine(Op.getExplicitOperandInfo().OperandType)));
 | 
						|
}
 | 
						|
 | 
						|
void ExegesisX86Target::fillMemoryOperands(InstructionTemplate &IT,
 | 
						|
                                           unsigned Reg,
 | 
						|
                                           unsigned Offset) const {
 | 
						|
  assert(!isInvalidMemoryInstr(IT.getInstr()) &&
 | 
						|
         "fillMemoryOperands requires a valid memory instruction");
 | 
						|
  int MemOpIdx = X86II::getMemoryOperandNo(IT.getInstr().Description.TSFlags);
 | 
						|
  assert(MemOpIdx >= 0 && "invalid memory operand index");
 | 
						|
  // getMemoryOperandNo() ignores tied operands, so we have to add them back.
 | 
						|
  MemOpIdx += X86II::getOperandBias(IT.getInstr().Description);
 | 
						|
  setMemOp(IT, MemOpIdx + 0, MCOperand::createReg(Reg));    // BaseReg
 | 
						|
  setMemOp(IT, MemOpIdx + 1, MCOperand::createImm(1));      // ScaleAmt
 | 
						|
  setMemOp(IT, MemOpIdx + 2, MCOperand::createReg(0));      // IndexReg
 | 
						|
  setMemOp(IT, MemOpIdx + 3, MCOperand::createImm(Offset)); // Disp
 | 
						|
  setMemOp(IT, MemOpIdx + 4, MCOperand::createReg(0));      // Segment
 | 
						|
}
 | 
						|
 | 
						|
void ExegesisX86Target::decrementLoopCounterAndJump(
 | 
						|
    MachineBasicBlock &MBB, MachineBasicBlock &TargetMBB,
 | 
						|
    const MCInstrInfo &MII) const {
 | 
						|
  BuildMI(&MBB, DebugLoc(), MII.get(X86::ADD64ri8))
 | 
						|
      .addDef(kLoopCounterReg)
 | 
						|
      .addUse(kLoopCounterReg)
 | 
						|
      .addImm(-1);
 | 
						|
  BuildMI(&MBB, DebugLoc(), MII.get(X86::JCC_1))
 | 
						|
      .addMBB(&TargetMBB)
 | 
						|
      .addImm(X86::COND_NE);
 | 
						|
}
 | 
						|
 | 
						|
std::vector<MCInst> ExegesisX86Target::setRegTo(const MCSubtargetInfo &STI,
 | 
						|
                                                unsigned Reg,
 | 
						|
                                                const APInt &Value) const {
 | 
						|
  if (X86::GR8RegClass.contains(Reg))
 | 
						|
    return {loadImmediate(Reg, 8, Value)};
 | 
						|
  if (X86::GR16RegClass.contains(Reg))
 | 
						|
    return {loadImmediate(Reg, 16, Value)};
 | 
						|
  if (X86::GR32RegClass.contains(Reg))
 | 
						|
    return {loadImmediate(Reg, 32, Value)};
 | 
						|
  if (X86::GR64RegClass.contains(Reg))
 | 
						|
    return {loadImmediate(Reg, 64, Value)};
 | 
						|
  ConstantInliner CI(Value);
 | 
						|
  if (X86::VR64RegClass.contains(Reg))
 | 
						|
    return CI.loadAndFinalize(Reg, 64, X86::MMX_MOVQ64rm);
 | 
						|
  if (X86::VR128XRegClass.contains(Reg)) {
 | 
						|
    if (STI.getFeatureBits()[X86::FeatureAVX512])
 | 
						|
      return CI.loadAndFinalize(Reg, 128, X86::VMOVDQU32Z128rm);
 | 
						|
    if (STI.getFeatureBits()[X86::FeatureAVX])
 | 
						|
      return CI.loadAndFinalize(Reg, 128, X86::VMOVDQUrm);
 | 
						|
    return CI.loadAndFinalize(Reg, 128, X86::MOVDQUrm);
 | 
						|
  }
 | 
						|
  if (X86::VR256XRegClass.contains(Reg)) {
 | 
						|
    if (STI.getFeatureBits()[X86::FeatureAVX512])
 | 
						|
      return CI.loadAndFinalize(Reg, 256, X86::VMOVDQU32Z256rm);
 | 
						|
    if (STI.getFeatureBits()[X86::FeatureAVX])
 | 
						|
      return CI.loadAndFinalize(Reg, 256, X86::VMOVDQUYrm);
 | 
						|
  }
 | 
						|
  if (X86::VR512RegClass.contains(Reg))
 | 
						|
    if (STI.getFeatureBits()[X86::FeatureAVX512])
 | 
						|
      return CI.loadAndFinalize(Reg, 512, X86::VMOVDQU32Zrm);
 | 
						|
  if (X86::RSTRegClass.contains(Reg)) {
 | 
						|
    return CI.loadX87STAndFinalize(Reg);
 | 
						|
  }
 | 
						|
  if (X86::RFP32RegClass.contains(Reg) || X86::RFP64RegClass.contains(Reg) ||
 | 
						|
      X86::RFP80RegClass.contains(Reg)) {
 | 
						|
    return CI.loadX87FPAndFinalize(Reg);
 | 
						|
  }
 | 
						|
  if (Reg == X86::EFLAGS)
 | 
						|
    return CI.popFlagAndFinalize();
 | 
						|
  if (Reg == X86::MXCSR)
 | 
						|
    return CI.loadImplicitRegAndFinalize(
 | 
						|
        STI.getFeatureBits()[X86::FeatureAVX] ? X86::VLDMXCSR : X86::LDMXCSR,
 | 
						|
        0x1f80);
 | 
						|
  if (Reg == X86::FPCW)
 | 
						|
    return CI.loadImplicitRegAndFinalize(X86::FLDCW16m, 0x37f);
 | 
						|
  return {}; // Not yet implemented.
 | 
						|
}
 | 
						|
 | 
						|
// Instruction can have some variable operands, and we may want to see how
 | 
						|
// different operands affect performance. So for each operand position,
 | 
						|
// precompute all the possible choices we might care about,
 | 
						|
// and greedily generate all the possible combinations of choices.
 | 
						|
std::vector<InstructionTemplate> ExegesisX86Target::generateInstructionVariants(
 | 
						|
    const Instruction &Instr, unsigned MaxConfigsPerOpcode) const {
 | 
						|
  bool Exploration = false;
 | 
						|
  SmallVector<SmallVector<MCOperand, 1>, 4> VariableChoices;
 | 
						|
  VariableChoices.resize(Instr.Variables.size());
 | 
						|
  for (auto I : llvm::zip(Instr.Variables, VariableChoices)) {
 | 
						|
    const Variable &Var = std::get<0>(I);
 | 
						|
    SmallVectorImpl<MCOperand> &Choices = std::get<1>(I);
 | 
						|
 | 
						|
    switch (Instr.getPrimaryOperand(Var).getExplicitOperandInfo().OperandType) {
 | 
						|
    default:
 | 
						|
      // We don't wish to explicitly explore this variable.
 | 
						|
      Choices.emplace_back(); // But add invalid MCOperand to simplify logic.
 | 
						|
      continue;
 | 
						|
    case X86::OperandType::OPERAND_COND_CODE: {
 | 
						|
      Exploration = true;
 | 
						|
      auto CondCodes = enum_seq_inclusive(X86::CondCode::COND_O,
 | 
						|
                                          X86::CondCode::LAST_VALID_COND,
 | 
						|
                                          force_iteration_on_noniterable_enum);
 | 
						|
      Choices.reserve(CondCodes.size());
 | 
						|
      for (int CondCode : CondCodes)
 | 
						|
        Choices.emplace_back(MCOperand::createImm(CondCode));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we don't wish to explore any variables, defer to the baseline method.
 | 
						|
  if (!Exploration)
 | 
						|
    return ExegesisTarget::generateInstructionVariants(Instr,
 | 
						|
                                                       MaxConfigsPerOpcode);
 | 
						|
 | 
						|
  std::vector<InstructionTemplate> Variants;
 | 
						|
  size_t NumVariants;
 | 
						|
  CombinationGenerator<MCOperand, decltype(VariableChoices)::value_type, 4> G(
 | 
						|
      VariableChoices);
 | 
						|
 | 
						|
  // How many operand combinations can we produce, within the limit?
 | 
						|
  NumVariants = std::min(G.numCombinations(), (size_t)MaxConfigsPerOpcode);
 | 
						|
  // And actually produce all the wanted operand combinations.
 | 
						|
  Variants.reserve(NumVariants);
 | 
						|
  G.generate([&](ArrayRef<MCOperand> State) -> bool {
 | 
						|
    Variants.emplace_back(&Instr);
 | 
						|
    Variants.back().setVariableValues(State);
 | 
						|
    // Did we run out of space for variants?
 | 
						|
    return Variants.size() >= NumVariants;
 | 
						|
  });
 | 
						|
 | 
						|
  assert(Variants.size() == NumVariants &&
 | 
						|
         Variants.size() <= MaxConfigsPerOpcode &&
 | 
						|
         "Should not produce too many variants");
 | 
						|
  return Variants;
 | 
						|
}
 | 
						|
 | 
						|
static ExegesisTarget *getTheExegesisX86Target() {
 | 
						|
  static ExegesisX86Target Target;
 | 
						|
  return &Target;
 | 
						|
}
 | 
						|
 | 
						|
void InitializeX86ExegesisTarget() {
 | 
						|
  ExegesisTarget::registerTarget(getTheExegesisX86Target());
 | 
						|
}
 | 
						|
 | 
						|
} // namespace exegesis
 | 
						|
} // namespace llvm
 |