3241 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3241 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===------------- llvm/unittest/CodeGen/InstrRefLDVTest.cpp --------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/MIRParser/MIRParser.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/TargetFrameLowering.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/DIBuilder.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/MC/TargetRegistry.h"
 | |
| #include "llvm/Support/MemoryBuffer.h"
 | |
| #include "llvm/Support/TargetSelect.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| 
 | |
| #include "../lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.h"
 | |
| 
 | |
| #include "gtest/gtest.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace LiveDebugValues;
 | |
| 
 | |
| // Include helper functions to ease the manipulation of MachineFunctions
 | |
| #include "MFCommon.inc"
 | |
| 
 | |
| class InstrRefLDVTest : public testing::Test {
 | |
| public:
 | |
|   friend class InstrRefBasedLDV;
 | |
|   using MLocTransferMap = InstrRefBasedLDV::MLocTransferMap;
 | |
| 
 | |
|   LLVMContext Ctx;
 | |
|   std::unique_ptr<Module> Mod;
 | |
|   std::unique_ptr<TargetMachine> Machine;
 | |
|   std::unique_ptr<MachineFunction> MF;
 | |
|   std::unique_ptr<MachineDominatorTree> DomTree;
 | |
|   std::unique_ptr<MachineModuleInfo> MMI;
 | |
|   DICompileUnit *OurCU;
 | |
|   DIFile *OurFile;
 | |
|   DISubprogram *OurFunc;
 | |
|   DILexicalBlock *OurBlock, *AnotherBlock;
 | |
|   DISubprogram *ToInlineFunc;
 | |
|   DILexicalBlock *ToInlineBlock;
 | |
|   DILocalVariable *FuncVariable;
 | |
|   DIBasicType *LongInt;
 | |
|   DIExpression *EmptyExpr;
 | |
|   LiveDebugValues::OverlapMap Overlaps;
 | |
| 
 | |
|   DebugLoc OutermostLoc, InBlockLoc, NotNestedBlockLoc, InlinedLoc;
 | |
| 
 | |
|   MachineBasicBlock *MBB0, *MBB1, *MBB2, *MBB3, *MBB4;
 | |
| 
 | |
|   std::unique_ptr<InstrRefBasedLDV> LDV;
 | |
|   std::unique_ptr<MLocTracker> MTracker;
 | |
|   std::unique_ptr<VLocTracker> VTracker;
 | |
| 
 | |
|   SmallString<256> MIRStr;
 | |
| 
 | |
|   InstrRefLDVTest() : Ctx(), Mod(std::make_unique<Module>("beehives", Ctx)) {}
 | |
| 
 | |
|   void SetUp() {
 | |
|     // Boilerplate that creates a MachineFunction and associated blocks.
 | |
| 
 | |
|     Mod->setDataLayout("e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-"
 | |
|                        "n8:16:32:64-S128");
 | |
|     Triple TargetTriple("x86_64--");
 | |
|     std::string Error;
 | |
|     const Target *T = TargetRegistry::lookupTarget("", TargetTriple, Error);
 | |
|     if (!T)
 | |
|       GTEST_SKIP();
 | |
| 
 | |
|     TargetOptions Options;
 | |
|     Machine = std::unique_ptr<TargetMachine>(
 | |
|         T->createTargetMachine(Triple::normalize("x86_64--"), "", "", Options,
 | |
|                                None, None, CodeGenOpt::Aggressive));
 | |
| 
 | |
|     auto Type = FunctionType::get(Type::getVoidTy(Ctx), false);
 | |
|     auto F =
 | |
|         Function::Create(Type, GlobalValue::ExternalLinkage, "Test", &*Mod);
 | |
| 
 | |
|     unsigned FunctionNum = 42;
 | |
|     MMI = std::make_unique<MachineModuleInfo>((LLVMTargetMachine *)&*Machine);
 | |
|     const TargetSubtargetInfo &STI = *Machine->getSubtargetImpl(*F);
 | |
| 
 | |
|     MF = std::make_unique<MachineFunction>(*F, (LLVMTargetMachine &)*Machine,
 | |
|                                            STI, FunctionNum, *MMI);
 | |
| 
 | |
|     // Create metadata: CU, subprogram, some blocks and an inline function
 | |
|     // scope.
 | |
|     DIBuilder DIB(*Mod);
 | |
|     OurFile = DIB.createFile("xyzzy.c", "/cave");
 | |
|     OurCU =
 | |
|         DIB.createCompileUnit(dwarf::DW_LANG_C99, OurFile, "nou", false, "", 0);
 | |
|     auto OurSubT = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
 | |
|     OurFunc =
 | |
|         DIB.createFunction(OurCU, "bees", "", OurFile, 1, OurSubT, 1,
 | |
|                            DINode::FlagZero, DISubprogram::SPFlagDefinition);
 | |
|     F->setSubprogram(OurFunc);
 | |
|     OurBlock = DIB.createLexicalBlock(OurFunc, OurFile, 2, 3);
 | |
|     AnotherBlock = DIB.createLexicalBlock(OurFunc, OurFile, 2, 6);
 | |
|     ToInlineFunc =
 | |
|         DIB.createFunction(OurFile, "shoes", "", OurFile, 10, OurSubT, 10,
 | |
|                            DINode::FlagZero, DISubprogram::SPFlagDefinition);
 | |
| 
 | |
|     // Make some nested scopes.
 | |
|     OutermostLoc = DILocation::get(Ctx, 3, 1, OurFunc);
 | |
|     InBlockLoc = DILocation::get(Ctx, 4, 1, OurBlock);
 | |
|     InlinedLoc = DILocation::get(Ctx, 10, 1, ToInlineFunc, InBlockLoc.get());
 | |
| 
 | |
|     // Make a scope that isn't nested within the others.
 | |
|     NotNestedBlockLoc = DILocation::get(Ctx, 4, 1, AnotherBlock);
 | |
| 
 | |
|     LongInt = DIB.createBasicType("long", 64, llvm::dwarf::DW_ATE_unsigned);
 | |
|     FuncVariable = DIB.createAutoVariable(OurFunc, "lala", OurFile, 1, LongInt);
 | |
|     EmptyExpr = DIExpression::get(Ctx, {});
 | |
| 
 | |
|     DIB.finalize();
 | |
|   }
 | |
| 
 | |
|   Register getRegByName(const char *WantedName) {
 | |
|     auto *TRI = MF->getRegInfo().getTargetRegisterInfo();
 | |
|     // Slow, but works.
 | |
|     for (unsigned int I = 1; I < TRI->getNumRegs(); ++I) {
 | |
|       const char *Name = TRI->getName(I);
 | |
|       if (strcmp(WantedName, Name) == 0)
 | |
|         return I;
 | |
|     }
 | |
| 
 | |
|     // If this ever fails, something is very wrong with this unit test.
 | |
|     llvm_unreachable("Can't find register by name");
 | |
|   }
 | |
| 
 | |
|   InstrRefBasedLDV *setupLDVObj(MachineFunction *MF) {
 | |
|     // Create a new LDV object, and plug some relevant object ptrs into it.
 | |
|     LDV = std::make_unique<InstrRefBasedLDV>();
 | |
|     const TargetSubtargetInfo &STI = MF->getSubtarget();
 | |
|     LDV->TII = STI.getInstrInfo();
 | |
|     LDV->TRI = STI.getRegisterInfo();
 | |
|     LDV->TFI = STI.getFrameLowering();
 | |
|     LDV->MFI = &MF->getFrameInfo();
 | |
|     LDV->MRI = &MF->getRegInfo();
 | |
| 
 | |
|     DomTree = std::make_unique<MachineDominatorTree>(*MF);
 | |
|     LDV->DomTree = &*DomTree;
 | |
| 
 | |
|     // Future work: unit tests for mtracker / vtracker / ttracker.
 | |
| 
 | |
|     // Setup things like the artifical block map, and BlockNo <=> RPO Order
 | |
|     // mappings.
 | |
|     LDV->initialSetup(*MF);
 | |
|     LDV->LS.initialize(*MF);
 | |
|     addMTracker(MF);
 | |
|     return &*LDV;
 | |
|   }
 | |
| 
 | |
|   void addMTracker(MachineFunction *MF) {
 | |
|     ASSERT_TRUE(LDV);
 | |
|     // Add a machine-location-tracking object to LDV. Don't initialize any
 | |
|     // register locations within it though.
 | |
|     const TargetSubtargetInfo &STI = MF->getSubtarget();
 | |
|     MTracker = std::make_unique<MLocTracker>(
 | |
|           *MF, *LDV->TII, *LDV->TRI, *STI.getTargetLowering());
 | |
|     LDV->MTracker = &*MTracker;
 | |
|   }
 | |
| 
 | |
|   void addVTracker() {
 | |
|     ASSERT_TRUE(LDV);
 | |
|     VTracker = std::make_unique<VLocTracker>(Overlaps, EmptyExpr);
 | |
|     LDV->VTracker = &*VTracker;
 | |
|   }
 | |
| 
 | |
|   // Some routines for bouncing into LDV,
 | |
|   void buildMLocValueMap(FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
 | |
|                          SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
 | |
|     LDV->buildMLocValueMap(*MF, MInLocs, MOutLocs, MLocTransfer);
 | |
|   }
 | |
| 
 | |
|   void placeMLocPHIs(MachineFunction &MF,
 | |
|                      SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
 | |
|                      FuncValueTable &MInLocs,
 | |
|                      SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
 | |
|     LDV->placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
 | |
|   }
 | |
| 
 | |
|   Optional<ValueIDNum>
 | |
|   pickVPHILoc(const MachineBasicBlock &MBB, const DebugVariable &Var,
 | |
|               const InstrRefBasedLDV::LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
 | |
|               const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
 | |
|     return LDV->pickVPHILoc(MBB, Var, LiveOuts, MOutLocs, BlockOrders);
 | |
|   }
 | |
| 
 | |
|   bool vlocJoin(MachineBasicBlock &MBB, InstrRefBasedLDV::LiveIdxT &VLOCOutLocs,
 | |
|                 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
 | |
|                 DbgValue &InLoc) {
 | |
|     return LDV->vlocJoin(MBB, VLOCOutLocs, BlocksToExplore, InLoc);
 | |
|   }
 | |
| 
 | |
|   void buildVLocValueMap(const DILocation *DILoc,
 | |
|                     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
 | |
|                     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
 | |
|                     InstrRefBasedLDV::LiveInsT &Output, FuncValueTable &MOutLocs,
 | |
|                     FuncValueTable &MInLocs,
 | |
|                     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
 | |
|     LDV->buildVLocValueMap(DILoc, VarsWeCareAbout, AssignBlocks, Output,
 | |
|                            MOutLocs, MInLocs, AllTheVLocs);
 | |
|   }
 | |
| 
 | |
|   void initValueArray(FuncValueTable &Nums, unsigned Blks, unsigned Locs) {
 | |
|     for (unsigned int I = 0; I < Blks; ++I)
 | |
|       for (unsigned int J = 0; J < Locs; ++J)
 | |
|         Nums[I][J] = ValueIDNum::EmptyValue;
 | |
|   }
 | |
| 
 | |
|   void setupSingleBlock() {
 | |
|     // Add an entry block with nothing but 'ret void' in it.
 | |
|     Function &F = const_cast<llvm::Function &>(MF->getFunction());
 | |
|     auto *BB0 = BasicBlock::Create(Ctx, "entry", &F);
 | |
|     IRBuilder<> IRB(BB0);
 | |
|     IRB.CreateRetVoid();
 | |
|     MBB0 = MF->CreateMachineBasicBlock(BB0);
 | |
|     MF->insert(MF->end(), MBB0);
 | |
|     MF->RenumberBlocks();
 | |
| 
 | |
|     setupLDVObj(&*MF);
 | |
|   }
 | |
| 
 | |
|   void setupDiamondBlocks() {
 | |
|     //        entry
 | |
|     //        /  \
 | |
|     //      br1  br2
 | |
|     //        \  /
 | |
|     //         ret
 | |
|     llvm::Function &F = const_cast<llvm::Function &>(MF->getFunction());
 | |
|     auto *BB0 = BasicBlock::Create(Ctx, "a", &F);
 | |
|     auto *BB1 = BasicBlock::Create(Ctx, "b", &F);
 | |
|     auto *BB2 = BasicBlock::Create(Ctx, "c", &F);
 | |
|     auto *BB3 = BasicBlock::Create(Ctx, "d", &F);
 | |
|     IRBuilder<> IRB0(BB0), IRB1(BB1), IRB2(BB2), IRB3(BB3);
 | |
|     IRB0.CreateBr(BB1);
 | |
|     IRB1.CreateBr(BB2);
 | |
|     IRB2.CreateBr(BB3);
 | |
|     IRB3.CreateRetVoid();
 | |
|     MBB0 = MF->CreateMachineBasicBlock(BB0);
 | |
|     MF->insert(MF->end(), MBB0);
 | |
|     MBB1 = MF->CreateMachineBasicBlock(BB1);
 | |
|     MF->insert(MF->end(), MBB1);
 | |
|     MBB2 = MF->CreateMachineBasicBlock(BB2);
 | |
|     MF->insert(MF->end(), MBB2);
 | |
|     MBB3 = MF->CreateMachineBasicBlock(BB3);
 | |
|     MF->insert(MF->end(), MBB3);
 | |
|     MBB0->addSuccessor(MBB1);
 | |
|     MBB0->addSuccessor(MBB2);
 | |
|     MBB1->addSuccessor(MBB3);
 | |
|     MBB2->addSuccessor(MBB3);
 | |
|     MF->RenumberBlocks();
 | |
| 
 | |
|     setupLDVObj(&*MF);
 | |
|   }
 | |
| 
 | |
|   void setupSimpleLoop() {
 | |
|     //    entry
 | |
|     //     |
 | |
|     //     |/-----\
 | |
|     //    loopblk |
 | |
|     //     |\-----/
 | |
|     //     |
 | |
|     //     ret
 | |
|     llvm::Function &F = const_cast<llvm::Function &>(MF->getFunction());
 | |
|     auto *BB0 = BasicBlock::Create(Ctx, "entry", &F);
 | |
|     auto *BB1 = BasicBlock::Create(Ctx, "loop", &F);
 | |
|     auto *BB2 = BasicBlock::Create(Ctx, "ret", &F);
 | |
|     IRBuilder<> IRB0(BB0), IRB1(BB1), IRB2(BB2);
 | |
|     IRB0.CreateBr(BB1);
 | |
|     IRB1.CreateBr(BB2);
 | |
|     IRB2.CreateRetVoid();
 | |
|     MBB0 = MF->CreateMachineBasicBlock(BB0);
 | |
|     MF->insert(MF->end(), MBB0);
 | |
|     MBB1 = MF->CreateMachineBasicBlock(BB1);
 | |
|     MF->insert(MF->end(), MBB1);
 | |
|     MBB2 = MF->CreateMachineBasicBlock(BB2);
 | |
|     MF->insert(MF->end(), MBB2);
 | |
|     MBB0->addSuccessor(MBB1);
 | |
|     MBB1->addSuccessor(MBB2);
 | |
|     MBB1->addSuccessor(MBB1);
 | |
|     MF->RenumberBlocks();
 | |
| 
 | |
|     setupLDVObj(&*MF);
 | |
|   }
 | |
| 
 | |
|   void setupNestedLoops() {
 | |
|     //    entry
 | |
|     //     |
 | |
|     //    loop1
 | |
|     //     ^\
 | |
|     //     | \    /-\
 | |
|     //     |  loop2  |
 | |
|     //     |  /   \-/
 | |
|     //     ^ /
 | |
|     //     join
 | |
|     //     |
 | |
|     //     ret
 | |
|     llvm::Function &F = const_cast<llvm::Function &>(MF->getFunction());
 | |
|     auto *BB0 = BasicBlock::Create(Ctx, "entry", &F);
 | |
|     auto *BB1 = BasicBlock::Create(Ctx, "loop1", &F);
 | |
|     auto *BB2 = BasicBlock::Create(Ctx, "loop2", &F);
 | |
|     auto *BB3 = BasicBlock::Create(Ctx, "join", &F);
 | |
|     auto *BB4 = BasicBlock::Create(Ctx, "ret", &F);
 | |
|     IRBuilder<> IRB0(BB0), IRB1(BB1), IRB2(BB2), IRB3(BB3), IRB4(BB4);
 | |
|     IRB0.CreateBr(BB1);
 | |
|     IRB1.CreateBr(BB2);
 | |
|     IRB2.CreateBr(BB3);
 | |
|     IRB3.CreateBr(BB4);
 | |
|     IRB4.CreateRetVoid();
 | |
|     MBB0 = MF->CreateMachineBasicBlock(BB0);
 | |
|     MF->insert(MF->end(), MBB0);
 | |
|     MBB1 = MF->CreateMachineBasicBlock(BB1);
 | |
|     MF->insert(MF->end(), MBB1);
 | |
|     MBB2 = MF->CreateMachineBasicBlock(BB2);
 | |
|     MF->insert(MF->end(), MBB2);
 | |
|     MBB3 = MF->CreateMachineBasicBlock(BB3);
 | |
|     MF->insert(MF->end(), MBB3);
 | |
|     MBB4 = MF->CreateMachineBasicBlock(BB4);
 | |
|     MF->insert(MF->end(), MBB4);
 | |
|     MBB0->addSuccessor(MBB1);
 | |
|     MBB1->addSuccessor(MBB2);
 | |
|     MBB2->addSuccessor(MBB2);
 | |
|     MBB2->addSuccessor(MBB3);
 | |
|     MBB3->addSuccessor(MBB1);
 | |
|     MBB3->addSuccessor(MBB4);
 | |
|     MF->RenumberBlocks();
 | |
| 
 | |
|     setupLDVObj(&*MF);
 | |
|   }
 | |
| 
 | |
|   void setupNoDominatingLoop() {
 | |
|     //           entry
 | |
|     //            / \
 | |
|     //           /   \
 | |
|     //          /     \
 | |
|     //        head1   head2
 | |
|     //        ^  \   /   ^
 | |
|     //        ^   \ /    ^
 | |
|     //        \-joinblk -/
 | |
|     //             |
 | |
|     //            ret
 | |
|     llvm::Function &F = const_cast<llvm::Function &>(MF->getFunction());
 | |
|     auto *BB0 = BasicBlock::Create(Ctx, "entry", &F);
 | |
|     auto *BB1 = BasicBlock::Create(Ctx, "head1", &F);
 | |
|     auto *BB2 = BasicBlock::Create(Ctx, "head2", &F);
 | |
|     auto *BB3 = BasicBlock::Create(Ctx, "joinblk", &F);
 | |
|     auto *BB4 = BasicBlock::Create(Ctx, "ret", &F);
 | |
|     IRBuilder<> IRB0(BB0), IRB1(BB1), IRB2(BB2), IRB3(BB3), IRB4(BB4);
 | |
|     IRB0.CreateBr(BB1);
 | |
|     IRB1.CreateBr(BB2);
 | |
|     IRB2.CreateBr(BB3);
 | |
|     IRB3.CreateBr(BB4);
 | |
|     IRB4.CreateRetVoid();
 | |
|     MBB0 = MF->CreateMachineBasicBlock(BB0);
 | |
|     MF->insert(MF->end(), MBB0);
 | |
|     MBB1 = MF->CreateMachineBasicBlock(BB1);
 | |
|     MF->insert(MF->end(), MBB1);
 | |
|     MBB2 = MF->CreateMachineBasicBlock(BB2);
 | |
|     MF->insert(MF->end(), MBB2);
 | |
|     MBB3 = MF->CreateMachineBasicBlock(BB3);
 | |
|     MF->insert(MF->end(), MBB3);
 | |
|     MBB4 = MF->CreateMachineBasicBlock(BB4);
 | |
|     MF->insert(MF->end(), MBB4);
 | |
|     MBB0->addSuccessor(MBB1);
 | |
|     MBB0->addSuccessor(MBB2);
 | |
|     MBB1->addSuccessor(MBB3);
 | |
|     MBB2->addSuccessor(MBB3);
 | |
|     MBB3->addSuccessor(MBB1);
 | |
|     MBB3->addSuccessor(MBB2);
 | |
|     MBB3->addSuccessor(MBB4);
 | |
|     MF->RenumberBlocks();
 | |
| 
 | |
|     setupLDVObj(&*MF);
 | |
|   }
 | |
| 
 | |
|   void setupBadlyNestedLoops() {
 | |
|     //           entry
 | |
|     //             |
 | |
|     //           loop1 -o
 | |
|     //             | ^
 | |
|     //             | ^
 | |
|     //           loop2 -o
 | |
|     //             | ^
 | |
|     //             | ^
 | |
|     //           loop3 -o
 | |
|     //             |
 | |
|     //            ret
 | |
|     //
 | |
|     // NB: the loop blocks self-loop, which is a bit too fiddly to draw on
 | |
|     // accurately.
 | |
|     llvm::Function &F = const_cast<llvm::Function &>(MF->getFunction());
 | |
|     auto *BB0 = BasicBlock::Create(Ctx, "entry", &F);
 | |
|     auto *BB1 = BasicBlock::Create(Ctx, "loop1", &F);
 | |
|     auto *BB2 = BasicBlock::Create(Ctx, "loop2", &F);
 | |
|     auto *BB3 = BasicBlock::Create(Ctx, "loop3", &F);
 | |
|     auto *BB4 = BasicBlock::Create(Ctx, "ret", &F);
 | |
|     IRBuilder<> IRB0(BB0), IRB1(BB1), IRB2(BB2), IRB3(BB3), IRB4(BB4);
 | |
|     IRB0.CreateBr(BB1);
 | |
|     IRB1.CreateBr(BB2);
 | |
|     IRB2.CreateBr(BB3);
 | |
|     IRB3.CreateBr(BB4);
 | |
|     IRB4.CreateRetVoid();
 | |
|     MBB0 = MF->CreateMachineBasicBlock(BB0);
 | |
|     MF->insert(MF->end(), MBB0);
 | |
|     MBB1 = MF->CreateMachineBasicBlock(BB1);
 | |
|     MF->insert(MF->end(), MBB1);
 | |
|     MBB2 = MF->CreateMachineBasicBlock(BB2);
 | |
|     MF->insert(MF->end(), MBB2);
 | |
|     MBB3 = MF->CreateMachineBasicBlock(BB3);
 | |
|     MF->insert(MF->end(), MBB3);
 | |
|     MBB4 = MF->CreateMachineBasicBlock(BB4);
 | |
|     MF->insert(MF->end(), MBB4);
 | |
|     MBB0->addSuccessor(MBB1);
 | |
|     MBB1->addSuccessor(MBB1);
 | |
|     MBB1->addSuccessor(MBB2);
 | |
|     MBB2->addSuccessor(MBB1);
 | |
|     MBB2->addSuccessor(MBB2);
 | |
|     MBB2->addSuccessor(MBB3);
 | |
|     MBB3->addSuccessor(MBB2);
 | |
|     MBB3->addSuccessor(MBB3);
 | |
|     MBB3->addSuccessor(MBB4);
 | |
|     MF->RenumberBlocks();
 | |
| 
 | |
|     setupLDVObj(&*MF);
 | |
|   }
 | |
| 
 | |
|   MachineFunction *readMIRBlock(const char *Input) {
 | |
|     MIRStr.clear();
 | |
|     StringRef S = Twine(Twine(R"MIR(
 | |
| --- |
 | |
|   target triple = "x86_64-unknown-linux-gnu"
 | |
|   define void @test() { ret void }
 | |
| ...
 | |
| ---
 | |
| name: test
 | |
| tracksRegLiveness: true
 | |
| stack:
 | |
|   - { id: 0, name: '', type: spill-slot, offset: -16, size: 8, alignment: 8,
 | |
|       stack-id: default, callee-saved-register: '', callee-saved-restored: true,
 | |
|       debug-info-variable: '', debug-info-expression: '', debug-info-location: '' }
 | |
| body:  |
 | |
|    bb.0:
 | |
|     liveins: $rdi, $rsi
 | |
| )MIR") + Twine(Input) + Twine("...\n"))
 | |
|                       .toNullTerminatedStringRef(MIRStr);
 | |
|     ;
 | |
| 
 | |
|     // Clear the "test" function from MMI if it's still present.
 | |
|     if (Function *Fn = Mod->getFunction("test"))
 | |
|       MMI->deleteMachineFunctionFor(*Fn);
 | |
| 
 | |
|     auto MemBuf = MemoryBuffer::getMemBuffer(S, "<input>");
 | |
|     auto MIRParse = createMIRParser(std::move(MemBuf), Ctx);
 | |
|     Mod = MIRParse->parseIRModule();
 | |
|     assert(Mod);
 | |
|     Mod->setDataLayout("e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-"
 | |
|                        "n8:16:32:64-S128");
 | |
| 
 | |
|     bool Result = MIRParse->parseMachineFunctions(*Mod, *MMI);
 | |
|     assert(!Result && "Failed to parse unit test machine function?");
 | |
|     (void)Result;
 | |
| 
 | |
|     Function *Fn = Mod->getFunction("test");
 | |
|     assert(Fn && "Failed to parse a unit test module string?");
 | |
|     Fn->setSubprogram(OurFunc);
 | |
|     return MMI->getMachineFunction(*Fn);
 | |
|   }
 | |
| 
 | |
|   void
 | |
|   produceMLocTransferFunction(MachineFunction &MF,
 | |
|                               SmallVectorImpl<MLocTransferMap> &MLocTransfer,
 | |
|                               unsigned MaxNumBlocks) {
 | |
|     LDV->produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
 | |
|   }
 | |
| 
 | |
|   std::pair<FuncValueTable, FuncValueTable>
 | |
|   allocValueTables(unsigned Blocks, unsigned Locs) {
 | |
|     FuncValueTable MOutLocs = std::make_unique<ValueTable[]>(Blocks);
 | |
|     FuncValueTable MInLocs = std::make_unique<ValueTable[]>(Blocks);
 | |
| 
 | |
|     for (unsigned int I = 0; I < Blocks; ++I) {
 | |
|       MOutLocs[I] = std::make_unique<ValueIDNum[]>(Locs);
 | |
|       MInLocs[I] = std::make_unique<ValueIDNum[]>(Locs);
 | |
|     }
 | |
| 
 | |
|     return std::make_pair(std::move(MOutLocs), std::move(MInLocs));
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, MTransferDefs) {
 | |
|   MachineFunction *MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n"
 | |
|    "    RET64 $rax\n");
 | |
|   setupLDVObj(MF);
 | |
| 
 | |
|   // We should start with only SP tracked.
 | |
|   EXPECT_TRUE(MTracker->getNumLocs() == 1);
 | |
| 
 | |
|   SmallVector<MLocTransferMap, 1> TransferMap;
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   // Code contains only one register write: that should assign to each of the
 | |
|   // aliasing registers. Test that all of them get locations, and have a
 | |
|   // corresponding def at the first instr in the function.
 | |
|   const char *RegNames[] = {"RAX", "HAX", "EAX", "AX", "AH", "AL"};
 | |
|   EXPECT_TRUE(MTracker->getNumLocs() == 7);
 | |
|   for (const char *RegName : RegNames) {
 | |
|     Register R = getRegByName(RegName);
 | |
|     ASSERT_TRUE(MTracker->isRegisterTracked(R));
 | |
|     LocIdx L = MTracker->getRegMLoc(R);
 | |
|     ValueIDNum V = MTracker->readReg(R);
 | |
|     // Value of this register should be: block zero, instruction 1, and the
 | |
|     // location it's defined in is itself.
 | |
|     ValueIDNum ToCmp(0, 1, L);
 | |
|     EXPECT_EQ(V, ToCmp);
 | |
|   }
 | |
| 
 | |
|   // Do the same again, but with an aliasing write. This should write to all
 | |
|   // the same registers again, except $ah and $hax (the upper 8 bits of $ax
 | |
|   // and 32 bits of $rax resp.).
 | |
|   MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n"
 | |
|    "    $al = MOV8ri 0\n"
 | |
|    "    RET64 $rax\n");
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   auto TestRegSetSite = [&](const char *Name, unsigned InstrNum) {
 | |
|     Register R = getRegByName(Name);
 | |
|     ASSERT_TRUE(MTracker->isRegisterTracked(R));
 | |
|     LocIdx L = MTracker->getRegMLoc(R);
 | |
|     ValueIDNum V = MTracker->readMLoc(L);
 | |
|     ValueIDNum ToCmp(0, InstrNum, L);
 | |
|     EXPECT_EQ(V, ToCmp);
 | |
|   };
 | |
| 
 | |
|   TestRegSetSite("AL", 2);
 | |
|   TestRegSetSite("AH", 1);
 | |
|   TestRegSetSite("AX", 2);
 | |
|   TestRegSetSite("EAX", 2);
 | |
|   TestRegSetSite("HAX", 1);
 | |
|   TestRegSetSite("RAX", 2);
 | |
| 
 | |
|   // This call should:
 | |
|   //  * Def rax via the implicit-def,
 | |
|   //  * Clobber rsi/rdi and all their subregs, via the register mask
 | |
|   //  * Same for rcx, despite it not being a use in the instr, it's in the mask
 | |
|   //  * NOT clobber $rsp / $esp $ sp, LiveDebugValues deliberately ignores
 | |
|   //    these.
 | |
|   //  * NOT clobber $rbx, because it's non-volatile
 | |
|   //  * Not track every other register in the machine, only those needed.
 | |
|  MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n" // instr 1
 | |
|    "    $rbx = MOV64ri 0\n" // instr 2
 | |
|    "    $rcx = MOV64ri 0\n" // instr 3
 | |
|    "    $rdi = MOV64ri 0\n" // instr 4
 | |
|    "    $rsi = MOV64ri 0\n" // instr 5
 | |
|    "    CALL64r $rax, csr_64, implicit $rsp, implicit $ssp, implicit $rdi, implicit $rsi, implicit-def $rsp, implicit-def $ssp, implicit-def $rax, implicit-def $esp, implicit-def $sp\n\n\n\n" // instr 6
 | |
|    "    RET64 $rax\n"); // instr 7
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   const char *RegsSetInCall[] = {"AL",  "AH",  "AX", "EAX", "HAX", "RAX",
 | |
|                                  "DIL", "DIH", "DI", "EDI", "HDI", "RDI",
 | |
|                                  "SIL", "SIH", "SI", "ESI", "HSI", "RSI",
 | |
|                                  "CL",  "CH",  "CX", "ECX", "HCX", "RCX"};
 | |
|   for (const char *RegSetInCall : RegsSetInCall)
 | |
|     TestRegSetSite(RegSetInCall, 6);
 | |
| 
 | |
|   const char *RegsLeftAlone[] = {"BL", "BH", "BX", "EBX", "HBX", "RBX"};
 | |
|   for (const char *RegLeftAlone : RegsLeftAlone)
 | |
|     TestRegSetSite(RegLeftAlone, 2);
 | |
| 
 | |
|   // Stack pointer should be the live-in to the function, instruction zero.
 | |
|   TestRegSetSite("RSP", 0);
 | |
|   // These stack regs should not be tracked either. Nor the (fake) subregs.
 | |
|   EXPECT_FALSE(MTracker->isRegisterTracked(getRegByName("ESP")));
 | |
|   EXPECT_FALSE(MTracker->isRegisterTracked(getRegByName("SP")));
 | |
|   EXPECT_FALSE(MTracker->isRegisterTracked(getRegByName("SPL")));
 | |
|   EXPECT_FALSE(MTracker->isRegisterTracked(getRegByName("SPH")));
 | |
|   EXPECT_FALSE(MTracker->isRegisterTracked(getRegByName("HSP")));
 | |
| 
 | |
|   // Should only be tracking: 6 x {A, B, C, DI, SI} registers = 30,
 | |
|   // Plus RSP, SSP = 32.
 | |
|   EXPECT_EQ(32u, MTracker->getNumLocs());
 | |
| 
 | |
| 
 | |
|   // When we DBG_PHI something, we should track all its subregs.
 | |
|   MF = readMIRBlock(
 | |
|    "    DBG_PHI $rdi, 0\n"
 | |
|    "    RET64\n");
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   // All DI regs and RSP tracked.
 | |
|   EXPECT_EQ(7u, MTracker->getNumLocs());
 | |
| 
 | |
|   // All the DI registers should have block live-in values, i.e. the argument
 | |
|   // to the function.
 | |
|   const char *DIRegs[] = {"DIL", "DIH", "DI", "EDI", "HDI", "RDI"};
 | |
|   for (const char *DIReg : DIRegs)
 | |
|     TestRegSetSite(DIReg, 0);
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, MTransferMeta) {
 | |
|   // Meta instructions should not have any effect on register values.
 | |
|   SmallVector<MLocTransferMap, 1> TransferMap;
 | |
|   MachineFunction *MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n"
 | |
|    "    $rax = IMPLICIT_DEF\n"
 | |
|    "    $rax = KILL killed $rax\n"
 | |
|    "    RET64 $rax\n");
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   LocIdx RaxLoc = MTracker->getRegMLoc(getRegByName("RAX"));
 | |
|   ValueIDNum V = MTracker->readMLoc(RaxLoc);
 | |
|   // Def of rax should be from instruction 1, i.e., unmodified.
 | |
|   ValueIDNum Cmp(0, 1, RaxLoc);
 | |
|   EXPECT_EQ(Cmp, V);
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, MTransferCopies) {
 | |
|   SmallVector<MLocTransferMap, 1> TransferMap;
 | |
|   // This memory spill should be recognised, and a spill slot created.
 | |
|   MachineFunction *MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n"
 | |
|    "    MOV64mr $rsp, 1, $noreg, 16, $noreg, $rax :: (store 8 into %stack.0)\n"
 | |
|    "    RET64 $rax\n");
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   // Check that the spill location contains the value defined in rax by
 | |
|   // instruction 1. The MIR header says -16 offset, but it's stored as -8;
 | |
|   // it's not completely clear why, but here we only care about correctly
 | |
|   // identifying the slot, not that all the surrounding data is correct.
 | |
|   SpillLoc L = {getRegByName("RSP"), StackOffset::getFixed(-8)};
 | |
|   SpillLocationNo SpillNo = *MTracker->getOrTrackSpillLoc(L);
 | |
|   unsigned SpillLocID = MTracker->getLocID(SpillNo, {64, 0});
 | |
|   LocIdx SpillLoc = MTracker->getSpillMLoc(SpillLocID);
 | |
|   ValueIDNum V = MTracker->readMLoc(SpillLoc);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->getRegMLoc(RAX);
 | |
|   ValueIDNum Cmp(0, 1, RaxLoc);
 | |
|   EXPECT_EQ(V, Cmp);
 | |
| 
 | |
|   // A spill and restore should be recognised.
 | |
|   MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n"
 | |
|    "    MOV64mr $rsp, 1, $noreg, 16, $noreg, $rax :: (store 8 into %stack.0)\n"
 | |
|    "    $rbx = MOV64rm $rsp, 1, $noreg, 0, $noreg :: (load 8 from %stack.0)\n"
 | |
|    "    RET64\n");
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   // Test that rbx contains rax from instruction 1.
 | |
|   RAX = getRegByName("RAX");
 | |
|   RaxLoc = MTracker->getRegMLoc(RAX);
 | |
|   Register RBX = getRegByName("RBX");
 | |
|   LocIdx RbxLoc = MTracker->getRegMLoc(RBX);
 | |
|   Cmp = ValueIDNum(0, 1, RaxLoc);
 | |
|   ValueIDNum RbxVal = MTracker->readMLoc(RbxLoc);
 | |
|   EXPECT_EQ(RbxVal, Cmp);
 | |
| 
 | |
|   // Testing that all the subregisters are transferred happens in
 | |
|   // MTransferSubregSpills.
 | |
| 
 | |
|   // Copies and x86 movs should be recognised and honoured. In addition, all
 | |
|   // of the subregisters should be copied across too.
 | |
|   MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n"
 | |
|    "    $rcx = COPY $rax\n"
 | |
|    "    $rbx = MOV64rr $rcx\n"
 | |
|    "    RET64\n");
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   const char *ARegs[] = {"AL", "AH", "AX", "EAX", "HAX", "RAX"};
 | |
|   const char *BRegs[] = {"BL", "BH", "BX", "EBX", "HBX", "RBX"};
 | |
|   const char *CRegs[] = {"CL", "CH", "CX", "ECX", "HCX", "RCX"};
 | |
|   auto CheckReg = [&](unsigned int I) {
 | |
|     LocIdx A = MTracker->getRegMLoc(getRegByName(ARegs[I]));
 | |
|     LocIdx B = MTracker->getRegMLoc(getRegByName(BRegs[I]));
 | |
|     LocIdx C = MTracker->getRegMLoc(getRegByName(CRegs[I]));
 | |
|     ValueIDNum ARefVal(0, 1, A);
 | |
|     ValueIDNum AVal = MTracker->readMLoc(A);
 | |
|     ValueIDNum BVal = MTracker->readMLoc(B);
 | |
|     ValueIDNum CVal = MTracker->readMLoc(C);
 | |
|     EXPECT_EQ(ARefVal, AVal);
 | |
|     EXPECT_EQ(ARefVal, BVal);
 | |
|     EXPECT_EQ(ARefVal, CVal);
 | |
|   };
 | |
| 
 | |
|   for (unsigned int I = 0; I < 6; ++I)
 | |
|     CheckReg(I);
 | |
| 
 | |
|   // When we copy to a subregister, the super-register should be def'd too: it's
 | |
|   // value will have changed.
 | |
|   MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n"
 | |
|    "    $ecx = COPY $eax\n"
 | |
|    "    RET64\n");
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   // First four regs [al, ah, ax, eax] should be copied to *cx.
 | |
|   for (unsigned int I = 0; I < 4; ++I) {
 | |
|     LocIdx A = MTracker->getRegMLoc(getRegByName(ARegs[I]));
 | |
|     LocIdx C = MTracker->getRegMLoc(getRegByName(CRegs[I]));
 | |
|     ValueIDNum ARefVal(0, 1, A);
 | |
|     ValueIDNum AVal = MTracker->readMLoc(A);
 | |
|     ValueIDNum CVal = MTracker->readMLoc(C);
 | |
|     EXPECT_EQ(ARefVal, AVal);
 | |
|     EXPECT_EQ(ARefVal, CVal);
 | |
|   }
 | |
| 
 | |
|   // But rcx should contain a value defined by the COPY.
 | |
|   LocIdx RcxLoc = MTracker->getRegMLoc(getRegByName("RCX"));
 | |
|   ValueIDNum RcxVal = MTracker->readMLoc(RcxLoc);
 | |
|   ValueIDNum RcxDefVal(0, 2, RcxLoc); // instr 2 -> the copy
 | |
|   EXPECT_EQ(RcxVal, RcxDefVal);
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, MTransferSubregSpills) {
 | |
|   SmallVector<MLocTransferMap, 1> TransferMap;
 | |
|   MachineFunction *MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n"
 | |
|    "    MOV64mr $rsp, 1, $noreg, 16, $noreg, $rax :: (store 8 into %stack.0)\n"
 | |
|    "    $rbx = MOV64rm $rsp, 1, $noreg, 0, $noreg :: (load 8 from %stack.0)\n"
 | |
|    "    RET64\n");
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   // Check that all the subregs of rax and rbx contain the same values. One
 | |
|   // should completely transfer to the other.
 | |
|   const char *ARegs[] = {"AL", "AH", "AX", "EAX", "HAX", "RAX"};
 | |
|   const char *BRegs[] = {"BL", "BH", "BX", "EBX", "HBX", "RBX"};
 | |
|   for (unsigned int I = 0; I < 6; ++I) {
 | |
|     LocIdx A = MTracker->getRegMLoc(getRegByName(ARegs[I]));
 | |
|     LocIdx B = MTracker->getRegMLoc(getRegByName(BRegs[I]));
 | |
|     EXPECT_EQ(MTracker->readMLoc(A), MTracker->readMLoc(B));
 | |
|   }
 | |
| 
 | |
|   // Explicitly check what's in the different subreg slots, on the stack.
 | |
|   // Pair up subreg idx fields with the corresponding subregister in $rax.
 | |
|   MLocTracker::StackSlotPos SubRegIdxes[] = {{8, 0}, {8, 8}, {16, 0}, {32, 0}, {64, 0}};
 | |
|   const char *SubRegNames[] = {"AL", "AH", "AX", "EAX", "RAX"};
 | |
|   for (unsigned int I = 0; I < 5; ++I) {
 | |
|     // Value number where it's defined,
 | |
|     LocIdx RegLoc = MTracker->getRegMLoc(getRegByName(SubRegNames[I]));
 | |
|     ValueIDNum DefNum(0, 1, RegLoc);
 | |
|     // Read the corresponding subreg field from the stack.
 | |
|     SpillLoc L = {getRegByName("RSP"), StackOffset::getFixed(-8)};
 | |
|     SpillLocationNo SpillNo = *MTracker->getOrTrackSpillLoc(L);
 | |
|     unsigned SpillID = MTracker->getLocID(SpillNo, SubRegIdxes[I]);
 | |
|     LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
 | |
|     ValueIDNum SpillValue = MTracker->readMLoc(SpillLoc);
 | |
|     EXPECT_EQ(DefNum, SpillValue);
 | |
|   }
 | |
| 
 | |
|   // If we have exactly the same code, but we write $eax to the stack slot after
 | |
|   // $rax, then we should still have exactly the same output in the lower five
 | |
|   // subregisters. Storing $eax to the start of the slot will overwrite with the
 | |
|   // same values. $rax, as an aliasing register, should be reset to something
 | |
|   // else by that write.
 | |
|   // In theory, we could try and recognise that we're writing the _same_ values
 | |
|   // to the stack again, and so $rax doesn't need to be reset to something else.
 | |
|   // It seems vanishingly unlikely that LLVM would generate such code though,
 | |
|   // so the benefits would be small.
 | |
|   MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n"
 | |
|    "    MOV64mr $rsp, 1, $noreg, 16, $noreg, $rax :: (store 8 into %stack.0)\n"
 | |
|    "    MOV32mr $rsp, 1, $noreg, 16, $noreg, $eax :: (store 4 into %stack.0)\n"
 | |
|    "    $rbx = MOV64rm $rsp, 1, $noreg, 0, $noreg :: (load 8 from %stack.0)\n"
 | |
|    "    RET64\n");
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   // Check lower five registers up to and include $eax == $ebx,
 | |
|   for (unsigned int I = 0; I < 5; ++I) {
 | |
|     LocIdx A = MTracker->getRegMLoc(getRegByName(ARegs[I]));
 | |
|     LocIdx B = MTracker->getRegMLoc(getRegByName(BRegs[I]));
 | |
|     EXPECT_EQ(MTracker->readMLoc(A), MTracker->readMLoc(B));
 | |
|   }
 | |
| 
 | |
|   // $rbx should contain something else; today it's a def at the spill point
 | |
|   // of the 4 byte value.
 | |
|   SpillLoc L = {getRegByName("RSP"), StackOffset::getFixed(-8)};
 | |
|   SpillLocationNo SpillNo = *MTracker->getOrTrackSpillLoc(L);
 | |
|   unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0});
 | |
|   LocIdx Spill64Loc = MTracker->getSpillMLoc(SpillID);
 | |
|   ValueIDNum DefAtSpill64(0, 3, Spill64Loc);
 | |
|   LocIdx RbxLoc = MTracker->getRegMLoc(getRegByName("RBX"));
 | |
|   EXPECT_EQ(MTracker->readMLoc(RbxLoc), DefAtSpill64);
 | |
| 
 | |
|   // Same again, test that the lower four subreg slots on the stack are the
 | |
|   // value defined by $rax in instruction 1.
 | |
|   for (unsigned int I = 0; I < 4; ++I) {
 | |
|     // Value number where it's defined,
 | |
|     LocIdx RegLoc = MTracker->getRegMLoc(getRegByName(SubRegNames[I]));
 | |
|     ValueIDNum DefNum(0, 1, RegLoc);
 | |
|     // Read the corresponding subreg field from the stack.
 | |
|     SpillNo = *MTracker->getOrTrackSpillLoc(L);
 | |
|     SpillID = MTracker->getLocID(SpillNo, SubRegIdxes[I]);
 | |
|     LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
 | |
|     ValueIDNum SpillValue = MTracker->readMLoc(SpillLoc);
 | |
|     EXPECT_EQ(DefNum, SpillValue);
 | |
|   }
 | |
| 
 | |
|   // Stack slot for $rax should be a different value, today it's EmptyValue.
 | |
|   ValueIDNum SpillValue = MTracker->readMLoc(Spill64Loc);
 | |
|   EXPECT_EQ(SpillValue, DefAtSpill64);
 | |
| 
 | |
|   // If we write something to the stack, then over-write with some register
 | |
|   // from a completely different hierarchy, none of the "old" values should be
 | |
|   // readable.
 | |
|   // NB: slight hack, store 16 in to a 8 byte stack slot.
 | |
|   MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n"
 | |
|    "    MOV64mr $rsp, 1, $noreg, 16, $noreg, $rax :: (store 8 into %stack.0)\n"
 | |
|    "    $xmm0 = IMPLICIT_DEF\n"
 | |
|    "    MOVUPDmr $rsp, 1, $noreg, 16, $noreg, killed $xmm0 :: (store (s128) into %stack.0)\n"
 | |
|    "    $rbx = MOV64rm $rsp, 1, $noreg, 0, $noreg :: (load 8 from %stack.0)\n"
 | |
|    "    RET64\n");
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   for (unsigned int I = 0; I < 5; ++I) {
 | |
|     // Read subreg fields from the stack.
 | |
|     SpillLocationNo SpillNo = *MTracker->getOrTrackSpillLoc(L);
 | |
|     unsigned SpillID = MTracker->getLocID(SpillNo, SubRegIdxes[I]);
 | |
|     LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
 | |
|     ValueIDNum SpillValue = MTracker->readMLoc(SpillLoc);
 | |
| 
 | |
|     // Value should be defined by the spill-to-xmm0 instr, get value of a def
 | |
|     // at the point of the spill.
 | |
|     ValueIDNum SpillDef(0, 4, SpillLoc);
 | |
|     EXPECT_EQ(SpillValue, SpillDef);
 | |
|   }
 | |
| 
 | |
|   // Read xmm0's position and ensure it has a value. Should be the live-in
 | |
|   // value to the block, as IMPLICIT_DEF isn't a real def.
 | |
|   SpillNo = *MTracker->getOrTrackSpillLoc(L);
 | |
|   SpillID = MTracker->getLocID(SpillNo, {128, 0});
 | |
|   LocIdx Spill128Loc = MTracker->getSpillMLoc(SpillID);
 | |
|   SpillValue = MTracker->readMLoc(Spill128Loc);
 | |
|   Register XMM0 = getRegByName("XMM0");
 | |
|   LocIdx Xmm0Loc = MTracker->getRegMLoc(XMM0);
 | |
|   EXPECT_EQ(ValueIDNum(0, 0, Xmm0Loc), SpillValue);
 | |
| 
 | |
|   // What happens if we spill ah to the stack, then load al? It should find
 | |
|   // the same value.
 | |
|   MF = readMIRBlock(
 | |
|    "    $rax = MOV64ri 0\n"
 | |
|    "    MOV8mr $rsp, 1, $noreg, 16, $noreg, $ah :: (store 1 into %stack.0)\n"
 | |
|    "    $al = MOV8rm $rsp, 1, $noreg, 0, $noreg :: (load 1 from %stack.0)\n"
 | |
|    "    RET64\n");
 | |
|   setupLDVObj(MF);
 | |
|   TransferMap.clear();
 | |
|   TransferMap.resize(1);
 | |
|   produceMLocTransferFunction(*MF, TransferMap, 1);
 | |
| 
 | |
|   Register AL = getRegByName("AL");
 | |
|   Register AH = getRegByName("AH");
 | |
|   LocIdx AlLoc = MTracker->getRegMLoc(AL);
 | |
|   LocIdx AhLoc = MTracker->getRegMLoc(AH);
 | |
|   ValueIDNum AHDef(0, 1, AhLoc);
 | |
|   ValueIDNum ALValue = MTracker->readMLoc(AlLoc);
 | |
|   EXPECT_EQ(ALValue, AHDef);
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, MLocSingleBlock) {
 | |
|   // Test some very simple properties about interpreting the transfer function.
 | |
|   setupSingleBlock();
 | |
| 
 | |
|   // We should start with a single location, the stack pointer.
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
| 
 | |
|   // Set up live-in and live-out tables for this function: two locations (we
 | |
|   // add one later) in a single block.
 | |
|   FuncValueTable MOutLocs, MInLocs;
 | |
|   std::tie(MOutLocs, MInLocs) = allocValueTables(1, 2);
 | |
| 
 | |
|   // Transfer function: nothing.
 | |
|   SmallVector<MLocTransferMap, 1> TransferFunc;
 | |
|   TransferFunc.resize(1);
 | |
| 
 | |
|   // Try and build value maps...
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
| 
 | |
|   // The result should be that RSP is marked as a live-in-PHI -- this represents
 | |
|   // an argument. And as there's no transfer function, the block live-out should
 | |
|   // be the same.
 | |
|   EXPECT_EQ(MInLocs[0][0], ValueIDNum(0, 0, RspLoc));
 | |
|   EXPECT_EQ(MOutLocs[0][0], ValueIDNum(0, 0, RspLoc));
 | |
| 
 | |
|   // Try again, this time initialising the in-locs to be defined by an
 | |
|   // instruction. The entry block should always be re-assigned to be the
 | |
|   // arguments.
 | |
|   initValueArray(MInLocs, 1, 2);
 | |
|   initValueArray(MOutLocs, 1, 2);
 | |
|   MInLocs[0][0] = ValueIDNum(0, 1, RspLoc);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], ValueIDNum(0, 0, RspLoc));
 | |
|   EXPECT_EQ(MOutLocs[0][0], ValueIDNum(0, 0, RspLoc));
 | |
| 
 | |
|   // Now insert something into the transfer function to assign to the single
 | |
|   // machine location.
 | |
|   TransferFunc[0].insert({RspLoc, ValueIDNum(0, 1, RspLoc)});
 | |
|   initValueArray(MInLocs, 1, 2);
 | |
|   initValueArray(MOutLocs, 1, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], ValueIDNum(0, 0, RspLoc));
 | |
|   EXPECT_EQ(MOutLocs[0][0], ValueIDNum(0, 1, RspLoc));
 | |
|   TransferFunc[0].clear();
 | |
| 
 | |
|   // Add a new register to be tracked, and insert it into the transfer function
 | |
|   // as a copy. The output of $rax should be the live-in value of $rsp.
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
|   TransferFunc[0].insert({RspLoc, ValueIDNum(0, 1, RspLoc)});
 | |
|   TransferFunc[0].insert({RaxLoc, ValueIDNum(0, 0, RspLoc)});
 | |
|   initValueArray(MInLocs, 1, 2);
 | |
|   initValueArray(MOutLocs, 1, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], ValueIDNum(0, 0, RspLoc));
 | |
|   EXPECT_EQ(MInLocs[0][1], ValueIDNum(0, 0, RaxLoc));
 | |
|   EXPECT_EQ(MOutLocs[0][0], ValueIDNum(0, 1, RspLoc));
 | |
|   EXPECT_EQ(MOutLocs[0][1], ValueIDNum(0, 0, RspLoc)); // Rax contains RspLoc.
 | |
|   TransferFunc[0].clear();
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, MLocDiamondBlocks) {
 | |
|   // Test that information flows from the entry block to two successors.
 | |
|   //        entry
 | |
|   //        /  \
 | |
|   //      br1  br2
 | |
|   //        \  /
 | |
|   //         ret
 | |
|   setupDiamondBlocks();
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(4, 2);
 | |
| 
 | |
|   // Transfer function: start with nothing.
 | |
|   SmallVector<MLocTransferMap, 1> TransferFunc;
 | |
|   TransferFunc.resize(4);
 | |
| 
 | |
|   // Name some values.
 | |
|   unsigned EntryBlk = 0, BrBlk1 = 1, BrBlk2 = 2, RetBlk = 3;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum RspDefInBlk0(EntryBlk, 1, RspLoc);
 | |
|   ValueIDNum RspDefInBlk1(BrBlk1, 1, RspLoc);
 | |
|   ValueIDNum RspDefInBlk2(BrBlk2, 1, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk3(RetBlk, 0, RspLoc);
 | |
|   ValueIDNum RaxLiveInBlk1(BrBlk1, 0, RaxLoc);
 | |
|   ValueIDNum RaxLiveInBlk2(BrBlk2, 0, RaxLoc);
 | |
| 
 | |
|   // With no transfer function, the live-in values to the entry block should
 | |
|   // propagate to all live-outs and the live-ins to the two successor blocks.
 | |
|   // IN ADDITION: this checks that the exit block doesn't get a PHI put in it.
 | |
|   initValueArray(MInLocs, 4, 2);
 | |
|   initValueArray(MOutLocs, 4, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[3][0], LiveInRsp);
 | |
|   // (Skipped writing out locations for $rax).
 | |
| 
 | |
|   // Check that a def of $rsp in the entry block will likewise reach all the
 | |
|   // successors.
 | |
|   TransferFunc[0].insert({RspLoc, RspDefInBlk0});
 | |
|   initValueArray(MInLocs, 4, 2);
 | |
|   initValueArray(MOutLocs, 4, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MOutLocs[0][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspDefInBlk0);
 | |
|   TransferFunc[0].clear();
 | |
| 
 | |
|   // Def in one branch of the diamond means that we need a PHI in the ret block
 | |
|   TransferFunc[0].insert({RspLoc, RspDefInBlk0});
 | |
|   TransferFunc[1].insert({RspLoc, RspDefInBlk1});
 | |
|   initValueArray(MInLocs, 4, 2);
 | |
|   initValueArray(MOutLocs, 4, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   // This value map: like above, where RspDefInBlk0 is propagated through one
 | |
|   // branch of the diamond, but is def'ed in the live-outs of the other. The
 | |
|   // ret / merging block should have a PHI in its live-ins.
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[0][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspPHIInBlk3);
 | |
|   TransferFunc[0].clear();
 | |
|   TransferFunc[1].clear();
 | |
| 
 | |
|   // If we have differeing defs in either side of the diamond, we should
 | |
|   // continue to produce a PHI,
 | |
|   TransferFunc[0].insert({RspLoc, RspDefInBlk0});
 | |
|   TransferFunc[1].insert({RspLoc, RspDefInBlk1});
 | |
|   TransferFunc[2].insert({RspLoc, RspDefInBlk2});
 | |
|   initValueArray(MInLocs, 4, 2);
 | |
|   initValueArray(MOutLocs, 4, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[0][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspPHIInBlk3);
 | |
|   TransferFunc[0].clear();
 | |
|   TransferFunc[1].clear();
 | |
|   TransferFunc[2].clear();
 | |
| 
 | |
|   // If we have defs of the same value on either side of the branch, a PHI will
 | |
|   // initially be created, however value propagation should then eliminate it.
 | |
|   // Encode this by copying the live-in value to $rax, and copying it to $rsp
 | |
|   // from $rax in each branch of the diamond. We don't allow the definition of
 | |
|   // arbitary values in transfer functions.
 | |
|   TransferFunc[0].insert({RspLoc, RspDefInBlk0});
 | |
|   TransferFunc[0].insert({RaxLoc, LiveInRsp});
 | |
|   TransferFunc[1].insert({RspLoc, RaxLiveInBlk1});
 | |
|   TransferFunc[2].insert({RspLoc, RaxLiveInBlk2});
 | |
|   initValueArray(MInLocs, 4, 2);
 | |
|   initValueArray(MOutLocs, 4, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MInLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[0][0], RspDefInBlk0);
 | |
|   EXPECT_EQ(MOutLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[3][0], LiveInRsp);
 | |
|   TransferFunc[0].clear();
 | |
|   TransferFunc[1].clear();
 | |
|   TransferFunc[2].clear();
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, MLocDiamondSpills) {
 | |
|   // Test that defs in stack locations that require PHIs, cause PHIs to be
 | |
|   // installed in aliasing locations. i.e., if there's a PHI in the lower
 | |
|   // 8 bits of the stack, there should be PHIs for 16/32/64 bit locations
 | |
|   // on the stack too.
 | |
|   // Technically this isn't needed for accuracy: we should calculate PHIs
 | |
|   // independently for each location. However, because there's an optimisation
 | |
|   // that only places PHIs for the lower "interfering" parts of stack slots,
 | |
|   // test for this behaviour.
 | |
|   setupDiamondBlocks();
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
| 
 | |
|   // Create a stack location and ensure it's tracked.
 | |
|   SpillLoc SL = {getRegByName("RSP"), StackOffset::getFixed(-8)};
 | |
|   SpillLocationNo SpillNo = *MTracker->getOrTrackSpillLoc(SL);
 | |
|   ASSERT_EQ(MTracker->getNumLocs(), 11u); // Tracks all possible stack locs.
 | |
|   // Locations are: RSP, stack slots from 2^3 bits wide up to 2^9 for zmm regs,
 | |
|   // then slots for sub_8bit_hi and sub_16bit_hi ({8, 8} and {16, 16}).
 | |
|   // Finally, one for spilt fp80 registers.
 | |
| 
 | |
|   // Pick out the locations on the stack that various x86 regs would be written
 | |
|   // to. HAX is the upper 16 bits of EAX.
 | |
|   unsigned ALID = MTracker->getLocID(SpillNo, {8, 0});
 | |
|   unsigned AHID = MTracker->getLocID(SpillNo, {8, 8});
 | |
|   unsigned AXID = MTracker->getLocID(SpillNo, {16, 0});
 | |
|   unsigned EAXID = MTracker->getLocID(SpillNo, {32, 0});
 | |
|   unsigned HAXID = MTracker->getLocID(SpillNo, {16, 16});
 | |
|   unsigned RAXID = MTracker->getLocID(SpillNo, {64, 0});
 | |
|   LocIdx ALStackLoc = MTracker->getSpillMLoc(ALID);
 | |
|   LocIdx AHStackLoc = MTracker->getSpillMLoc(AHID);
 | |
|   LocIdx AXStackLoc = MTracker->getSpillMLoc(AXID);
 | |
|   LocIdx EAXStackLoc = MTracker->getSpillMLoc(EAXID);
 | |
|   LocIdx HAXStackLoc = MTracker->getSpillMLoc(HAXID);
 | |
|   LocIdx RAXStackLoc = MTracker->getSpillMLoc(RAXID);
 | |
|   // There are other locations, for things like xmm0, which we're going to
 | |
|   // ignore here.
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(4, 11);
 | |
| 
 | |
|   // Transfer function: start with nothing.
 | |
|   SmallVector<MLocTransferMap, 1> TransferFunc;
 | |
|   TransferFunc.resize(4);
 | |
| 
 | |
|   // Name some values.
 | |
|   unsigned EntryBlk = 0, Blk1 = 1, RetBlk = 3;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum ALLiveIn(EntryBlk, 0, ALStackLoc);
 | |
|   ValueIDNum AHLiveIn(EntryBlk, 0, AHStackLoc);
 | |
|   ValueIDNum HAXLiveIn(EntryBlk, 0, HAXStackLoc);
 | |
|   ValueIDNum ALPHI(RetBlk, 0, ALStackLoc);
 | |
|   ValueIDNum AXPHI(RetBlk, 0, AXStackLoc);
 | |
|   ValueIDNum EAXPHI(RetBlk, 0, EAXStackLoc);
 | |
|   ValueIDNum HAXPHI(RetBlk, 0, HAXStackLoc);
 | |
|   ValueIDNum RAXPHI(RetBlk, 0, RAXStackLoc);
 | |
| 
 | |
|   ValueIDNum ALDefInBlk1(Blk1, 1, ALStackLoc);
 | |
|   ValueIDNum HAXDefInBlk1(Blk1, 1, HAXStackLoc);
 | |
| 
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> AllBlocks{MBB0, MBB1, MBB2, MBB3};
 | |
| 
 | |
|   // If we put defs into one side of the diamond, for AL and HAX, then we should
 | |
|   // find all aliasing positions have PHIs placed. This isn't technically what
 | |
|   // the transfer function says to do: but we're testing that the optimisation
 | |
|   // to reduce IDF calculation does the right thing.
 | |
|   // AH should not be def'd: it don't alias AL or HAX.
 | |
|   //
 | |
|   // NB: we don't call buildMLocValueMap, because it will try to eliminate the
 | |
|   // upper-slot PHIs, and succeed because of our slightly cooked transfer
 | |
|   // function.
 | |
|   TransferFunc[1].insert({ALStackLoc, ALDefInBlk1});
 | |
|   TransferFunc[1].insert({HAXStackLoc, HAXDefInBlk1});
 | |
|   initValueArray(MInLocs, 4, 11);
 | |
|   placeMLocPHIs(*MF, AllBlocks, MInLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[3][ALStackLoc.asU64()], ALPHI);
 | |
|   EXPECT_EQ(MInLocs[3][AXStackLoc.asU64()], AXPHI);
 | |
|   EXPECT_EQ(MInLocs[3][EAXStackLoc.asU64()], EAXPHI);
 | |
|   EXPECT_EQ(MInLocs[3][HAXStackLoc.asU64()], HAXPHI);
 | |
|   EXPECT_EQ(MInLocs[3][RAXStackLoc.asU64()], RAXPHI);
 | |
|   // AH should be left untouched,
 | |
|   EXPECT_EQ(MInLocs[3][AHStackLoc.asU64()], ValueIDNum::EmptyValue);
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, MLocSimpleLoop) {
 | |
|   //    entry
 | |
|   //     |
 | |
|   //     |/-----\
 | |
|   //    loopblk |
 | |
|   //     |\-----/
 | |
|   //     |
 | |
|   //     ret
 | |
|   setupSimpleLoop();
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(3, 2);
 | |
| 
 | |
|   SmallVector<MLocTransferMap, 1> TransferFunc;
 | |
|   TransferFunc.resize(3);
 | |
| 
 | |
|   // Name some values.
 | |
|   unsigned EntryBlk = 0, LoopBlk = 1, RetBlk = 2;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk1(LoopBlk, 0, RspLoc);
 | |
|   ValueIDNum RspDefInBlk1(LoopBlk, 1, RspLoc);
 | |
|   ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum RaxPHIInBlk1(LoopBlk, 0, RaxLoc);
 | |
|   ValueIDNum RaxPHIInBlk2(RetBlk, 0, RaxLoc);
 | |
| 
 | |
|   // Begin test with all locations being live-through.
 | |
|   initValueArray(MInLocs, 3, 2);
 | |
|   initValueArray(MOutLocs, 3, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[2][0], LiveInRsp);
 | |
| 
 | |
|   // Add a def of $rsp to the loop block: it should be in the live-outs, but
 | |
|   // should cause a PHI to be placed in the live-ins. Test the transfer function
 | |
|   // by copying that PHI into $rax in the loop, then back to $rsp in the ret
 | |
|   // block.
 | |
|   TransferFunc[1].insert({RspLoc, RspDefInBlk1});
 | |
|   TransferFunc[1].insert({RaxLoc, RspPHIInBlk1});
 | |
|   TransferFunc[2].insert({RspLoc, RaxPHIInBlk2});
 | |
|   initValueArray(MInLocs, 3, 2);
 | |
|   initValueArray(MOutLocs, 3, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk1);
 | |
|   // Check rax as well,
 | |
|   EXPECT_EQ(MInLocs[0][1], LiveInRax);
 | |
|   EXPECT_EQ(MInLocs[1][1], RaxPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][1], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[0][1], LiveInRax);
 | |
|   EXPECT_EQ(MOutLocs[1][1], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][1], RspPHIInBlk1);
 | |
|   TransferFunc[1].clear();
 | |
|   TransferFunc[2].clear();
 | |
| 
 | |
|   // As with the diamond case, a PHI will be created if there's a (implicit)
 | |
|   // def in the entry block and loop block; but should be value propagated away
 | |
|   // if it copies in the same value. Copy live-in $rsp to $rax, then copy it
 | |
|   // into $rsp in the loop. Encoded as copying the live-in $rax value in block 1
 | |
|   // to $rsp.
 | |
|   TransferFunc[0].insert({RaxLoc, LiveInRsp});
 | |
|   TransferFunc[1].insert({RspLoc, RaxPHIInBlk1});
 | |
|   initValueArray(MInLocs, 3, 2);
 | |
|   initValueArray(MOutLocs, 3, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[2][0], LiveInRsp);
 | |
|   // Check $rax's values.
 | |
|   EXPECT_EQ(MInLocs[0][1], LiveInRax);
 | |
|   EXPECT_EQ(MInLocs[1][1], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[2][1], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[0][1], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][1], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[2][1], LiveInRsp);
 | |
|   TransferFunc[0].clear();
 | |
|   TransferFunc[1].clear();
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, MLocNestedLoop) {
 | |
|   //    entry
 | |
|   //     |
 | |
|   //    loop1
 | |
|   //     ^\
 | |
|   //     | \    /-\
 | |
|   //     |  loop2  |
 | |
|   //     |  /   \-/
 | |
|   //     ^ /
 | |
|   //     join
 | |
|   //     |
 | |
|   //     ret
 | |
|   setupNestedLoops();
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(5, 2);
 | |
| 
 | |
|   SmallVector<MLocTransferMap, 1> TransferFunc;
 | |
|   TransferFunc.resize(5);
 | |
| 
 | |
|   unsigned EntryBlk = 0, Loop1Blk = 1, Loop2Blk = 2, JoinBlk = 3;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk1(Loop1Blk, 0, RspLoc);
 | |
|   ValueIDNum RspDefInBlk1(Loop1Blk, 1, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk2(Loop2Blk, 0, RspLoc);
 | |
|   ValueIDNum RspDefInBlk2(Loop2Blk, 1, RspLoc);
 | |
|   ValueIDNum RspDefInBlk3(JoinBlk, 1, RspLoc);
 | |
|   ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum RaxPHIInBlk1(Loop1Blk, 0, RaxLoc);
 | |
|   ValueIDNum RaxPHIInBlk2(Loop2Blk, 0, RaxLoc);
 | |
| 
 | |
|   // Like the other tests: first ensure that if there's nothing in the transfer
 | |
|   // function, then everything is live-through (check $rsp).
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[4][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[4][0], LiveInRsp);
 | |
| 
 | |
|   // A def in the inner loop means we should get PHIs at the heads of both
 | |
|   // loops. Live-outs of the last three blocks will be the def, as it dominates
 | |
|   // those.
 | |
|   TransferFunc[2].insert({RspLoc, RspDefInBlk2});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspDefInBlk2);
 | |
|   TransferFunc[2].clear();
 | |
| 
 | |
|   // Adding a def to the outer loop header shouldn't affect this much -- the
 | |
|   // live-out of block 1 changes.
 | |
|   TransferFunc[1].insert({RspLoc, RspDefInBlk1});
 | |
|   TransferFunc[2].insert({RspLoc, RspDefInBlk2});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspDefInBlk2);
 | |
|   TransferFunc[1].clear();
 | |
|   TransferFunc[2].clear();
 | |
| 
 | |
|   // Likewise, putting a def in the outer loop tail shouldn't affect where
 | |
|   // the PHIs go, and should propagate into the ret block.
 | |
| 
 | |
|   TransferFunc[1].insert({RspLoc, RspDefInBlk1});
 | |
|   TransferFunc[2].insert({RspLoc, RspDefInBlk2});
 | |
|   TransferFunc[3].insert({RspLoc, RspDefInBlk3});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3);
 | |
|   TransferFunc[1].clear();
 | |
|   TransferFunc[2].clear();
 | |
|   TransferFunc[3].clear();
 | |
| 
 | |
|   // However: if we don't def in the inner-loop, then we just have defs in the
 | |
|   // head and tail of the outer loop. The inner loop should be live-through.
 | |
|   TransferFunc[1].insert({RspLoc, RspDefInBlk1});
 | |
|   TransferFunc[3].insert({RspLoc, RspDefInBlk3});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3);
 | |
|   TransferFunc[1].clear();
 | |
|   TransferFunc[3].clear();
 | |
| 
 | |
|   // Check that this still works if we copy RspDefInBlk1 to $rax and then
 | |
|   // copy it back into $rsp in the inner loop.
 | |
|   TransferFunc[1].insert({RspLoc, RspDefInBlk1});
 | |
|   TransferFunc[1].insert({RaxLoc, RspDefInBlk1});
 | |
|   TransferFunc[2].insert({RspLoc, RaxPHIInBlk2});
 | |
|   TransferFunc[3].insert({RspLoc, RspDefInBlk3});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3);
 | |
|   // Look at raxes value in the relevant blocks,
 | |
|   EXPECT_EQ(MInLocs[2][1], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[1][1], RspDefInBlk1);
 | |
|   TransferFunc[1].clear();
 | |
|   TransferFunc[2].clear();
 | |
|   TransferFunc[3].clear();
 | |
| 
 | |
|   // If we have a single def in the tail of the outer loop, that should produce
 | |
|   // a PHI at the loop head, and be live-through the inner loop.
 | |
|   TransferFunc[3].insert({RspLoc, RspDefInBlk3});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3);
 | |
|   TransferFunc[3].clear();
 | |
| 
 | |
|   // And if we copy from $rsp to $rax in block 2, it should resolve to the PHI
 | |
|   // in block 1, and we should keep that value in rax until the ret block.
 | |
|   // There'll be a PHI in block 1 and 2, because we're putting a def in the
 | |
|   // inner loop.
 | |
|   TransferFunc[2].insert({RaxLoc, RspPHIInBlk2});
 | |
|   TransferFunc[3].insert({RspLoc, RspDefInBlk3});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   // Examining the values of rax,
 | |
|   EXPECT_EQ(MInLocs[0][1], LiveInRax);
 | |
|   EXPECT_EQ(MInLocs[1][1], RaxPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][1], RaxPHIInBlk2);
 | |
|   EXPECT_EQ(MInLocs[3][1], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[4][1], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[0][1], LiveInRax);
 | |
|   EXPECT_EQ(MOutLocs[1][1], RaxPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][1], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[3][1], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[4][1], RspPHIInBlk1);
 | |
|   TransferFunc[2].clear();
 | |
|   TransferFunc[3].clear();
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, MLocNoDominatingLoop) {
 | |
|   //           entry
 | |
|   //            / \
 | |
|   //           /   \
 | |
|   //          /     \
 | |
|   //        head1   head2
 | |
|   //        ^  \   /   ^
 | |
|   //        ^   \ /    ^
 | |
|   //        \-joinblk -/
 | |
|   //             |
 | |
|   //            ret
 | |
|   setupNoDominatingLoop();
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(5, 2);
 | |
| 
 | |
|   SmallVector<MLocTransferMap, 1> TransferFunc;
 | |
|   TransferFunc.resize(5);
 | |
| 
 | |
|   unsigned EntryBlk = 0, Head1Blk = 1, Head2Blk = 2, JoinBlk = 3;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk1(Head1Blk, 0, RspLoc);
 | |
|   ValueIDNum RspDefInBlk1(Head1Blk, 1, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk2(Head2Blk, 0, RspLoc);
 | |
|   ValueIDNum RspDefInBlk2(Head2Blk, 1, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk3(JoinBlk, 0, RspLoc);
 | |
|   ValueIDNum RspDefInBlk3(JoinBlk, 1, RspLoc);
 | |
|   ValueIDNum RaxPHIInBlk1(Head1Blk, 0, RaxLoc);
 | |
|   ValueIDNum RaxPHIInBlk2(Head2Blk, 0, RaxLoc);
 | |
| 
 | |
|   // As ever, test that everything is live-through if there are no defs.
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[4][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[4][0], LiveInRsp);
 | |
| 
 | |
|   // Putting a def in the 'join' block will cause us to have two distinct
 | |
|   // PHIs in each loop head, then on entry to the join block.
 | |
|   TransferFunc[3].insert({RspLoc, RspDefInBlk3});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3);
 | |
|   TransferFunc[3].clear();
 | |
| 
 | |
|   // We should get the same behaviour if we put the def in either of the
 | |
|   // loop heads -- it should force the other head to be a PHI.
 | |
|   TransferFunc[1].insert({RspLoc, RspDefInBlk1});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspPHIInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspPHIInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspPHIInBlk3);
 | |
|   TransferFunc[1].clear();
 | |
| 
 | |
|   // Check symmetry,
 | |
|   TransferFunc[2].insert({RspLoc, RspDefInBlk2});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspPHIInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspDefInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspPHIInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspPHIInBlk3);
 | |
|   TransferFunc[2].clear();
 | |
| 
 | |
|   // Test some scenarios where there _shouldn't_ be any PHIs created at heads.
 | |
|   // These are those PHIs are created, but value propagation eliminates them.
 | |
|   // For example, lets copy rsp-livein to $rsp inside each loop head, so that
 | |
|   // there's no need for a PHI in the join block. Put a def of $rsp in block 3
 | |
|   // to force PHIs elsewhere.
 | |
|   TransferFunc[0].insert({RaxLoc, LiveInRsp});
 | |
|   TransferFunc[1].insert({RspLoc, RaxPHIInBlk1});
 | |
|   TransferFunc[2].insert({RspLoc, RaxPHIInBlk2});
 | |
|   TransferFunc[3].insert({RspLoc, RspDefInBlk3});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MInLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3);
 | |
|   TransferFunc[0].clear();
 | |
|   TransferFunc[1].clear();
 | |
|   TransferFunc[2].clear();
 | |
|   TransferFunc[3].clear();
 | |
| 
 | |
|   // In fact, if we eliminate the def in block 3, none of those PHIs are
 | |
|   // necessary, as we're just repeatedly copying LiveInRsp into $rsp. They
 | |
|   // should all be value propagated out.
 | |
|   TransferFunc[0].insert({RaxLoc, LiveInRsp});
 | |
|   TransferFunc[1].insert({RspLoc, RaxPHIInBlk1});
 | |
|   TransferFunc[2].insert({RspLoc, RaxPHIInBlk2});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[4][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[4][0], LiveInRsp);
 | |
|   TransferFunc[0].clear();
 | |
|   TransferFunc[1].clear();
 | |
|   TransferFunc[2].clear();
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, MLocBadlyNestedLoops) {
 | |
|   //           entry
 | |
|   //             |
 | |
|   //           loop1 -o
 | |
|   //             | ^
 | |
|   //             | ^
 | |
|   //           loop2 -o
 | |
|   //             | ^
 | |
|   //             | ^
 | |
|   //           loop3 -o
 | |
|   //             |
 | |
|   //            ret
 | |
|   setupBadlyNestedLoops();
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(5, 2);
 | |
| 
 | |
|   SmallVector<MLocTransferMap, 1> TransferFunc;
 | |
|   TransferFunc.resize(5);
 | |
| 
 | |
|   unsigned EntryBlk = 0, Loop1Blk = 1, Loop2Blk = 2, Loop3Blk = 3;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk1(Loop1Blk, 0, RspLoc);
 | |
|   ValueIDNum RspDefInBlk1(Loop1Blk, 1, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk2(Loop2Blk, 0, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk3(Loop3Blk, 0, RspLoc);
 | |
|   ValueIDNum RspDefInBlk3(Loop3Blk, 1, RspLoc);
 | |
|   ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum RaxPHIInBlk3(Loop3Blk, 0, RaxLoc);
 | |
| 
 | |
|   // As ever, test that everything is live-through if there are no defs.
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[4][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[2][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[4][0], LiveInRsp);
 | |
| 
 | |
|   // A def in loop3 should cause PHIs in every loop block: they're all
 | |
|   // reachable from each other.
 | |
|   TransferFunc[3].insert({RspLoc, RspDefInBlk3});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3);
 | |
|   TransferFunc[3].clear();
 | |
| 
 | |
|   // A def in loop1 should cause a PHI in loop1, but not the other blocks.
 | |
|   // loop2 and loop3 are dominated by the def in loop1, so they should have
 | |
|   // that value live-through.
 | |
|   TransferFunc[1].insert({RspLoc, RspDefInBlk1});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MInLocs[4][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[3][0], RspDefInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[4][0], RspDefInBlk1);
 | |
|   TransferFunc[1].clear();
 | |
| 
 | |
|   // As with earlier tricks: copy $rsp to $rax in the entry block, then $rax
 | |
|   // to $rsp in block 3. The only def of $rsp is simply copying the same value
 | |
|   // back into itself, and the value of $rsp is LiveInRsp all the way through.
 | |
|   // PHIs should be created, then value-propagated away...  however this
 | |
|   // doesn't work in practice.
 | |
|   // Consider the entry to loop3: we can determine that there's an incoming
 | |
|   // PHI value from loop2, and LiveInRsp from the self-loop. This would still
 | |
|   // justify having a PHI on entry to loop3. The only way to completely
 | |
|   // value-propagate these PHIs away would be to speculatively explore what
 | |
|   // PHIs could be eliminated and what that would lead to; which is
 | |
|   // combinatorially complex.
 | |
|   // Happily:
 | |
|   //  a) In this scenario, we always have a tracked location for LiveInRsp
 | |
|   //     anyway, so there's no loss in availability,
 | |
|   //  b) Only DBG_PHIs of a register would be vunlerable to this scenario, and
 | |
|   //     even then only if a true PHI became a DBG_PHI and was then optimised
 | |
|   //     through branch folding to no longer be at a CFG join,
 | |
|   //  c) The register allocator can spot this kind of redundant COPY easily,
 | |
|   //     and eliminate it.
 | |
|   //
 | |
|   // This unit test left in as a reference for the limitations of this
 | |
|   // approach. PHIs will be left in $rsp on entry to each block.
 | |
|   TransferFunc[0].insert({RaxLoc, LiveInRsp});
 | |
|   TransferFunc[3].insert({RspLoc, RaxPHIInBlk3});
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
|   buildMLocValueMap(MInLocs, MOutLocs, TransferFunc);
 | |
|   EXPECT_EQ(MInLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3);
 | |
|   EXPECT_EQ(MInLocs[4][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[0][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1);
 | |
|   EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk2);
 | |
|   EXPECT_EQ(MOutLocs[3][0], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[4][0], LiveInRsp);
 | |
|   // Check $rax's value. It should have $rsps value from the entry block
 | |
|   // onwards.
 | |
|   EXPECT_EQ(MInLocs[0][1], LiveInRax);
 | |
|   EXPECT_EQ(MInLocs[1][1], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[2][1], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[3][1], LiveInRsp);
 | |
|   EXPECT_EQ(MInLocs[4][1], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[0][1], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[1][1], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[2][1], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[3][1], LiveInRsp);
 | |
|   EXPECT_EQ(MOutLocs[4][1], LiveInRsp);
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, pickVPHILocDiamond) {
 | |
|   //        entry
 | |
|   //        /  \
 | |
|   //      br1  br2
 | |
|   //        \  /
 | |
|   //         ret
 | |
|   setupDiamondBlocks();
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(4, 2);
 | |
| 
 | |
|   initValueArray(MOutLocs, 4, 2);
 | |
| 
 | |
|   unsigned EntryBlk = 0, Br2Blk = 2, RetBlk = 3;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum RspPHIInBlk2(Br2Blk, 0, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk3(RetBlk, 0, RspLoc);
 | |
| 
 | |
|   DebugVariable Var(FuncVariable, None, nullptr);
 | |
|   DbgValueProperties EmptyProps(EmptyExpr, false);
 | |
|   SmallVector<DbgValue, 32> VLiveOuts;
 | |
|   VLiveOuts.resize(4, DbgValue(EmptyProps, DbgValue::Undef));
 | |
|   InstrRefBasedLDV::LiveIdxT VLiveOutIdx;
 | |
|   VLiveOutIdx[MBB0] = &VLiveOuts[0];
 | |
|   VLiveOutIdx[MBB1] = &VLiveOuts[1];
 | |
|   VLiveOutIdx[MBB2] = &VLiveOuts[2];
 | |
|   VLiveOutIdx[MBB3] = &VLiveOuts[3];
 | |
| 
 | |
|   SmallVector<const MachineBasicBlock *, 2> Preds;
 | |
|   for (const auto *Pred : MBB3->predecessors())
 | |
|     Preds.push_back(Pred);
 | |
| 
 | |
|   // Specify the live-outs around the joining block.
 | |
|   MOutLocs[1][0] = LiveInRsp;
 | |
|   MOutLocs[2][0] = LiveInRax;
 | |
| 
 | |
|   Optional<ValueIDNum> Result;
 | |
| 
 | |
|   // Simple case: join two distinct values on entry to the block.
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRax, EmptyProps, DbgValue::Def);
 | |
|   Result = pickVPHILoc(*MBB3, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   // Should have picked a PHI in $rsp in block 3.
 | |
|   EXPECT_TRUE(Result);
 | |
|   if (Result) {
 | |
|     EXPECT_EQ(*Result, RspPHIInBlk3);
 | |
|   }
 | |
| 
 | |
|   // If the incoming values are swapped between blocks, we should not
 | |
|   // successfully join. The CFG merge would select the right values, but in
 | |
|   // the wrong conditions.
 | |
|   std::swap(VLiveOuts[1], VLiveOuts[2]);
 | |
|   Result = pickVPHILoc(*MBB3, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // Swap back,
 | |
|   std::swap(VLiveOuts[1], VLiveOuts[2]);
 | |
|   // Setting one of these to being a constant should prohibit merging.
 | |
|   VLiveOuts[1].Kind = DbgValue::Const;
 | |
|   VLiveOuts[1].MO = MachineOperand::CreateImm(0);
 | |
|   Result = pickVPHILoc(*MBB3, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // Seeing both to being a constant -> still prohibit, it shouldn't become
 | |
|   // a value in the register file anywhere.
 | |
|   VLiveOuts[2] = VLiveOuts[1];
 | |
|   Result = pickVPHILoc(*MBB3, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // NoVals shouldn't join with anything else.
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(2, EmptyProps, DbgValue::NoVal);
 | |
|   Result = pickVPHILoc(*MBB3, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // We might merge in another VPHI in such a join. Present pickVPHILoc with
 | |
|   // such a scenario: first, where one incoming edge has a VPHI with no known
 | |
|   // value. This represents an edge where there was a PHI value that can't be
 | |
|   // found in the register file -- we can't subsequently find a PHI here.
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(2, EmptyProps, DbgValue::VPHI);
 | |
|   EXPECT_EQ(VLiveOuts[2].ID, ValueIDNum::EmptyValue);
 | |
|   Result = pickVPHILoc(*MBB3, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // However, if we know the value of the incoming VPHI, we can search for its
 | |
|   // location. Use a PHI machine-value for doing this, as VPHIs should always
 | |
|   // have PHI values, or they should have been eliminated.
 | |
|   MOutLocs[2][0] = RspPHIInBlk2;
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(2, EmptyProps, DbgValue::VPHI);
 | |
|   VLiveOuts[2].ID = RspPHIInBlk2; // Set location where PHI happens.
 | |
|   Result = pickVPHILoc(*MBB3, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_TRUE(Result);
 | |
|   if (Result) {
 | |
|     EXPECT_EQ(*Result, RspPHIInBlk3);
 | |
|   }
 | |
| 
 | |
|   // If that value isn't available from that block, don't join.
 | |
|   MOutLocs[2][0] = LiveInRsp;
 | |
|   Result = pickVPHILoc(*MBB3, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // Check that we don't pick values when the properties disagree, for example
 | |
|   // different indirectness or DIExpression.
 | |
|   DIExpression *NewExpr =
 | |
|       DIExpression::prepend(EmptyExpr, DIExpression::ApplyOffset, 4);
 | |
|   DbgValueProperties PropsWithExpr(NewExpr, false);
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRsp, PropsWithExpr, DbgValue::Def);
 | |
|   Result = pickVPHILoc(*MBB3, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   DbgValueProperties PropsWithIndirect(EmptyExpr, true);
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRsp, PropsWithIndirect, DbgValue::Def);
 | |
|   Result = pickVPHILoc(*MBB3, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, pickVPHILocLoops) {
 | |
|   setupSimpleLoop();
 | |
|   //    entry
 | |
|   //     |
 | |
|   //     |/-----\
 | |
|   //    loopblk |
 | |
|   //     |\-----/
 | |
|   //     |
 | |
|   //     ret
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(3, 2);
 | |
| 
 | |
|   initValueArray(MOutLocs, 3, 2);
 | |
| 
 | |
|   unsigned EntryBlk = 0, LoopBlk = 1;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum RspPHIInBlk1(LoopBlk, 0, RspLoc);
 | |
|   ValueIDNum RaxPHIInBlk1(LoopBlk, 0, RaxLoc);
 | |
| 
 | |
|   DebugVariable Var(FuncVariable, None, nullptr);
 | |
|   DbgValueProperties EmptyProps(EmptyExpr, false);
 | |
|   SmallVector<DbgValue, 32> VLiveOuts;
 | |
|   VLiveOuts.resize(3, DbgValue(EmptyProps, DbgValue::Undef));
 | |
|   InstrRefBasedLDV::LiveIdxT VLiveOutIdx;
 | |
|   VLiveOutIdx[MBB0] = &VLiveOuts[0];
 | |
|   VLiveOutIdx[MBB1] = &VLiveOuts[1];
 | |
|   VLiveOutIdx[MBB2] = &VLiveOuts[2];
 | |
| 
 | |
|   SmallVector<const MachineBasicBlock *, 2> Preds;
 | |
|   for (const auto *Pred : MBB1->predecessors())
 | |
|     Preds.push_back(Pred);
 | |
| 
 | |
|   // Specify the live-outs around the joining block.
 | |
|   MOutLocs[0][0] = LiveInRsp;
 | |
|   MOutLocs[1][0] = LiveInRax;
 | |
| 
 | |
|   Optional<ValueIDNum> Result;
 | |
| 
 | |
|   // See that we can merge as normal on a backedge.
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(LiveInRax, EmptyProps, DbgValue::Def);
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   // Should have picked a PHI in $rsp in block 1.
 | |
|   EXPECT_TRUE(Result);
 | |
|   if (Result) {
 | |
|     EXPECT_EQ(*Result, RspPHIInBlk1);
 | |
|   }
 | |
| 
 | |
|   // And that, if the desired values aren't available, we don't merge.
 | |
|   MOutLocs[1][0] = LiveInRsp;
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // Test the backedge behaviour: PHIs that feed back into themselves can
 | |
|   // carry this variables value. Feed in LiveInRsp in both $rsp and $rax
 | |
|   // from the entry block, but only put an appropriate backedge PHI in $rax.
 | |
|   // Only the $rax location can form the correct PHI.
 | |
|   MOutLocs[0][0] = LiveInRsp;
 | |
|   MOutLocs[0][1] = LiveInRsp;
 | |
|   MOutLocs[1][0] = RaxPHIInBlk1;
 | |
|   MOutLocs[1][1] = RaxPHIInBlk1;
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   // Crucially, a VPHI originating in this block:
 | |
|   VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_TRUE(Result);
 | |
|   if (Result) {
 | |
|     EXPECT_EQ(*Result, RaxPHIInBlk1);
 | |
|   }
 | |
| 
 | |
|   // Merging should not be permitted if there's a usable PHI on the backedge,
 | |
|   // but it's in the wrong place. (Overwrite $rax).
 | |
|   MOutLocs[1][1] = LiveInRax;
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // Additionally, if the VPHI coming back on the loop backedge isn't from
 | |
|   // this block (block 1), we can't merge it.
 | |
|   MOutLocs[1][1] = RaxPHIInBlk1;
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(0, EmptyProps, DbgValue::VPHI);
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, pickVPHILocBadlyNestedLoops) {
 | |
|   // Run some tests similar to pickVPHILocLoops, with more than one backedge,
 | |
|   // and check that we merge correctly over many candidate locations.
 | |
|   setupBadlyNestedLoops();
 | |
|   //           entry
 | |
|   //             |
 | |
|   //           loop1 -o
 | |
|   //             | ^
 | |
|   //             | ^
 | |
|   //           loop2 -o
 | |
|   //             | ^
 | |
|   //             | ^
 | |
|   //           loop3 -o
 | |
|   //             |
 | |
|   //            ret
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
|   Register RBX = getRegByName("RBX");
 | |
|   LocIdx RbxLoc = MTracker->lookupOrTrackRegister(RBX);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(5, 3);
 | |
| 
 | |
|   initValueArray(MOutLocs, 5, 3);
 | |
| 
 | |
|   unsigned EntryBlk = 0, Loop1Blk = 1;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum LiveInRbx(EntryBlk, 0, RbxLoc);
 | |
|   ValueIDNum RspPHIInBlk1(Loop1Blk, 0, RspLoc);
 | |
|   ValueIDNum RaxPHIInBlk1(Loop1Blk, 0, RaxLoc);
 | |
|   ValueIDNum RbxPHIInBlk1(Loop1Blk, 0, RbxLoc);
 | |
| 
 | |
|   DebugVariable Var(FuncVariable, None, nullptr);
 | |
|   DbgValueProperties EmptyProps(EmptyExpr, false);
 | |
|   SmallVector<DbgValue, 32> VLiveOuts;
 | |
|   VLiveOuts.resize(5, DbgValue(EmptyProps, DbgValue::Undef));
 | |
|   InstrRefBasedLDV::LiveIdxT VLiveOutIdx;
 | |
|   VLiveOutIdx[MBB0] = &VLiveOuts[0];
 | |
|   VLiveOutIdx[MBB1] = &VLiveOuts[1];
 | |
|   VLiveOutIdx[MBB2] = &VLiveOuts[2];
 | |
|   VLiveOutIdx[MBB3] = &VLiveOuts[3];
 | |
|   VLiveOutIdx[MBB4] = &VLiveOuts[4];
 | |
| 
 | |
|   // We're going to focus on block 1.
 | |
|   SmallVector<const MachineBasicBlock *, 2> Preds;
 | |
|   for (const auto *Pred : MBB1->predecessors())
 | |
|     Preds.push_back(Pred);
 | |
| 
 | |
|   // Specify the live-outs around the joining block. Incoming edges from the
 | |
|   // entry block, self, and loop2.
 | |
|   MOutLocs[0][0] = LiveInRsp;
 | |
|   MOutLocs[1][0] = LiveInRax;
 | |
|   MOutLocs[2][0] = LiveInRbx;
 | |
| 
 | |
|   Optional<ValueIDNum> Result;
 | |
| 
 | |
|   // See that we can merge as normal on a backedge.
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(LiveInRax, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRbx, EmptyProps, DbgValue::Def);
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   // Should have picked a PHI in $rsp in block 1.
 | |
|   EXPECT_TRUE(Result);
 | |
|   if (Result) {
 | |
|     EXPECT_EQ(*Result, RspPHIInBlk1);
 | |
|   }
 | |
| 
 | |
|   // Check too that permuting the live-out locations prevents merging
 | |
|   MOutLocs[0][0] = LiveInRax;
 | |
|   MOutLocs[1][0] = LiveInRbx;
 | |
|   MOutLocs[2][0] = LiveInRsp;
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   MOutLocs[0][0] = LiveInRsp;
 | |
|   MOutLocs[1][0] = LiveInRax;
 | |
|   MOutLocs[2][0] = LiveInRbx;
 | |
| 
 | |
|   // Feeding a PHI back on one backedge shouldn't merge (block 1 self backedge
 | |
|   // wants LiveInRax).
 | |
|   MOutLocs[1][0] = RspPHIInBlk1;
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // If the variables value on that edge is a VPHI feeding into itself, that's
 | |
|   // fine.
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRbx, EmptyProps, DbgValue::Def);
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_TRUE(Result);
 | |
|   if (Result) {
 | |
|     EXPECT_EQ(*Result, RspPHIInBlk1);
 | |
|   }
 | |
| 
 | |
|   // Likewise: the other backedge being a VPHI from block 1 should be accepted.
 | |
|   MOutLocs[2][0] = RspPHIInBlk1;
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   VLiveOuts[2] = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_TRUE(Result);
 | |
|   if (Result) {
 | |
|     EXPECT_EQ(*Result, RspPHIInBlk1);
 | |
|   }
 | |
| 
 | |
|   // Here's where it becomes tricky: we should not merge if there are two
 | |
|   // _distinct_ backedge PHIs. We can't have a PHI that happens in both rsp
 | |
|   // and rax for example. We can only pick one location as the live-in.
 | |
|   MOutLocs[2][0] = RaxPHIInBlk1;
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // The above test sources correct machine-PHI-value from two places. Now
 | |
|   // try with one machine-PHI-value, but placed in two different locations
 | |
|   // on the backedge. Again, we can't merge a location here, there's no
 | |
|   // location that works on all paths.
 | |
|   MOutLocs[0][0] = LiveInRsp;
 | |
|   MOutLocs[1][0] = RspPHIInBlk1;
 | |
|   MOutLocs[2][0] = LiveInRsp;
 | |
|   MOutLocs[2][1] = RspPHIInBlk1;
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // Scatter various PHI values across the available locations. Only rbx (loc 2)
 | |
|   // has the right value in both backedges -- that's the loc that should be
 | |
|   // picked.
 | |
|   MOutLocs[0][2] = LiveInRsp;
 | |
|   MOutLocs[1][0] = RspPHIInBlk1;
 | |
|   MOutLocs[1][1] = RaxPHIInBlk1;
 | |
|   MOutLocs[1][2] = RbxPHIInBlk1;
 | |
|   MOutLocs[2][0] = LiveInRsp;
 | |
|   MOutLocs[2][1] = RspPHIInBlk1;
 | |
|   MOutLocs[2][2] = RbxPHIInBlk1;
 | |
|   Result = pickVPHILoc(*MBB1, Var, VLiveOutIdx, MOutLocs, Preds);
 | |
|   EXPECT_TRUE(Result);
 | |
|   if (Result) {
 | |
|     EXPECT_EQ(*Result, RbxPHIInBlk1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, vlocJoinDiamond) {
 | |
|   //        entry
 | |
|   //        /  \
 | |
|   //      br1  br2
 | |
|   //        \  /
 | |
|   //         ret
 | |
|   setupDiamondBlocks();
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   unsigned EntryBlk = 0, Br2Blk = 2, RetBlk = 3;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum RspPHIInBlkBr2Blk(Br2Blk, 0, RspLoc);
 | |
|   ValueIDNum RspPHIInBlkRetBlk(RetBlk, 0, RspLoc);
 | |
| 
 | |
|   DebugVariable Var(FuncVariable, None, nullptr);
 | |
|   DbgValueProperties EmptyProps(EmptyExpr, false);
 | |
|   SmallVector<DbgValue, 32> VLiveOuts;
 | |
|   VLiveOuts.resize(4, DbgValue(EmptyProps, DbgValue::Undef));
 | |
|   InstrRefBasedLDV::LiveIdxT VLiveOutIdx;
 | |
|   VLiveOutIdx[MBB0] = &VLiveOuts[0];
 | |
|   VLiveOutIdx[MBB1] = &VLiveOuts[1];
 | |
|   VLiveOutIdx[MBB2] = &VLiveOuts[2];
 | |
|   VLiveOutIdx[MBB3] = &VLiveOuts[3];
 | |
| 
 | |
|   SmallPtrSet<const MachineBasicBlock *, 8> AllBlocks;
 | |
|   AllBlocks.insert(MBB0);
 | |
|   AllBlocks.insert(MBB1);
 | |
|   AllBlocks.insert(MBB2);
 | |
|   AllBlocks.insert(MBB3);
 | |
| 
 | |
|   SmallVector<const MachineBasicBlock *, 2> Preds;
 | |
|   for (const auto *Pred : MBB3->predecessors())
 | |
|     Preds.push_back(Pred);
 | |
| 
 | |
|   SmallSet<DebugVariable, 4> AllVars;
 | |
|   AllVars.insert(Var);
 | |
| 
 | |
|   // vlocJoin is here to propagate incoming values, and eliminate PHIs. Start
 | |
|   // off by propagating a value into the merging block, number 3.
 | |
|   DbgValue JoinedLoc = DbgValue(3, EmptyProps, DbgValue::NoVal);
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   bool Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_TRUE(Result); // Output locs should have changed.
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(JoinedLoc.ID, LiveInRsp);
 | |
| 
 | |
|   // And if we did it a second time, leaving the live-ins as it was, then
 | |
|   // we should report no change.
 | |
|   Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_FALSE(Result);
 | |
| 
 | |
|   // If the live-in variable values are different, but there's no PHI placed
 | |
|   // in this block, then just pick a location. It should be the first (in RPO)
 | |
|   // predecessor to avoid being a backedge.
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRax, EmptyProps, DbgValue::Def);
 | |
|   JoinedLoc = DbgValue(3, EmptyProps, DbgValue::NoVal);
 | |
|   Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_TRUE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def);
 | |
|   // RPO is blocks 0 2 1 3, so LiveInRax is picked as the first predecessor
 | |
|   // of this join.
 | |
|   EXPECT_EQ(JoinedLoc.ID, LiveInRax);
 | |
| 
 | |
|   // No tests for whether vlocJoin will pass-through a variable with differing
 | |
|   // expressions / properties. Those can only come about due to assignments; and
 | |
|   // for any assignment at all, a PHI should have been placed at the dominance
 | |
|   // frontier. We rely on the IDF calculator being accurate (which is OK,
 | |
|   // because so does the rest of LLVM).
 | |
| 
 | |
|   // Try placing a PHI. With differing input values (LiveInRsp, LiveInRax),
 | |
|   // this PHI should not be eliminated.
 | |
|   JoinedLoc = DbgValue(3, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   // Expect no change.
 | |
|   EXPECT_FALSE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI);
 | |
|   // This should not have been assigned a fixed value.
 | |
|   EXPECT_EQ(JoinedLoc.ID, ValueIDNum::EmptyValue);
 | |
|   EXPECT_EQ(JoinedLoc.BlockNo, 3);
 | |
| 
 | |
|   // Try a simple PHI elimination. Put a PHI in block 3, but LiveInRsp on both
 | |
|   // incoming edges. Re-load in and out-locs with unrelated values; they're
 | |
|   // irrelevant.
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   JoinedLoc = DbgValue(3, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_TRUE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(JoinedLoc.ID, LiveInRsp);
 | |
| 
 | |
|   // If the "current" live-in is a VPHI, but not a VPHI generated in the current
 | |
|   // block, then it's the remains of an earlier value propagation. We should
 | |
|   // value propagate through this merge. Even if the current incoming values
 | |
|   // disagree, because we've previously determined any VPHI here is redundant.
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRax, EmptyProps, DbgValue::Def);
 | |
|   JoinedLoc = DbgValue(2, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_TRUE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(JoinedLoc.ID, LiveInRax); // from block 2
 | |
| 
 | |
|   // The above test, but test that we will install one value-propagated VPHI
 | |
|   // over another.
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(0, EmptyProps, DbgValue::VPHI);
 | |
|   JoinedLoc = DbgValue(2, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_TRUE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI);
 | |
|   EXPECT_EQ(JoinedLoc.BlockNo, 0);
 | |
| 
 | |
|   // We shouldn't eliminate PHIs when properties disagree.
 | |
|   DbgValueProperties PropsWithIndirect(EmptyExpr, true);
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRsp, PropsWithIndirect, DbgValue::Def);
 | |
|   JoinedLoc = DbgValue(3, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_FALSE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI);
 | |
|   EXPECT_EQ(JoinedLoc.BlockNo, 3);
 | |
| 
 | |
|   // Even if properties disagree, we should still value-propagate if there's no
 | |
|   // PHI to be eliminated. The disagreeing values should work themselves out,
 | |
|   // seeing how we've determined no PHI is necessary.
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRsp, PropsWithIndirect, DbgValue::Def);
 | |
|   JoinedLoc = DbgValue(2, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_TRUE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(JoinedLoc.ID, LiveInRsp);
 | |
|   // Also check properties come from block 2, the first RPO predecessor to block
 | |
|   // three.
 | |
|   EXPECT_EQ(JoinedLoc.Properties, PropsWithIndirect);
 | |
| 
 | |
|   // Again, disagreeing properties, this time the expr, should cause a PHI to
 | |
|   // not be eliminated.
 | |
|   DIExpression *NewExpr =
 | |
|       DIExpression::prepend(EmptyExpr, DIExpression::ApplyOffset, 4);
 | |
|   DbgValueProperties PropsWithExpr(NewExpr, false);
 | |
|   VLiveOuts[1] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRsp, PropsWithExpr, DbgValue::Def);
 | |
|   JoinedLoc = DbgValue(3, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_FALSE(Result);
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, vlocJoinLoops) {
 | |
|   setupSimpleLoop();
 | |
|   //    entry
 | |
|   //     |
 | |
|   //     |/-----\
 | |
|   //    loopblk |
 | |
|   //     |\-----/
 | |
|   //     |
 | |
|   //     ret
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   unsigned EntryBlk = 0, LoopBlk = 1;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum RspPHIInBlk1(LoopBlk, 0, RspLoc);
 | |
| 
 | |
|   DebugVariable Var(FuncVariable, None, nullptr);
 | |
|   DbgValueProperties EmptyProps(EmptyExpr, false);
 | |
|   SmallVector<DbgValue, 32> VLiveOuts;
 | |
|   VLiveOuts.resize(3, DbgValue(EmptyProps, DbgValue::Undef));
 | |
|   InstrRefBasedLDV::LiveIdxT VLiveOutIdx;
 | |
|   VLiveOutIdx[MBB0] = &VLiveOuts[0];
 | |
|   VLiveOutIdx[MBB1] = &VLiveOuts[1];
 | |
|   VLiveOutIdx[MBB2] = &VLiveOuts[2];
 | |
| 
 | |
|   SmallPtrSet<const MachineBasicBlock *, 8> AllBlocks;
 | |
|   AllBlocks.insert(MBB0);
 | |
|   AllBlocks.insert(MBB1);
 | |
|   AllBlocks.insert(MBB2);
 | |
| 
 | |
|   SmallVector<const MachineBasicBlock *, 2> Preds;
 | |
|   for (const auto *Pred : MBB1->predecessors())
 | |
|     Preds.push_back(Pred);
 | |
| 
 | |
|   SmallSet<DebugVariable, 4> AllVars;
 | |
|   AllVars.insert(Var);
 | |
| 
 | |
|   // Test some back-edge-specific behaviours of vloc join. Mostly: the fact that
 | |
|   // VPHIs that arrive on backedges can be eliminated, despite having different
 | |
|   // values to the predecessor.
 | |
| 
 | |
|   // First: when there's no VPHI placed already, propagate the live-in value of
 | |
|   // the first RPO predecessor.
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(LiveInRax, EmptyProps, DbgValue::Def);
 | |
|   DbgValue JoinedLoc = DbgValue(LiveInRax, EmptyProps, DbgValue::Def);
 | |
|   bool Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_TRUE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(JoinedLoc.ID, LiveInRsp);
 | |
| 
 | |
|   // If there is a VPHI: don't elimiante it if there are disagreeing values.
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(LiveInRax, EmptyProps, DbgValue::Def);
 | |
|   JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_FALSE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI);
 | |
|   EXPECT_EQ(JoinedLoc.BlockNo, 1);
 | |
| 
 | |
|   // If we feed this VPHI back into itself though, we can eliminate it.
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_TRUE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(JoinedLoc.ID, LiveInRsp);
 | |
| 
 | |
|   // Don't eliminate backedge VPHIs if the predecessors have different
 | |
|   // properties.
 | |
|   DIExpression *NewExpr =
 | |
|       DIExpression::prepend(EmptyExpr, DIExpression::ApplyOffset, 4);
 | |
|   DbgValueProperties PropsWithExpr(NewExpr, false);
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(1, PropsWithExpr, DbgValue::VPHI);
 | |
|   JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_FALSE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI);
 | |
|   EXPECT_EQ(JoinedLoc.BlockNo, 1);
 | |
| 
 | |
|   // Backedges with VPHIs, but from the wrong block, shouldn't be eliminated.
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(0, EmptyProps, DbgValue::VPHI);
 | |
|   JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_FALSE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI);
 | |
|   EXPECT_EQ(JoinedLoc.BlockNo, 1);
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, vlocJoinBadlyNestedLoops) {
 | |
|   // Test PHI elimination in the presence of multiple backedges.
 | |
|   setupBadlyNestedLoops();
 | |
|   //           entry
 | |
|   //             |
 | |
|   //           loop1 -o
 | |
|   //             | ^
 | |
|   //             | ^
 | |
|   //           loop2 -o
 | |
|   //             | ^
 | |
|   //             | ^
 | |
|   //           loop3 -o
 | |
|   //             |
 | |
|   //            ret
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
|   Register RBX = getRegByName("RBX");
 | |
|   LocIdx RbxLoc = MTracker->lookupOrTrackRegister(RBX);
 | |
| 
 | |
|   unsigned EntryBlk = 0;
 | |
| 
 | |
|   ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum LiveInRbx(EntryBlk, 0, RbxLoc);
 | |
| 
 | |
|   DebugVariable Var(FuncVariable, None, nullptr);
 | |
|   DbgValueProperties EmptyProps(EmptyExpr, false);
 | |
|   SmallVector<DbgValue, 32> VLiveOuts;
 | |
|   VLiveOuts.resize(5, DbgValue(EmptyProps, DbgValue::Undef));
 | |
|   InstrRefBasedLDV::LiveIdxT VLiveOutIdx;
 | |
|   VLiveOutIdx[MBB0] = &VLiveOuts[0];
 | |
|   VLiveOutIdx[MBB1] = &VLiveOuts[1];
 | |
|   VLiveOutIdx[MBB2] = &VLiveOuts[2];
 | |
|   VLiveOutIdx[MBB3] = &VLiveOuts[3];
 | |
|   VLiveOutIdx[MBB4] = &VLiveOuts[4];
 | |
| 
 | |
|   SmallPtrSet<const MachineBasicBlock *, 8> AllBlocks;
 | |
|   AllBlocks.insert(MBB0);
 | |
|   AllBlocks.insert(MBB1);
 | |
|   AllBlocks.insert(MBB2);
 | |
|   AllBlocks.insert(MBB3);
 | |
|   AllBlocks.insert(MBB4);
 | |
| 
 | |
|   // We're going to focus on block 1.
 | |
|   SmallVector<const MachineBasicBlock *, 3> Preds;
 | |
|   for (const auto *Pred : MBB1->predecessors())
 | |
|     Preds.push_back(Pred);
 | |
| 
 | |
|   SmallSet<DebugVariable, 4> AllVars;
 | |
|   AllVars.insert(Var);
 | |
| 
 | |
|   // Test a normal VPHI isn't eliminated.
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(LiveInRax, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[2] = DbgValue(LiveInRbx, EmptyProps, DbgValue::Def);
 | |
|   DbgValue JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   bool Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_FALSE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI);
 | |
|   EXPECT_EQ(JoinedLoc.BlockNo, 1);
 | |
| 
 | |
|   // Common VPHIs on backedges should merge.
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   VLiveOuts[2] = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_TRUE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(JoinedLoc.ID, LiveInRsp);
 | |
| 
 | |
|   // They shouldn't merge if one of their properties is different.
 | |
|   DbgValueProperties PropsWithIndirect(EmptyExpr, true);
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   VLiveOuts[2] = DbgValue(1, PropsWithIndirect, DbgValue::VPHI);
 | |
|   JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_FALSE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI);
 | |
|   EXPECT_EQ(JoinedLoc.BlockNo, 1);
 | |
| 
 | |
|   // VPHIs from different blocks should not merge.
 | |
|   VLiveOuts[0] = DbgValue(LiveInRsp, EmptyProps, DbgValue::Def);
 | |
|   VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   VLiveOuts[2] = DbgValue(2, EmptyProps, DbgValue::VPHI);
 | |
|   JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI);
 | |
|   Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc);
 | |
|   EXPECT_FALSE(Result);
 | |
|   EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI);
 | |
|   EXPECT_EQ(JoinedLoc.BlockNo, 1);
 | |
| }
 | |
| 
 | |
| // Above are tests for picking VPHI locations, and eliminating VPHIs. No
 | |
| // unit-tests are written for evaluating the transfer function as that's
 | |
| // pretty straight forwards, or applying VPHI-location-picking to live-ins.
 | |
| // Instead, pre-set some machine locations and apply buildVLocValueMap to the
 | |
| // existing CFG patterns.
 | |
| TEST_F(InstrRefLDVTest, VLocSingleBlock) {
 | |
|   setupSingleBlock();
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(1, 2);
 | |
| 
 | |
|   ValueIDNum LiveInRsp = ValueIDNum(0, 0, RspLoc);
 | |
|   MInLocs[0][0] = MOutLocs[0][0] = LiveInRsp;
 | |
| 
 | |
|   DebugVariable Var(FuncVariable, None, nullptr);
 | |
|   DbgValueProperties EmptyProps(EmptyExpr, false);
 | |
| 
 | |
|   SmallSet<DebugVariable, 4> AllVars;
 | |
|   AllVars.insert(Var);
 | |
| 
 | |
|   // Mild hack: rather than constructing machine instructions in each block
 | |
|   // and creating lexical scopes across them, instead just tell
 | |
|   // buildVLocValueMap that there's an assignment in every block. That makes
 | |
|   // every block in scope.
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> AssignBlocks;
 | |
|   AssignBlocks.insert(MBB0);
 | |
| 
 | |
|   SmallVector<VLocTracker, 1> VLocs;
 | |
|   VLocs.resize(1, VLocTracker(Overlaps, EmptyExpr));
 | |
| 
 | |
|   InstrRefBasedLDV::LiveInsT Output;
 | |
| 
 | |
|   // Test that, with no assignments at all, no mappings are created for the
 | |
|   // variable in this function.
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output.size(), 0ul);
 | |
| 
 | |
|   // If we put an assignment in the transfer function, that should... well,
 | |
|   // do nothing, because we don't store the live-outs.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output.size(), 0ul);
 | |
| 
 | |
|   // There is pretty much nothing else of interest to test with a single block.
 | |
|   // It's not relevant to the SSA-construction parts of variable values.
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, VLocDiamondBlocks) {
 | |
|   setupDiamondBlocks();
 | |
|   //        entry
 | |
|   //        /  \
 | |
|   //      br1  br2
 | |
|   //        \  /
 | |
|   //         ret
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   unsigned EntryBlk = 0, RetBlk = 3;
 | |
| 
 | |
|   ValueIDNum LiveInRsp = ValueIDNum(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum LiveInRax = ValueIDNum(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum RspPHIInBlk3 = ValueIDNum(RetBlk, 0, RspLoc);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(4, 2);
 | |
| 
 | |
|   initValueArray(MInLocs, 4, 2);
 | |
|   initValueArray(MOutLocs, 4, 2);
 | |
| 
 | |
|   DebugVariable Var(FuncVariable, None, nullptr);
 | |
|   DbgValueProperties EmptyProps(EmptyExpr, false);
 | |
| 
 | |
|   SmallSet<DebugVariable, 4> AllVars;
 | |
|   AllVars.insert(Var);
 | |
| 
 | |
|   // Mild hack: rather than constructing machine instructions in each block
 | |
|   // and creating lexical scopes across them, instead just tell
 | |
|   // buildVLocValueMap that there's an assignment in every block. That makes
 | |
|   // every block in scope.
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> AssignBlocks;
 | |
|   AssignBlocks.insert(MBB0);
 | |
|   AssignBlocks.insert(MBB1);
 | |
|   AssignBlocks.insert(MBB2);
 | |
|   AssignBlocks.insert(MBB3);
 | |
| 
 | |
|   SmallVector<VLocTracker, 1> VLocs;
 | |
|   VLocs.resize(4, VLocTracker(Overlaps, EmptyExpr));
 | |
| 
 | |
|   InstrRefBasedLDV::LiveInsT Output;
 | |
| 
 | |
|   // Start off with LiveInRsp in every location.
 | |
|   for (unsigned int I = 0; I < 4; ++I) {
 | |
|     MInLocs[I][0] = MInLocs[I][1] = LiveInRsp;
 | |
|     MOutLocs[I][0] = MOutLocs[I][1] = LiveInRsp;
 | |
|   }
 | |
| 
 | |
|   auto ClearOutputs = [&]() {
 | |
|     for (auto &Elem : Output)
 | |
|       Elem.clear();
 | |
|   };
 | |
|   Output.resize(4);
 | |
| 
 | |
|   // No assignments -> no values.
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   EXPECT_EQ(Output[2].size(), 0ul);
 | |
|   EXPECT_EQ(Output[3].size(), 0ul);
 | |
| 
 | |
|   // An assignment in the end block should also not affect other blocks; or
 | |
|   // produce any live-ins.
 | |
|   VLocs[3].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   EXPECT_EQ(Output[2].size(), 0ul);
 | |
|   EXPECT_EQ(Output[3].size(), 0ul);
 | |
|   ClearOutputs();
 | |
| 
 | |
|   // Assignments in either of the side-of-diamond blocks should also not be
 | |
|   // propagated anywhere.
 | |
|   VLocs[3].Vars.clear();
 | |
|   VLocs[2].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   EXPECT_EQ(Output[2].size(), 0ul);
 | |
|   EXPECT_EQ(Output[3].size(), 0ul);
 | |
|   VLocs[2].Vars.clear();
 | |
|   ClearOutputs();
 | |
| 
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   EXPECT_EQ(Output[2].size(), 0ul);
 | |
|   EXPECT_EQ(Output[3].size(), 0ul);
 | |
|   VLocs[1].Vars.clear();
 | |
|   ClearOutputs();
 | |
| 
 | |
|   // However: putting an assignment in the first block should propagate variable
 | |
|   // values through to all other blocks, as it dominates.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   ASSERT_EQ(Output[3].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[3][0].second.ID, LiveInRsp);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
| 
 | |
|   // Additionally, even if that value isn't available in the register file, it
 | |
|   // should still be propagated, as buildVLocValueMap shouldn't care about
 | |
|   // what's in the registers (except for PHIs).
 | |
|   // values through to all other blocks, as it dominates.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRax, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   ASSERT_EQ(Output[3].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, LiveInRax);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRax);
 | |
|   EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[3][0].second.ID, LiveInRax);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
| 
 | |
|   // We should get a live-in to the merging block, if there are two assigns of
 | |
|   // the same value in either side of the diamond.
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[2].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   EXPECT_EQ(Output[2].size(), 0ul);
 | |
|   ASSERT_EQ(Output[3].size(), 1ul);
 | |
|   EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[3][0].second.ID, LiveInRsp);
 | |
|   ClearOutputs();
 | |
|   VLocs[1].Vars.clear();
 | |
|   VLocs[2].Vars.clear();
 | |
| 
 | |
|   // If we assign a value in the entry block, then 'undef' on a branch, we
 | |
|   // shouldn't have a live-in in the merge block.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(EmptyProps, DbgValue::Undef)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   EXPECT_EQ(Output[3].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRsp);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // Having different values joining into the merge block should mean we have
 | |
|   // no live-in in that block. Block ones LiveInRax value doesn't appear as a
 | |
|   // live-in anywhere, it's block internal.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(LiveInRax, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   EXPECT_EQ(Output[3].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRsp);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // But on the other hand, if there's a location in the register file where
 | |
|   // those two values can be joined, do so.
 | |
|   MOutLocs[1][0] = LiveInRax;
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(LiveInRax, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   ASSERT_EQ(Output[3].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[3][0].second.ID, RspPHIInBlk3);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| }
 | |
| 
 | |
| TEST_F(InstrRefLDVTest, VLocSimpleLoop) {
 | |
|   setupSimpleLoop();
 | |
|   //    entry
 | |
|   //     |
 | |
|   //     |/-----\
 | |
|   //    loopblk |
 | |
|   //     |\-----/
 | |
|   //     |
 | |
|   //     ret
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   unsigned EntryBlk = 0, LoopBlk = 1;
 | |
| 
 | |
|   ValueIDNum LiveInRsp = ValueIDNum(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum LiveInRax = ValueIDNum(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum RspPHIInBlk1 = ValueIDNum(LoopBlk, 0, RspLoc);
 | |
|   ValueIDNum RspDefInBlk1 = ValueIDNum(LoopBlk, 1, RspLoc);
 | |
|   ValueIDNum RaxPHIInBlk1 = ValueIDNum(LoopBlk, 0, RaxLoc);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(3, 2);
 | |
| 
 | |
|   initValueArray(MInLocs, 3, 2);
 | |
|   initValueArray(MOutLocs, 3, 2);
 | |
| 
 | |
|   DebugVariable Var(FuncVariable, None, nullptr);
 | |
|   DbgValueProperties EmptyProps(EmptyExpr, false);
 | |
| 
 | |
|   SmallSet<DebugVariable, 4> AllVars;
 | |
|   AllVars.insert(Var);
 | |
| 
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> AssignBlocks;
 | |
|   AssignBlocks.insert(MBB0);
 | |
|   AssignBlocks.insert(MBB1);
 | |
|   AssignBlocks.insert(MBB2);
 | |
| 
 | |
|   SmallVector<VLocTracker, 3> VLocs;
 | |
|   VLocs.resize(3, VLocTracker(Overlaps, EmptyExpr));
 | |
| 
 | |
|   InstrRefBasedLDV::LiveInsT Output;
 | |
| 
 | |
|   // Start off with LiveInRsp in every location.
 | |
|   for (unsigned int I = 0; I < 3; ++I) {
 | |
|     MInLocs[I][0] = MInLocs[I][1] = LiveInRsp;
 | |
|     MOutLocs[I][0] = MOutLocs[I][1] = LiveInRsp;
 | |
|   }
 | |
| 
 | |
|   auto ClearOutputs = [&]() {
 | |
|     for (auto &Elem : Output)
 | |
|       Elem.clear();
 | |
|   };
 | |
|   Output.resize(3);
 | |
| 
 | |
|   // Easy starter: a dominating assign should propagate to all blocks.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRsp);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // Put an undef assignment in the loop. Should get no live-in value.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(EmptyProps, DbgValue::Undef)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   EXPECT_EQ(Output[2].size(), 0ul);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // Assignment of the same value should naturally join.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRsp);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // Assignment of different values shouldn't join with no machine PHI vals.
 | |
|   // Will be live-in to exit block as it's dominated.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(LiveInRax, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRax);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // Install a completely unrelated PHI value, that we should not join on. Try
 | |
|   // with unrelated assign in loop block again.
 | |
|   MInLocs[1][0] = RspPHIInBlk1;
 | |
|   MOutLocs[1][0] = RspDefInBlk1;
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(LiveInRax, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRax);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // Now, if we assign RspDefInBlk1 in the loop block, we should be able to
 | |
|   // find the appropriate PHI.
 | |
|   MInLocs[1][0] = RspPHIInBlk1;
 | |
|   MOutLocs[1][0] = RspDefInBlk1;
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(RspDefInBlk1, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, RspPHIInBlk1);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, RspDefInBlk1);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // If the PHI happens in a different location, the live-in should happen
 | |
|   // there.
 | |
|   MInLocs[1][0] = LiveInRsp;
 | |
|   MOutLocs[1][0] = LiveInRsp;
 | |
|   MInLocs[1][1] = RaxPHIInBlk1;
 | |
|   MOutLocs[1][1] = RspDefInBlk1;
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(RspDefInBlk1, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, RaxPHIInBlk1);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, RspDefInBlk1);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // The PHI happening in both places should be handled too. Exactly where
 | |
|   // isn't important, but if the location picked changes, this test will let
 | |
|   // you know.
 | |
|   MInLocs[1][0] = RaxPHIInBlk1;
 | |
|   MOutLocs[1][0] = RspDefInBlk1;
 | |
|   MInLocs[1][1] = RaxPHIInBlk1;
 | |
|   MOutLocs[1][1] = RspDefInBlk1;
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(RspDefInBlk1, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   // Today, the first register is picked.
 | |
|   EXPECT_EQ(Output[1][0].second.ID, RspPHIInBlk1);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, RspDefInBlk1);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // If the loop block looked a bit like this:
 | |
|   //    %0 = PHI %1, %2
 | |
|   //    [...]
 | |
|   //    DBG_VALUE %0
 | |
|   // Then with instr-ref it becomes:
 | |
|   //    DBG_PHI %0
 | |
|   //    [...]
 | |
|   //    DBG_INSTR_REF
 | |
|   // And we would be feeding a machine PHI-value back around the loop. However:
 | |
|   // this does not mean we can eliminate the variable value PHI and use the
 | |
|   // variable value from the entry block: they are distinct values that must be
 | |
|   // joined at some location by the control flow.
 | |
|   // [This test input would never occur naturally, the machine-PHI would be
 | |
|   //  eliminated]
 | |
|   MInLocs[1][0] = RspPHIInBlk1;
 | |
|   MOutLocs[1][0] = RspPHIInBlk1;
 | |
|   MInLocs[1][1] = LiveInRax;
 | |
|   MOutLocs[1][1] = LiveInRax;
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(RspPHIInBlk1, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, RspPHIInBlk1);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, RspPHIInBlk1);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // Test that we can eliminate PHIs. A PHI will be placed at the loop head
 | |
|   // because there's a def in in.
 | |
|   MInLocs[1][0] = LiveInRsp;
 | |
|   MOutLocs[1][0] = LiveInRsp;
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRsp);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| }
 | |
| 
 | |
| // test phi elimination with the nested situation
 | |
| TEST_F(InstrRefLDVTest, VLocNestedLoop) {
 | |
|   //    entry
 | |
|   //     |
 | |
|   //    loop1
 | |
|   //     ^\
 | |
|   //     | \    /-\
 | |
|   //     |  loop2  |
 | |
|   //     |  /   \-/
 | |
|   //     ^ /
 | |
|   //     join
 | |
|   //     |
 | |
|   //     ret
 | |
|   setupNestedLoops();
 | |
| 
 | |
|   ASSERT_TRUE(MTracker->getNumLocs() == 1);
 | |
|   LocIdx RspLoc(0);
 | |
|   Register RAX = getRegByName("RAX");
 | |
|   LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX);
 | |
| 
 | |
|   unsigned EntryBlk = 0, Loop1Blk = 1, Loop2Blk = 2;
 | |
| 
 | |
|   ValueIDNum LiveInRsp = ValueIDNum(EntryBlk, 0, RspLoc);
 | |
|   ValueIDNum LiveInRax = ValueIDNum(EntryBlk, 0, RaxLoc);
 | |
|   ValueIDNum RspPHIInBlk1 = ValueIDNum(Loop1Blk, 0, RspLoc);
 | |
|   ValueIDNum RspPHIInBlk2 = ValueIDNum(Loop2Blk, 0, RspLoc);
 | |
|   ValueIDNum RspDefInBlk2 = ValueIDNum(Loop2Blk, 1, RspLoc);
 | |
| 
 | |
|   FuncValueTable MInLocs, MOutLocs;
 | |
|   std::tie(MInLocs, MOutLocs) = allocValueTables(5, 2);
 | |
| 
 | |
|   initValueArray(MInLocs, 5, 2);
 | |
|   initValueArray(MOutLocs, 5, 2);
 | |
| 
 | |
|   DebugVariable Var(FuncVariable, None, nullptr);
 | |
|   DbgValueProperties EmptyProps(EmptyExpr, false);
 | |
| 
 | |
|   SmallSet<DebugVariable, 4> AllVars;
 | |
|   AllVars.insert(Var);
 | |
| 
 | |
|   SmallPtrSet<MachineBasicBlock *, 5> AssignBlocks;
 | |
|   AssignBlocks.insert(MBB0);
 | |
|   AssignBlocks.insert(MBB1);
 | |
|   AssignBlocks.insert(MBB2);
 | |
|   AssignBlocks.insert(MBB3);
 | |
|   AssignBlocks.insert(MBB4);
 | |
| 
 | |
|   SmallVector<VLocTracker, 5> VLocs;
 | |
|   VLocs.resize(5, VLocTracker(Overlaps, EmptyExpr));
 | |
| 
 | |
|   InstrRefBasedLDV::LiveInsT Output;
 | |
| 
 | |
|   // Start off with LiveInRsp in every location.
 | |
|   for (unsigned int I = 0; I < 5; ++I) {
 | |
|     MInLocs[I][0] = MInLocs[I][1] = LiveInRsp;
 | |
|     MOutLocs[I][0] = MOutLocs[I][1] = LiveInRsp;
 | |
|   }
 | |
| 
 | |
|   auto ClearOutputs = [&]() {
 | |
|     for (auto &Elem : Output)
 | |
|       Elem.clear();
 | |
|   };
 | |
|   Output.resize(5);
 | |
| 
 | |
|   // A dominating assign should propagate to all blocks.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   ASSERT_EQ(Output[3].size(), 1ul);
 | |
|   ASSERT_EQ(Output[4].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[3][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[4][0].second.ID, LiveInRsp);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
| 
 | |
|   // Test that an assign in the inner loop causes unresolved PHIs at the heads
 | |
|   // of both loops, and no output location. Dominated blocks do get values.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[2].Vars.insert({Var, DbgValue(LiveInRax, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   EXPECT_EQ(Output[2].size(), 0ul);
 | |
|   ASSERT_EQ(Output[3].size(), 1ul);
 | |
|   ASSERT_EQ(Output[4].size(), 1ul);
 | |
|   EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[3][0].second.ID, LiveInRax);
 | |
|   EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[4][0].second.ID, LiveInRax);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[2].Vars.clear();
 | |
| 
 | |
|   // Same test, but with no assignment in block 0. We should still get values
 | |
|   // in dominated blocks.
 | |
|   VLocs[2].Vars.insert({Var, DbgValue(LiveInRax, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   EXPECT_EQ(Output[2].size(), 0ul);
 | |
|   ASSERT_EQ(Output[3].size(), 1ul);
 | |
|   ASSERT_EQ(Output[4].size(), 1ul);
 | |
|   EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[3][0].second.ID, LiveInRax);
 | |
|   EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[4][0].second.ID, LiveInRax);
 | |
|   ClearOutputs();
 | |
|   VLocs[2].Vars.clear();
 | |
| 
 | |
|   // Similarly, assignments in the outer loop gives location to dominated
 | |
|   // blocks, but no PHI locations are found at the outer loop head.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[3].Vars.insert({Var, DbgValue(LiveInRax, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   EXPECT_EQ(Output[2].size(), 0ul);
 | |
|   EXPECT_EQ(Output[3].size(), 0ul);
 | |
|   ASSERT_EQ(Output[4].size(), 1ul);
 | |
|   EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[4][0].second.ID, LiveInRax);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[3].Vars.clear();
 | |
| 
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[1].Vars.insert({Var, DbgValue(LiveInRax, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   ASSERT_EQ(Output[3].size(), 1ul);
 | |
|   ASSERT_EQ(Output[4].size(), 1ul);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRax);
 | |
|   EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[3][0].second.ID, LiveInRax);
 | |
|   EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[4][0].second.ID, LiveInRax);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[1].Vars.clear();
 | |
| 
 | |
|   // With an assignment of the same value in the inner loop, we should work out
 | |
|   // that all PHIs can be eliminated and the same value is live-through the
 | |
|   // whole function.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[2].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 1ul);
 | |
|   EXPECT_EQ(Output[2].size(), 1ul);
 | |
|   ASSERT_EQ(Output[3].size(), 1ul);
 | |
|   ASSERT_EQ(Output[4].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[3][0].second.ID, LiveInRsp);
 | |
|   EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[4][0].second.ID, LiveInRsp);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[2].Vars.clear();
 | |
| 
 | |
|   // If we have an assignment in the inner loop, and a PHI for it at the inner
 | |
|   // loop head, we could find a live-in location for the inner loop. But because
 | |
|   // the outer loop has no PHI, we can't find a variable value for outer loop
 | |
|   // head, so can't have a live-in value for the inner loop head.
 | |
|   MInLocs[2][0] = RspPHIInBlk2;
 | |
|   MOutLocs[2][0] = LiveInRax;
 | |
|   // NB: all other machine locations are LiveInRsp, disallowing a PHI in block
 | |
|   // one. Even though RspPHIInBlk2 isn't available later in the function, we
 | |
|   // should still produce a live-in value. The fact it's unavailable is a
 | |
|   // different concern.
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[2].Vars.insert({Var, DbgValue(LiveInRax, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   EXPECT_EQ(Output[1].size(), 0ul);
 | |
|   EXPECT_EQ(Output[2].size(), 0ul);
 | |
|   ASSERT_EQ(Output[3].size(), 1ul);
 | |
|   ASSERT_EQ(Output[4].size(), 1ul);
 | |
|   EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[3][0].second.ID, LiveInRax);
 | |
|   EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[4][0].second.ID, LiveInRax);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[2].Vars.clear();
 | |
| 
 | |
|   // Have an assignment in inner loop that can have a PHI resolved; and add a
 | |
|   // machine value PHI to the outer loop head, so that we can find a location
 | |
|   // all the way through the function.
 | |
|   MInLocs[1][0] = RspPHIInBlk1;
 | |
|   MOutLocs[1][0] = RspPHIInBlk1;
 | |
|   MInLocs[2][0] = RspPHIInBlk2;
 | |
|   MOutLocs[2][0] = RspDefInBlk2;
 | |
|   MInLocs[3][0] = RspDefInBlk2;
 | |
|   MOutLocs[3][0] = RspDefInBlk2;
 | |
|   VLocs[0].Vars.insert({Var, DbgValue(LiveInRsp, EmptyProps, DbgValue::Def)});
 | |
|   VLocs[2].Vars.insert({Var, DbgValue(RspDefInBlk2, EmptyProps, DbgValue::Def)});
 | |
|   buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output,
 | |
|                     MOutLocs, MInLocs, VLocs);
 | |
|   EXPECT_EQ(Output[0].size(), 0ul);
 | |
|   ASSERT_EQ(Output[1].size(), 1ul);
 | |
|   ASSERT_EQ(Output[2].size(), 1ul);
 | |
|   ASSERT_EQ(Output[3].size(), 1ul);
 | |
|   ASSERT_EQ(Output[4].size(), 1ul);
 | |
|   EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[1][0].second.ID, RspPHIInBlk1);
 | |
|   EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[2][0].second.ID, RspPHIInBlk2);
 | |
|   EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[3][0].second.ID, RspDefInBlk2);
 | |
|   EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def);
 | |
|   EXPECT_EQ(Output[4][0].second.ID, RspDefInBlk2);
 | |
|   ClearOutputs();
 | |
|   VLocs[0].Vars.clear();
 | |
|   VLocs[2].Vars.clear();
 | |
| }
 | |
| 
 |