4755 lines
		
	
	
		
			170 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4755 lines
		
	
	
		
			170 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the CodeGenDAGPatterns class, which is used to read and
 | |
| // represent the patterns present in a .td file for instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenDAGPatterns.h"
 | |
| #include "CodeGenInstruction.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/TypeSize.h"
 | |
| #include "llvm/TableGen/Error.h"
 | |
| #include "llvm/TableGen/Record.h"
 | |
| #include <algorithm>
 | |
| #include <cstdio>
 | |
| #include <iterator>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "dag-patterns"
 | |
| 
 | |
| static inline bool isIntegerOrPtr(MVT VT) {
 | |
|   return VT.isInteger() || VT == MVT::iPTR;
 | |
| }
 | |
| static inline bool isFloatingPoint(MVT VT) {
 | |
|   return VT.isFloatingPoint();
 | |
| }
 | |
| static inline bool isVector(MVT VT) {
 | |
|   return VT.isVector();
 | |
| }
 | |
| static inline bool isScalar(MVT VT) {
 | |
|   return !VT.isVector();
 | |
| }
 | |
| 
 | |
| template <typename Predicate>
 | |
| static bool berase_if(MachineValueTypeSet &S, Predicate P) {
 | |
|   bool Erased = false;
 | |
|   // It is ok to iterate over MachineValueTypeSet and remove elements from it
 | |
|   // at the same time.
 | |
|   for (MVT T : S) {
 | |
|     if (!P(T))
 | |
|       continue;
 | |
|     Erased = true;
 | |
|     S.erase(T);
 | |
|   }
 | |
|   return Erased;
 | |
| }
 | |
| 
 | |
| // --- TypeSetByHwMode
 | |
| 
 | |
| // This is a parameterized type-set class. For each mode there is a list
 | |
| // of types that are currently possible for a given tree node. Type
 | |
| // inference will apply to each mode separately.
 | |
| 
 | |
| TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
 | |
|   for (const ValueTypeByHwMode &VVT : VTList) {
 | |
|     insert(VVT);
 | |
|     AddrSpaces.push_back(VVT.PtrAddrSpace);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
 | |
|   for (const auto &I : *this) {
 | |
|     if (I.second.size() > 1)
 | |
|       return false;
 | |
|     if (!AllowEmpty && I.second.empty())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
 | |
|   assert(isValueTypeByHwMode(true) &&
 | |
|          "The type set has multiple types for at least one HW mode");
 | |
|   ValueTypeByHwMode VVT;
 | |
|   auto ASI = AddrSpaces.begin();
 | |
| 
 | |
|   for (const auto &I : *this) {
 | |
|     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
 | |
|     VVT.getOrCreateTypeForMode(I.first, T);
 | |
|     if (ASI != AddrSpaces.end())
 | |
|       VVT.PtrAddrSpace = *ASI++;
 | |
|   }
 | |
|   return VVT;
 | |
| }
 | |
| 
 | |
| bool TypeSetByHwMode::isPossible() const {
 | |
|   for (const auto &I : *this)
 | |
|     if (!I.second.empty())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
 | |
|   bool Changed = false;
 | |
|   bool ContainsDefault = false;
 | |
|   MVT DT = MVT::Other;
 | |
| 
 | |
|   for (const auto &P : VVT) {
 | |
|     unsigned M = P.first;
 | |
|     // Make sure there exists a set for each specific mode from VVT.
 | |
|     Changed |= getOrCreate(M).insert(P.second).second;
 | |
|     // Cache VVT's default mode.
 | |
|     if (DefaultMode == M) {
 | |
|       ContainsDefault = true;
 | |
|       DT = P.second;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If VVT has a default mode, add the corresponding type to all
 | |
|   // modes in "this" that do not exist in VVT.
 | |
|   if (ContainsDefault)
 | |
|     for (auto &I : *this)
 | |
|       if (!VVT.hasMode(I.first))
 | |
|         Changed |= I.second.insert(DT).second;
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // Constrain the type set to be the intersection with VTS.
 | |
| bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
 | |
|   bool Changed = false;
 | |
|   if (hasDefault()) {
 | |
|     for (const auto &I : VTS) {
 | |
|       unsigned M = I.first;
 | |
|       if (M == DefaultMode || hasMode(M))
 | |
|         continue;
 | |
|       Map.insert({M, Map.at(DefaultMode)});
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (auto &I : *this) {
 | |
|     unsigned M = I.first;
 | |
|     SetType &S = I.second;
 | |
|     if (VTS.hasMode(M) || VTS.hasDefault()) {
 | |
|       Changed |= intersect(I.second, VTS.get(M));
 | |
|     } else if (!S.empty()) {
 | |
|       S.clear();
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| template <typename Predicate>
 | |
| bool TypeSetByHwMode::constrain(Predicate P) {
 | |
|   bool Changed = false;
 | |
|   for (auto &I : *this)
 | |
|     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| template <typename Predicate>
 | |
| bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
 | |
|   assert(empty());
 | |
|   for (const auto &I : VTS) {
 | |
|     SetType &S = getOrCreate(I.first);
 | |
|     for (auto J : I.second)
 | |
|       if (P(J))
 | |
|         S.insert(J);
 | |
|   }
 | |
|   return !empty();
 | |
| }
 | |
| 
 | |
| void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
 | |
|   SmallVector<unsigned, 4> Modes;
 | |
|   Modes.reserve(Map.size());
 | |
| 
 | |
|   for (const auto &I : *this)
 | |
|     Modes.push_back(I.first);
 | |
|   if (Modes.empty()) {
 | |
|     OS << "{}";
 | |
|     return;
 | |
|   }
 | |
|   array_pod_sort(Modes.begin(), Modes.end());
 | |
| 
 | |
|   OS << '{';
 | |
|   for (unsigned M : Modes) {
 | |
|     OS << ' ' << getModeName(M) << ':';
 | |
|     writeToStream(get(M), OS);
 | |
|   }
 | |
|   OS << " }";
 | |
| }
 | |
| 
 | |
| void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
 | |
|   SmallVector<MVT, 4> Types(S.begin(), S.end());
 | |
|   array_pod_sort(Types.begin(), Types.end());
 | |
| 
 | |
|   OS << '[';
 | |
|   ListSeparator LS(" ");
 | |
|   for (const MVT &T : Types)
 | |
|     OS << LS << ValueTypeByHwMode::getMVTName(T);
 | |
|   OS << ']';
 | |
| }
 | |
| 
 | |
| bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
 | |
|   // The isSimple call is much quicker than hasDefault - check this first.
 | |
|   bool IsSimple = isSimple();
 | |
|   bool VTSIsSimple = VTS.isSimple();
 | |
|   if (IsSimple && VTSIsSimple)
 | |
|     return *begin() == *VTS.begin();
 | |
| 
 | |
|   // Speedup: We have a default if the set is simple.
 | |
|   bool HaveDefault = IsSimple || hasDefault();
 | |
|   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
 | |
|   if (HaveDefault != VTSHaveDefault)
 | |
|     return false;
 | |
| 
 | |
|   SmallSet<unsigned, 4> Modes;
 | |
|   for (auto &I : *this)
 | |
|     Modes.insert(I.first);
 | |
|   for (const auto &I : VTS)
 | |
|     Modes.insert(I.first);
 | |
| 
 | |
|   if (HaveDefault) {
 | |
|     // Both sets have default mode.
 | |
|     for (unsigned M : Modes) {
 | |
|       if (get(M) != VTS.get(M))
 | |
|         return false;
 | |
|     }
 | |
|   } else {
 | |
|     // Neither set has default mode.
 | |
|     for (unsigned M : Modes) {
 | |
|       // If there is no default mode, an empty set is equivalent to not having
 | |
|       // the corresponding mode.
 | |
|       bool NoModeThis = !hasMode(M) || get(M).empty();
 | |
|       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
 | |
|       if (NoModeThis != NoModeVTS)
 | |
|         return false;
 | |
|       if (!NoModeThis)
 | |
|         if (get(M) != VTS.get(M))
 | |
|           return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
 | |
|     T.writeToStream(OS);
 | |
|     return OS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD
 | |
| void TypeSetByHwMode::dump() const {
 | |
|   dbgs() << *this << '\n';
 | |
| }
 | |
| 
 | |
| bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
 | |
|   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
 | |
|   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
 | |
| 
 | |
|   if (OutP == InP)
 | |
|     return berase_if(Out, Int);
 | |
| 
 | |
|   // Compute the intersection of scalars separately to account for only
 | |
|   // one set containing iPTR.
 | |
|   // The intersection of iPTR with a set of integer scalar types that does not
 | |
|   // include iPTR will result in the most specific scalar type:
 | |
|   // - iPTR is more specific than any set with two elements or more
 | |
|   // - iPTR is less specific than any single integer scalar type.
 | |
|   // For example
 | |
|   // { iPTR } * { i32 }     -> { i32 }
 | |
|   // { iPTR } * { i32 i64 } -> { iPTR }
 | |
|   // and
 | |
|   // { iPTR i32 } * { i32 }          -> { i32 }
 | |
|   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
 | |
|   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
 | |
| 
 | |
|   // Compute the difference between the two sets in such a way that the
 | |
|   // iPTR is in the set that is being subtracted. This is to see if there
 | |
|   // are any extra scalars in the set without iPTR that are not in the
 | |
|   // set containing iPTR. Then the iPTR could be considered a "wildcard"
 | |
|   // matching these scalars. If there is only one such scalar, it would
 | |
|   // replace the iPTR, if there are more, the iPTR would be retained.
 | |
|   SetType Diff;
 | |
|   if (InP) {
 | |
|     Diff = Out;
 | |
|     berase_if(Diff, [&In](MVT T) { return In.count(T); });
 | |
|     // Pre-remove these elements and rely only on InP/OutP to determine
 | |
|     // whether a change has been made.
 | |
|     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
 | |
|   } else {
 | |
|     Diff = In;
 | |
|     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
 | |
|     Out.erase(MVT::iPTR);
 | |
|   }
 | |
| 
 | |
|   // The actual intersection.
 | |
|   bool Changed = berase_if(Out, Int);
 | |
|   unsigned NumD = Diff.size();
 | |
|   if (NumD == 0)
 | |
|     return Changed;
 | |
| 
 | |
|   if (NumD == 1) {
 | |
|     Out.insert(*Diff.begin());
 | |
|     // This is a change only if Out was the one with iPTR (which is now
 | |
|     // being replaced).
 | |
|     Changed |= OutP;
 | |
|   } else {
 | |
|     // Multiple elements from Out are now replaced with iPTR.
 | |
|     Out.insert(MVT::iPTR);
 | |
|     Changed |= !OutP;
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool TypeSetByHwMode::validate() const {
 | |
| #ifndef NDEBUG
 | |
|   if (empty())
 | |
|     return true;
 | |
|   bool AllEmpty = true;
 | |
|   for (const auto &I : *this)
 | |
|     AllEmpty &= I.second.empty();
 | |
|   return !AllEmpty;
 | |
| #endif
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // --- TypeInfer
 | |
| 
 | |
| bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
 | |
|                                 const TypeSetByHwMode &In) {
 | |
|   ValidateOnExit _1(Out, *this);
 | |
|   In.validate();
 | |
|   if (In.empty() || Out == In || TP.hasError())
 | |
|     return false;
 | |
|   if (Out.empty()) {
 | |
|     Out = In;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool Changed = Out.constrain(In);
 | |
|   if (Changed && Out.empty())
 | |
|     TP.error("Type contradiction");
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
 | |
|   ValidateOnExit _1(Out, *this);
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
|   assert(!Out.empty() && "cannot pick from an empty set");
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (auto &I : Out) {
 | |
|     TypeSetByHwMode::SetType &S = I.second;
 | |
|     if (S.size() <= 1)
 | |
|       continue;
 | |
|     MVT T = *S.begin(); // Pick the first element.
 | |
|     S.clear();
 | |
|     S.insert(T);
 | |
|     Changed = true;
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
 | |
|   ValidateOnExit _1(Out, *this);
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
|   if (!Out.empty())
 | |
|     return Out.constrain(isIntegerOrPtr);
 | |
| 
 | |
|   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
 | |
| }
 | |
| 
 | |
| bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
 | |
|   ValidateOnExit _1(Out, *this);
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
|   if (!Out.empty())
 | |
|     return Out.constrain(isFloatingPoint);
 | |
| 
 | |
|   return Out.assign_if(getLegalTypes(), isFloatingPoint);
 | |
| }
 | |
| 
 | |
| bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
 | |
|   ValidateOnExit _1(Out, *this);
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
|   if (!Out.empty())
 | |
|     return Out.constrain(isScalar);
 | |
| 
 | |
|   return Out.assign_if(getLegalTypes(), isScalar);
 | |
| }
 | |
| 
 | |
| bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
 | |
|   ValidateOnExit _1(Out, *this);
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
|   if (!Out.empty())
 | |
|     return Out.constrain(isVector);
 | |
| 
 | |
|   return Out.assign_if(getLegalTypes(), isVector);
 | |
| }
 | |
| 
 | |
| bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
 | |
|   ValidateOnExit _1(Out, *this);
 | |
|   if (TP.hasError() || !Out.empty())
 | |
|     return false;
 | |
| 
 | |
|   Out = getLegalTypes();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <typename Iter, typename Pred, typename Less>
 | |
| static Iter min_if(Iter B, Iter E, Pred P, Less L) {
 | |
|   if (B == E)
 | |
|     return E;
 | |
|   Iter Min = E;
 | |
|   for (Iter I = B; I != E; ++I) {
 | |
|     if (!P(*I))
 | |
|       continue;
 | |
|     if (Min == E || L(*I, *Min))
 | |
|       Min = I;
 | |
|   }
 | |
|   return Min;
 | |
| }
 | |
| 
 | |
| template <typename Iter, typename Pred, typename Less>
 | |
| static Iter max_if(Iter B, Iter E, Pred P, Less L) {
 | |
|   if (B == E)
 | |
|     return E;
 | |
|   Iter Max = E;
 | |
|   for (Iter I = B; I != E; ++I) {
 | |
|     if (!P(*I))
 | |
|       continue;
 | |
|     if (Max == E || L(*Max, *I))
 | |
|       Max = I;
 | |
|   }
 | |
|   return Max;
 | |
| }
 | |
| 
 | |
| /// Make sure that for each type in Small, there exists a larger type in Big.
 | |
| bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
 | |
|                                    bool SmallIsVT) {
 | |
|   ValidateOnExit _1(Small, *this), _2(Big, *this);
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
|   bool Changed = false;
 | |
| 
 | |
|   assert((!SmallIsVT || !Small.empty()) &&
 | |
|          "Small should not be empty for SDTCisVTSmallerThanOp");
 | |
| 
 | |
|   if (Small.empty())
 | |
|     Changed |= EnforceAny(Small);
 | |
|   if (Big.empty())
 | |
|     Changed |= EnforceAny(Big);
 | |
| 
 | |
|   assert(Small.hasDefault() && Big.hasDefault());
 | |
| 
 | |
|   SmallVector<unsigned, 4> Modes;
 | |
|   union_modes(Small, Big, Modes);
 | |
| 
 | |
|   // 1. Only allow integer or floating point types and make sure that
 | |
|   //    both sides are both integer or both floating point.
 | |
|   // 2. Make sure that either both sides have vector types, or neither
 | |
|   //    of them does.
 | |
|   for (unsigned M : Modes) {
 | |
|     TypeSetByHwMode::SetType &S = Small.get(M);
 | |
|     TypeSetByHwMode::SetType &B = Big.get(M);
 | |
| 
 | |
|     assert((!SmallIsVT || !S.empty()) && "Expected non-empty type");
 | |
| 
 | |
|     if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
 | |
|       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
 | |
|       Changed |= berase_if(S, NotInt);
 | |
|       Changed |= berase_if(B, NotInt);
 | |
|     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
 | |
|       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
 | |
|       Changed |= berase_if(S, NotFP);
 | |
|       Changed |= berase_if(B, NotFP);
 | |
|     } else if (SmallIsVT && B.empty()) {
 | |
|       // B is empty and since S is a specific VT, it will never be empty. Don't
 | |
|       // report this as a change, just clear S and continue. This prevents an
 | |
|       // infinite loop.
 | |
|       S.clear();
 | |
|     } else if (S.empty() || B.empty()) {
 | |
|       Changed = !S.empty() || !B.empty();
 | |
|       S.clear();
 | |
|       B.clear();
 | |
|     } else {
 | |
|       TP.error("Incompatible types");
 | |
|       return Changed;
 | |
|     }
 | |
| 
 | |
|     if (none_of(S, isVector) || none_of(B, isVector)) {
 | |
|       Changed |= berase_if(S, isVector);
 | |
|       Changed |= berase_if(B, isVector);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto LT = [](MVT A, MVT B) -> bool {
 | |
|     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
 | |
|     // purposes of ordering.
 | |
|     auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
 | |
|                                  A.getSizeInBits().getKnownMinSize());
 | |
|     auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
 | |
|                                  B.getSizeInBits().getKnownMinSize());
 | |
|     return ASize < BSize;
 | |
|   };
 | |
|   auto SameKindLE = [](MVT A, MVT B) -> bool {
 | |
|     // This function is used when removing elements: when a vector is compared
 | |
|     // to a non-vector or a scalable vector to any non-scalable MVT, it should
 | |
|     // return false (to avoid removal).
 | |
|     if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
 | |
|         std::make_tuple(B.isVector(), B.isScalableVector()))
 | |
|       return false;
 | |
| 
 | |
|     return std::make_tuple(A.getScalarSizeInBits(),
 | |
|                            A.getSizeInBits().getKnownMinSize()) <=
 | |
|            std::make_tuple(B.getScalarSizeInBits(),
 | |
|                            B.getSizeInBits().getKnownMinSize());
 | |
|   };
 | |
| 
 | |
|   for (unsigned M : Modes) {
 | |
|     TypeSetByHwMode::SetType &S = Small.get(M);
 | |
|     TypeSetByHwMode::SetType &B = Big.get(M);
 | |
|     // MinS = min scalar in Small, remove all scalars from Big that are
 | |
|     // smaller-or-equal than MinS.
 | |
|     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
 | |
|     if (MinS != S.end())
 | |
|       Changed |= berase_if(B, std::bind(SameKindLE,
 | |
|                                         std::placeholders::_1, *MinS));
 | |
| 
 | |
|     // MaxS = max scalar in Big, remove all scalars from Small that are
 | |
|     // larger than MaxS.
 | |
|     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
 | |
|     if (MaxS != B.end())
 | |
|       Changed |= berase_if(S, std::bind(SameKindLE,
 | |
|                                         *MaxS, std::placeholders::_1));
 | |
| 
 | |
|     // MinV = min vector in Small, remove all vectors from Big that are
 | |
|     // smaller-or-equal than MinV.
 | |
|     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
 | |
|     if (MinV != S.end())
 | |
|       Changed |= berase_if(B, std::bind(SameKindLE,
 | |
|                                         std::placeholders::_1, *MinV));
 | |
| 
 | |
|     // MaxV = max vector in Big, remove all vectors from Small that are
 | |
|     // larger than MaxV.
 | |
|     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
 | |
|     if (MaxV != B.end())
 | |
|       Changed |= berase_if(S, std::bind(SameKindLE,
 | |
|                                         *MaxV, std::placeholders::_1));
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// 1. Ensure that for each type T in Vec, T is a vector type, and that
 | |
| ///    for each type U in Elem, U is a scalar type.
 | |
| /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
 | |
| ///    type T in Vec, such that U is the element type of T.
 | |
| bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
 | |
|                                        TypeSetByHwMode &Elem) {
 | |
|   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
|   bool Changed = false;
 | |
| 
 | |
|   if (Vec.empty())
 | |
|     Changed |= EnforceVector(Vec);
 | |
|   if (Elem.empty())
 | |
|     Changed |= EnforceScalar(Elem);
 | |
| 
 | |
|   SmallVector<unsigned, 4> Modes;
 | |
|   union_modes(Vec, Elem, Modes);
 | |
|   for (unsigned M : Modes) {
 | |
|     TypeSetByHwMode::SetType &V = Vec.get(M);
 | |
|     TypeSetByHwMode::SetType &E = Elem.get(M);
 | |
| 
 | |
|     Changed |= berase_if(V, isScalar);  // Scalar = !vector
 | |
|     Changed |= berase_if(E, isVector);  // Vector = !scalar
 | |
|     assert(!V.empty() && !E.empty());
 | |
| 
 | |
|     MachineValueTypeSet VT, ST;
 | |
|     // Collect element types from the "vector" set.
 | |
|     for (MVT T : V)
 | |
|       VT.insert(T.getVectorElementType());
 | |
|     // Collect scalar types from the "element" set.
 | |
|     for (MVT T : E)
 | |
|       ST.insert(T);
 | |
| 
 | |
|     // Remove from V all (vector) types whose element type is not in S.
 | |
|     Changed |= berase_if(V, [&ST](MVT T) -> bool {
 | |
|                               return !ST.count(T.getVectorElementType());
 | |
|                             });
 | |
|     // Remove from E all (scalar) types, for which there is no corresponding
 | |
|     // type in V.
 | |
|     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
 | |
|                                        const ValueTypeByHwMode &VVT) {
 | |
|   TypeSetByHwMode Tmp(VVT);
 | |
|   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
 | |
|   return EnforceVectorEltTypeIs(Vec, Tmp);
 | |
| }
 | |
| 
 | |
| /// Ensure that for each type T in Sub, T is a vector type, and there
 | |
| /// exists a type U in Vec such that U is a vector type with the same
 | |
| /// element type as T and at least as many elements as T.
 | |
| bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
 | |
|                                              TypeSetByHwMode &Sub) {
 | |
|   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
 | |
|   auto IsSubVec = [](MVT B, MVT P) -> bool {
 | |
|     if (!B.isVector() || !P.isVector())
 | |
|       return false;
 | |
|     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
 | |
|     // but until there are obvious use-cases for this, keep the
 | |
|     // types separate.
 | |
|     if (B.isScalableVector() != P.isScalableVector())
 | |
|       return false;
 | |
|     if (B.getVectorElementType() != P.getVectorElementType())
 | |
|       return false;
 | |
|     return B.getVectorMinNumElements() < P.getVectorMinNumElements();
 | |
|   };
 | |
| 
 | |
|   /// Return true if S has no element (vector type) that T is a sub-vector of,
 | |
|   /// i.e. has the same element type as T and more elements.
 | |
|   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
 | |
|     for (auto I : S)
 | |
|       if (IsSubVec(T, I))
 | |
|         return false;
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   /// Return true if S has no element (vector type) that T is a super-vector
 | |
|   /// of, i.e. has the same element type as T and fewer elements.
 | |
|   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
 | |
|     for (auto I : S)
 | |
|       if (IsSubVec(I, T))
 | |
|         return false;
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   if (Vec.empty())
 | |
|     Changed |= EnforceVector(Vec);
 | |
|   if (Sub.empty())
 | |
|     Changed |= EnforceVector(Sub);
 | |
| 
 | |
|   SmallVector<unsigned, 4> Modes;
 | |
|   union_modes(Vec, Sub, Modes);
 | |
|   for (unsigned M : Modes) {
 | |
|     TypeSetByHwMode::SetType &S = Sub.get(M);
 | |
|     TypeSetByHwMode::SetType &V = Vec.get(M);
 | |
| 
 | |
|     Changed |= berase_if(S, isScalar);
 | |
| 
 | |
|     // Erase all types from S that are not sub-vectors of a type in V.
 | |
|     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
 | |
| 
 | |
|     // Erase all types from V that are not super-vectors of a type in S.
 | |
|     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// 1. Ensure that V has a scalar type iff W has a scalar type.
 | |
| /// 2. Ensure that for each vector type T in V, there exists a vector
 | |
| ///    type U in W, such that T and U have the same number of elements.
 | |
| /// 3. Ensure that for each vector type U in W, there exists a vector
 | |
| ///    type T in V, such that T and U have the same number of elements
 | |
| ///    (reverse of 2).
 | |
| bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
 | |
|   ValidateOnExit _1(V, *this), _2(W, *this);
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   if (V.empty())
 | |
|     Changed |= EnforceAny(V);
 | |
|   if (W.empty())
 | |
|     Changed |= EnforceAny(W);
 | |
| 
 | |
|   // An actual vector type cannot have 0 elements, so we can treat scalars
 | |
|   // as zero-length vectors. This way both vectors and scalars can be
 | |
|   // processed identically.
 | |
|   auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
 | |
|                      MVT T) -> bool {
 | |
|     return !Lengths.count(T.isVector() ? T.getVectorElementCount()
 | |
|                                        : ElementCount::getNull());
 | |
|   };
 | |
| 
 | |
|   SmallVector<unsigned, 4> Modes;
 | |
|   union_modes(V, W, Modes);
 | |
|   for (unsigned M : Modes) {
 | |
|     TypeSetByHwMode::SetType &VS = V.get(M);
 | |
|     TypeSetByHwMode::SetType &WS = W.get(M);
 | |
| 
 | |
|     SmallDenseSet<ElementCount> VN, WN;
 | |
|     for (MVT T : VS)
 | |
|       VN.insert(T.isVector() ? T.getVectorElementCount()
 | |
|                              : ElementCount::getNull());
 | |
|     for (MVT T : WS)
 | |
|       WN.insert(T.isVector() ? T.getVectorElementCount()
 | |
|                              : ElementCount::getNull());
 | |
| 
 | |
|     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
 | |
|     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct TypeSizeComparator {
 | |
|   bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
 | |
|     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
 | |
|            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// 1. Ensure that for each type T in A, there exists a type U in B,
 | |
| ///    such that T and U have equal size in bits.
 | |
| /// 2. Ensure that for each type U in B, there exists a type T in A
 | |
| ///    such that T and U have equal size in bits (reverse of 1).
 | |
| bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
 | |
|   ValidateOnExit _1(A, *this), _2(B, *this);
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
|   bool Changed = false;
 | |
|   if (A.empty())
 | |
|     Changed |= EnforceAny(A);
 | |
|   if (B.empty())
 | |
|     Changed |= EnforceAny(B);
 | |
| 
 | |
|   typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
 | |
| 
 | |
|   auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
 | |
|     return !Sizes.count(T.getSizeInBits());
 | |
|   };
 | |
| 
 | |
|   SmallVector<unsigned, 4> Modes;
 | |
|   union_modes(A, B, Modes);
 | |
|   for (unsigned M : Modes) {
 | |
|     TypeSetByHwMode::SetType &AS = A.get(M);
 | |
|     TypeSetByHwMode::SetType &BS = B.get(M);
 | |
|     TypeSizeSet AN, BN;
 | |
| 
 | |
|     for (MVT T : AS)
 | |
|       AN.insert(T.getSizeInBits());
 | |
|     for (MVT T : BS)
 | |
|       BN.insert(T.getSizeInBits());
 | |
| 
 | |
|     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
 | |
|     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
 | |
|   ValidateOnExit _1(VTS, *this);
 | |
|   const TypeSetByHwMode &Legal = getLegalTypes();
 | |
|   assert(Legal.isDefaultOnly() && "Default-mode only expected");
 | |
|   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
 | |
| 
 | |
|   for (auto &I : VTS)
 | |
|     expandOverloads(I.second, LegalTypes);
 | |
| }
 | |
| 
 | |
| void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
 | |
|                                 const TypeSetByHwMode::SetType &Legal) {
 | |
|   std::set<MVT> Ovs;
 | |
|   for (MVT T : Out) {
 | |
|     if (!T.isOverloaded())
 | |
|       continue;
 | |
| 
 | |
|     Ovs.insert(T);
 | |
|     // MachineValueTypeSet allows iteration and erasing.
 | |
|     Out.erase(T);
 | |
|   }
 | |
| 
 | |
|   for (MVT Ov : Ovs) {
 | |
|     switch (Ov.SimpleTy) {
 | |
|       case MVT::iPTRAny:
 | |
|         Out.insert(MVT::iPTR);
 | |
|         return;
 | |
|       case MVT::iAny:
 | |
|         for (MVT T : MVT::integer_valuetypes())
 | |
|           if (Legal.count(T))
 | |
|             Out.insert(T);
 | |
|         for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
 | |
|           if (Legal.count(T))
 | |
|             Out.insert(T);
 | |
|         for (MVT T : MVT::integer_scalable_vector_valuetypes())
 | |
|           if (Legal.count(T))
 | |
|             Out.insert(T);
 | |
|         return;
 | |
|       case MVT::fAny:
 | |
|         for (MVT T : MVT::fp_valuetypes())
 | |
|           if (Legal.count(T))
 | |
|             Out.insert(T);
 | |
|         for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
 | |
|           if (Legal.count(T))
 | |
|             Out.insert(T);
 | |
|         for (MVT T : MVT::fp_scalable_vector_valuetypes())
 | |
|           if (Legal.count(T))
 | |
|             Out.insert(T);
 | |
|         return;
 | |
|       case MVT::vAny:
 | |
|         for (MVT T : MVT::vector_valuetypes())
 | |
|           if (Legal.count(T))
 | |
|             Out.insert(T);
 | |
|         return;
 | |
|       case MVT::Any:
 | |
|         for (MVT T : MVT::all_valuetypes())
 | |
|           if (Legal.count(T))
 | |
|             Out.insert(T);
 | |
|         return;
 | |
|       default:
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| const TypeSetByHwMode &TypeInfer::getLegalTypes() {
 | |
|   if (!LegalTypesCached) {
 | |
|     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
 | |
|     // Stuff all types from all modes into the default mode.
 | |
|     const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes();
 | |
|     for (const auto &I : LTS)
 | |
|       LegalTypes.insert(I.second);
 | |
|     LegalTypesCached = true;
 | |
|   }
 | |
|   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
 | |
|   return LegalCache;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| TypeInfer::ValidateOnExit::~ValidateOnExit() {
 | |
|   if (Infer.Validate && !VTS.validate()) {
 | |
|     dbgs() << "Type set is empty for each HW mode:\n"
 | |
|               "possible type contradiction in the pattern below "
 | |
|               "(use -print-records with llvm-tblgen to see all "
 | |
|               "expanded records).\n";
 | |
|     Infer.TP.dump();
 | |
|     dbgs() << "Generated from record:\n";
 | |
|     Infer.TP.getRecord()->dump();
 | |
|     PrintFatalError(Infer.TP.getRecord()->getLoc(),
 | |
|                     "Type set is empty for each HW mode in '" +
 | |
|                         Infer.TP.getRecord()->getName() + "'");
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ScopedName Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool ScopedName::operator==(const ScopedName &o) const {
 | |
|   return Scope == o.Scope && Identifier == o.Identifier;
 | |
| }
 | |
| 
 | |
| bool ScopedName::operator!=(const ScopedName &o) const {
 | |
|   return !(*this == o);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TreePredicateFn Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
 | |
| TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
 | |
|   assert(
 | |
|       (!hasPredCode() || !hasImmCode()) &&
 | |
|       ".td file corrupt: can't have a node predicate *and* an imm predicate");
 | |
| }
 | |
| 
 | |
| bool TreePredicateFn::hasPredCode() const {
 | |
|   return isLoad() || isStore() || isAtomic() ||
 | |
|          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
 | |
| }
 | |
| 
 | |
| std::string TreePredicateFn::getPredCode() const {
 | |
|   std::string Code;
 | |
| 
 | |
|   if (!isLoad() && !isStore() && !isAtomic()) {
 | |
|     Record *MemoryVT = getMemoryVT();
 | |
| 
 | |
|     if (MemoryVT)
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "MemoryVT requires IsLoad or IsStore");
 | |
|   }
 | |
| 
 | |
|   if (!isLoad() && !isStore()) {
 | |
|     if (isUnindexed())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsUnindexed requires IsLoad or IsStore");
 | |
| 
 | |
|     Record *ScalarMemoryVT = getScalarMemoryVT();
 | |
| 
 | |
|     if (ScalarMemoryVT)
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "ScalarMemoryVT requires IsLoad or IsStore");
 | |
|   }
 | |
| 
 | |
|   if (isLoad() + isStore() + isAtomic() > 1)
 | |
|     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
 | |
| 
 | |
|   if (isLoad()) {
 | |
|     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
 | |
|         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
 | |
|         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
 | |
|         getMinAlignment() < 1)
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsLoad cannot be used by itself");
 | |
|   } else {
 | |
|     if (isNonExtLoad())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsNonExtLoad requires IsLoad");
 | |
|     if (isAnyExtLoad())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsAnyExtLoad requires IsLoad");
 | |
|     if (isSignExtLoad())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsSignExtLoad requires IsLoad");
 | |
|     if (isZeroExtLoad())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsZeroExtLoad requires IsLoad");
 | |
|   }
 | |
| 
 | |
|   if (isStore()) {
 | |
|     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
 | |
|         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
 | |
|         getAddressSpaces() == nullptr && getMinAlignment() < 1)
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsStore cannot be used by itself");
 | |
|   } else {
 | |
|     if (isNonTruncStore())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsNonTruncStore requires IsStore");
 | |
|     if (isTruncStore())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsTruncStore requires IsStore");
 | |
|   }
 | |
| 
 | |
|   if (isAtomic()) {
 | |
|     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
 | |
|         getAddressSpaces() == nullptr &&
 | |
|         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
 | |
|         !isAtomicOrderingAcquireRelease() &&
 | |
|         !isAtomicOrderingSequentiallyConsistent() &&
 | |
|         !isAtomicOrderingAcquireOrStronger() &&
 | |
|         !isAtomicOrderingReleaseOrStronger() &&
 | |
|         !isAtomicOrderingWeakerThanAcquire() &&
 | |
|         !isAtomicOrderingWeakerThanRelease())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsAtomic cannot be used by itself");
 | |
|   } else {
 | |
|     if (isAtomicOrderingMonotonic())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsAtomicOrderingMonotonic requires IsAtomic");
 | |
|     if (isAtomicOrderingAcquire())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsAtomicOrderingAcquire requires IsAtomic");
 | |
|     if (isAtomicOrderingRelease())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsAtomicOrderingRelease requires IsAtomic");
 | |
|     if (isAtomicOrderingAcquireRelease())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
 | |
|     if (isAtomicOrderingSequentiallyConsistent())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
 | |
|     if (isAtomicOrderingAcquireOrStronger())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
 | |
|     if (isAtomicOrderingReleaseOrStronger())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
 | |
|     if (isAtomicOrderingWeakerThanAcquire())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
 | |
|   }
 | |
| 
 | |
|   if (isLoad() || isStore() || isAtomic()) {
 | |
|     if (ListInit *AddressSpaces = getAddressSpaces()) {
 | |
|       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
 | |
|         " if (";
 | |
| 
 | |
|       ListSeparator LS(" && ");
 | |
|       for (Init *Val : AddressSpaces->getValues()) {
 | |
|         Code += LS;
 | |
| 
 | |
|         IntInit *IntVal = dyn_cast<IntInit>(Val);
 | |
|         if (!IntVal) {
 | |
|           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                           "AddressSpaces element must be integer");
 | |
|         }
 | |
| 
 | |
|         Code += "AddrSpace != " + utostr(IntVal->getValue());
 | |
|       }
 | |
| 
 | |
|       Code += ")\nreturn false;\n";
 | |
|     }
 | |
| 
 | |
|     int64_t MinAlign = getMinAlignment();
 | |
|     if (MinAlign > 0) {
 | |
|       Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
 | |
|       Code += utostr(MinAlign);
 | |
|       Code += "))\nreturn false;\n";
 | |
|     }
 | |
| 
 | |
|     Record *MemoryVT = getMemoryVT();
 | |
| 
 | |
|     if (MemoryVT)
 | |
|       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
 | |
|                MemoryVT->getName() + ") return false;\n")
 | |
|                   .str();
 | |
|   }
 | |
| 
 | |
|   if (isAtomic() && isAtomicOrderingMonotonic())
 | |
|     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
 | |
|             "AtomicOrdering::Monotonic) return false;\n";
 | |
|   if (isAtomic() && isAtomicOrderingAcquire())
 | |
|     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
 | |
|             "AtomicOrdering::Acquire) return false;\n";
 | |
|   if (isAtomic() && isAtomicOrderingRelease())
 | |
|     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
 | |
|             "AtomicOrdering::Release) return false;\n";
 | |
|   if (isAtomic() && isAtomicOrderingAcquireRelease())
 | |
|     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
 | |
|             "AtomicOrdering::AcquireRelease) return false;\n";
 | |
|   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
 | |
|     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
 | |
|             "AtomicOrdering::SequentiallyConsistent) return false;\n";
 | |
| 
 | |
|   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
 | |
|     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
 | |
|             "return false;\n";
 | |
|   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
 | |
|     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
 | |
|             "return false;\n";
 | |
| 
 | |
|   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
 | |
|     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
 | |
|             "return false;\n";
 | |
|   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
 | |
|     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
 | |
|             "return false;\n";
 | |
| 
 | |
|   if (isLoad() || isStore()) {
 | |
|     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
 | |
| 
 | |
|     if (isUnindexed())
 | |
|       Code += ("if (cast<" + SDNodeName +
 | |
|                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
 | |
|                "return false;\n")
 | |
|                   .str();
 | |
| 
 | |
|     if (isLoad()) {
 | |
|       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
 | |
|            isZeroExtLoad()) > 1)
 | |
|         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
 | |
|                         "IsZeroExtLoad are mutually exclusive");
 | |
|       if (isNonExtLoad())
 | |
|         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
 | |
|                 "ISD::NON_EXTLOAD) return false;\n";
 | |
|       if (isAnyExtLoad())
 | |
|         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
 | |
|                 "return false;\n";
 | |
|       if (isSignExtLoad())
 | |
|         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
 | |
|                 "return false;\n";
 | |
|       if (isZeroExtLoad())
 | |
|         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
 | |
|                 "return false;\n";
 | |
|     } else {
 | |
|       if ((isNonTruncStore() + isTruncStore()) > 1)
 | |
|         PrintFatalError(
 | |
|             getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
 | |
|       if (isNonTruncStore())
 | |
|         Code +=
 | |
|             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
 | |
|       if (isTruncStore())
 | |
|         Code +=
 | |
|             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
 | |
|     }
 | |
| 
 | |
|     Record *ScalarMemoryVT = getScalarMemoryVT();
 | |
| 
 | |
|     if (ScalarMemoryVT)
 | |
|       Code += ("if (cast<" + SDNodeName +
 | |
|                ">(N)->getMemoryVT().getScalarType() != MVT::" +
 | |
|                ScalarMemoryVT->getName() + ") return false;\n")
 | |
|                   .str();
 | |
|   }
 | |
| 
 | |
|   std::string PredicateCode =
 | |
|       std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
 | |
| 
 | |
|   Code += PredicateCode;
 | |
| 
 | |
|   if (PredicateCode.empty() && !Code.empty())
 | |
|     Code += "return true;\n";
 | |
| 
 | |
|   return Code;
 | |
| }
 | |
| 
 | |
| bool TreePredicateFn::hasImmCode() const {
 | |
|   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
 | |
| }
 | |
| 
 | |
| std::string TreePredicateFn::getImmCode() const {
 | |
|   return std::string(
 | |
|       PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
 | |
| }
 | |
| 
 | |
| bool TreePredicateFn::immCodeUsesAPInt() const {
 | |
|   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
 | |
| }
 | |
| 
 | |
| bool TreePredicateFn::immCodeUsesAPFloat() const {
 | |
|   bool Unset;
 | |
|   // The return value will be false when IsAPFloat is unset.
 | |
|   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
 | |
|                                                                    Unset);
 | |
| }
 | |
| 
 | |
| bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
 | |
|                                                    bool Value) const {
 | |
|   bool Unset;
 | |
|   bool Result =
 | |
|       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
 | |
|   if (Unset)
 | |
|     return false;
 | |
|   return Result == Value;
 | |
| }
 | |
| bool TreePredicateFn::usesOperands() const {
 | |
|   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
 | |
| }
 | |
| bool TreePredicateFn::isLoad() const {
 | |
|   return isPredefinedPredicateEqualTo("IsLoad", true);
 | |
| }
 | |
| bool TreePredicateFn::isStore() const {
 | |
|   return isPredefinedPredicateEqualTo("IsStore", true);
 | |
| }
 | |
| bool TreePredicateFn::isAtomic() const {
 | |
|   return isPredefinedPredicateEqualTo("IsAtomic", true);
 | |
| }
 | |
| bool TreePredicateFn::isUnindexed() const {
 | |
|   return isPredefinedPredicateEqualTo("IsUnindexed", true);
 | |
| }
 | |
| bool TreePredicateFn::isNonExtLoad() const {
 | |
|   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
 | |
| }
 | |
| bool TreePredicateFn::isAnyExtLoad() const {
 | |
|   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
 | |
| }
 | |
| bool TreePredicateFn::isSignExtLoad() const {
 | |
|   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
 | |
| }
 | |
| bool TreePredicateFn::isZeroExtLoad() const {
 | |
|   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
 | |
| }
 | |
| bool TreePredicateFn::isNonTruncStore() const {
 | |
|   return isPredefinedPredicateEqualTo("IsTruncStore", false);
 | |
| }
 | |
| bool TreePredicateFn::isTruncStore() const {
 | |
|   return isPredefinedPredicateEqualTo("IsTruncStore", true);
 | |
| }
 | |
| bool TreePredicateFn::isAtomicOrderingMonotonic() const {
 | |
|   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
 | |
| }
 | |
| bool TreePredicateFn::isAtomicOrderingAcquire() const {
 | |
|   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
 | |
| }
 | |
| bool TreePredicateFn::isAtomicOrderingRelease() const {
 | |
|   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
 | |
| }
 | |
| bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
 | |
|   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
 | |
| }
 | |
| bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
 | |
|   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
 | |
|                                       true);
 | |
| }
 | |
| bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
 | |
|   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
 | |
| }
 | |
| bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
 | |
|   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
 | |
| }
 | |
| bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
 | |
|   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
 | |
| }
 | |
| bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
 | |
|   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
 | |
| }
 | |
| Record *TreePredicateFn::getMemoryVT() const {
 | |
|   Record *R = getOrigPatFragRecord()->getRecord();
 | |
|   if (R->isValueUnset("MemoryVT"))
 | |
|     return nullptr;
 | |
|   return R->getValueAsDef("MemoryVT");
 | |
| }
 | |
| 
 | |
| ListInit *TreePredicateFn::getAddressSpaces() const {
 | |
|   Record *R = getOrigPatFragRecord()->getRecord();
 | |
|   if (R->isValueUnset("AddressSpaces"))
 | |
|     return nullptr;
 | |
|   return R->getValueAsListInit("AddressSpaces");
 | |
| }
 | |
| 
 | |
| int64_t TreePredicateFn::getMinAlignment() const {
 | |
|   Record *R = getOrigPatFragRecord()->getRecord();
 | |
|   if (R->isValueUnset("MinAlignment"))
 | |
|     return 0;
 | |
|   return R->getValueAsInt("MinAlignment");
 | |
| }
 | |
| 
 | |
| Record *TreePredicateFn::getScalarMemoryVT() const {
 | |
|   Record *R = getOrigPatFragRecord()->getRecord();
 | |
|   if (R->isValueUnset("ScalarMemoryVT"))
 | |
|     return nullptr;
 | |
|   return R->getValueAsDef("ScalarMemoryVT");
 | |
| }
 | |
| bool TreePredicateFn::hasGISelPredicateCode() const {
 | |
|   return !PatFragRec->getRecord()
 | |
|               ->getValueAsString("GISelPredicateCode")
 | |
|               .empty();
 | |
| }
 | |
| std::string TreePredicateFn::getGISelPredicateCode() const {
 | |
|   return std::string(
 | |
|       PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
 | |
| }
 | |
| 
 | |
| StringRef TreePredicateFn::getImmType() const {
 | |
|   if (immCodeUsesAPInt())
 | |
|     return "const APInt &";
 | |
|   if (immCodeUsesAPFloat())
 | |
|     return "const APFloat &";
 | |
|   return "int64_t";
 | |
| }
 | |
| 
 | |
| StringRef TreePredicateFn::getImmTypeIdentifier() const {
 | |
|   if (immCodeUsesAPInt())
 | |
|     return "APInt";
 | |
|   if (immCodeUsesAPFloat())
 | |
|     return "APFloat";
 | |
|   return "I64";
 | |
| }
 | |
| 
 | |
| /// isAlwaysTrue - Return true if this is a noop predicate.
 | |
| bool TreePredicateFn::isAlwaysTrue() const {
 | |
|   return !hasPredCode() && !hasImmCode();
 | |
| }
 | |
| 
 | |
| /// Return the name to use in the generated code to reference this, this is
 | |
| /// "Predicate_foo" if from a pattern fragment "foo".
 | |
| std::string TreePredicateFn::getFnName() const {
 | |
|   return "Predicate_" + PatFragRec->getRecord()->getName().str();
 | |
| }
 | |
| 
 | |
| /// getCodeToRunOnSDNode - Return the code for the function body that
 | |
| /// evaluates this predicate.  The argument is expected to be in "Node",
 | |
| /// not N.  This handles casting and conversion to a concrete node type as
 | |
| /// appropriate.
 | |
| std::string TreePredicateFn::getCodeToRunOnSDNode() const {
 | |
|   // Handle immediate predicates first.
 | |
|   std::string ImmCode = getImmCode();
 | |
|   if (!ImmCode.empty()) {
 | |
|     if (isLoad())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsLoad cannot be used with ImmLeaf or its subclasses");
 | |
|     if (isStore())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "IsStore cannot be used with ImmLeaf or its subclasses");
 | |
|     if (isUnindexed())
 | |
|       PrintFatalError(
 | |
|           getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
 | |
|     if (isNonExtLoad())
 | |
|       PrintFatalError(
 | |
|           getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
 | |
|     if (isAnyExtLoad())
 | |
|       PrintFatalError(
 | |
|           getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
 | |
|     if (isSignExtLoad())
 | |
|       PrintFatalError(
 | |
|           getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
 | |
|     if (isZeroExtLoad())
 | |
|       PrintFatalError(
 | |
|           getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
 | |
|     if (isNonTruncStore())
 | |
|       PrintFatalError(
 | |
|           getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
 | |
|     if (isTruncStore())
 | |
|       PrintFatalError(
 | |
|           getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
 | |
|     if (getMemoryVT())
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
 | |
|     if (getScalarMemoryVT())
 | |
|       PrintFatalError(
 | |
|           getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
 | |
| 
 | |
|     std::string Result = ("    " + getImmType() + " Imm = ").str();
 | |
|     if (immCodeUsesAPFloat())
 | |
|       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
 | |
|     else if (immCodeUsesAPInt())
 | |
|       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
 | |
|     else
 | |
|       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
 | |
|     return Result + ImmCode;
 | |
|   }
 | |
| 
 | |
|   // Handle arbitrary node predicates.
 | |
|   assert(hasPredCode() && "Don't have any predicate code!");
 | |
| 
 | |
|   // If this is using PatFrags, there are multiple trees to search. They should
 | |
|   // all have the same class.  FIXME: Is there a way to find a common
 | |
|   // superclass?
 | |
|   StringRef ClassName;
 | |
|   for (const auto &Tree : PatFragRec->getTrees()) {
 | |
|     StringRef TreeClassName;
 | |
|     if (Tree->isLeaf())
 | |
|       TreeClassName = "SDNode";
 | |
|     else {
 | |
|       Record *Op = Tree->getOperator();
 | |
|       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
 | |
|       TreeClassName = Info.getSDClassName();
 | |
|     }
 | |
| 
 | |
|     if (ClassName.empty())
 | |
|       ClassName = TreeClassName;
 | |
|     else if (ClassName != TreeClassName) {
 | |
|       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | |
|                       "PatFrags trees do not have consistent class");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::string Result;
 | |
|   if (ClassName == "SDNode")
 | |
|     Result = "    SDNode *N = Node;\n";
 | |
|   else
 | |
|     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
 | |
| 
 | |
|   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PatternToMatch implementation
 | |
| //
 | |
| 
 | |
| static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
 | |
|   if (!P->isLeaf())
 | |
|     return false;
 | |
|   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
 | |
|   if (!DI)
 | |
|     return false;
 | |
| 
 | |
|   Record *R = DI->getDef();
 | |
|   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
 | |
| }
 | |
| 
 | |
| /// getPatternSize - Return the 'size' of this pattern.  We want to match large
 | |
| /// patterns before small ones.  This is used to determine the size of a
 | |
| /// pattern.
 | |
| static unsigned getPatternSize(const TreePatternNode *P,
 | |
|                                const CodeGenDAGPatterns &CGP) {
 | |
|   unsigned Size = 3;  // The node itself.
 | |
|   // If the root node is a ConstantSDNode, increases its size.
 | |
|   // e.g. (set R32:$dst, 0).
 | |
|   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
 | |
|     Size += 2;
 | |
| 
 | |
|   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
 | |
|     Size += AM->getComplexity();
 | |
|     // We don't want to count any children twice, so return early.
 | |
|     return Size;
 | |
|   }
 | |
| 
 | |
|   // If this node has some predicate function that must match, it adds to the
 | |
|   // complexity of this node.
 | |
|   if (!P->getPredicateCalls().empty())
 | |
|     ++Size;
 | |
| 
 | |
|   // Count children in the count if they are also nodes.
 | |
|   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
 | |
|     const TreePatternNode *Child = P->getChild(i);
 | |
|     if (!Child->isLeaf() && Child->getNumTypes()) {
 | |
|       const TypeSetByHwMode &T0 = Child->getExtType(0);
 | |
|       // At this point, all variable type sets should be simple, i.e. only
 | |
|       // have a default mode.
 | |
|       if (T0.getMachineValueType() != MVT::Other) {
 | |
|         Size += getPatternSize(Child, CGP);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (Child->isLeaf()) {
 | |
|       if (isa<IntInit>(Child->getLeafValue()))
 | |
|         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
 | |
|       else if (Child->getComplexPatternInfo(CGP))
 | |
|         Size += getPatternSize(Child, CGP);
 | |
|       else if (isImmAllOnesAllZerosMatch(Child))
 | |
|         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
 | |
|       else if (!Child->getPredicateCalls().empty())
 | |
|         ++Size;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /// Compute the complexity metric for the input pattern.  This roughly
 | |
| /// corresponds to the number of nodes that are covered.
 | |
| int PatternToMatch::
 | |
| getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
 | |
|   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
 | |
| }
 | |
| 
 | |
| void PatternToMatch::getPredicateRecords(
 | |
|     SmallVectorImpl<Record *> &PredicateRecs) const {
 | |
|   for (Init *I : Predicates->getValues()) {
 | |
|     if (DefInit *Pred = dyn_cast<DefInit>(I)) {
 | |
|       Record *Def = Pred->getDef();
 | |
|       if (!Def->isSubClassOf("Predicate")) {
 | |
| #ifndef NDEBUG
 | |
|         Def->dump();
 | |
| #endif
 | |
|         llvm_unreachable("Unknown predicate type!");
 | |
|       }
 | |
|       PredicateRecs.push_back(Def);
 | |
|     }
 | |
|   }
 | |
|   // Sort so that different orders get canonicalized to the same string.
 | |
|   llvm::sort(PredicateRecs, LessRecord());
 | |
| }
 | |
| 
 | |
| /// getPredicateCheck - Return a single string containing all of this
 | |
| /// pattern's predicates concatenated with "&&" operators.
 | |
| ///
 | |
| std::string PatternToMatch::getPredicateCheck() const {
 | |
|   SmallVector<Record *, 4> PredicateRecs;
 | |
|   getPredicateRecords(PredicateRecs);
 | |
| 
 | |
|   SmallString<128> PredicateCheck;
 | |
|   for (Record *Pred : PredicateRecs) {
 | |
|     StringRef CondString = Pred->getValueAsString("CondString");
 | |
|     if (CondString.empty())
 | |
|       continue;
 | |
|     if (!PredicateCheck.empty())
 | |
|       PredicateCheck += " && ";
 | |
|     PredicateCheck += "(";
 | |
|     PredicateCheck += CondString;
 | |
|     PredicateCheck += ")";
 | |
|   }
 | |
| 
 | |
|   if (!HwModeFeatures.empty()) {
 | |
|     if (!PredicateCheck.empty())
 | |
|       PredicateCheck += " && ";
 | |
|     PredicateCheck += HwModeFeatures;
 | |
|   }
 | |
| 
 | |
|   return std::string(PredicateCheck);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SDTypeConstraint implementation
 | |
| //
 | |
| 
 | |
| SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
 | |
|   OperandNo = R->getValueAsInt("OperandNum");
 | |
| 
 | |
|   if (R->isSubClassOf("SDTCisVT")) {
 | |
|     ConstraintType = SDTCisVT;
 | |
|     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
 | |
|     for (const auto &P : VVT)
 | |
|       if (P.second == MVT::isVoid)
 | |
|         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
 | |
|   } else if (R->isSubClassOf("SDTCisPtrTy")) {
 | |
|     ConstraintType = SDTCisPtrTy;
 | |
|   } else if (R->isSubClassOf("SDTCisInt")) {
 | |
|     ConstraintType = SDTCisInt;
 | |
|   } else if (R->isSubClassOf("SDTCisFP")) {
 | |
|     ConstraintType = SDTCisFP;
 | |
|   } else if (R->isSubClassOf("SDTCisVec")) {
 | |
|     ConstraintType = SDTCisVec;
 | |
|   } else if (R->isSubClassOf("SDTCisSameAs")) {
 | |
|     ConstraintType = SDTCisSameAs;
 | |
|     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
 | |
|     ConstraintType = SDTCisVTSmallerThanOp;
 | |
|     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
 | |
|       R->getValueAsInt("OtherOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
 | |
|     ConstraintType = SDTCisOpSmallerThanOp;
 | |
|     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
 | |
|       R->getValueAsInt("BigOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
 | |
|     ConstraintType = SDTCisEltOfVec;
 | |
|     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
 | |
|   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
 | |
|     ConstraintType = SDTCisSubVecOfVec;
 | |
|     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
 | |
|       R->getValueAsInt("OtherOpNum");
 | |
|   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
 | |
|     ConstraintType = SDTCVecEltisVT;
 | |
|     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
 | |
|     for (const auto &P : VVT) {
 | |
|       MVT T = P.second;
 | |
|       if (T.isVector())
 | |
|         PrintFatalError(R->getLoc(),
 | |
|                         "Cannot use vector type as SDTCVecEltisVT");
 | |
|       if (!T.isInteger() && !T.isFloatingPoint())
 | |
|         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
 | |
|                                      "as SDTCVecEltisVT");
 | |
|     }
 | |
|   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
 | |
|     ConstraintType = SDTCisSameNumEltsAs;
 | |
|     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
 | |
|       R->getValueAsInt("OtherOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
 | |
|     ConstraintType = SDTCisSameSizeAs;
 | |
|     x.SDTCisSameSizeAs_Info.OtherOperandNum =
 | |
|       R->getValueAsInt("OtherOperandNum");
 | |
|   } else {
 | |
|     PrintFatalError(R->getLoc(),
 | |
|                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getOperandNum - Return the node corresponding to operand #OpNo in tree
 | |
| /// N, and the result number in ResNo.
 | |
| static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
 | |
|                                       const SDNodeInfo &NodeInfo,
 | |
|                                       unsigned &ResNo) {
 | |
|   unsigned NumResults = NodeInfo.getNumResults();
 | |
|   if (OpNo < NumResults) {
 | |
|     ResNo = OpNo;
 | |
|     return N;
 | |
|   }
 | |
| 
 | |
|   OpNo -= NumResults;
 | |
| 
 | |
|   if (OpNo >= N->getNumChildren()) {
 | |
|     std::string S;
 | |
|     raw_string_ostream OS(S);
 | |
|     OS << "Invalid operand number in type constraint "
 | |
|            << (OpNo+NumResults) << " ";
 | |
|     N->print(OS);
 | |
|     PrintFatalError(S);
 | |
|   }
 | |
| 
 | |
|   return N->getChild(OpNo);
 | |
| }
 | |
| 
 | |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type
 | |
| /// constraint to the nodes operands.  This returns true if it makes a
 | |
| /// change, false otherwise.  If a type contradiction is found, flag an error.
 | |
| bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
 | |
|                                            const SDNodeInfo &NodeInfo,
 | |
|                                            TreePattern &TP) const {
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   unsigned ResNo = 0; // The result number being referenced.
 | |
|   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
 | |
|   TypeInfer &TI = TP.getInfer();
 | |
| 
 | |
|   switch (ConstraintType) {
 | |
|   case SDTCisVT:
 | |
|     // Operand must be a particular type.
 | |
|     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
 | |
|   case SDTCisPtrTy:
 | |
|     // Operand must be same as target pointer type.
 | |
|     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
 | |
|   case SDTCisInt:
 | |
|     // Require it to be one of the legal integer VTs.
 | |
|      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
 | |
|   case SDTCisFP:
 | |
|     // Require it to be one of the legal fp VTs.
 | |
|     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
 | |
|   case SDTCisVec:
 | |
|     // Require it to be one of the legal vector VTs.
 | |
|     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
 | |
|   case SDTCisSameAs: {
 | |
|     unsigned OResNo = 0;
 | |
|     TreePatternNode *OtherNode =
 | |
|       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
 | |
|     return (int)NodeToApply->UpdateNodeType(ResNo,
 | |
|                                             OtherNode->getExtType(OResNo), TP) |
 | |
|            (int)OtherNode->UpdateNodeType(OResNo,
 | |
|                                           NodeToApply->getExtType(ResNo), TP);
 | |
|   }
 | |
|   case SDTCisVTSmallerThanOp: {
 | |
|     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
 | |
|     // have an integer type that is smaller than the VT.
 | |
|     if (!NodeToApply->isLeaf() ||
 | |
|         !isa<DefInit>(NodeToApply->getLeafValue()) ||
 | |
|         !cast<DefInit>(NodeToApply->getLeafValue())->getDef()
 | |
|                ->isSubClassOf("ValueType")) {
 | |
|       TP.error(N->getOperator()->getName() + " expects a VT operand!");
 | |
|       return false;
 | |
|     }
 | |
|     DefInit *DI = cast<DefInit>(NodeToApply->getLeafValue());
 | |
|     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | |
|     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
 | |
|     TypeSetByHwMode TypeListTmp(VVT);
 | |
| 
 | |
|     unsigned OResNo = 0;
 | |
|     TreePatternNode *OtherNode =
 | |
|       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
 | |
|                     OResNo);
 | |
| 
 | |
|     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo),
 | |
|                                  /*SmallIsVT*/ true);
 | |
|   }
 | |
|   case SDTCisOpSmallerThanOp: {
 | |
|     unsigned BResNo = 0;
 | |
|     TreePatternNode *BigOperand =
 | |
|       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
 | |
|                     BResNo);
 | |
|     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
 | |
|                                  BigOperand->getExtType(BResNo));
 | |
|   }
 | |
|   case SDTCisEltOfVec: {
 | |
|     unsigned VResNo = 0;
 | |
|     TreePatternNode *VecOperand =
 | |
|       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
 | |
|                     VResNo);
 | |
|     // Filter vector types out of VecOperand that don't have the right element
 | |
|     // type.
 | |
|     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
 | |
|                                      NodeToApply->getExtType(ResNo));
 | |
|   }
 | |
|   case SDTCisSubVecOfVec: {
 | |
|     unsigned VResNo = 0;
 | |
|     TreePatternNode *BigVecOperand =
 | |
|       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
 | |
|                     VResNo);
 | |
| 
 | |
|     // Filter vector types out of BigVecOperand that don't have the
 | |
|     // right subvector type.
 | |
|     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
 | |
|                                            NodeToApply->getExtType(ResNo));
 | |
|   }
 | |
|   case SDTCVecEltisVT: {
 | |
|     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
 | |
|   }
 | |
|   case SDTCisSameNumEltsAs: {
 | |
|     unsigned OResNo = 0;
 | |
|     TreePatternNode *OtherNode =
 | |
|       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
 | |
|                     N, NodeInfo, OResNo);
 | |
|     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
 | |
|                                  NodeToApply->getExtType(ResNo));
 | |
|   }
 | |
|   case SDTCisSameSizeAs: {
 | |
|     unsigned OResNo = 0;
 | |
|     TreePatternNode *OtherNode =
 | |
|       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
 | |
|                     N, NodeInfo, OResNo);
 | |
|     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
 | |
|                               NodeToApply->getExtType(ResNo));
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("Invalid ConstraintType!");
 | |
| }
 | |
| 
 | |
| // Update the node type to match an instruction operand or result as specified
 | |
| // in the ins or outs lists on the instruction definition. Return true if the
 | |
| // type was actually changed.
 | |
| bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
 | |
|                                              Record *Operand,
 | |
|                                              TreePattern &TP) {
 | |
|   // The 'unknown' operand indicates that types should be inferred from the
 | |
|   // context.
 | |
|   if (Operand->isSubClassOf("unknown_class"))
 | |
|     return false;
 | |
| 
 | |
|   // The Operand class specifies a type directly.
 | |
|   if (Operand->isSubClassOf("Operand")) {
 | |
|     Record *R = Operand->getValueAsDef("Type");
 | |
|     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | |
|     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
 | |
|   }
 | |
| 
 | |
|   // PointerLikeRegClass has a type that is determined at runtime.
 | |
|   if (Operand->isSubClassOf("PointerLikeRegClass"))
 | |
|     return UpdateNodeType(ResNo, MVT::iPTR, TP);
 | |
| 
 | |
|   // Both RegisterClass and RegisterOperand operands derive their types from a
 | |
|   // register class def.
 | |
|   Record *RC = nullptr;
 | |
|   if (Operand->isSubClassOf("RegisterClass"))
 | |
|     RC = Operand;
 | |
|   else if (Operand->isSubClassOf("RegisterOperand"))
 | |
|     RC = Operand->getValueAsDef("RegClass");
 | |
| 
 | |
|   assert(RC && "Unknown operand type");
 | |
|   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
 | |
|   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
 | |
| }
 | |
| 
 | |
| bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
 | |
|   for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | |
|     if (!TP.getInfer().isConcrete(Types[i], true))
 | |
|       return true;
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     if (getChild(i)->ContainsUnresolvedType(TP))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool TreePatternNode::hasProperTypeByHwMode() const {
 | |
|   for (const TypeSetByHwMode &S : Types)
 | |
|     if (!S.isDefaultOnly())
 | |
|       return true;
 | |
|   for (const TreePatternNodePtr &C : Children)
 | |
|     if (C->hasProperTypeByHwMode())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool TreePatternNode::hasPossibleType() const {
 | |
|   for (const TypeSetByHwMode &S : Types)
 | |
|     if (!S.isPossible())
 | |
|       return false;
 | |
|   for (const TreePatternNodePtr &C : Children)
 | |
|     if (!C->hasPossibleType())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool TreePatternNode::setDefaultMode(unsigned Mode) {
 | |
|   for (TypeSetByHwMode &S : Types) {
 | |
|     S.makeSimple(Mode);
 | |
|     // Check if the selected mode had a type conflict.
 | |
|     if (S.get(DefaultMode).empty())
 | |
|       return false;
 | |
|   }
 | |
|   for (const TreePatternNodePtr &C : Children)
 | |
|     if (!C->setDefaultMode(Mode))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SDNodeInfo implementation
 | |
| //
 | |
| SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
 | |
|   EnumName    = R->getValueAsString("Opcode");
 | |
|   SDClassName = R->getValueAsString("SDClass");
 | |
|   Record *TypeProfile = R->getValueAsDef("TypeProfile");
 | |
|   NumResults = TypeProfile->getValueAsInt("NumResults");
 | |
|   NumOperands = TypeProfile->getValueAsInt("NumOperands");
 | |
| 
 | |
|   // Parse the properties.
 | |
|   Properties = parseSDPatternOperatorProperties(R);
 | |
| 
 | |
|   // Parse the type constraints.
 | |
|   std::vector<Record*> ConstraintList =
 | |
|     TypeProfile->getValueAsListOfDefs("Constraints");
 | |
|   for (Record *R : ConstraintList)
 | |
|     TypeConstraints.emplace_back(R, CGH);
 | |
| }
 | |
| 
 | |
| /// getKnownType - If the type constraints on this node imply a fixed type
 | |
| /// (e.g. all stores return void, etc), then return it as an
 | |
| /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
 | |
| MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
 | |
|   unsigned NumResults = getNumResults();
 | |
|   assert(NumResults <= 1 &&
 | |
|          "We only work with nodes with zero or one result so far!");
 | |
|   assert(ResNo == 0 && "Only handles single result nodes so far");
 | |
| 
 | |
|   for (const SDTypeConstraint &Constraint : TypeConstraints) {
 | |
|     // Make sure that this applies to the correct node result.
 | |
|     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
 | |
|       continue;
 | |
| 
 | |
|     switch (Constraint.ConstraintType) {
 | |
|     default: break;
 | |
|     case SDTypeConstraint::SDTCisVT:
 | |
|       if (Constraint.VVT.isSimple())
 | |
|         return Constraint.VVT.getSimple().SimpleTy;
 | |
|       break;
 | |
|     case SDTypeConstraint::SDTCisPtrTy:
 | |
|       return MVT::iPTR;
 | |
|     }
 | |
|   }
 | |
|   return MVT::Other;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TreePatternNode implementation
 | |
| //
 | |
| 
 | |
| static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
 | |
|   if (Operator->getName() == "set" ||
 | |
|       Operator->getName() == "implicit")
 | |
|     return 0;  // All return nothing.
 | |
| 
 | |
|   if (Operator->isSubClassOf("Intrinsic"))
 | |
|     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
 | |
| 
 | |
|   if (Operator->isSubClassOf("SDNode"))
 | |
|     return CDP.getSDNodeInfo(Operator).getNumResults();
 | |
| 
 | |
|   if (Operator->isSubClassOf("PatFrags")) {
 | |
|     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
 | |
|     // the forward reference case where one pattern fragment references another
 | |
|     // before it is processed.
 | |
|     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
 | |
|       // The number of results of a fragment with alternative records is the
 | |
|       // maximum number of results across all alternatives.
 | |
|       unsigned NumResults = 0;
 | |
|       for (const auto &T : PFRec->getTrees())
 | |
|         NumResults = std::max(NumResults, T->getNumTypes());
 | |
|       return NumResults;
 | |
|     }
 | |
| 
 | |
|     ListInit *LI = Operator->getValueAsListInit("Fragments");
 | |
|     assert(LI && "Invalid Fragment");
 | |
|     unsigned NumResults = 0;
 | |
|     for (Init *I : LI->getValues()) {
 | |
|       Record *Op = nullptr;
 | |
|       if (DagInit *Dag = dyn_cast<DagInit>(I))
 | |
|         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
 | |
|           Op = DI->getDef();
 | |
|       assert(Op && "Invalid Fragment");
 | |
|       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
 | |
|     }
 | |
|     return NumResults;
 | |
|   }
 | |
| 
 | |
|   if (Operator->isSubClassOf("Instruction")) {
 | |
|     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
 | |
| 
 | |
|     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
 | |
| 
 | |
|     // Subtract any defaulted outputs.
 | |
|     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
 | |
|       Record *OperandNode = InstInfo.Operands[i].Rec;
 | |
| 
 | |
|       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
 | |
|           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
 | |
|         --NumDefsToAdd;
 | |
|     }
 | |
| 
 | |
|     // Add on one implicit def if it has a resolvable type.
 | |
|     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
 | |
|       ++NumDefsToAdd;
 | |
|     return NumDefsToAdd;
 | |
|   }
 | |
| 
 | |
|   if (Operator->isSubClassOf("SDNodeXForm"))
 | |
|     return 1;  // FIXME: Generalize SDNodeXForm
 | |
| 
 | |
|   if (Operator->isSubClassOf("ValueType"))
 | |
|     return 1;  // A type-cast of one result.
 | |
| 
 | |
|   if (Operator->isSubClassOf("ComplexPattern"))
 | |
|     return 1;
 | |
| 
 | |
|   errs() << *Operator;
 | |
|   PrintFatalError("Unhandled node in GetNumNodeResults");
 | |
| }
 | |
| 
 | |
| void TreePatternNode::print(raw_ostream &OS) const {
 | |
|   if (isLeaf())
 | |
|     OS << *getLeafValue();
 | |
|   else
 | |
|     OS << '(' << getOperator()->getName();
 | |
| 
 | |
|   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
 | |
|     OS << ':';
 | |
|     getExtType(i).writeToStream(OS);
 | |
|   }
 | |
| 
 | |
|   if (!isLeaf()) {
 | |
|     if (getNumChildren() != 0) {
 | |
|       OS << " ";
 | |
|       ListSeparator LS;
 | |
|       for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
 | |
|         OS << LS;
 | |
|         getChild(i)->print(OS);
 | |
|       }
 | |
|     }
 | |
|     OS << ")";
 | |
|   }
 | |
| 
 | |
|   for (const TreePredicateCall &Pred : PredicateCalls) {
 | |
|     OS << "<<P:";
 | |
|     if (Pred.Scope)
 | |
|       OS << Pred.Scope << ":";
 | |
|     OS << Pred.Fn.getFnName() << ">>";
 | |
|   }
 | |
|   if (TransformFn)
 | |
|     OS << "<<X:" << TransformFn->getName() << ">>";
 | |
|   if (!getName().empty())
 | |
|     OS << ":$" << getName();
 | |
| 
 | |
|   for (const ScopedName &Name : NamesAsPredicateArg)
 | |
|     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
 | |
| }
 | |
| void TreePatternNode::dump() const {
 | |
|   print(errs());
 | |
| }
 | |
| 
 | |
| /// isIsomorphicTo - Return true if this node is recursively
 | |
| /// isomorphic to the specified node.  For this comparison, the node's
 | |
| /// entire state is considered. The assigned name is ignored, since
 | |
| /// nodes with differing names are considered isomorphic. However, if
 | |
| /// the assigned name is present in the dependent variable set, then
 | |
| /// the assigned name is considered significant and the node is
 | |
| /// isomorphic if the names match.
 | |
| bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
 | |
|                                      const MultipleUseVarSet &DepVars) const {
 | |
|   if (N == this) return true;
 | |
|   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
 | |
|       getPredicateCalls() != N->getPredicateCalls() ||
 | |
|       getTransformFn() != N->getTransformFn())
 | |
|     return false;
 | |
| 
 | |
|   if (isLeaf()) {
 | |
|     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
 | |
|       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
 | |
|         return ((DI->getDef() == NDI->getDef())
 | |
|                 && (DepVars.find(getName()) == DepVars.end()
 | |
|                     || getName() == N->getName()));
 | |
|       }
 | |
|     }
 | |
|     return getLeafValue() == N->getLeafValue();
 | |
|   }
 | |
| 
 | |
|   if (N->getOperator() != getOperator() ||
 | |
|       N->getNumChildren() != getNumChildren()) return false;
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// clone - Make a copy of this tree and all of its children.
 | |
| ///
 | |
| TreePatternNodePtr TreePatternNode::clone() const {
 | |
|   TreePatternNodePtr New;
 | |
|   if (isLeaf()) {
 | |
|     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
 | |
|   } else {
 | |
|     std::vector<TreePatternNodePtr> CChildren;
 | |
|     CChildren.reserve(Children.size());
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|       CChildren.push_back(getChild(i)->clone());
 | |
|     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
 | |
|                                             getNumTypes());
 | |
|   }
 | |
|   New->setName(getName());
 | |
|   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
 | |
|   New->Types = Types;
 | |
|   New->setPredicateCalls(getPredicateCalls());
 | |
|   New->setTransformFn(getTransformFn());
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// RemoveAllTypes - Recursively strip all the types of this tree.
 | |
| void TreePatternNode::RemoveAllTypes() {
 | |
|   // Reset to unknown type.
 | |
|   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
 | |
|   if (isLeaf()) return;
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     getChild(i)->RemoveAllTypes();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree
 | |
| /// with actual values specified by ArgMap.
 | |
| void TreePatternNode::SubstituteFormalArguments(
 | |
|     std::map<std::string, TreePatternNodePtr> &ArgMap) {
 | |
|   if (isLeaf()) return;
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
 | |
|     TreePatternNode *Child = getChild(i);
 | |
|     if (Child->isLeaf()) {
 | |
|       Init *Val = Child->getLeafValue();
 | |
|       // Note that, when substituting into an output pattern, Val might be an
 | |
|       // UnsetInit.
 | |
|       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
 | |
|           cast<DefInit>(Val)->getDef()->getName() == "node")) {
 | |
|         // We found a use of a formal argument, replace it with its value.
 | |
|         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
 | |
|         assert(NewChild && "Couldn't find formal argument!");
 | |
|         assert((Child->getPredicateCalls().empty() ||
 | |
|                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
 | |
|                "Non-empty child predicate clobbered!");
 | |
|         setChild(i, std::move(NewChild));
 | |
|       }
 | |
|     } else {
 | |
|       getChild(i)->SubstituteFormalArguments(ArgMap);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InlinePatternFragments - If this pattern refers to any pattern
 | |
| /// fragments, return the set of inlined versions (this can be more than
 | |
| /// one if a PatFrags record has multiple alternatives).
 | |
| void TreePatternNode::InlinePatternFragments(
 | |
|   TreePatternNodePtr T, TreePattern &TP,
 | |
|   std::vector<TreePatternNodePtr> &OutAlternatives) {
 | |
| 
 | |
|   if (TP.hasError())
 | |
|     return;
 | |
| 
 | |
|   if (isLeaf()) {
 | |
|     OutAlternatives.push_back(T);  // nothing to do.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Record *Op = getOperator();
 | |
| 
 | |
|   if (!Op->isSubClassOf("PatFrags")) {
 | |
|     if (getNumChildren() == 0) {
 | |
|       OutAlternatives.push_back(T);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Recursively inline children nodes.
 | |
|     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
 | |
|     ChildAlternatives.resize(getNumChildren());
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
 | |
|       TreePatternNodePtr Child = getChildShared(i);
 | |
|       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
 | |
|       // If there are no alternatives for any child, there are no
 | |
|       // alternatives for this expression as whole.
 | |
|       if (ChildAlternatives[i].empty())
 | |
|         return;
 | |
| 
 | |
|       assert((Child->getPredicateCalls().empty() ||
 | |
|               llvm::all_of(ChildAlternatives[i],
 | |
|                            [&](const TreePatternNodePtr &NewChild) {
 | |
|                              return NewChild->getPredicateCalls() ==
 | |
|                                     Child->getPredicateCalls();
 | |
|                            })) &&
 | |
|              "Non-empty child predicate clobbered!");
 | |
|     }
 | |
| 
 | |
|     // The end result is an all-pairs construction of the resultant pattern.
 | |
|     std::vector<unsigned> Idxs;
 | |
|     Idxs.resize(ChildAlternatives.size());
 | |
|     bool NotDone;
 | |
|     do {
 | |
|       // Create the variant and add it to the output list.
 | |
|       std::vector<TreePatternNodePtr> NewChildren;
 | |
|       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
 | |
|         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
 | |
|       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
 | |
|           getOperator(), std::move(NewChildren), getNumTypes());
 | |
| 
 | |
|       // Copy over properties.
 | |
|       R->setName(getName());
 | |
|       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
 | |
|       R->setPredicateCalls(getPredicateCalls());
 | |
|       R->setTransformFn(getTransformFn());
 | |
|       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
 | |
|         R->setType(i, getExtType(i));
 | |
|       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
 | |
|         R->setResultIndex(i, getResultIndex(i));
 | |
| 
 | |
|       // Register alternative.
 | |
|       OutAlternatives.push_back(R);
 | |
| 
 | |
|       // Increment indices to the next permutation by incrementing the
 | |
|       // indices from last index backward, e.g., generate the sequence
 | |
|       // [0, 0], [0, 1], [1, 0], [1, 1].
 | |
|       int IdxsIdx;
 | |
|       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
 | |
|         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
 | |
|           Idxs[IdxsIdx] = 0;
 | |
|         else
 | |
|           break;
 | |
|       }
 | |
|       NotDone = (IdxsIdx >= 0);
 | |
|     } while (NotDone);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we found a reference to a fragment.  First, look up its
 | |
|   // TreePattern record.
 | |
|   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
 | |
| 
 | |
|   // Verify that we are passing the right number of operands.
 | |
|   if (Frag->getNumArgs() != Children.size()) {
 | |
|     TP.error("'" + Op->getName() + "' fragment requires " +
 | |
|              Twine(Frag->getNumArgs()) + " operands!");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   TreePredicateFn PredFn(Frag);
 | |
|   unsigned Scope = 0;
 | |
|   if (TreePredicateFn(Frag).usesOperands())
 | |
|     Scope = TP.getDAGPatterns().allocateScope();
 | |
| 
 | |
|   // Compute the map of formal to actual arguments.
 | |
|   std::map<std::string, TreePatternNodePtr> ArgMap;
 | |
|   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
 | |
|     TreePatternNodePtr Child = getChildShared(i);
 | |
|     if (Scope != 0) {
 | |
|       Child = Child->clone();
 | |
|       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
 | |
|     }
 | |
|     ArgMap[Frag->getArgName(i)] = Child;
 | |
|   }
 | |
| 
 | |
|   // Loop over all fragment alternatives.
 | |
|   for (const auto &Alternative : Frag->getTrees()) {
 | |
|     TreePatternNodePtr FragTree = Alternative->clone();
 | |
| 
 | |
|     if (!PredFn.isAlwaysTrue())
 | |
|       FragTree->addPredicateCall(PredFn, Scope);
 | |
| 
 | |
|     // Resolve formal arguments to their actual value.
 | |
|     if (Frag->getNumArgs())
 | |
|       FragTree->SubstituteFormalArguments(ArgMap);
 | |
| 
 | |
|     // Transfer types.  Note that the resolved alternative may have fewer
 | |
|     // (but not more) results than the PatFrags node.
 | |
|     FragTree->setName(getName());
 | |
|     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
 | |
|       FragTree->UpdateNodeType(i, getExtType(i), TP);
 | |
| 
 | |
|     // Transfer in the old predicates.
 | |
|     for (const TreePredicateCall &Pred : getPredicateCalls())
 | |
|       FragTree->addPredicateCall(Pred);
 | |
| 
 | |
|     // The fragment we inlined could have recursive inlining that is needed.  See
 | |
|     // if there are any pattern fragments in it and inline them as needed.
 | |
|     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getImplicitType - Check to see if the specified record has an implicit
 | |
| /// type which should be applied to it.  This will infer the type of register
 | |
| /// references from the register file information, for example.
 | |
| ///
 | |
| /// When Unnamed is set, return the type of a DAG operand with no name, such as
 | |
| /// the F8RC register class argument in:
 | |
| ///
 | |
| ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
 | |
| ///
 | |
| /// When Unnamed is false, return the type of a named DAG operand such as the
 | |
| /// GPR:$src operand above.
 | |
| ///
 | |
| static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
 | |
|                                        bool NotRegisters,
 | |
|                                        bool Unnamed,
 | |
|                                        TreePattern &TP) {
 | |
|   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
 | |
| 
 | |
|   // Check to see if this is a register operand.
 | |
|   if (R->isSubClassOf("RegisterOperand")) {
 | |
|     assert(ResNo == 0 && "Regoperand ref only has one result!");
 | |
|     if (NotRegisters)
 | |
|       return TypeSetByHwMode(); // Unknown.
 | |
|     Record *RegClass = R->getValueAsDef("RegClass");
 | |
|     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | |
|     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is a register or a register class.
 | |
|   if (R->isSubClassOf("RegisterClass")) {
 | |
|     assert(ResNo == 0 && "Regclass ref only has one result!");
 | |
|     // An unnamed register class represents itself as an i32 immediate, for
 | |
|     // example on a COPY_TO_REGCLASS instruction.
 | |
|     if (Unnamed)
 | |
|       return TypeSetByHwMode(MVT::i32);
 | |
| 
 | |
|     // In a named operand, the register class provides the possible set of
 | |
|     // types.
 | |
|     if (NotRegisters)
 | |
|       return TypeSetByHwMode(); // Unknown.
 | |
|     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | |
|     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("PatFrags")) {
 | |
|     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
 | |
|     // Pattern fragment types will be resolved when they are inlined.
 | |
|     return TypeSetByHwMode(); // Unknown.
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("Register")) {
 | |
|     assert(ResNo == 0 && "Registers only produce one result!");
 | |
|     if (NotRegisters)
 | |
|       return TypeSetByHwMode(); // Unknown.
 | |
|     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | |
|     return TypeSetByHwMode(T.getRegisterVTs(R));
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("SubRegIndex")) {
 | |
|     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
 | |
|     return TypeSetByHwMode(MVT::i32);
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("ValueType")) {
 | |
|     assert(ResNo == 0 && "This node only has one result!");
 | |
|     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
 | |
|     //
 | |
|     //   (sext_inreg GPR:$src, i16)
 | |
|     //                         ~~~
 | |
|     if (Unnamed)
 | |
|       return TypeSetByHwMode(MVT::Other);
 | |
|     // With a name, the ValueType simply provides the type of the named
 | |
|     // variable.
 | |
|     //
 | |
|     //   (sext_inreg i32:$src, i16)
 | |
|     //               ~~~~~~~~
 | |
|     if (NotRegisters)
 | |
|       return TypeSetByHwMode(); // Unknown.
 | |
|     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
 | |
|     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("CondCode")) {
 | |
|     assert(ResNo == 0 && "This node only has one result!");
 | |
|     // Using a CondCodeSDNode.
 | |
|     return TypeSetByHwMode(MVT::Other);
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("ComplexPattern")) {
 | |
|     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
 | |
|     if (NotRegisters)
 | |
|       return TypeSetByHwMode(); // Unknown.
 | |
|     Record *T = CDP.getComplexPattern(R).getValueType();
 | |
|     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
 | |
|     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
 | |
|   }
 | |
|   if (R->isSubClassOf("PointerLikeRegClass")) {
 | |
|     assert(ResNo == 0 && "Regclass can only have one result!");
 | |
|     TypeSetByHwMode VTS(MVT::iPTR);
 | |
|     TP.getInfer().expandOverloads(VTS);
 | |
|     return VTS;
 | |
|   }
 | |
| 
 | |
|   if (R->getName() == "node" || R->getName() == "srcvalue" ||
 | |
|       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
 | |
|       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
 | |
|     // Placeholder.
 | |
|     return TypeSetByHwMode(); // Unknown.
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("Operand")) {
 | |
|     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
 | |
|     Record *T = R->getValueAsDef("Type");
 | |
|     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
 | |
|   }
 | |
| 
 | |
|   TP.error("Unknown node flavor used in pattern: " + R->getName());
 | |
|   return TypeSetByHwMode(MVT::Other);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
 | |
| /// CodeGenIntrinsic information for it, otherwise return a null pointer.
 | |
| const CodeGenIntrinsic *TreePatternNode::
 | |
| getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
 | |
|   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
 | |
|       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
 | |
|       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
 | |
|   return &CDP.getIntrinsicInfo(IID);
 | |
| }
 | |
| 
 | |
| /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
 | |
| /// return the ComplexPattern information, otherwise return null.
 | |
| const ComplexPattern *
 | |
| TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
 | |
|   Record *Rec;
 | |
|   if (isLeaf()) {
 | |
|     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
 | |
|     if (!DI)
 | |
|       return nullptr;
 | |
|     Rec = DI->getDef();
 | |
|   } else
 | |
|     Rec = getOperator();
 | |
| 
 | |
|   if (!Rec->isSubClassOf("ComplexPattern"))
 | |
|     return nullptr;
 | |
|   return &CGP.getComplexPattern(Rec);
 | |
| }
 | |
| 
 | |
| unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
 | |
|   // A ComplexPattern specifically declares how many results it fills in.
 | |
|   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
 | |
|     return CP->getNumOperands();
 | |
| 
 | |
|   // If MIOperandInfo is specified, that gives the count.
 | |
|   if (isLeaf()) {
 | |
|     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
 | |
|     if (DI && DI->getDef()->isSubClassOf("Operand")) {
 | |
|       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
 | |
|       if (MIOps->getNumArgs())
 | |
|         return MIOps->getNumArgs();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise there is just one result.
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /// NodeHasProperty - Return true if this node has the specified property.
 | |
| bool TreePatternNode::NodeHasProperty(SDNP Property,
 | |
|                                       const CodeGenDAGPatterns &CGP) const {
 | |
|   if (isLeaf()) {
 | |
|     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
 | |
|       return CP->hasProperty(Property);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Property != SDNPHasChain) {
 | |
|     // The chain proprety is already present on the different intrinsic node
 | |
|     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
 | |
|     // on the intrinsic. Anything else is specific to the individual intrinsic.
 | |
|     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
 | |
|       return Int->hasProperty(Property);
 | |
|   }
 | |
| 
 | |
|   if (!Operator->isSubClassOf("SDPatternOperator"))
 | |
|     return false;
 | |
| 
 | |
|   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /// TreeHasProperty - Return true if any node in this tree has the specified
 | |
| /// property.
 | |
| bool TreePatternNode::TreeHasProperty(SDNP Property,
 | |
|                                       const CodeGenDAGPatterns &CGP) const {
 | |
|   if (NodeHasProperty(Property, CGP))
 | |
|     return true;
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     if (getChild(i)->TreeHasProperty(Property, CGP))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isCommutativeIntrinsic - Return true if the node corresponds to a
 | |
| /// commutative intrinsic.
 | |
| bool
 | |
| TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
 | |
|   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
 | |
|     return Int->isCommutative;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
 | |
|   if (!N->isLeaf())
 | |
|     return N->getOperator()->isSubClassOf(Class);
 | |
| 
 | |
|   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
 | |
|   if (DI && DI->getDef()->isSubClassOf(Class))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void emitTooManyOperandsError(TreePattern &TP,
 | |
|                                      StringRef InstName,
 | |
|                                      unsigned Expected,
 | |
|                                      unsigned Actual) {
 | |
|   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
 | |
|            " operands but expected only " + Twine(Expected) + "!");
 | |
| }
 | |
| 
 | |
| static void emitTooFewOperandsError(TreePattern &TP,
 | |
|                                     StringRef InstName,
 | |
|                                     unsigned Actual) {
 | |
|   TP.error("Instruction '" + InstName +
 | |
|            "' expects more than the provided " + Twine(Actual) + " operands!");
 | |
| }
 | |
| 
 | |
| /// ApplyTypeConstraints - Apply all of the type constraints relevant to
 | |
| /// this node and its children in the tree.  This returns true if it makes a
 | |
| /// change, false otherwise.  If a type contradiction is found, flag an error.
 | |
| bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
 | |
|   if (isLeaf()) {
 | |
|     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
 | |
|       // If it's a regclass or something else known, include the type.
 | |
|       bool MadeChange = false;
 | |
|       for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | |
|         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
 | |
|                                                         NotRegisters,
 | |
|                                                         !hasName(), TP), TP);
 | |
|       return MadeChange;
 | |
|     }
 | |
| 
 | |
|     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
 | |
|       assert(Types.size() == 1 && "Invalid IntInit");
 | |
| 
 | |
|       // Int inits are always integers. :)
 | |
|       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
 | |
| 
 | |
|       if (!TP.getInfer().isConcrete(Types[0], false))
 | |
|         return MadeChange;
 | |
| 
 | |
|       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
 | |
|       for (auto &P : VVT) {
 | |
|         MVT::SimpleValueType VT = P.second.SimpleTy;
 | |
|         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
 | |
|           continue;
 | |
|         unsigned Size = MVT(VT).getFixedSizeInBits();
 | |
|         // Make sure that the value is representable for this type.
 | |
|         if (Size >= 32)
 | |
|           continue;
 | |
|         // Check that the value doesn't use more bits than we have. It must
 | |
|         // either be a sign- or zero-extended equivalent of the original.
 | |
|         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
 | |
|         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
 | |
|             SignBitAndAbove == 1)
 | |
|           continue;
 | |
| 
 | |
|         TP.error("Integer value '" + Twine(II->getValue()) +
 | |
|                  "' is out of range for type '" + getEnumName(VT) + "'!");
 | |
|         break;
 | |
|       }
 | |
|       return MadeChange;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
 | |
|     bool MadeChange = false;
 | |
| 
 | |
|     // Apply the result type to the node.
 | |
|     unsigned NumRetVTs = Int->IS.RetVTs.size();
 | |
|     unsigned NumParamVTs = Int->IS.ParamVTs.size();
 | |
| 
 | |
|     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
 | |
|       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
 | |
| 
 | |
|     if (getNumChildren() != NumParamVTs + 1) {
 | |
|       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
 | |
|                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Apply type info to the intrinsic ID.
 | |
|     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
 | |
| 
 | |
|     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
 | |
|       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
 | |
| 
 | |
|       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
 | |
|       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
 | |
|       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
 | |
|     }
 | |
|     return MadeChange;
 | |
|   }
 | |
| 
 | |
|   if (getOperator()->isSubClassOf("SDNode")) {
 | |
|     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
 | |
| 
 | |
|     // Check that the number of operands is sane.  Negative operands -> varargs.
 | |
|     if (NI.getNumOperands() >= 0 &&
 | |
|         getNumChildren() != (unsigned)NI.getNumOperands()) {
 | |
|       TP.error(getOperator()->getName() + " node requires exactly " +
 | |
|                Twine(NI.getNumOperands()) + " operands!");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool MadeChange = false;
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     MadeChange |= NI.ApplyTypeConstraints(this, TP);
 | |
|     return MadeChange;
 | |
|   }
 | |
| 
 | |
|   if (getOperator()->isSubClassOf("Instruction")) {
 | |
|     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
 | |
|     CodeGenInstruction &InstInfo =
 | |
|       CDP.getTargetInfo().getInstruction(getOperator());
 | |
| 
 | |
|     bool MadeChange = false;
 | |
| 
 | |
|     // Apply the result types to the node, these come from the things in the
 | |
|     // (outs) list of the instruction.
 | |
|     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
 | |
|                                         Inst.getNumResults());
 | |
|     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
 | |
|       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
 | |
| 
 | |
|     // If the instruction has implicit defs, we apply the first one as a result.
 | |
|     // FIXME: This sucks, it should apply all implicit defs.
 | |
|     if (!InstInfo.ImplicitDefs.empty()) {
 | |
|       unsigned ResNo = NumResultsToAdd;
 | |
| 
 | |
|       // FIXME: Generalize to multiple possible types and multiple possible
 | |
|       // ImplicitDefs.
 | |
|       MVT::SimpleValueType VT =
 | |
|         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
 | |
| 
 | |
|       if (VT != MVT::Other)
 | |
|         MadeChange |= UpdateNodeType(ResNo, VT, TP);
 | |
|     }
 | |
| 
 | |
|     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
 | |
|     // be the same.
 | |
|     if (getOperator()->getName() == "INSERT_SUBREG") {
 | |
|       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
 | |
|       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
 | |
|       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
 | |
|     } else if (getOperator()->getName() == "REG_SEQUENCE") {
 | |
|       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
 | |
|       // variadic.
 | |
| 
 | |
|       unsigned NChild = getNumChildren();
 | |
|       if (NChild < 3) {
 | |
|         TP.error("REG_SEQUENCE requires at least 3 operands!");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (NChild % 2 == 0) {
 | |
|         TP.error("REG_SEQUENCE requires an odd number of operands!");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (!isOperandClass(getChild(0), "RegisterClass")) {
 | |
|         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       for (unsigned I = 1; I < NChild; I += 2) {
 | |
|         TreePatternNode *SubIdxChild = getChild(I + 1);
 | |
|         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
 | |
|           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
 | |
|                    Twine(I + 1) + "!");
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned NumResults = Inst.getNumResults();
 | |
|     unsigned NumFixedOperands = InstInfo.Operands.size();
 | |
| 
 | |
|     // If one or more operands with a default value appear at the end of the
 | |
|     // formal operand list for an instruction, we allow them to be overridden
 | |
|     // by optional operands provided in the pattern.
 | |
|     //
 | |
|     // But if an operand B without a default appears at any point after an
 | |
|     // operand A with a default, then we don't allow A to be overridden,
 | |
|     // because there would be no way to specify whether the next operand in
 | |
|     // the pattern was intended to override A or skip it.
 | |
|     unsigned NonOverridableOperands = NumFixedOperands;
 | |
|     while (NonOverridableOperands > NumResults &&
 | |
|            CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
 | |
|       --NonOverridableOperands;
 | |
| 
 | |
|     unsigned ChildNo = 0;
 | |
|     assert(NumResults <= NumFixedOperands);
 | |
|     for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
 | |
|       Record *OperandNode = InstInfo.Operands[i].Rec;
 | |
| 
 | |
|       // If the operand has a default value, do we use it? We must use the
 | |
|       // default if we've run out of children of the pattern DAG to consume,
 | |
|       // or if the operand is followed by a non-defaulted one.
 | |
|       if (CDP.operandHasDefault(OperandNode) &&
 | |
|           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
 | |
|         continue;
 | |
| 
 | |
|       // If we have run out of child nodes and there _isn't_ a default
 | |
|       // value we can use for the next operand, give an error.
 | |
|       if (ChildNo >= getNumChildren()) {
 | |
|         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       TreePatternNode *Child = getChild(ChildNo++);
 | |
|       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
 | |
| 
 | |
|       // If the operand has sub-operands, they may be provided by distinct
 | |
|       // child patterns, so attempt to match each sub-operand separately.
 | |
|       if (OperandNode->isSubClassOf("Operand")) {
 | |
|         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
 | |
|         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
 | |
|           // But don't do that if the whole operand is being provided by
 | |
|           // a single ComplexPattern-related Operand.
 | |
| 
 | |
|           if (Child->getNumMIResults(CDP) < NumArgs) {
 | |
|             // Match first sub-operand against the child we already have.
 | |
|             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
 | |
|             MadeChange |=
 | |
|               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
 | |
| 
 | |
|             // And the remaining sub-operands against subsequent children.
 | |
|             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
 | |
|               if (ChildNo >= getNumChildren()) {
 | |
|                 emitTooFewOperandsError(TP, getOperator()->getName(),
 | |
|                                         getNumChildren());
 | |
|                 return false;
 | |
|               }
 | |
|               Child = getChild(ChildNo++);
 | |
| 
 | |
|               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
 | |
|               MadeChange |=
 | |
|                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
 | |
|             }
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If we didn't match by pieces above, attempt to match the whole
 | |
|       // operand now.
 | |
|       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
 | |
|     }
 | |
| 
 | |
|     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
 | |
|       emitTooManyOperandsError(TP, getOperator()->getName(),
 | |
|                                ChildNo, getNumChildren());
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     return MadeChange;
 | |
|   }
 | |
| 
 | |
|   if (getOperator()->isSubClassOf("ComplexPattern")) {
 | |
|     bool MadeChange = false;
 | |
| 
 | |
|     if (!NotRegisters) {
 | |
|       assert(Types.size() == 1 && "ComplexPatterns only produce one result!");
 | |
|       Record *T = CDP.getComplexPattern(getOperator()).getValueType();
 | |
|       const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
 | |
|       const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
 | |
|       // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
 | |
|       // exclusively use those as non-leaf nodes with explicit type casts, so
 | |
|       // for backwards compatibility we do no inference in that case. This is
 | |
|       // not supported when the ComplexPattern is used as a leaf value,
 | |
|       // however; this inconsistency should be resolved, either by adding this
 | |
|       // case there or by altering the backends to not do this (e.g. using Any
 | |
|       // instead may work).
 | |
|       if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
 | |
|         MadeChange |= UpdateNodeType(0, VVT, TP);
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0; i < getNumChildren(); ++i)
 | |
|       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
| 
 | |
|     return MadeChange;
 | |
|   }
 | |
| 
 | |
|   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
 | |
| 
 | |
|   // Node transforms always take one operand.
 | |
|   if (getNumChildren() != 1) {
 | |
|     TP.error("Node transform '" + getOperator()->getName() +
 | |
|              "' requires one operand!");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
 | |
| /// RHS of a commutative operation, not the on LHS.
 | |
| static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
 | |
|   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
 | |
|     return true;
 | |
|   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
 | |
|     return true;
 | |
|   if (isImmAllOnesAllZerosMatch(N))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// canPatternMatch - If it is impossible for this pattern to match on this
 | |
| /// target, fill in Reason and return false.  Otherwise, return true.  This is
 | |
| /// used as a sanity check for .td files (to prevent people from writing stuff
 | |
| /// that can never possibly work), and to prevent the pattern permuter from
 | |
| /// generating stuff that is useless.
 | |
| bool TreePatternNode::canPatternMatch(std::string &Reason,
 | |
|                                       const CodeGenDAGPatterns &CDP) {
 | |
|   if (isLeaf()) return true;
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     if (!getChild(i)->canPatternMatch(Reason, CDP))
 | |
|       return false;
 | |
| 
 | |
|   // If this is an intrinsic, handle cases that would make it not match.  For
 | |
|   // example, if an operand is required to be an immediate.
 | |
|   if (getOperator()->isSubClassOf("Intrinsic")) {
 | |
|     // TODO:
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (getOperator()->isSubClassOf("ComplexPattern"))
 | |
|     return true;
 | |
| 
 | |
|   // If this node is a commutative operator, check that the LHS isn't an
 | |
|   // immediate.
 | |
|   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
 | |
|   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
 | |
|   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
 | |
|     // Scan all of the operands of the node and make sure that only the last one
 | |
|     // is a constant node, unless the RHS also is.
 | |
|     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
 | |
|       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
 | |
|       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
 | |
|         if (OnlyOnRHSOfCommutative(getChild(i))) {
 | |
|           Reason="Immediate value must be on the RHS of commutative operators!";
 | |
|           return false;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TreePattern implementation
 | |
| //
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
 | |
|                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
 | |
|                          isInputPattern(isInput), HasError(false),
 | |
|                          Infer(*this) {
 | |
|   for (Init *I : RawPat->getValues())
 | |
|     Trees.push_back(ParseTreePattern(I, ""));
 | |
| }
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
 | |
|                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
 | |
|                          isInputPattern(isInput), HasError(false),
 | |
|                          Infer(*this) {
 | |
|   Trees.push_back(ParseTreePattern(Pat, ""));
 | |
| }
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
 | |
|                          CodeGenDAGPatterns &cdp)
 | |
|     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
 | |
|       Infer(*this) {
 | |
|   Trees.push_back(Pat);
 | |
| }
 | |
| 
 | |
| void TreePattern::error(const Twine &Msg) {
 | |
|   if (HasError)
 | |
|     return;
 | |
|   dump();
 | |
|   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
 | |
|   HasError = true;
 | |
| }
 | |
| 
 | |
| void TreePattern::ComputeNamedNodes() {
 | |
|   for (TreePatternNodePtr &Tree : Trees)
 | |
|     ComputeNamedNodes(Tree.get());
 | |
| }
 | |
| 
 | |
| void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
 | |
|   if (!N->getName().empty())
 | |
|     NamedNodes[N->getName()].push_back(N);
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|     ComputeNamedNodes(N->getChild(i));
 | |
| }
 | |
| 
 | |
| TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
 | |
|                                                  StringRef OpName) {
 | |
|   RecordKeeper &RK = TheInit->getRecordKeeper();
 | |
|   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
 | |
|     Record *R = DI->getDef();
 | |
| 
 | |
|     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
 | |
|     // TreePatternNode of its own.  For example:
 | |
|     ///   (foo GPR, imm) -> (foo GPR, (imm))
 | |
|     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
 | |
|       return ParseTreePattern(
 | |
|         DagInit::get(DI, nullptr,
 | |
|                      std::vector<std::pair<Init*, StringInit*> >()),
 | |
|         OpName);
 | |
| 
 | |
|     // Input argument?
 | |
|     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
 | |
|     if (R->getName() == "node" && !OpName.empty()) {
 | |
|       if (OpName.empty())
 | |
|         error("'node' argument requires a name to match with operand list");
 | |
|       Args.push_back(std::string(OpName));
 | |
|     }
 | |
| 
 | |
|     Res->setName(OpName);
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   // ?:$name or just $name.
 | |
|   if (isa<UnsetInit>(TheInit)) {
 | |
|     if (OpName.empty())
 | |
|       error("'?' argument requires a name to match with operand list");
 | |
|     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
 | |
|     Args.push_back(std::string(OpName));
 | |
|     Res->setName(OpName);
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
 | |
|     if (!OpName.empty())
 | |
|       error("Constant int or bit argument should not have a name!");
 | |
|     if (isa<BitInit>(TheInit))
 | |
|       TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK));
 | |
|     return std::make_shared<TreePatternNode>(TheInit, 1);
 | |
|   }
 | |
| 
 | |
|   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
 | |
|     // Turn this into an IntInit.
 | |
|     Init *II = BI->convertInitializerTo(IntRecTy::get(RK));
 | |
|     if (!II || !isa<IntInit>(II))
 | |
|       error("Bits value must be constants!");
 | |
|     return ParseTreePattern(II, OpName);
 | |
|   }
 | |
| 
 | |
|   DagInit *Dag = dyn_cast<DagInit>(TheInit);
 | |
|   if (!Dag) {
 | |
|     TheInit->print(errs());
 | |
|     error("Pattern has unexpected init kind!");
 | |
|   }
 | |
|   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
 | |
|   if (!OpDef) error("Pattern has unexpected operator type!");
 | |
|   Record *Operator = OpDef->getDef();
 | |
| 
 | |
|   if (Operator->isSubClassOf("ValueType")) {
 | |
|     // If the operator is a ValueType, then this must be "type cast" of a leaf
 | |
|     // node.
 | |
|     if (Dag->getNumArgs() != 1)
 | |
|       error("Type cast only takes one operand!");
 | |
| 
 | |
|     TreePatternNodePtr New =
 | |
|         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
 | |
| 
 | |
|     // Apply the type cast.
 | |
|     if (New->getNumTypes() != 1)
 | |
|       error("Type cast can only have one type!");
 | |
|     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
 | |
|     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
 | |
| 
 | |
|     if (!OpName.empty())
 | |
|       error("ValueType cast should not have a name!");
 | |
|     return New;
 | |
|   }
 | |
| 
 | |
|   // Verify that this is something that makes sense for an operator.
 | |
|   if (!Operator->isSubClassOf("PatFrags") &&
 | |
|       !Operator->isSubClassOf("SDNode") &&
 | |
|       !Operator->isSubClassOf("Instruction") &&
 | |
|       !Operator->isSubClassOf("SDNodeXForm") &&
 | |
|       !Operator->isSubClassOf("Intrinsic") &&
 | |
|       !Operator->isSubClassOf("ComplexPattern") &&
 | |
|       Operator->getName() != "set" &&
 | |
|       Operator->getName() != "implicit")
 | |
|     error("Unrecognized node '" + Operator->getName() + "'!");
 | |
| 
 | |
|   //  Check to see if this is something that is illegal in an input pattern.
 | |
|   if (isInputPattern) {
 | |
|     if (Operator->isSubClassOf("Instruction") ||
 | |
|         Operator->isSubClassOf("SDNodeXForm"))
 | |
|       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
 | |
|   } else {
 | |
|     if (Operator->isSubClassOf("Intrinsic"))
 | |
|       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
 | |
| 
 | |
|     if (Operator->isSubClassOf("SDNode") &&
 | |
|         Operator->getName() != "imm" &&
 | |
|         Operator->getName() != "timm" &&
 | |
|         Operator->getName() != "fpimm" &&
 | |
|         Operator->getName() != "tglobaltlsaddr" &&
 | |
|         Operator->getName() != "tconstpool" &&
 | |
|         Operator->getName() != "tjumptable" &&
 | |
|         Operator->getName() != "tframeindex" &&
 | |
|         Operator->getName() != "texternalsym" &&
 | |
|         Operator->getName() != "tblockaddress" &&
 | |
|         Operator->getName() != "tglobaladdr" &&
 | |
|         Operator->getName() != "bb" &&
 | |
|         Operator->getName() != "vt" &&
 | |
|         Operator->getName() != "mcsym")
 | |
|       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
 | |
|   }
 | |
| 
 | |
|   std::vector<TreePatternNodePtr> Children;
 | |
| 
 | |
|   // Parse all the operands.
 | |
|   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
 | |
|     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
 | |
| 
 | |
|   // Get the actual number of results before Operator is converted to an intrinsic
 | |
|   // node (which is hard-coded to have either zero or one result).
 | |
|   unsigned NumResults = GetNumNodeResults(Operator, CDP);
 | |
| 
 | |
|   // If the operator is an intrinsic, then this is just syntactic sugar for
 | |
|   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
 | |
|   // convert the intrinsic name to a number.
 | |
|   if (Operator->isSubClassOf("Intrinsic")) {
 | |
|     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
 | |
|     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
 | |
| 
 | |
|     // If this intrinsic returns void, it must have side-effects and thus a
 | |
|     // chain.
 | |
|     if (Int.IS.RetVTs.empty())
 | |
|       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
 | |
|     else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
 | |
|       // Has side-effects, requires chain.
 | |
|       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
 | |
|     else // Otherwise, no chain.
 | |
|       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
 | |
| 
 | |
|     Children.insert(Children.begin(), std::make_shared<TreePatternNode>(
 | |
|                                           IntInit::get(RK, IID), 1));
 | |
|   }
 | |
| 
 | |
|   if (Operator->isSubClassOf("ComplexPattern")) {
 | |
|     for (unsigned i = 0; i < Children.size(); ++i) {
 | |
|       TreePatternNodePtr Child = Children[i];
 | |
| 
 | |
|       if (Child->getName().empty())
 | |
|         error("All arguments to a ComplexPattern must be named");
 | |
| 
 | |
|       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
 | |
|       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
 | |
|       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
 | |
|       auto OperandId = std::make_pair(Operator, i);
 | |
|       auto PrevOp = ComplexPatternOperands.find(Child->getName());
 | |
|       if (PrevOp != ComplexPatternOperands.end()) {
 | |
|         if (PrevOp->getValue() != OperandId)
 | |
|           error("All ComplexPattern operands must appear consistently: "
 | |
|                 "in the same order in just one ComplexPattern instance.");
 | |
|       } else
 | |
|         ComplexPatternOperands[Child->getName()] = OperandId;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TreePatternNodePtr Result =
 | |
|       std::make_shared<TreePatternNode>(Operator, std::move(Children),
 | |
|                                         NumResults);
 | |
|   Result->setName(OpName);
 | |
| 
 | |
|   if (Dag->getName()) {
 | |
|     assert(Result->getName().empty());
 | |
|     Result->setName(Dag->getNameStr());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// SimplifyTree - See if we can simplify this tree to eliminate something that
 | |
| /// will never match in favor of something obvious that will.  This is here
 | |
| /// strictly as a convenience to target authors because it allows them to write
 | |
| /// more type generic things and have useless type casts fold away.
 | |
| ///
 | |
| /// This returns true if any change is made.
 | |
| static bool SimplifyTree(TreePatternNodePtr &N) {
 | |
|   if (N->isLeaf())
 | |
|     return false;
 | |
| 
 | |
|   // If we have a bitconvert with a resolved type and if the source and
 | |
|   // destination types are the same, then the bitconvert is useless, remove it.
 | |
|   //
 | |
|   // We make an exception if the types are completely empty. This can come up
 | |
|   // when the pattern being simplified is in the Fragments list of a PatFrags,
 | |
|   // so that the operand is just an untyped "node". In that situation we leave
 | |
|   // bitconverts unsimplified, and simplify them later once the fragment is
 | |
|   // expanded into its true context.
 | |
|   if (N->getOperator()->getName() == "bitconvert" &&
 | |
|       N->getExtType(0).isValueTypeByHwMode(false) &&
 | |
|       !N->getExtType(0).empty() &&
 | |
|       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
 | |
|       N->getName().empty()) {
 | |
|     N = N->getChildShared(0);
 | |
|     SimplifyTree(N);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Walk all children.
 | |
|   bool MadeChange = false;
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
 | |
|     TreePatternNodePtr Child = N->getChildShared(i);
 | |
|     MadeChange |= SimplifyTree(Child);
 | |
|     N->setChild(i, std::move(Child));
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// InferAllTypes - Infer/propagate as many types throughout the expression
 | |
| /// patterns as possible.  Return true if all types are inferred, false
 | |
| /// otherwise.  Flags an error if a type contradiction is found.
 | |
| bool TreePattern::
 | |
| InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
 | |
|   if (NamedNodes.empty())
 | |
|     ComputeNamedNodes();
 | |
| 
 | |
|   bool MadeChange = true;
 | |
|   while (MadeChange) {
 | |
|     MadeChange = false;
 | |
|     for (TreePatternNodePtr &Tree : Trees) {
 | |
|       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
 | |
|       MadeChange |= SimplifyTree(Tree);
 | |
|     }
 | |
| 
 | |
|     // If there are constraints on our named nodes, apply them.
 | |
|     for (auto &Entry : NamedNodes) {
 | |
|       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
 | |
| 
 | |
|       // If we have input named node types, propagate their types to the named
 | |
|       // values here.
 | |
|       if (InNamedTypes) {
 | |
|         if (!InNamedTypes->count(Entry.getKey())) {
 | |
|           error("Node '" + std::string(Entry.getKey()) +
 | |
|                 "' in output pattern but not input pattern");
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         const SmallVectorImpl<TreePatternNode*> &InNodes =
 | |
|           InNamedTypes->find(Entry.getKey())->second;
 | |
| 
 | |
|         // The input types should be fully resolved by now.
 | |
|         for (TreePatternNode *Node : Nodes) {
 | |
|           // If this node is a register class, and it is the root of the pattern
 | |
|           // then we're mapping something onto an input register.  We allow
 | |
|           // changing the type of the input register in this case.  This allows
 | |
|           // us to match things like:
 | |
|           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
 | |
|           if (Node == Trees[0].get() && Node->isLeaf()) {
 | |
|             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
 | |
|             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
 | |
|                        DI->getDef()->isSubClassOf("RegisterOperand")))
 | |
|               continue;
 | |
|           }
 | |
| 
 | |
|           assert(Node->getNumTypes() == 1 &&
 | |
|                  InNodes[0]->getNumTypes() == 1 &&
 | |
|                  "FIXME: cannot name multiple result nodes yet");
 | |
|           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
 | |
|                                              *this);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If there are multiple nodes with the same name, they must all have the
 | |
|       // same type.
 | |
|       if (Entry.second.size() > 1) {
 | |
|         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
 | |
|           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
 | |
|           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
 | |
|                  "FIXME: cannot name multiple result nodes yet");
 | |
| 
 | |
|           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
 | |
|           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool HasUnresolvedTypes = false;
 | |
|   for (const TreePatternNodePtr &Tree : Trees)
 | |
|     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
 | |
|   return !HasUnresolvedTypes;
 | |
| }
 | |
| 
 | |
| void TreePattern::print(raw_ostream &OS) const {
 | |
|   OS << getRecord()->getName();
 | |
|   if (!Args.empty()) {
 | |
|     OS << "(";
 | |
|     ListSeparator LS;
 | |
|     for (const std::string &Arg : Args)
 | |
|       OS << LS << Arg;
 | |
|     OS << ")";
 | |
|   }
 | |
|   OS << ": ";
 | |
| 
 | |
|   if (Trees.size() > 1)
 | |
|     OS << "[\n";
 | |
|   for (const TreePatternNodePtr &Tree : Trees) {
 | |
|     OS << "\t";
 | |
|     Tree->print(OS);
 | |
|     OS << "\n";
 | |
|   }
 | |
| 
 | |
|   if (Trees.size() > 1)
 | |
|     OS << "]\n";
 | |
| }
 | |
| 
 | |
| void TreePattern::dump() const { print(errs()); }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // CodeGenDAGPatterns implementation
 | |
| //
 | |
| 
 | |
| CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
 | |
|                                        PatternRewriterFn PatternRewriter)
 | |
|     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
 | |
|       PatternRewriter(PatternRewriter) {
 | |
| 
 | |
|   Intrinsics = CodeGenIntrinsicTable(Records);
 | |
|   ParseNodeInfo();
 | |
|   ParseNodeTransforms();
 | |
|   ParseComplexPatterns();
 | |
|   ParsePatternFragments();
 | |
|   ParseDefaultOperands();
 | |
|   ParseInstructions();
 | |
|   ParsePatternFragments(/*OutFrags*/true);
 | |
|   ParsePatterns();
 | |
| 
 | |
|   // Generate variants.  For example, commutative patterns can match
 | |
|   // multiple ways.  Add them to PatternsToMatch as well.
 | |
|   GenerateVariants();
 | |
| 
 | |
|   // Break patterns with parameterized types into a series of patterns,
 | |
|   // where each one has a fixed type and is predicated on the conditions
 | |
|   // of the associated HW mode.
 | |
|   ExpandHwModeBasedTypes();
 | |
| 
 | |
|   // Infer instruction flags.  For example, we can detect loads,
 | |
|   // stores, and side effects in many cases by examining an
 | |
|   // instruction's pattern.
 | |
|   InferInstructionFlags();
 | |
| 
 | |
|   // Verify that instruction flags match the patterns.
 | |
|   VerifyInstructionFlags();
 | |
| }
 | |
| 
 | |
| Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
 | |
|   Record *N = Records.getDef(Name);
 | |
|   if (!N || !N->isSubClassOf("SDNode"))
 | |
|     PrintFatalError("Error getting SDNode '" + Name + "'!");
 | |
| 
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| // Parse all of the SDNode definitions for the target, populating SDNodes.
 | |
| void CodeGenDAGPatterns::ParseNodeInfo() {
 | |
|   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
 | |
|   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
 | |
| 
 | |
|   while (!Nodes.empty()) {
 | |
|     Record *R = Nodes.back();
 | |
|     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
 | |
|     Nodes.pop_back();
 | |
|   }
 | |
| 
 | |
|   // Get the builtin intrinsic nodes.
 | |
|   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
 | |
|   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
 | |
|   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
 | |
| }
 | |
| 
 | |
| /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
 | |
| /// map, and emit them to the file as functions.
 | |
| void CodeGenDAGPatterns::ParseNodeTransforms() {
 | |
|   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
 | |
|   while (!Xforms.empty()) {
 | |
|     Record *XFormNode = Xforms.back();
 | |
|     Record *SDNode = XFormNode->getValueAsDef("Opcode");
 | |
|     StringRef Code = XFormNode->getValueAsString("XFormFunction");
 | |
|     SDNodeXForms.insert(
 | |
|         std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
 | |
| 
 | |
|     Xforms.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::ParseComplexPatterns() {
 | |
|   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
 | |
|   while (!AMs.empty()) {
 | |
|     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
 | |
|     AMs.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
 | |
| /// file, building up the PatternFragments map.  After we've collected them all,
 | |
| /// inline fragments together as necessary, so that there are no references left
 | |
| /// inside a pattern fragment to a pattern fragment.
 | |
| ///
 | |
| void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
 | |
|   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
 | |
| 
 | |
|   // First step, parse all of the fragments.
 | |
|   for (Record *Frag : Fragments) {
 | |
|     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
 | |
|       continue;
 | |
| 
 | |
|     ListInit *LI = Frag->getValueAsListInit("Fragments");
 | |
|     TreePattern *P =
 | |
|         (PatternFragments[Frag] = std::make_unique<TreePattern>(
 | |
|              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
 | |
|              *this)).get();
 | |
| 
 | |
|     // Validate the argument list, converting it to set, to discard duplicates.
 | |
|     std::vector<std::string> &Args = P->getArgList();
 | |
|     // Copy the args so we can take StringRefs to them.
 | |
|     auto ArgsCopy = Args;
 | |
|     SmallDenseSet<StringRef, 4> OperandsSet;
 | |
|     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
 | |
| 
 | |
|     if (OperandsSet.count(""))
 | |
|       P->error("Cannot have unnamed 'node' values in pattern fragment!");
 | |
| 
 | |
|     // Parse the operands list.
 | |
|     DagInit *OpsList = Frag->getValueAsDag("Operands");
 | |
|     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
 | |
|     // Special cases: ops == outs == ins. Different names are used to
 | |
|     // improve readability.
 | |
|     if (!OpsOp ||
 | |
|         (OpsOp->getDef()->getName() != "ops" &&
 | |
|          OpsOp->getDef()->getName() != "outs" &&
 | |
|          OpsOp->getDef()->getName() != "ins"))
 | |
|       P->error("Operands list should start with '(ops ... '!");
 | |
| 
 | |
|     // Copy over the arguments.
 | |
|     Args.clear();
 | |
|     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
 | |
|       if (!isa<DefInit>(OpsList->getArg(j)) ||
 | |
|           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
 | |
|         P->error("Operands list should all be 'node' values.");
 | |
|       if (!OpsList->getArgName(j))
 | |
|         P->error("Operands list should have names for each operand!");
 | |
|       StringRef ArgNameStr = OpsList->getArgNameStr(j);
 | |
|       if (!OperandsSet.count(ArgNameStr))
 | |
|         P->error("'" + ArgNameStr +
 | |
|                  "' does not occur in pattern or was multiply specified!");
 | |
|       OperandsSet.erase(ArgNameStr);
 | |
|       Args.push_back(std::string(ArgNameStr));
 | |
|     }
 | |
| 
 | |
|     if (!OperandsSet.empty())
 | |
|       P->error("Operands list does not contain an entry for operand '" +
 | |
|                *OperandsSet.begin() + "'!");
 | |
| 
 | |
|     // If there is a node transformation corresponding to this, keep track of
 | |
|     // it.
 | |
|     Record *Transform = Frag->getValueAsDef("OperandTransform");
 | |
|     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
 | |
|       for (const auto &T : P->getTrees())
 | |
|         T->setTransformFn(Transform);
 | |
|   }
 | |
| 
 | |
|   // Now that we've parsed all of the tree fragments, do a closure on them so
 | |
|   // that there are not references to PatFrags left inside of them.
 | |
|   for (Record *Frag : Fragments) {
 | |
|     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
 | |
|       continue;
 | |
| 
 | |
|     TreePattern &ThePat = *PatternFragments[Frag];
 | |
|     ThePat.InlinePatternFragments();
 | |
| 
 | |
|     // Infer as many types as possible.  Don't worry about it if we don't infer
 | |
|     // all of them, some may depend on the inputs of the pattern.  Also, don't
 | |
|     // validate type sets; validation may cause spurious failures e.g. if a
 | |
|     // fragment needs floating-point types but the current target does not have
 | |
|     // any (this is only an error if that fragment is ever used!).
 | |
|     {
 | |
|       TypeInfer::SuppressValidation SV(ThePat.getInfer());
 | |
|       ThePat.InferAllTypes();
 | |
|       ThePat.resetError();
 | |
|     }
 | |
| 
 | |
|     // If debugging, print out the pattern fragment result.
 | |
|     LLVM_DEBUG(ThePat.dump());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::ParseDefaultOperands() {
 | |
|   std::vector<Record*> DefaultOps;
 | |
|   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
 | |
| 
 | |
|   // Find some SDNode.
 | |
|   assert(!SDNodes.empty() && "No SDNodes parsed?");
 | |
|   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
 | |
| 
 | |
|   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
 | |
|     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
 | |
| 
 | |
|     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
 | |
|     // SomeSDnode so that we can parse this.
 | |
|     std::vector<std::pair<Init*, StringInit*> > Ops;
 | |
|     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
 | |
|       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
 | |
|                                    DefaultInfo->getArgName(op)));
 | |
|     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
 | |
| 
 | |
|     // Create a TreePattern to parse this.
 | |
|     TreePattern P(DefaultOps[i], DI, false, *this);
 | |
|     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
 | |
| 
 | |
|     // Copy the operands over into a DAGDefaultOperand.
 | |
|     DAGDefaultOperand DefaultOpInfo;
 | |
| 
 | |
|     const TreePatternNodePtr &T = P.getTree(0);
 | |
|     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
 | |
|       TreePatternNodePtr TPN = T->getChildShared(op);
 | |
|       while (TPN->ApplyTypeConstraints(P, false))
 | |
|         /* Resolve all types */;
 | |
| 
 | |
|       if (TPN->ContainsUnresolvedType(P)) {
 | |
|         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
 | |
|                         DefaultOps[i]->getName() +
 | |
|                         "' doesn't have a concrete type!");
 | |
|       }
 | |
|       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
 | |
|     }
 | |
| 
 | |
|     // Insert it into the DefaultOperands map so we can find it later.
 | |
|     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
 | |
| /// instruction input.  Return true if this is a real use.
 | |
| static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
 | |
|                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
 | |
|   // No name -> not interesting.
 | |
|   if (Pat->getName().empty()) {
 | |
|     if (Pat->isLeaf()) {
 | |
|       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
 | |
|       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
 | |
|                  DI->getDef()->isSubClassOf("RegisterOperand")))
 | |
|         I.error("Input " + DI->getDef()->getName() + " must be named!");
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Record *Rec;
 | |
|   if (Pat->isLeaf()) {
 | |
|     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
 | |
|     if (!DI)
 | |
|       I.error("Input $" + Pat->getName() + " must be an identifier!");
 | |
|     Rec = DI->getDef();
 | |
|   } else {
 | |
|     Rec = Pat->getOperator();
 | |
|   }
 | |
| 
 | |
|   // SRCVALUE nodes are ignored.
 | |
|   if (Rec->getName() == "srcvalue")
 | |
|     return false;
 | |
| 
 | |
|   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
 | |
|   if (!Slot) {
 | |
|     Slot = Pat;
 | |
|     return true;
 | |
|   }
 | |
|   Record *SlotRec;
 | |
|   if (Slot->isLeaf()) {
 | |
|     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
 | |
|   } else {
 | |
|     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
 | |
|     SlotRec = Slot->getOperator();
 | |
|   }
 | |
| 
 | |
|   // Ensure that the inputs agree if we've already seen this input.
 | |
|   if (Rec != SlotRec)
 | |
|     I.error("All $" + Pat->getName() + " inputs must agree with each other");
 | |
|   // Ensure that the types can agree as well.
 | |
|   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
 | |
|   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
 | |
|   if (Slot->getExtTypes() != Pat->getExtTypes())
 | |
|     I.error("All $" + Pat->getName() + " inputs must agree with each other");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
 | |
| /// part of "I", the instruction), computing the set of inputs and outputs of
 | |
| /// the pattern.  Report errors if we see anything naughty.
 | |
| void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
 | |
|     TreePattern &I, TreePatternNodePtr Pat,
 | |
|     std::map<std::string, TreePatternNodePtr> &InstInputs,
 | |
|     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
 | |
|         &InstResults,
 | |
|     std::vector<Record *> &InstImpResults) {
 | |
| 
 | |
|   // The instruction pattern still has unresolved fragments.  For *named*
 | |
|   // nodes we must resolve those here.  This may not result in multiple
 | |
|   // alternatives.
 | |
|   if (!Pat->getName().empty()) {
 | |
|     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
 | |
|     SrcPattern.InlinePatternFragments();
 | |
|     SrcPattern.InferAllTypes();
 | |
|     Pat = SrcPattern.getOnlyTree();
 | |
|   }
 | |
| 
 | |
|   if (Pat->isLeaf()) {
 | |
|     bool isUse = HandleUse(I, Pat, InstInputs);
 | |
|     if (!isUse && Pat->getTransformFn())
 | |
|       I.error("Cannot specify a transform function for a non-input value!");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Pat->getOperator()->getName() == "implicit") {
 | |
|     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
 | |
|       TreePatternNode *Dest = Pat->getChild(i);
 | |
|       if (!Dest->isLeaf())
 | |
|         I.error("implicitly defined value should be a register!");
 | |
| 
 | |
|       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
 | |
|       if (!Val || !Val->getDef()->isSubClassOf("Register"))
 | |
|         I.error("implicitly defined value should be a register!");
 | |
|       InstImpResults.push_back(Val->getDef());
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Pat->getOperator()->getName() != "set") {
 | |
|     // If this is not a set, verify that the children nodes are not void typed,
 | |
|     // and recurse.
 | |
|     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
 | |
|       if (Pat->getChild(i)->getNumTypes() == 0)
 | |
|         I.error("Cannot have void nodes inside of patterns!");
 | |
|       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
 | |
|                                   InstResults, InstImpResults);
 | |
|     }
 | |
| 
 | |
|     // If this is a non-leaf node with no children, treat it basically as if
 | |
|     // it were a leaf.  This handles nodes like (imm).
 | |
|     bool isUse = HandleUse(I, Pat, InstInputs);
 | |
| 
 | |
|     if (!isUse && Pat->getTransformFn())
 | |
|       I.error("Cannot specify a transform function for a non-input value!");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is a set, validate and collect instruction results.
 | |
|   if (Pat->getNumChildren() == 0)
 | |
|     I.error("set requires operands!");
 | |
| 
 | |
|   if (Pat->getTransformFn())
 | |
|     I.error("Cannot specify a transform function on a set node!");
 | |
| 
 | |
|   // Check the set destinations.
 | |
|   unsigned NumDests = Pat->getNumChildren()-1;
 | |
|   for (unsigned i = 0; i != NumDests; ++i) {
 | |
|     TreePatternNodePtr Dest = Pat->getChildShared(i);
 | |
|     // For set destinations we also must resolve fragments here.
 | |
|     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
 | |
|     DestPattern.InlinePatternFragments();
 | |
|     DestPattern.InferAllTypes();
 | |
|     Dest = DestPattern.getOnlyTree();
 | |
| 
 | |
|     if (!Dest->isLeaf())
 | |
|       I.error("set destination should be a register!");
 | |
| 
 | |
|     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
 | |
|     if (!Val) {
 | |
|       I.error("set destination should be a register!");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (Val->getDef()->isSubClassOf("RegisterClass") ||
 | |
|         Val->getDef()->isSubClassOf("ValueType") ||
 | |
|         Val->getDef()->isSubClassOf("RegisterOperand") ||
 | |
|         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
 | |
|       if (Dest->getName().empty())
 | |
|         I.error("set destination must have a name!");
 | |
|       if (InstResults.count(Dest->getName()))
 | |
|         I.error("cannot set '" + Dest->getName() + "' multiple times");
 | |
|       InstResults[Dest->getName()] = Dest;
 | |
|     } else if (Val->getDef()->isSubClassOf("Register")) {
 | |
|       InstImpResults.push_back(Val->getDef());
 | |
|     } else {
 | |
|       I.error("set destination should be a register!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify and collect info from the computation.
 | |
|   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
 | |
|                               InstResults, InstImpResults);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Instruction Analysis
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| class InstAnalyzer {
 | |
|   const CodeGenDAGPatterns &CDP;
 | |
| public:
 | |
|   bool hasSideEffects;
 | |
|   bool mayStore;
 | |
|   bool mayLoad;
 | |
|   bool isBitcast;
 | |
|   bool isVariadic;
 | |
|   bool hasChain;
 | |
| 
 | |
|   InstAnalyzer(const CodeGenDAGPatterns &cdp)
 | |
|     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
 | |
|       isBitcast(false), isVariadic(false), hasChain(false) {}
 | |
| 
 | |
|   void Analyze(const PatternToMatch &Pat) {
 | |
|     const TreePatternNode *N = Pat.getSrcPattern();
 | |
|     AnalyzeNode(N);
 | |
|     // These properties are detected only on the root node.
 | |
|     isBitcast = IsNodeBitcast(N);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool IsNodeBitcast(const TreePatternNode *N) const {
 | |
|     if (hasSideEffects || mayLoad || mayStore || isVariadic)
 | |
|       return false;
 | |
| 
 | |
|     if (N->isLeaf())
 | |
|       return false;
 | |
|     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
 | |
|       return false;
 | |
| 
 | |
|     if (N->getOperator()->isSubClassOf("ComplexPattern"))
 | |
|       return false;
 | |
| 
 | |
|     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
 | |
|     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
 | |
|       return false;
 | |
|     return OpInfo.getEnumName() == "ISD::BITCAST";
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   void AnalyzeNode(const TreePatternNode *N) {
 | |
|     if (N->isLeaf()) {
 | |
|       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
 | |
|         Record *LeafRec = DI->getDef();
 | |
|         // Handle ComplexPattern leaves.
 | |
|         if (LeafRec->isSubClassOf("ComplexPattern")) {
 | |
|           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
 | |
|           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
 | |
|           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
 | |
|           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
 | |
|         }
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Analyze children.
 | |
|     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|       AnalyzeNode(N->getChild(i));
 | |
| 
 | |
|     // Notice properties of the node.
 | |
|     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
 | |
|     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
 | |
|     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
 | |
|     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
 | |
|     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
 | |
| 
 | |
|     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
 | |
|       // If this is an intrinsic, analyze it.
 | |
|       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
 | |
|         mayLoad = true;// These may load memory.
 | |
| 
 | |
|       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
 | |
|         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
 | |
| 
 | |
|       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
 | |
|           IntInfo->hasSideEffects)
 | |
|         // ReadWriteMem intrinsics can have other strange effects.
 | |
|         hasSideEffects = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| static bool InferFromPattern(CodeGenInstruction &InstInfo,
 | |
|                              const InstAnalyzer &PatInfo,
 | |
|                              Record *PatDef) {
 | |
|   bool Error = false;
 | |
| 
 | |
|   // Remember where InstInfo got its flags.
 | |
|   if (InstInfo.hasUndefFlags())
 | |
|       InstInfo.InferredFrom = PatDef;
 | |
| 
 | |
|   // Check explicitly set flags for consistency.
 | |
|   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
 | |
|       !InstInfo.hasSideEffects_Unset) {
 | |
|     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
 | |
|     // the pattern has no side effects. That could be useful for div/rem
 | |
|     // instructions that may trap.
 | |
|     if (!InstInfo.hasSideEffects) {
 | |
|       Error = true;
 | |
|       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
 | |
|                  Twine(InstInfo.hasSideEffects));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
 | |
|     Error = true;
 | |
|     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
 | |
|                Twine(InstInfo.mayStore));
 | |
|   }
 | |
| 
 | |
|   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
 | |
|     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
 | |
|     // Some targets translate immediates to loads.
 | |
|     if (!InstInfo.mayLoad) {
 | |
|       Error = true;
 | |
|       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
 | |
|                  Twine(InstInfo.mayLoad));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transfer inferred flags.
 | |
|   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
 | |
|   InstInfo.mayStore |= PatInfo.mayStore;
 | |
|   InstInfo.mayLoad |= PatInfo.mayLoad;
 | |
| 
 | |
|   // These flags are silently added without any verification.
 | |
|   // FIXME: To match historical behavior of TableGen, for now add those flags
 | |
|   // only when we're inferring from the primary instruction pattern.
 | |
|   if (PatDef->isSubClassOf("Instruction")) {
 | |
|     InstInfo.isBitcast |= PatInfo.isBitcast;
 | |
|     InstInfo.hasChain |= PatInfo.hasChain;
 | |
|     InstInfo.hasChain_Inferred = true;
 | |
|   }
 | |
| 
 | |
|   // Don't infer isVariadic. This flag means something different on SDNodes and
 | |
|   // instructions. For example, a CALL SDNode is variadic because it has the
 | |
|   // call arguments as operands, but a CALL instruction is not variadic - it
 | |
|   // has argument registers as implicit, not explicit uses.
 | |
| 
 | |
|   return Error;
 | |
| }
 | |
| 
 | |
| /// hasNullFragReference - Return true if the DAG has any reference to the
 | |
| /// null_frag operator.
 | |
| static bool hasNullFragReference(DagInit *DI) {
 | |
|   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
 | |
|   if (!OpDef) return false;
 | |
|   Record *Operator = OpDef->getDef();
 | |
| 
 | |
|   // If this is the null fragment, return true.
 | |
|   if (Operator->getName() == "null_frag") return true;
 | |
|   // If any of the arguments reference the null fragment, return true.
 | |
|   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
 | |
|     if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
 | |
|       if (Arg->getDef()->getName() == "null_frag")
 | |
|         return true;
 | |
|     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
 | |
|     if (Arg && hasNullFragReference(Arg))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasNullFragReference - Return true if any DAG in the list references
 | |
| /// the null_frag operator.
 | |
| static bool hasNullFragReference(ListInit *LI) {
 | |
|   for (Init *I : LI->getValues()) {
 | |
|     DagInit *DI = dyn_cast<DagInit>(I);
 | |
|     assert(DI && "non-dag in an instruction Pattern list?!");
 | |
|     if (hasNullFragReference(DI))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Get all the instructions in a tree.
 | |
| static void
 | |
| getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
 | |
|   if (Tree->isLeaf())
 | |
|     return;
 | |
|   if (Tree->getOperator()->isSubClassOf("Instruction"))
 | |
|     Instrs.push_back(Tree->getOperator());
 | |
|   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
 | |
|     getInstructionsInTree(Tree->getChild(i), Instrs);
 | |
| }
 | |
| 
 | |
| /// Check the class of a pattern leaf node against the instruction operand it
 | |
| /// represents.
 | |
| static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
 | |
|                               Record *Leaf) {
 | |
|   if (OI.Rec == Leaf)
 | |
|     return true;
 | |
| 
 | |
|   // Allow direct value types to be used in instruction set patterns.
 | |
|   // The type will be checked later.
 | |
|   if (Leaf->isSubClassOf("ValueType"))
 | |
|     return true;
 | |
| 
 | |
|   // Patterns can also be ComplexPattern instances.
 | |
|   if (Leaf->isSubClassOf("ComplexPattern"))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::parseInstructionPattern(
 | |
|     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
 | |
| 
 | |
|   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
 | |
| 
 | |
|   // Parse the instruction.
 | |
|   TreePattern I(CGI.TheDef, Pat, true, *this);
 | |
| 
 | |
|   // InstInputs - Keep track of all of the inputs of the instruction, along
 | |
|   // with the record they are declared as.
 | |
|   std::map<std::string, TreePatternNodePtr> InstInputs;
 | |
| 
 | |
|   // InstResults - Keep track of all the virtual registers that are 'set'
 | |
|   // in the instruction, including what reg class they are.
 | |
|   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
 | |
|       InstResults;
 | |
| 
 | |
|   std::vector<Record*> InstImpResults;
 | |
| 
 | |
|   // Verify that the top-level forms in the instruction are of void type, and
 | |
|   // fill in the InstResults map.
 | |
|   SmallString<32> TypesString;
 | |
|   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
 | |
|     TypesString.clear();
 | |
|     TreePatternNodePtr Pat = I.getTree(j);
 | |
|     if (Pat->getNumTypes() != 0) {
 | |
|       raw_svector_ostream OS(TypesString);
 | |
|       ListSeparator LS;
 | |
|       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
 | |
|         OS << LS;
 | |
|         Pat->getExtType(k).writeToStream(OS);
 | |
|       }
 | |
|       I.error("Top-level forms in instruction pattern should have"
 | |
|                " void types, has types " +
 | |
|                OS.str());
 | |
|     }
 | |
| 
 | |
|     // Find inputs and outputs, and verify the structure of the uses/defs.
 | |
|     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
 | |
|                                 InstImpResults);
 | |
|   }
 | |
| 
 | |
|   // Now that we have inputs and outputs of the pattern, inspect the operands
 | |
|   // list for the instruction.  This determines the order that operands are
 | |
|   // added to the machine instruction the node corresponds to.
 | |
|   unsigned NumResults = InstResults.size();
 | |
| 
 | |
|   // Parse the operands list from the (ops) list, validating it.
 | |
|   assert(I.getArgList().empty() && "Args list should still be empty here!");
 | |
| 
 | |
|   // Check that all of the results occur first in the list.
 | |
|   std::vector<Record*> Results;
 | |
|   std::vector<unsigned> ResultIndices;
 | |
|   SmallVector<TreePatternNodePtr, 2> ResNodes;
 | |
|   for (unsigned i = 0; i != NumResults; ++i) {
 | |
|     if (i == CGI.Operands.size()) {
 | |
|       const std::string &OpName =
 | |
|           llvm::find_if(
 | |
|               InstResults,
 | |
|               [](const std::pair<std::string, TreePatternNodePtr> &P) {
 | |
|                 return P.second;
 | |
|               })
 | |
|               ->first;
 | |
| 
 | |
|       I.error("'" + OpName + "' set but does not appear in operand list!");
 | |
|     }
 | |
| 
 | |
|     const std::string &OpName = CGI.Operands[i].Name;
 | |
| 
 | |
|     // Check that it exists in InstResults.
 | |
|     auto InstResultIter = InstResults.find(OpName);
 | |
|     if (InstResultIter == InstResults.end() || !InstResultIter->second)
 | |
|       I.error("Operand $" + OpName + " does not exist in operand list!");
 | |
| 
 | |
|     TreePatternNodePtr RNode = InstResultIter->second;
 | |
|     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
 | |
|     ResNodes.push_back(std::move(RNode));
 | |
|     if (!R)
 | |
|       I.error("Operand $" + OpName + " should be a set destination: all "
 | |
|                "outputs must occur before inputs in operand list!");
 | |
| 
 | |
|     if (!checkOperandClass(CGI.Operands[i], R))
 | |
|       I.error("Operand $" + OpName + " class mismatch!");
 | |
| 
 | |
|     // Remember the return type.
 | |
|     Results.push_back(CGI.Operands[i].Rec);
 | |
| 
 | |
|     // Remember the result index.
 | |
|     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
 | |
| 
 | |
|     // Okay, this one checks out.
 | |
|     InstResultIter->second = nullptr;
 | |
|   }
 | |
| 
 | |
|   // Loop over the inputs next.
 | |
|   std::vector<TreePatternNodePtr> ResultNodeOperands;
 | |
|   std::vector<Record*> Operands;
 | |
|   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
 | |
|     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
 | |
|     const std::string &OpName = Op.Name;
 | |
|     if (OpName.empty())
 | |
|       I.error("Operand #" + Twine(i) + " in operands list has no name!");
 | |
| 
 | |
|     if (!InstInputs.count(OpName)) {
 | |
|       // If this is an operand with a DefaultOps set filled in, we can ignore
 | |
|       // this.  When we codegen it, we will do so as always executed.
 | |
|       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
 | |
|         // Does it have a non-empty DefaultOps field?  If so, ignore this
 | |
|         // operand.
 | |
|         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
 | |
|           continue;
 | |
|       }
 | |
|       I.error("Operand $" + OpName +
 | |
|                " does not appear in the instruction pattern");
 | |
|     }
 | |
|     TreePatternNodePtr InVal = InstInputs[OpName];
 | |
|     InstInputs.erase(OpName);   // It occurred, remove from map.
 | |
| 
 | |
|     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
 | |
|       Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
 | |
|       if (!checkOperandClass(Op, InRec))
 | |
|         I.error("Operand $" + OpName + "'s register class disagrees"
 | |
|                  " between the operand and pattern");
 | |
|     }
 | |
|     Operands.push_back(Op.Rec);
 | |
| 
 | |
|     // Construct the result for the dest-pattern operand list.
 | |
|     TreePatternNodePtr OpNode = InVal->clone();
 | |
| 
 | |
|     // No predicate is useful on the result.
 | |
|     OpNode->clearPredicateCalls();
 | |
| 
 | |
|     // Promote the xform function to be an explicit node if set.
 | |
|     if (Record *Xform = OpNode->getTransformFn()) {
 | |
|       OpNode->setTransformFn(nullptr);
 | |
|       std::vector<TreePatternNodePtr> Children;
 | |
|       Children.push_back(OpNode);
 | |
|       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
 | |
|                                                  OpNode->getNumTypes());
 | |
|     }
 | |
| 
 | |
|     ResultNodeOperands.push_back(std::move(OpNode));
 | |
|   }
 | |
| 
 | |
|   if (!InstInputs.empty())
 | |
|     I.error("Input operand $" + InstInputs.begin()->first +
 | |
|             " occurs in pattern but not in operands list!");
 | |
| 
 | |
|   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
 | |
|       I.getRecord(), std::move(ResultNodeOperands),
 | |
|       GetNumNodeResults(I.getRecord(), *this));
 | |
|   // Copy fully inferred output node types to instruction result pattern.
 | |
|   for (unsigned i = 0; i != NumResults; ++i) {
 | |
|     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
 | |
|     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
 | |
|     ResultPattern->setResultIndex(i, ResultIndices[i]);
 | |
|   }
 | |
| 
 | |
|   // FIXME: Assume only the first tree is the pattern. The others are clobber
 | |
|   // nodes.
 | |
|   TreePatternNodePtr Pattern = I.getTree(0);
 | |
|   TreePatternNodePtr SrcPattern;
 | |
|   if (Pattern->getOperator()->getName() == "set") {
 | |
|     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
 | |
|   } else{
 | |
|     // Not a set (store or something?)
 | |
|     SrcPattern = Pattern;
 | |
|   }
 | |
| 
 | |
|   // Create and insert the instruction.
 | |
|   // FIXME: InstImpResults should not be part of DAGInstruction.
 | |
|   Record *R = I.getRecord();
 | |
|   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
 | |
|                    std::forward_as_tuple(Results, Operands, InstImpResults,
 | |
|                                          SrcPattern, ResultPattern));
 | |
| 
 | |
|   LLVM_DEBUG(I.dump());
 | |
| }
 | |
| 
 | |
| /// ParseInstructions - Parse all of the instructions, inlining and resolving
 | |
| /// any fragments involved.  This populates the Instructions list with fully
 | |
| /// resolved instructions.
 | |
| void CodeGenDAGPatterns::ParseInstructions() {
 | |
|   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
 | |
| 
 | |
|   for (Record *Instr : Instrs) {
 | |
|     ListInit *LI = nullptr;
 | |
| 
 | |
|     if (isa<ListInit>(Instr->getValueInit("Pattern")))
 | |
|       LI = Instr->getValueAsListInit("Pattern");
 | |
| 
 | |
|     // If there is no pattern, only collect minimal information about the
 | |
|     // instruction for its operand list.  We have to assume that there is one
 | |
|     // result, as we have no detailed info. A pattern which references the
 | |
|     // null_frag operator is as-if no pattern were specified. Normally this
 | |
|     // is from a multiclass expansion w/ a SDPatternOperator passed in as
 | |
|     // null_frag.
 | |
|     if (!LI || LI->empty() || hasNullFragReference(LI)) {
 | |
|       std::vector<Record*> Results;
 | |
|       std::vector<Record*> Operands;
 | |
| 
 | |
|       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
 | |
| 
 | |
|       if (InstInfo.Operands.size() != 0) {
 | |
|         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
 | |
|           Results.push_back(InstInfo.Operands[j].Rec);
 | |
| 
 | |
|         // The rest are inputs.
 | |
|         for (unsigned j = InstInfo.Operands.NumDefs,
 | |
|                e = InstInfo.Operands.size(); j < e; ++j)
 | |
|           Operands.push_back(InstInfo.Operands[j].Rec);
 | |
|       }
 | |
| 
 | |
|       // Create and insert the instruction.
 | |
|       std::vector<Record*> ImpResults;
 | |
|       Instructions.insert(std::make_pair(Instr,
 | |
|                             DAGInstruction(Results, Operands, ImpResults)));
 | |
|       continue;  // no pattern.
 | |
|     }
 | |
| 
 | |
|     CodeGenInstruction &CGI = Target.getInstruction(Instr);
 | |
|     parseInstructionPattern(CGI, LI, Instructions);
 | |
|   }
 | |
| 
 | |
|   // If we can, convert the instructions to be patterns that are matched!
 | |
|   for (auto &Entry : Instructions) {
 | |
|     Record *Instr = Entry.first;
 | |
|     DAGInstruction &TheInst = Entry.second;
 | |
|     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
 | |
|     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
 | |
| 
 | |
|     if (SrcPattern && ResultPattern) {
 | |
|       TreePattern Pattern(Instr, SrcPattern, true, *this);
 | |
|       TreePattern Result(Instr, ResultPattern, false, *this);
 | |
|       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| typedef std::pair<TreePatternNode *, unsigned> NameRecord;
 | |
| 
 | |
| static void FindNames(TreePatternNode *P,
 | |
|                       std::map<std::string, NameRecord> &Names,
 | |
|                       TreePattern *PatternTop) {
 | |
|   if (!P->getName().empty()) {
 | |
|     NameRecord &Rec = Names[P->getName()];
 | |
|     // If this is the first instance of the name, remember the node.
 | |
|     if (Rec.second++ == 0)
 | |
|       Rec.first = P;
 | |
|     else if (Rec.first->getExtTypes() != P->getExtTypes())
 | |
|       PatternTop->error("repetition of value: $" + P->getName() +
 | |
|                         " where different uses have different types!");
 | |
|   }
 | |
| 
 | |
|   if (!P->isLeaf()) {
 | |
|     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
 | |
|       FindNames(P->getChild(i), Names, PatternTop);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
 | |
|                                            PatternToMatch &&PTM) {
 | |
|   // Do some sanity checking on the pattern we're about to match.
 | |
|   std::string Reason;
 | |
|   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
 | |
|     PrintWarning(Pattern->getRecord()->getLoc(),
 | |
|       Twine("Pattern can never match: ") + Reason);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the source pattern's root is a complex pattern, that complex pattern
 | |
|   // must specify the nodes it can potentially match.
 | |
|   if (const ComplexPattern *CP =
 | |
|         PTM.getSrcPattern()->getComplexPatternInfo(*this))
 | |
|     if (CP->getRootNodes().empty())
 | |
|       Pattern->error("ComplexPattern at root must specify list of opcodes it"
 | |
|                      " could match");
 | |
| 
 | |
| 
 | |
|   // Find all of the named values in the input and output, ensure they have the
 | |
|   // same type.
 | |
|   std::map<std::string, NameRecord> SrcNames, DstNames;
 | |
|   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
 | |
|   FindNames(PTM.getDstPattern(), DstNames, Pattern);
 | |
| 
 | |
|   // Scan all of the named values in the destination pattern, rejecting them if
 | |
|   // they don't exist in the input pattern.
 | |
|   for (const auto &Entry : DstNames) {
 | |
|     if (SrcNames[Entry.first].first == nullptr)
 | |
|       Pattern->error("Pattern has input without matching name in output: $" +
 | |
|                      Entry.first);
 | |
|   }
 | |
| 
 | |
|   // Scan all of the named values in the source pattern, rejecting them if the
 | |
|   // name isn't used in the dest, and isn't used to tie two values together.
 | |
|   for (const auto &Entry : SrcNames)
 | |
|     if (DstNames[Entry.first].first == nullptr &&
 | |
|         SrcNames[Entry.first].second == 1)
 | |
|       Pattern->error("Pattern has dead named input: $" + Entry.first);
 | |
| 
 | |
|   PatternsToMatch.push_back(std::move(PTM));
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::InferInstructionFlags() {
 | |
|   ArrayRef<const CodeGenInstruction*> Instructions =
 | |
|     Target.getInstructionsByEnumValue();
 | |
| 
 | |
|   unsigned Errors = 0;
 | |
| 
 | |
|   // Try to infer flags from all patterns in PatternToMatch.  These include
 | |
|   // both the primary instruction patterns (which always come first) and
 | |
|   // patterns defined outside the instruction.
 | |
|   for (const PatternToMatch &PTM : ptms()) {
 | |
|     // We can only infer from single-instruction patterns, otherwise we won't
 | |
|     // know which instruction should get the flags.
 | |
|     SmallVector<Record*, 8> PatInstrs;
 | |
|     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
 | |
|     if (PatInstrs.size() != 1)
 | |
|       continue;
 | |
| 
 | |
|     // Get the single instruction.
 | |
|     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
 | |
| 
 | |
|     // Only infer properties from the first pattern. We'll verify the others.
 | |
|     if (InstInfo.InferredFrom)
 | |
|       continue;
 | |
| 
 | |
|     InstAnalyzer PatInfo(*this);
 | |
|     PatInfo.Analyze(PTM);
 | |
|     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
 | |
|   }
 | |
| 
 | |
|   if (Errors)
 | |
|     PrintFatalError("pattern conflicts");
 | |
| 
 | |
|   // If requested by the target, guess any undefined properties.
 | |
|   if (Target.guessInstructionProperties()) {
 | |
|     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
 | |
|       CodeGenInstruction *InstInfo =
 | |
|         const_cast<CodeGenInstruction *>(Instructions[i]);
 | |
|       if (InstInfo->InferredFrom)
 | |
|         continue;
 | |
|       // The mayLoad and mayStore flags default to false.
 | |
|       // Conservatively assume hasSideEffects if it wasn't explicit.
 | |
|       if (InstInfo->hasSideEffects_Unset)
 | |
|         InstInfo->hasSideEffects = true;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Complain about any flags that are still undefined.
 | |
|   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
 | |
|     CodeGenInstruction *InstInfo =
 | |
|       const_cast<CodeGenInstruction *>(Instructions[i]);
 | |
|     if (InstInfo->InferredFrom)
 | |
|       continue;
 | |
|     if (InstInfo->hasSideEffects_Unset)
 | |
|       PrintError(InstInfo->TheDef->getLoc(),
 | |
|                  "Can't infer hasSideEffects from patterns");
 | |
|     if (InstInfo->mayStore_Unset)
 | |
|       PrintError(InstInfo->TheDef->getLoc(),
 | |
|                  "Can't infer mayStore from patterns");
 | |
|     if (InstInfo->mayLoad_Unset)
 | |
|       PrintError(InstInfo->TheDef->getLoc(),
 | |
|                  "Can't infer mayLoad from patterns");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Verify instruction flags against pattern node properties.
 | |
| void CodeGenDAGPatterns::VerifyInstructionFlags() {
 | |
|   unsigned Errors = 0;
 | |
|   for (const PatternToMatch &PTM : ptms()) {
 | |
|     SmallVector<Record*, 8> Instrs;
 | |
|     getInstructionsInTree(PTM.getDstPattern(), Instrs);
 | |
|     if (Instrs.empty())
 | |
|       continue;
 | |
| 
 | |
|     // Count the number of instructions with each flag set.
 | |
|     unsigned NumSideEffects = 0;
 | |
|     unsigned NumStores = 0;
 | |
|     unsigned NumLoads = 0;
 | |
|     for (const Record *Instr : Instrs) {
 | |
|       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
 | |
|       NumSideEffects += InstInfo.hasSideEffects;
 | |
|       NumStores += InstInfo.mayStore;
 | |
|       NumLoads += InstInfo.mayLoad;
 | |
|     }
 | |
| 
 | |
|     // Analyze the source pattern.
 | |
|     InstAnalyzer PatInfo(*this);
 | |
|     PatInfo.Analyze(PTM);
 | |
| 
 | |
|     // Collect error messages.
 | |
|     SmallVector<std::string, 4> Msgs;
 | |
| 
 | |
|     // Check for missing flags in the output.
 | |
|     // Permit extra flags for now at least.
 | |
|     if (PatInfo.hasSideEffects && !NumSideEffects)
 | |
|       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
 | |
| 
 | |
|     // Don't verify store flags on instructions with side effects. At least for
 | |
|     // intrinsics, side effects implies mayStore.
 | |
|     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
 | |
|       Msgs.push_back("pattern may store, but mayStore isn't set");
 | |
| 
 | |
|     // Similarly, mayStore implies mayLoad on intrinsics.
 | |
|     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
 | |
|       Msgs.push_back("pattern may load, but mayLoad isn't set");
 | |
| 
 | |
|     // Print error messages.
 | |
|     if (Msgs.empty())
 | |
|       continue;
 | |
|     ++Errors;
 | |
| 
 | |
|     for (const std::string &Msg : Msgs)
 | |
|       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
 | |
|                  (Instrs.size() == 1 ?
 | |
|                   "instruction" : "output instructions"));
 | |
|     // Provide the location of the relevant instruction definitions.
 | |
|     for (const Record *Instr : Instrs) {
 | |
|       if (Instr != PTM.getSrcRecord())
 | |
|         PrintError(Instr->getLoc(), "defined here");
 | |
|       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
 | |
|       if (InstInfo.InferredFrom &&
 | |
|           InstInfo.InferredFrom != InstInfo.TheDef &&
 | |
|           InstInfo.InferredFrom != PTM.getSrcRecord())
 | |
|         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
 | |
|     }
 | |
|   }
 | |
|   if (Errors)
 | |
|     PrintFatalError("Errors in DAG patterns");
 | |
| }
 | |
| 
 | |
| /// Given a pattern result with an unresolved type, see if we can find one
 | |
| /// instruction with an unresolved result type.  Force this result type to an
 | |
| /// arbitrary element if it's possible types to converge results.
 | |
| static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
 | |
|   if (N->isLeaf())
 | |
|     return false;
 | |
| 
 | |
|   // Analyze children.
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|     if (ForceArbitraryInstResultType(N->getChild(i), TP))
 | |
|       return true;
 | |
| 
 | |
|   if (!N->getOperator()->isSubClassOf("Instruction"))
 | |
|     return false;
 | |
| 
 | |
|   // If this type is already concrete or completely unknown we can't do
 | |
|   // anything.
 | |
|   TypeInfer &TI = TP.getInfer();
 | |
|   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
 | |
|     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, force its type to an arbitrary choice.
 | |
|     if (TI.forceArbitrary(N->getExtType(i)))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Promote xform function to be an explicit node wherever set.
 | |
| static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
 | |
|   if (Record *Xform = N->getTransformFn()) {
 | |
|       N->setTransformFn(nullptr);
 | |
|       std::vector<TreePatternNodePtr> Children;
 | |
|       Children.push_back(PromoteXForms(N));
 | |
|       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
 | |
|                                                N->getNumTypes());
 | |
|   }
 | |
| 
 | |
|   if (!N->isLeaf())
 | |
|     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
 | |
|       TreePatternNodePtr Child = N->getChildShared(i);
 | |
|       N->setChild(i, PromoteXForms(Child));
 | |
|     }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
 | |
|        TreePattern &Pattern, TreePattern &Result,
 | |
|        const std::vector<Record *> &InstImpResults) {
 | |
| 
 | |
|   // Inline pattern fragments and expand multiple alternatives.
 | |
|   Pattern.InlinePatternFragments();
 | |
|   Result.InlinePatternFragments();
 | |
| 
 | |
|   if (Result.getNumTrees() != 1)
 | |
|     Result.error("Cannot use multi-alternative fragments in result pattern!");
 | |
| 
 | |
|   // Infer types.
 | |
|   bool IterateInference;
 | |
|   bool InferredAllPatternTypes, InferredAllResultTypes;
 | |
|   do {
 | |
|     // Infer as many types as possible.  If we cannot infer all of them, we
 | |
|     // can never do anything with this pattern: report it to the user.
 | |
|     InferredAllPatternTypes =
 | |
|         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
 | |
| 
 | |
|     // Infer as many types as possible.  If we cannot infer all of them, we
 | |
|     // can never do anything with this pattern: report it to the user.
 | |
|     InferredAllResultTypes =
 | |
|         Result.InferAllTypes(&Pattern.getNamedNodesMap());
 | |
| 
 | |
|     IterateInference = false;
 | |
| 
 | |
|     // Apply the type of the result to the source pattern.  This helps us
 | |
|     // resolve cases where the input type is known to be a pointer type (which
 | |
|     // is considered resolved), but the result knows it needs to be 32- or
 | |
|     // 64-bits.  Infer the other way for good measure.
 | |
|     for (const auto &T : Pattern.getTrees())
 | |
|       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
 | |
|                                         T->getNumTypes());
 | |
|          i != e; ++i) {
 | |
|         IterateInference |= T->UpdateNodeType(
 | |
|             i, Result.getOnlyTree()->getExtType(i), Result);
 | |
|         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
 | |
|             i, T->getExtType(i), Result);
 | |
|       }
 | |
| 
 | |
|     // If our iteration has converged and the input pattern's types are fully
 | |
|     // resolved but the result pattern is not fully resolved, we may have a
 | |
|     // situation where we have two instructions in the result pattern and
 | |
|     // the instructions require a common register class, but don't care about
 | |
|     // what actual MVT is used.  This is actually a bug in our modelling:
 | |
|     // output patterns should have register classes, not MVTs.
 | |
|     //
 | |
|     // In any case, to handle this, we just go through and disambiguate some
 | |
|     // arbitrary types to the result pattern's nodes.
 | |
|     if (!IterateInference && InferredAllPatternTypes &&
 | |
|         !InferredAllResultTypes)
 | |
|       IterateInference =
 | |
|           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
 | |
|   } while (IterateInference);
 | |
| 
 | |
|   // Verify that we inferred enough types that we can do something with the
 | |
|   // pattern and result.  If these fire the user has to add type casts.
 | |
|   if (!InferredAllPatternTypes)
 | |
|     Pattern.error("Could not infer all types in pattern!");
 | |
|   if (!InferredAllResultTypes) {
 | |
|     Pattern.dump();
 | |
|     Result.error("Could not infer all types in pattern result!");
 | |
|   }
 | |
| 
 | |
|   // Promote xform function to be an explicit node wherever set.
 | |
|   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
 | |
| 
 | |
|   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
 | |
|   Temp.InferAllTypes();
 | |
| 
 | |
|   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
 | |
|   int Complexity = TheDef->getValueAsInt("AddedComplexity");
 | |
| 
 | |
|   if (PatternRewriter)
 | |
|     PatternRewriter(&Pattern);
 | |
| 
 | |
|   // A pattern may end up with an "impossible" type, i.e. a situation
 | |
|   // where all types have been eliminated for some node in this pattern.
 | |
|   // This could occur for intrinsics that only make sense for a specific
 | |
|   // value type, and use a specific register class. If, for some mode,
 | |
|   // that register class does not accept that type, the type inference
 | |
|   // will lead to a contradiction, which is not an error however, but
 | |
|   // a sign that this pattern will simply never match.
 | |
|   if (Temp.getOnlyTree()->hasPossibleType())
 | |
|     for (const auto &T : Pattern.getTrees())
 | |
|       if (T->hasPossibleType())
 | |
|         AddPatternToMatch(&Pattern,
 | |
|                           PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
 | |
|                                          InstImpResults, Complexity,
 | |
|                                          TheDef->getID()));
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::ParsePatterns() {
 | |
|   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
 | |
| 
 | |
|   for (Record *CurPattern : Patterns) {
 | |
|     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
 | |
| 
 | |
|     // If the pattern references the null_frag, there's nothing to do.
 | |
|     if (hasNullFragReference(Tree))
 | |
|       continue;
 | |
| 
 | |
|     TreePattern Pattern(CurPattern, Tree, true, *this);
 | |
| 
 | |
|     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
 | |
|     if (LI->empty()) continue;  // no pattern.
 | |
| 
 | |
|     // Parse the instruction.
 | |
|     TreePattern Result(CurPattern, LI, false, *this);
 | |
| 
 | |
|     if (Result.getNumTrees() != 1)
 | |
|       Result.error("Cannot handle instructions producing instructions "
 | |
|                    "with temporaries yet!");
 | |
| 
 | |
|     // Validate that the input pattern is correct.
 | |
|     std::map<std::string, TreePatternNodePtr> InstInputs;
 | |
|     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
 | |
|         InstResults;
 | |
|     std::vector<Record*> InstImpResults;
 | |
|     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
 | |
|       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
 | |
|                                   InstResults, InstImpResults);
 | |
| 
 | |
|     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
 | |
|   for (const TypeSetByHwMode &VTS : N->getExtTypes())
 | |
|     for (const auto &I : VTS)
 | |
|       Modes.insert(I.first);
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|     collectModes(Modes, N->getChild(i));
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
 | |
|   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
 | |
|   std::vector<PatternToMatch> Copy;
 | |
|   PatternsToMatch.swap(Copy);
 | |
| 
 | |
|   auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
 | |
|                               StringRef Check) {
 | |
|     TreePatternNodePtr NewSrc = P.getSrcPattern()->clone();
 | |
|     TreePatternNodePtr NewDst = P.getDstPattern()->clone();
 | |
|     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(),
 | |
|                                  std::move(NewSrc), std::move(NewDst),
 | |
|                                  P.getDstRegs(), P.getAddedComplexity(),
 | |
|                                  Record::getNewUID(Records), Mode, Check);
 | |
|   };
 | |
| 
 | |
|   for (PatternToMatch &P : Copy) {
 | |
|     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
 | |
|     if (P.getSrcPattern()->hasProperTypeByHwMode())
 | |
|       SrcP = P.getSrcPatternShared();
 | |
|     if (P.getDstPattern()->hasProperTypeByHwMode())
 | |
|       DstP = P.getDstPatternShared();
 | |
|     if (!SrcP && !DstP) {
 | |
|       PatternsToMatch.push_back(P);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     std::set<unsigned> Modes;
 | |
|     if (SrcP)
 | |
|       collectModes(Modes, SrcP.get());
 | |
|     if (DstP)
 | |
|       collectModes(Modes, DstP.get());
 | |
| 
 | |
|     // The predicate for the default mode needs to be constructed for each
 | |
|     // pattern separately.
 | |
|     // Since not all modes must be present in each pattern, if a mode m is
 | |
|     // absent, then there is no point in constructing a check for m. If such
 | |
|     // a check was created, it would be equivalent to checking the default
 | |
|     // mode, except not all modes' predicates would be a part of the checking
 | |
|     // code. The subsequently generated check for the default mode would then
 | |
|     // have the exact same patterns, but a different predicate code. To avoid
 | |
|     // duplicated patterns with different predicate checks, construct the
 | |
|     // default check as a negation of all predicates that are actually present
 | |
|     // in the source/destination patterns.
 | |
|     SmallString<128> DefaultCheck;
 | |
| 
 | |
|     for (unsigned M : Modes) {
 | |
|       if (M == DefaultMode)
 | |
|         continue;
 | |
| 
 | |
|       // Fill the map entry for this mode.
 | |
|       const HwMode &HM = CGH.getMode(M);
 | |
|       AppendPattern(P, M, "(MF->getSubtarget().checkFeatures(\"" + HM.Features + "\"))");
 | |
| 
 | |
|       // Add negations of the HM's predicates to the default predicate.
 | |
|       if (!DefaultCheck.empty())
 | |
|         DefaultCheck += " && ";
 | |
|       DefaultCheck += "(!(MF->getSubtarget().checkFeatures(\"";
 | |
|       DefaultCheck += HM.Features;
 | |
|       DefaultCheck += "\")))";
 | |
|     }
 | |
| 
 | |
|     bool HasDefault = Modes.count(DefaultMode);
 | |
|     if (HasDefault)
 | |
|       AppendPattern(P, DefaultMode, DefaultCheck);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Dependent variable map for CodeGenDAGPattern variant generation
 | |
| typedef StringMap<int> DepVarMap;
 | |
| 
 | |
| static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
 | |
|   if (N->isLeaf()) {
 | |
|     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
 | |
|       DepMap[N->getName()]++;
 | |
|   } else {
 | |
|     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|       FindDepVarsOf(N->getChild(i), DepMap);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Find dependent variables within child patterns
 | |
| static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
 | |
|   DepVarMap depcounts;
 | |
|   FindDepVarsOf(N, depcounts);
 | |
|   for (const auto &Pair : depcounts) {
 | |
|     if (Pair.getValue() > 1)
 | |
|       DepVars.insert(Pair.getKey());
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// Dump the dependent variable set:
 | |
| static void DumpDepVars(MultipleUseVarSet &DepVars) {
 | |
|   if (DepVars.empty()) {
 | |
|     LLVM_DEBUG(errs() << "<empty set>");
 | |
|   } else {
 | |
|     LLVM_DEBUG(errs() << "[ ");
 | |
|     for (const auto &DepVar : DepVars) {
 | |
|       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
 | |
|     }
 | |
|     LLVM_DEBUG(errs() << "]");
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /// CombineChildVariants - Given a bunch of permutations of each child of the
 | |
| /// 'operator' node, put them together in all possible ways.
 | |
| static void CombineChildVariants(
 | |
|     TreePatternNodePtr Orig,
 | |
|     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
 | |
|     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
 | |
|     const MultipleUseVarSet &DepVars) {
 | |
|   // Make sure that each operand has at least one variant to choose from.
 | |
|   for (const auto &Variants : ChildVariants)
 | |
|     if (Variants.empty())
 | |
|       return;
 | |
| 
 | |
|   // The end result is an all-pairs construction of the resultant pattern.
 | |
|   std::vector<unsigned> Idxs;
 | |
|   Idxs.resize(ChildVariants.size());
 | |
|   bool NotDone;
 | |
|   do {
 | |
| #ifndef NDEBUG
 | |
|     LLVM_DEBUG(if (!Idxs.empty()) {
 | |
|       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
 | |
|       for (unsigned Idx : Idxs) {
 | |
|         errs() << Idx << " ";
 | |
|       }
 | |
|       errs() << "]\n";
 | |
|     });
 | |
| #endif
 | |
|     // Create the variant and add it to the output list.
 | |
|     std::vector<TreePatternNodePtr> NewChildren;
 | |
|     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
 | |
|       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
 | |
|     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
 | |
|         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
 | |
| 
 | |
|     // Copy over properties.
 | |
|     R->setName(Orig->getName());
 | |
|     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
 | |
|     R->setPredicateCalls(Orig->getPredicateCalls());
 | |
|     R->setTransformFn(Orig->getTransformFn());
 | |
|     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
 | |
|       R->setType(i, Orig->getExtType(i));
 | |
| 
 | |
|     // If this pattern cannot match, do not include it as a variant.
 | |
|     std::string ErrString;
 | |
|     // Scan to see if this pattern has already been emitted.  We can get
 | |
|     // duplication due to things like commuting:
 | |
|     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
 | |
|     // which are the same pattern.  Ignore the dups.
 | |
|     if (R->canPatternMatch(ErrString, CDP) &&
 | |
|         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
 | |
|           return R->isIsomorphicTo(Variant.get(), DepVars);
 | |
|         }))
 | |
|       OutVariants.push_back(R);
 | |
| 
 | |
|     // Increment indices to the next permutation by incrementing the
 | |
|     // indices from last index backward, e.g., generate the sequence
 | |
|     // [0, 0], [0, 1], [1, 0], [1, 1].
 | |
|     int IdxsIdx;
 | |
|     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
 | |
|       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
 | |
|         Idxs[IdxsIdx] = 0;
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|     NotDone = (IdxsIdx >= 0);
 | |
|   } while (NotDone);
 | |
| }
 | |
| 
 | |
| /// CombineChildVariants - A helper function for binary operators.
 | |
| ///
 | |
| static void CombineChildVariants(TreePatternNodePtr Orig,
 | |
|                                  const std::vector<TreePatternNodePtr> &LHS,
 | |
|                                  const std::vector<TreePatternNodePtr> &RHS,
 | |
|                                  std::vector<TreePatternNodePtr> &OutVariants,
 | |
|                                  CodeGenDAGPatterns &CDP,
 | |
|                                  const MultipleUseVarSet &DepVars) {
 | |
|   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
 | |
|   ChildVariants.push_back(LHS);
 | |
|   ChildVariants.push_back(RHS);
 | |
|   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
 | |
| }
 | |
| 
 | |
| static void
 | |
| GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
 | |
|                                   std::vector<TreePatternNodePtr> &Children) {
 | |
|   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
 | |
|   Record *Operator = N->getOperator();
 | |
| 
 | |
|   // Only permit raw nodes.
 | |
|   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
 | |
|       N->getTransformFn()) {
 | |
|     Children.push_back(N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
 | |
|     Children.push_back(N->getChildShared(0));
 | |
|   else
 | |
|     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
 | |
| 
 | |
|   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
 | |
|     Children.push_back(N->getChildShared(1));
 | |
|   else
 | |
|     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
 | |
| }
 | |
| 
 | |
| /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
 | |
| /// the (potentially recursive) pattern by using algebraic laws.
 | |
| ///
 | |
| static void GenerateVariantsOf(TreePatternNodePtr N,
 | |
|                                std::vector<TreePatternNodePtr> &OutVariants,
 | |
|                                CodeGenDAGPatterns &CDP,
 | |
|                                const MultipleUseVarSet &DepVars) {
 | |
|   // We cannot permute leaves or ComplexPattern uses.
 | |
|   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
 | |
|     OutVariants.push_back(N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Look up interesting info about the node.
 | |
|   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
 | |
| 
 | |
|   // If this node is associative, re-associate.
 | |
|   if (NodeInfo.hasProperty(SDNPAssociative)) {
 | |
|     // Re-associate by pulling together all of the linked operators
 | |
|     std::vector<TreePatternNodePtr> MaximalChildren;
 | |
|     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
 | |
| 
 | |
|     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
 | |
|     // permutations.
 | |
|     if (MaximalChildren.size() == 3) {
 | |
|       // Find the variants of all of our maximal children.
 | |
|       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
 | |
|       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
 | |
|       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
 | |
|       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
 | |
| 
 | |
|       // There are only two ways we can permute the tree:
 | |
|       //   (A op B) op C    and    A op (B op C)
 | |
|       // Within these forms, we can also permute A/B/C.
 | |
| 
 | |
|       // Generate legal pair permutations of A/B/C.
 | |
|       std::vector<TreePatternNodePtr> ABVariants;
 | |
|       std::vector<TreePatternNodePtr> BAVariants;
 | |
|       std::vector<TreePatternNodePtr> ACVariants;
 | |
|       std::vector<TreePatternNodePtr> CAVariants;
 | |
|       std::vector<TreePatternNodePtr> BCVariants;
 | |
|       std::vector<TreePatternNodePtr> CBVariants;
 | |
|       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
 | |
| 
 | |
|       // Combine those into the result: (x op x) op x
 | |
|       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
 | |
| 
 | |
|       // Combine those into the result: x op (x op x)
 | |
|       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute permutations of all children.
 | |
|   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
 | |
|   ChildVariants.resize(N->getNumChildren());
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
 | |
| 
 | |
|   // Build all permutations based on how the children were formed.
 | |
|   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
 | |
| 
 | |
|   // If this node is commutative, consider the commuted order.
 | |
|   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
 | |
|   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
 | |
|     unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
 | |
|     assert(N->getNumChildren() >= (2 + Skip) &&
 | |
|            "Commutative but doesn't have 2 children!");
 | |
|     // Don't allow commuting children which are actually register references.
 | |
|     bool NoRegisters = true;
 | |
|     unsigned i = 0 + Skip;
 | |
|     unsigned e = 2 + Skip;
 | |
|     for (; i != e; ++i) {
 | |
|       TreePatternNode *Child = N->getChild(i);
 | |
|       if (Child->isLeaf())
 | |
|         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
 | |
|           Record *RR = DI->getDef();
 | |
|           if (RR->isSubClassOf("Register"))
 | |
|             NoRegisters = false;
 | |
|         }
 | |
|     }
 | |
|     // Consider the commuted order.
 | |
|     if (NoRegisters) {
 | |
|       std::vector<std::vector<TreePatternNodePtr>> Variants;
 | |
|       unsigned i = 0;
 | |
|       if (isCommIntrinsic)
 | |
|         Variants.push_back(std::move(ChildVariants[i++])); // Intrinsic id.
 | |
|       Variants.push_back(std::move(ChildVariants[i + 1]));
 | |
|       Variants.push_back(std::move(ChildVariants[i]));
 | |
|       i += 2;
 | |
|       // Remaining operands are not commuted.
 | |
|       for (; i != N->getNumChildren(); ++i)
 | |
|         Variants.push_back(std::move(ChildVariants[i]));
 | |
|       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // GenerateVariants - Generate variants.  For example, commutative patterns can
 | |
| // match multiple ways.  Add them to PatternsToMatch as well.
 | |
| void CodeGenDAGPatterns::GenerateVariants() {
 | |
|   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
 | |
| 
 | |
|   // Loop over all of the patterns we've collected, checking to see if we can
 | |
|   // generate variants of the instruction, through the exploitation of
 | |
|   // identities.  This permits the target to provide aggressive matching without
 | |
|   // the .td file having to contain tons of variants of instructions.
 | |
|   //
 | |
|   // Note that this loop adds new patterns to the PatternsToMatch list, but we
 | |
|   // intentionally do not reconsider these.  Any variants of added patterns have
 | |
|   // already been added.
 | |
|   //
 | |
|   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
 | |
|     MultipleUseVarSet DepVars;
 | |
|     std::vector<TreePatternNodePtr> Variants;
 | |
|     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
 | |
|     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
 | |
|     LLVM_DEBUG(DumpDepVars(DepVars));
 | |
|     LLVM_DEBUG(errs() << "\n");
 | |
|     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
 | |
|                        *this, DepVars);
 | |
| 
 | |
|     assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
 | |
|            "HwModes should not have been expanded yet!");
 | |
| 
 | |
|     assert(!Variants.empty() && "Must create at least original variant!");
 | |
|     if (Variants.size() == 1) // No additional variants for this pattern.
 | |
|       continue;
 | |
| 
 | |
|     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
 | |
|                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
 | |
| 
 | |
|     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
 | |
|       TreePatternNodePtr Variant = Variants[v];
 | |
| 
 | |
|       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
 | |
|                  errs() << "\n");
 | |
| 
 | |
|       // Scan to see if an instruction or explicit pattern already matches this.
 | |
|       bool AlreadyExists = false;
 | |
|       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
 | |
|         // Skip if the top level predicates do not match.
 | |
|         if ((i != p) && (PatternsToMatch[i].getPredicates() !=
 | |
|                          PatternsToMatch[p].getPredicates()))
 | |
|           continue;
 | |
|         // Check to see if this variant already exists.
 | |
|         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
 | |
|                                     DepVars)) {
 | |
|           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
 | |
|           AlreadyExists = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // If we already have it, ignore the variant.
 | |
|       if (AlreadyExists) continue;
 | |
| 
 | |
|       // Otherwise, add it to the list of patterns we have.
 | |
|       PatternsToMatch.emplace_back(
 | |
|           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
 | |
|           Variant, PatternsToMatch[i].getDstPatternShared(),
 | |
|           PatternsToMatch[i].getDstRegs(),
 | |
|           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records),
 | |
|           PatternsToMatch[i].getForceMode(),
 | |
|           PatternsToMatch[i].getHwModeFeatures());
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(errs() << "\n");
 | |
|   }
 | |
| }
 |