1270 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1270 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file declares the CodeGenDAGPatterns class, which is used to read and
 | |
| // represent the patterns present in a .td file for instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
 | |
| #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
 | |
| 
 | |
| #include "CodeGenIntrinsics.h"
 | |
| #include "CodeGenTarget.h"
 | |
| #include "SDNodeProperties.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/ADT/StringSet.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <functional>
 | |
| #include <map>
 | |
| #include <numeric>
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class Record;
 | |
| class Init;
 | |
| class ListInit;
 | |
| class DagInit;
 | |
| class SDNodeInfo;
 | |
| class TreePattern;
 | |
| class TreePatternNode;
 | |
| class CodeGenDAGPatterns;
 | |
| 
 | |
| /// Shared pointer for TreePatternNode.
 | |
| using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
 | |
| 
 | |
| /// This represents a set of MVTs. Since the underlying type for the MVT
 | |
| /// is uint8_t, there are at most 256 values. To reduce the number of memory
 | |
| /// allocations and deallocations, represent the set as a sequence of bits.
 | |
| /// To reduce the allocations even further, make MachineValueTypeSet own
 | |
| /// the storage and use std::array as the bit container.
 | |
| struct MachineValueTypeSet {
 | |
|   static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
 | |
|                              uint8_t>::value,
 | |
|                 "Change uint8_t here to the SimpleValueType's type");
 | |
|   static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
 | |
|   using WordType = uint64_t;
 | |
|   static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
 | |
|   static unsigned constexpr NumWords = Capacity/WordWidth;
 | |
|   static_assert(NumWords*WordWidth == Capacity,
 | |
|                 "Capacity should be a multiple of WordWidth");
 | |
| 
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   MachineValueTypeSet() {
 | |
|     clear();
 | |
|   }
 | |
| 
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   unsigned size() const {
 | |
|     unsigned Count = 0;
 | |
|     for (WordType W : Words)
 | |
|       Count += countPopulation(W);
 | |
|     return Count;
 | |
|   }
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   void clear() {
 | |
|     std::memset(Words.data(), 0, NumWords*sizeof(WordType));
 | |
|   }
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   bool empty() const {
 | |
|     for (WordType W : Words)
 | |
|       if (W != 0)
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   unsigned count(MVT T) const {
 | |
|     return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
 | |
|   }
 | |
|   std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
 | |
|     bool V = count(T.SimpleTy);
 | |
|     Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
 | |
|     return {*this, V};
 | |
|   }
 | |
|   MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
 | |
|     for (unsigned i = 0; i != NumWords; ++i)
 | |
|       Words[i] |= S.Words[i];
 | |
|     return *this;
 | |
|   }
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   void erase(MVT T) {
 | |
|     Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
 | |
|   }
 | |
| 
 | |
|   struct const_iterator {
 | |
|     // Some implementations of the C++ library require these traits to be
 | |
|     // defined.
 | |
|     using iterator_category = std::forward_iterator_tag;
 | |
|     using value_type = MVT;
 | |
|     using difference_type = ptrdiff_t;
 | |
|     using pointer = const MVT*;
 | |
|     using reference = const MVT&;
 | |
| 
 | |
|     LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|     MVT operator*() const {
 | |
|       assert(Pos != Capacity);
 | |
|       return MVT::SimpleValueType(Pos);
 | |
|     }
 | |
|     LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|     const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
 | |
|       Pos = End ? Capacity : find_from_pos(0);
 | |
|     }
 | |
|     LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|     const_iterator &operator++() {
 | |
|       assert(Pos != Capacity);
 | |
|       Pos = find_from_pos(Pos+1);
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|     bool operator==(const const_iterator &It) const {
 | |
|       return Set == It.Set && Pos == It.Pos;
 | |
|     }
 | |
|     LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|     bool operator!=(const const_iterator &It) const {
 | |
|       return !operator==(It);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     unsigned find_from_pos(unsigned P) const {
 | |
|       unsigned SkipWords = P / WordWidth;
 | |
|       unsigned SkipBits = P % WordWidth;
 | |
|       unsigned Count = SkipWords * WordWidth;
 | |
| 
 | |
|       // If P is in the middle of a word, process it manually here, because
 | |
|       // the trailing bits need to be masked off to use findFirstSet.
 | |
|       if (SkipBits != 0) {
 | |
|         WordType W = Set->Words[SkipWords];
 | |
|         W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
 | |
|         if (W != 0)
 | |
|           return Count + findFirstSet(W);
 | |
|         Count += WordWidth;
 | |
|         SkipWords++;
 | |
|       }
 | |
| 
 | |
|       for (unsigned i = SkipWords; i != NumWords; ++i) {
 | |
|         WordType W = Set->Words[i];
 | |
|         if (W != 0)
 | |
|           return Count + findFirstSet(W);
 | |
|         Count += WordWidth;
 | |
|       }
 | |
|       return Capacity;
 | |
|     }
 | |
| 
 | |
|     const MachineValueTypeSet *Set;
 | |
|     unsigned Pos;
 | |
|   };
 | |
| 
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   const_iterator begin() const { return const_iterator(this, false); }
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   const_iterator end()   const { return const_iterator(this, true); }
 | |
| 
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   bool operator==(const MachineValueTypeSet &S) const {
 | |
|     return Words == S.Words;
 | |
|   }
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   bool operator!=(const MachineValueTypeSet &S) const {
 | |
|     return !operator==(S);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   friend struct const_iterator;
 | |
|   std::array<WordType,NumWords> Words;
 | |
| };
 | |
| 
 | |
| struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
 | |
|   using SetType = MachineValueTypeSet;
 | |
|   SmallVector<unsigned, 16> AddrSpaces;
 | |
| 
 | |
|   TypeSetByHwMode() = default;
 | |
|   TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
 | |
|   TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
 | |
|   TypeSetByHwMode(MVT::SimpleValueType VT)
 | |
|     : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
 | |
|   TypeSetByHwMode(ValueTypeByHwMode VT)
 | |
|     : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
 | |
|   TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
 | |
| 
 | |
|   SetType &getOrCreate(unsigned Mode) {
 | |
|     return Map[Mode];
 | |
|   }
 | |
| 
 | |
|   bool isValueTypeByHwMode(bool AllowEmpty) const;
 | |
|   ValueTypeByHwMode getValueTypeByHwMode() const;
 | |
| 
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   bool isMachineValueType() const {
 | |
|     return isDefaultOnly() && Map.begin()->second.size() == 1;
 | |
|   }
 | |
| 
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   MVT getMachineValueType() const {
 | |
|     assert(isMachineValueType());
 | |
|     return *Map.begin()->second.begin();
 | |
|   }
 | |
| 
 | |
|   bool isPossible() const;
 | |
| 
 | |
|   LLVM_ATTRIBUTE_ALWAYS_INLINE
 | |
|   bool isDefaultOnly() const {
 | |
|     return Map.size() == 1 && Map.begin()->first == DefaultMode;
 | |
|   }
 | |
| 
 | |
|   bool isPointer() const {
 | |
|     return getValueTypeByHwMode().isPointer();
 | |
|   }
 | |
| 
 | |
|   unsigned getPtrAddrSpace() const {
 | |
|     assert(isPointer());
 | |
|     return getValueTypeByHwMode().PtrAddrSpace;
 | |
|   }
 | |
| 
 | |
|   bool insert(const ValueTypeByHwMode &VVT);
 | |
|   bool constrain(const TypeSetByHwMode &VTS);
 | |
|   template <typename Predicate> bool constrain(Predicate P);
 | |
|   template <typename Predicate>
 | |
|   bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
 | |
| 
 | |
|   void writeToStream(raw_ostream &OS) const;
 | |
|   static void writeToStream(const SetType &S, raw_ostream &OS);
 | |
| 
 | |
|   bool operator==(const TypeSetByHwMode &VTS) const;
 | |
|   bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
 | |
| 
 | |
|   void dump() const;
 | |
|   bool validate() const;
 | |
| 
 | |
| private:
 | |
|   unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
 | |
|   /// Intersect two sets. Return true if anything has changed.
 | |
|   bool intersect(SetType &Out, const SetType &In);
 | |
| };
 | |
| 
 | |
| raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
 | |
| 
 | |
| struct TypeInfer {
 | |
|   TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
 | |
| 
 | |
|   bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
 | |
|     return VTS.isValueTypeByHwMode(AllowEmpty);
 | |
|   }
 | |
|   ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
 | |
|                                 bool AllowEmpty) const {
 | |
|     assert(VTS.isValueTypeByHwMode(AllowEmpty));
 | |
|     return VTS.getValueTypeByHwMode();
 | |
|   }
 | |
| 
 | |
|   /// The protocol in the following functions (Merge*, force*, Enforce*,
 | |
|   /// expand*) is to return "true" if a change has been made, "false"
 | |
|   /// otherwise.
 | |
| 
 | |
|   bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
 | |
|   bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
 | |
|     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
 | |
|   }
 | |
|   bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
 | |
|     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
 | |
|   }
 | |
| 
 | |
|   /// Reduce the set \p Out to have at most one element for each mode.
 | |
|   bool forceArbitrary(TypeSetByHwMode &Out);
 | |
| 
 | |
|   /// The following four functions ensure that upon return the set \p Out
 | |
|   /// will only contain types of the specified kind: integer, floating-point,
 | |
|   /// scalar, or vector.
 | |
|   /// If \p Out is empty, all legal types of the specified kind will be added
 | |
|   /// to it. Otherwise, all types that are not of the specified kind will be
 | |
|   /// removed from \p Out.
 | |
|   bool EnforceInteger(TypeSetByHwMode &Out);
 | |
|   bool EnforceFloatingPoint(TypeSetByHwMode &Out);
 | |
|   bool EnforceScalar(TypeSetByHwMode &Out);
 | |
|   bool EnforceVector(TypeSetByHwMode &Out);
 | |
| 
 | |
|   /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
 | |
|   /// unchanged.
 | |
|   bool EnforceAny(TypeSetByHwMode &Out);
 | |
|   /// Make sure that for each type in \p Small, there exists a larger type
 | |
|   /// in \p Big. \p SmallIsVT indicates that this is being called for
 | |
|   /// SDTCisVTSmallerThanOp. In that case the TypeSetByHwMode is re-created for
 | |
|   /// each call and needs special consideration in how we detect changes.
 | |
|   bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
 | |
|                           bool SmallIsVT = false);
 | |
|   /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
 | |
|   ///    for each type U in \p Elem, U is a scalar type.
 | |
|   /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
 | |
|   ///    (vector) type T in \p Vec, such that U is the element type of T.
 | |
|   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
 | |
|   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
 | |
|                               const ValueTypeByHwMode &VVT);
 | |
|   /// Ensure that for each type T in \p Sub, T is a vector type, and there
 | |
|   /// exists a type U in \p Vec such that U is a vector type with the same
 | |
|   /// element type as T and at least as many elements as T.
 | |
|   bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
 | |
|                                     TypeSetByHwMode &Sub);
 | |
|   /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
 | |
|   /// 2. Ensure that for each vector type T in \p V, there exists a vector
 | |
|   ///    type U in \p W, such that T and U have the same number of elements.
 | |
|   /// 3. Ensure that for each vector type U in \p W, there exists a vector
 | |
|   ///    type T in \p V, such that T and U have the same number of elements
 | |
|   ///    (reverse of 2).
 | |
|   bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
 | |
|   /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
 | |
|   ///    such that T and U have equal size in bits.
 | |
|   /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
 | |
|   ///    such that T and U have equal size in bits (reverse of 1).
 | |
|   bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
 | |
| 
 | |
|   /// For each overloaded type (i.e. of form *Any), replace it with the
 | |
|   /// corresponding subset of legal, specific types.
 | |
|   void expandOverloads(TypeSetByHwMode &VTS);
 | |
|   void expandOverloads(TypeSetByHwMode::SetType &Out,
 | |
|                        const TypeSetByHwMode::SetType &Legal);
 | |
| 
 | |
|   struct ValidateOnExit {
 | |
|     ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
 | |
|   #ifndef NDEBUG
 | |
|     ~ValidateOnExit();
 | |
|   #else
 | |
|     ~ValidateOnExit() {}  // Empty destructor with NDEBUG.
 | |
|   #endif
 | |
|     TypeInfer &Infer;
 | |
|     TypeSetByHwMode &VTS;
 | |
|   };
 | |
| 
 | |
|   struct SuppressValidation {
 | |
|     SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
 | |
|       Infer.Validate = false;
 | |
|     }
 | |
|     ~SuppressValidation() {
 | |
|       Infer.Validate = SavedValidate;
 | |
|     }
 | |
|     TypeInfer &Infer;
 | |
|     bool SavedValidate;
 | |
|   };
 | |
| 
 | |
|   TreePattern &TP;
 | |
|   unsigned ForceMode;     // Mode to use when set.
 | |
|   bool CodeGen = false;   // Set during generation of matcher code.
 | |
|   bool Validate = true;   // Indicate whether to validate types.
 | |
| 
 | |
| private:
 | |
|   const TypeSetByHwMode &getLegalTypes();
 | |
| 
 | |
|   /// Cached legal types (in default mode).
 | |
|   bool LegalTypesCached = false;
 | |
|   TypeSetByHwMode LegalCache;
 | |
| };
 | |
| 
 | |
| /// Set type used to track multiply used variables in patterns
 | |
| typedef StringSet<> MultipleUseVarSet;
 | |
| 
 | |
| /// SDTypeConstraint - This is a discriminated union of constraints,
 | |
| /// corresponding to the SDTypeConstraint tablegen class in Target.td.
 | |
| struct SDTypeConstraint {
 | |
|   SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
 | |
| 
 | |
|   unsigned OperandNo;   // The operand # this constraint applies to.
 | |
|   enum {
 | |
|     SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
 | |
|     SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
 | |
|     SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
 | |
|   } ConstraintType;
 | |
| 
 | |
|   union {   // The discriminated union.
 | |
|     struct {
 | |
|       unsigned OtherOperandNum;
 | |
|     } SDTCisSameAs_Info;
 | |
|     struct {
 | |
|       unsigned OtherOperandNum;
 | |
|     } SDTCisVTSmallerThanOp_Info;
 | |
|     struct {
 | |
|       unsigned BigOperandNum;
 | |
|     } SDTCisOpSmallerThanOp_Info;
 | |
|     struct {
 | |
|       unsigned OtherOperandNum;
 | |
|     } SDTCisEltOfVec_Info;
 | |
|     struct {
 | |
|       unsigned OtherOperandNum;
 | |
|     } SDTCisSubVecOfVec_Info;
 | |
|     struct {
 | |
|       unsigned OtherOperandNum;
 | |
|     } SDTCisSameNumEltsAs_Info;
 | |
|     struct {
 | |
|       unsigned OtherOperandNum;
 | |
|     } SDTCisSameSizeAs_Info;
 | |
|   } x;
 | |
| 
 | |
|   // The VT for SDTCisVT and SDTCVecEltisVT.
 | |
|   // Must not be in the union because it has a non-trivial destructor.
 | |
|   ValueTypeByHwMode VVT;
 | |
| 
 | |
|   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
 | |
|   /// constraint to the nodes operands.  This returns true if it makes a
 | |
|   /// change, false otherwise.  If a type contradiction is found, an error
 | |
|   /// is flagged.
 | |
|   bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
 | |
|                            TreePattern &TP) const;
 | |
| };
 | |
| 
 | |
| /// ScopedName - A name of a node associated with a "scope" that indicates
 | |
| /// the context (e.g. instance of Pattern or PatFrag) in which the name was
 | |
| /// used. This enables substitution of pattern fragments while keeping track
 | |
| /// of what name(s) were originally given to various nodes in the tree.
 | |
| class ScopedName {
 | |
|   unsigned Scope;
 | |
|   std::string Identifier;
 | |
| public:
 | |
|   ScopedName(unsigned Scope, StringRef Identifier)
 | |
|       : Scope(Scope), Identifier(std::string(Identifier)) {
 | |
|     assert(Scope != 0 &&
 | |
|            "Scope == 0 is used to indicate predicates without arguments");
 | |
|   }
 | |
| 
 | |
|   unsigned getScope() const { return Scope; }
 | |
|   const std::string &getIdentifier() const { return Identifier; }
 | |
| 
 | |
|   bool operator==(const ScopedName &o) const;
 | |
|   bool operator!=(const ScopedName &o) const;
 | |
| };
 | |
| 
 | |
| /// SDNodeInfo - One of these records is created for each SDNode instance in
 | |
| /// the target .td file.  This represents the various dag nodes we will be
 | |
| /// processing.
 | |
| class SDNodeInfo {
 | |
|   Record *Def;
 | |
|   StringRef EnumName;
 | |
|   StringRef SDClassName;
 | |
|   unsigned Properties;
 | |
|   unsigned NumResults;
 | |
|   int NumOperands;
 | |
|   std::vector<SDTypeConstraint> TypeConstraints;
 | |
| public:
 | |
|   // Parse the specified record.
 | |
|   SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
 | |
| 
 | |
|   unsigned getNumResults() const { return NumResults; }
 | |
| 
 | |
|   /// getNumOperands - This is the number of operands required or -1 if
 | |
|   /// variadic.
 | |
|   int getNumOperands() const { return NumOperands; }
 | |
|   Record *getRecord() const { return Def; }
 | |
|   StringRef getEnumName() const { return EnumName; }
 | |
|   StringRef getSDClassName() const { return SDClassName; }
 | |
| 
 | |
|   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
 | |
|     return TypeConstraints;
 | |
|   }
 | |
| 
 | |
|   /// getKnownType - If the type constraints on this node imply a fixed type
 | |
|   /// (e.g. all stores return void, etc), then return it as an
 | |
|   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
 | |
|   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
 | |
| 
 | |
|   /// hasProperty - Return true if this node has the specified property.
 | |
|   ///
 | |
|   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
 | |
| 
 | |
|   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
 | |
|   /// constraints for this node to the operands of the node.  This returns
 | |
|   /// true if it makes a change, false otherwise.  If a type contradiction is
 | |
|   /// found, an error is flagged.
 | |
|   bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
 | |
| };
 | |
| 
 | |
| /// TreePredicateFn - This is an abstraction that represents the predicates on
 | |
| /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
 | |
| /// provide nice accessors.
 | |
| class TreePredicateFn {
 | |
|   /// PatFragRec - This is the TreePattern for the PatFrag that we
 | |
|   /// originally came from.
 | |
|   TreePattern *PatFragRec;
 | |
| public:
 | |
|   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
 | |
|   TreePredicateFn(TreePattern *N);
 | |
| 
 | |
| 
 | |
|   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
 | |
| 
 | |
|   /// isAlwaysTrue - Return true if this is a noop predicate.
 | |
|   bool isAlwaysTrue() const;
 | |
| 
 | |
|   bool isImmediatePattern() const { return hasImmCode(); }
 | |
| 
 | |
|   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
 | |
|   /// this is an immediate predicate.  It is an error to call this on a
 | |
|   /// non-immediate pattern.
 | |
|   std::string getImmediatePredicateCode() const {
 | |
|     std::string Result = getImmCode();
 | |
|     assert(!Result.empty() && "Isn't an immediate pattern!");
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const TreePredicateFn &RHS) const {
 | |
|     return PatFragRec == RHS.PatFragRec;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
 | |
| 
 | |
|   /// Return the name to use in the generated code to reference this, this is
 | |
|   /// "Predicate_foo" if from a pattern fragment "foo".
 | |
|   std::string getFnName() const;
 | |
| 
 | |
|   /// getCodeToRunOnSDNode - Return the code for the function body that
 | |
|   /// evaluates this predicate.  The argument is expected to be in "Node",
 | |
|   /// not N.  This handles casting and conversion to a concrete node type as
 | |
|   /// appropriate.
 | |
|   std::string getCodeToRunOnSDNode() const;
 | |
| 
 | |
|   /// Get the data type of the argument to getImmediatePredicateCode().
 | |
|   StringRef getImmType() const;
 | |
| 
 | |
|   /// Get a string that describes the type returned by getImmType() but is
 | |
|   /// usable as part of an identifier.
 | |
|   StringRef getImmTypeIdentifier() const;
 | |
| 
 | |
|   // Predicate code uses the PatFrag's captured operands.
 | |
|   bool usesOperands() const;
 | |
| 
 | |
|   // Is the desired predefined predicate for a load?
 | |
|   bool isLoad() const;
 | |
|   // Is the desired predefined predicate for a store?
 | |
|   bool isStore() const;
 | |
|   // Is the desired predefined predicate for an atomic?
 | |
|   bool isAtomic() const;
 | |
| 
 | |
|   /// Is this predicate the predefined unindexed load predicate?
 | |
|   /// Is this predicate the predefined unindexed store predicate?
 | |
|   bool isUnindexed() const;
 | |
|   /// Is this predicate the predefined non-extending load predicate?
 | |
|   bool isNonExtLoad() const;
 | |
|   /// Is this predicate the predefined any-extend load predicate?
 | |
|   bool isAnyExtLoad() const;
 | |
|   /// Is this predicate the predefined sign-extend load predicate?
 | |
|   bool isSignExtLoad() const;
 | |
|   /// Is this predicate the predefined zero-extend load predicate?
 | |
|   bool isZeroExtLoad() const;
 | |
|   /// Is this predicate the predefined non-truncating store predicate?
 | |
|   bool isNonTruncStore() const;
 | |
|   /// Is this predicate the predefined truncating store predicate?
 | |
|   bool isTruncStore() const;
 | |
| 
 | |
|   /// Is this predicate the predefined monotonic atomic predicate?
 | |
|   bool isAtomicOrderingMonotonic() const;
 | |
|   /// Is this predicate the predefined acquire atomic predicate?
 | |
|   bool isAtomicOrderingAcquire() const;
 | |
|   /// Is this predicate the predefined release atomic predicate?
 | |
|   bool isAtomicOrderingRelease() const;
 | |
|   /// Is this predicate the predefined acquire-release atomic predicate?
 | |
|   bool isAtomicOrderingAcquireRelease() const;
 | |
|   /// Is this predicate the predefined sequentially consistent atomic predicate?
 | |
|   bool isAtomicOrderingSequentiallyConsistent() const;
 | |
| 
 | |
|   /// Is this predicate the predefined acquire-or-stronger atomic predicate?
 | |
|   bool isAtomicOrderingAcquireOrStronger() const;
 | |
|   /// Is this predicate the predefined weaker-than-acquire atomic predicate?
 | |
|   bool isAtomicOrderingWeakerThanAcquire() const;
 | |
| 
 | |
|   /// Is this predicate the predefined release-or-stronger atomic predicate?
 | |
|   bool isAtomicOrderingReleaseOrStronger() const;
 | |
|   /// Is this predicate the predefined weaker-than-release atomic predicate?
 | |
|   bool isAtomicOrderingWeakerThanRelease() const;
 | |
| 
 | |
|   /// If non-null, indicates that this predicate is a predefined memory VT
 | |
|   /// predicate for a load/store and returns the ValueType record for the memory VT.
 | |
|   Record *getMemoryVT() const;
 | |
|   /// If non-null, indicates that this predicate is a predefined memory VT
 | |
|   /// predicate (checking only the scalar type) for load/store and returns the
 | |
|   /// ValueType record for the memory VT.
 | |
|   Record *getScalarMemoryVT() const;
 | |
| 
 | |
|   ListInit *getAddressSpaces() const;
 | |
|   int64_t getMinAlignment() const;
 | |
| 
 | |
|   // If true, indicates that GlobalISel-based C++ code was supplied.
 | |
|   bool hasGISelPredicateCode() const;
 | |
|   std::string getGISelPredicateCode() const;
 | |
| 
 | |
| private:
 | |
|   bool hasPredCode() const;
 | |
|   bool hasImmCode() const;
 | |
|   std::string getPredCode() const;
 | |
|   std::string getImmCode() const;
 | |
|   bool immCodeUsesAPInt() const;
 | |
|   bool immCodeUsesAPFloat() const;
 | |
| 
 | |
|   bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
 | |
| };
 | |
| 
 | |
| struct TreePredicateCall {
 | |
|   TreePredicateFn Fn;
 | |
| 
 | |
|   // Scope -- unique identifier for retrieving named arguments. 0 is used when
 | |
|   // the predicate does not use named arguments.
 | |
|   unsigned Scope;
 | |
| 
 | |
|   TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
 | |
|     : Fn(Fn), Scope(Scope) {}
 | |
| 
 | |
|   bool operator==(const TreePredicateCall &o) const {
 | |
|     return Fn == o.Fn && Scope == o.Scope;
 | |
|   }
 | |
|   bool operator!=(const TreePredicateCall &o) const {
 | |
|     return !(*this == o);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class TreePatternNode {
 | |
|   /// The type of each node result.  Before and during type inference, each
 | |
|   /// result may be a set of possible types.  After (successful) type inference,
 | |
|   /// each is a single concrete type.
 | |
|   std::vector<TypeSetByHwMode> Types;
 | |
| 
 | |
|   /// The index of each result in results of the pattern.
 | |
|   std::vector<unsigned> ResultPerm;
 | |
| 
 | |
|   /// Operator - The Record for the operator if this is an interior node (not
 | |
|   /// a leaf).
 | |
|   Record *Operator;
 | |
| 
 | |
|   /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
 | |
|   ///
 | |
|   Init *Val;
 | |
| 
 | |
|   /// Name - The name given to this node with the :$foo notation.
 | |
|   ///
 | |
|   std::string Name;
 | |
| 
 | |
|   std::vector<ScopedName> NamesAsPredicateArg;
 | |
| 
 | |
|   /// PredicateCalls - The predicate functions to execute on this node to check
 | |
|   /// for a match.  If this list is empty, no predicate is involved.
 | |
|   std::vector<TreePredicateCall> PredicateCalls;
 | |
| 
 | |
|   /// TransformFn - The transformation function to execute on this node before
 | |
|   /// it can be substituted into the resulting instruction on a pattern match.
 | |
|   Record *TransformFn;
 | |
| 
 | |
|   std::vector<TreePatternNodePtr> Children;
 | |
| 
 | |
| public:
 | |
|   TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
 | |
|                   unsigned NumResults)
 | |
|       : Operator(Op), Val(nullptr), TransformFn(nullptr),
 | |
|         Children(std::move(Ch)) {
 | |
|     Types.resize(NumResults);
 | |
|     ResultPerm.resize(NumResults);
 | |
|     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
 | |
|   }
 | |
|   TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
 | |
|     : Operator(nullptr), Val(val), TransformFn(nullptr) {
 | |
|     Types.resize(NumResults);
 | |
|     ResultPerm.resize(NumResults);
 | |
|     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
 | |
|   }
 | |
| 
 | |
|   bool hasName() const { return !Name.empty(); }
 | |
|   const std::string &getName() const { return Name; }
 | |
|   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
 | |
| 
 | |
|   const std::vector<ScopedName> &getNamesAsPredicateArg() const {
 | |
|     return NamesAsPredicateArg;
 | |
|   }
 | |
|   void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
 | |
|     NamesAsPredicateArg = Names;
 | |
|   }
 | |
|   void addNameAsPredicateArg(const ScopedName &N) {
 | |
|     NamesAsPredicateArg.push_back(N);
 | |
|   }
 | |
| 
 | |
|   bool isLeaf() const { return Val != nullptr; }
 | |
| 
 | |
|   // Type accessors.
 | |
|   unsigned getNumTypes() const { return Types.size(); }
 | |
|   ValueTypeByHwMode getType(unsigned ResNo) const {
 | |
|     return Types[ResNo].getValueTypeByHwMode();
 | |
|   }
 | |
|   const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
 | |
|   const TypeSetByHwMode &getExtType(unsigned ResNo) const {
 | |
|     return Types[ResNo];
 | |
|   }
 | |
|   TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
 | |
|   void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
 | |
|   MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
 | |
|     return Types[ResNo].getMachineValueType().SimpleTy;
 | |
|   }
 | |
| 
 | |
|   bool hasConcreteType(unsigned ResNo) const {
 | |
|     return Types[ResNo].isValueTypeByHwMode(false);
 | |
|   }
 | |
|   bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
 | |
|     return Types[ResNo].empty();
 | |
|   }
 | |
| 
 | |
|   unsigned getNumResults() const { return ResultPerm.size(); }
 | |
|   unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
 | |
|   void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
 | |
| 
 | |
|   Init *getLeafValue() const { assert(isLeaf()); return Val; }
 | |
|   Record *getOperator() const { assert(!isLeaf()); return Operator; }
 | |
| 
 | |
|   unsigned getNumChildren() const { return Children.size(); }
 | |
|   TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
 | |
|   const TreePatternNodePtr &getChildShared(unsigned N) const {
 | |
|     return Children[N];
 | |
|   }
 | |
|   void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
 | |
| 
 | |
|   /// hasChild - Return true if N is any of our children.
 | |
|   bool hasChild(const TreePatternNode *N) const {
 | |
|     for (unsigned i = 0, e = Children.size(); i != e; ++i)
 | |
|       if (Children[i].get() == N)
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool hasProperTypeByHwMode() const;
 | |
|   bool hasPossibleType() const;
 | |
|   bool setDefaultMode(unsigned Mode);
 | |
| 
 | |
|   bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
 | |
| 
 | |
|   const std::vector<TreePredicateCall> &getPredicateCalls() const {
 | |
|     return PredicateCalls;
 | |
|   }
 | |
|   void clearPredicateCalls() { PredicateCalls.clear(); }
 | |
|   void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
 | |
|     assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
 | |
|     PredicateCalls = Calls;
 | |
|   }
 | |
|   void addPredicateCall(const TreePredicateCall &Call) {
 | |
|     assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
 | |
|     assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
 | |
|     PredicateCalls.push_back(Call);
 | |
|   }
 | |
|   void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
 | |
|     assert((Scope != 0) == Fn.usesOperands());
 | |
|     addPredicateCall(TreePredicateCall(Fn, Scope));
 | |
|   }
 | |
| 
 | |
|   Record *getTransformFn() const { return TransformFn; }
 | |
|   void setTransformFn(Record *Fn) { TransformFn = Fn; }
 | |
| 
 | |
|   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
 | |
|   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
 | |
|   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
 | |
| 
 | |
|   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
 | |
|   /// return the ComplexPattern information, otherwise return null.
 | |
|   const ComplexPattern *
 | |
|   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
 | |
| 
 | |
|   /// Returns the number of MachineInstr operands that would be produced by this
 | |
|   /// node if it mapped directly to an output Instruction's
 | |
|   /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
 | |
|   /// for Operands; otherwise 1.
 | |
|   unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
 | |
| 
 | |
|   /// NodeHasProperty - Return true if this node has the specified property.
 | |
|   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
 | |
| 
 | |
|   /// TreeHasProperty - Return true if any node in this tree has the specified
 | |
|   /// property.
 | |
|   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
 | |
| 
 | |
|   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
 | |
|   /// marked isCommutative.
 | |
|   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
 | |
| 
 | |
|   void print(raw_ostream &OS) const;
 | |
|   void dump() const;
 | |
| 
 | |
| public:   // Higher level manipulation routines.
 | |
| 
 | |
|   /// clone - Return a new copy of this tree.
 | |
|   ///
 | |
|   TreePatternNodePtr clone() const;
 | |
| 
 | |
|   /// RemoveAllTypes - Recursively strip all the types of this tree.
 | |
|   void RemoveAllTypes();
 | |
| 
 | |
|   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
 | |
|   /// the specified node.  For this comparison, all of the state of the node
 | |
|   /// is considered, except for the assigned name.  Nodes with differing names
 | |
|   /// that are otherwise identical are considered isomorphic.
 | |
|   bool isIsomorphicTo(const TreePatternNode *N,
 | |
|                       const MultipleUseVarSet &DepVars) const;
 | |
| 
 | |
|   /// SubstituteFormalArguments - Replace the formal arguments in this tree
 | |
|   /// with actual values specified by ArgMap.
 | |
|   void
 | |
|   SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
 | |
| 
 | |
|   /// InlinePatternFragments - If this pattern refers to any pattern
 | |
|   /// fragments, return the set of inlined versions (this can be more than
 | |
|   /// one if a PatFrags record has multiple alternatives).
 | |
|   void InlinePatternFragments(TreePatternNodePtr T,
 | |
|                               TreePattern &TP,
 | |
|                               std::vector<TreePatternNodePtr> &OutAlternatives);
 | |
| 
 | |
|   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
 | |
|   /// this node and its children in the tree.  This returns true if it makes a
 | |
|   /// change, false otherwise.  If a type contradiction is found, flag an error.
 | |
|   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
 | |
| 
 | |
|   /// UpdateNodeType - Set the node type of N to VT if VT contains
 | |
|   /// information.  If N already contains a conflicting type, then flag an
 | |
|   /// error.  This returns true if any information was updated.
 | |
|   ///
 | |
|   bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
 | |
|                       TreePattern &TP);
 | |
|   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
 | |
|                       TreePattern &TP);
 | |
|   bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
 | |
|                       TreePattern &TP);
 | |
| 
 | |
|   // Update node type with types inferred from an instruction operand or result
 | |
|   // def from the ins/outs lists.
 | |
|   // Return true if the type changed.
 | |
|   bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
 | |
| 
 | |
|   /// ContainsUnresolvedType - Return true if this tree contains any
 | |
|   /// unresolved types.
 | |
|   bool ContainsUnresolvedType(TreePattern &TP) const;
 | |
| 
 | |
|   /// canPatternMatch - If it is impossible for this pattern to match on this
 | |
|   /// target, fill in Reason and return false.  Otherwise, return true.
 | |
|   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
 | |
| };
 | |
| 
 | |
| inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
 | |
|   TPN.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// TreePattern - Represent a pattern, used for instructions, pattern
 | |
| /// fragments, etc.
 | |
| ///
 | |
| class TreePattern {
 | |
|   /// Trees - The list of pattern trees which corresponds to this pattern.
 | |
|   /// Note that PatFrag's only have a single tree.
 | |
|   ///
 | |
|   std::vector<TreePatternNodePtr> Trees;
 | |
| 
 | |
|   /// NamedNodes - This is all of the nodes that have names in the trees in this
 | |
|   /// pattern.
 | |
|   StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
 | |
| 
 | |
|   /// TheRecord - The actual TableGen record corresponding to this pattern.
 | |
|   ///
 | |
|   Record *TheRecord;
 | |
| 
 | |
|   /// Args - This is a list of all of the arguments to this pattern (for
 | |
|   /// PatFrag patterns), which are the 'node' markers in this pattern.
 | |
|   std::vector<std::string> Args;
 | |
| 
 | |
|   /// CDP - the top-level object coordinating this madness.
 | |
|   ///
 | |
|   CodeGenDAGPatterns &CDP;
 | |
| 
 | |
|   /// isInputPattern - True if this is an input pattern, something to match.
 | |
|   /// False if this is an output pattern, something to emit.
 | |
|   bool isInputPattern;
 | |
| 
 | |
|   /// hasError - True if the currently processed nodes have unresolvable types
 | |
|   /// or other non-fatal errors
 | |
|   bool HasError;
 | |
| 
 | |
|   /// It's important that the usage of operands in ComplexPatterns is
 | |
|   /// consistent: each named operand can be defined by at most one
 | |
|   /// ComplexPattern. This records the ComplexPattern instance and the operand
 | |
|   /// number for each operand encountered in a ComplexPattern to aid in that
 | |
|   /// check.
 | |
|   StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
 | |
| 
 | |
|   TypeInfer Infer;
 | |
| 
 | |
| public:
 | |
| 
 | |
|   /// TreePattern constructor - Parse the specified DagInits into the
 | |
|   /// current record.
 | |
|   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
 | |
|               CodeGenDAGPatterns &ise);
 | |
|   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
 | |
|               CodeGenDAGPatterns &ise);
 | |
|   TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
 | |
|               CodeGenDAGPatterns &ise);
 | |
| 
 | |
|   /// getTrees - Return the tree patterns which corresponds to this pattern.
 | |
|   ///
 | |
|   const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
 | |
|   unsigned getNumTrees() const { return Trees.size(); }
 | |
|   const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
 | |
|   void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
 | |
|   const TreePatternNodePtr &getOnlyTree() const {
 | |
|     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
 | |
|     return Trees[0];
 | |
|   }
 | |
| 
 | |
|   const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
 | |
|     if (NamedNodes.empty())
 | |
|       ComputeNamedNodes();
 | |
|     return NamedNodes;
 | |
|   }
 | |
| 
 | |
|   /// getRecord - Return the actual TableGen record corresponding to this
 | |
|   /// pattern.
 | |
|   ///
 | |
|   Record *getRecord() const { return TheRecord; }
 | |
| 
 | |
|   unsigned getNumArgs() const { return Args.size(); }
 | |
|   const std::string &getArgName(unsigned i) const {
 | |
|     assert(i < Args.size() && "Argument reference out of range!");
 | |
|     return Args[i];
 | |
|   }
 | |
|   std::vector<std::string> &getArgList() { return Args; }
 | |
| 
 | |
|   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
 | |
| 
 | |
|   /// InlinePatternFragments - If this pattern refers to any pattern
 | |
|   /// fragments, inline them into place, giving us a pattern without any
 | |
|   /// PatFrags references.  This may increase the number of trees in the
 | |
|   /// pattern if a PatFrags has multiple alternatives.
 | |
|   void InlinePatternFragments() {
 | |
|     std::vector<TreePatternNodePtr> Copy = Trees;
 | |
|     Trees.clear();
 | |
|     for (unsigned i = 0, e = Copy.size(); i != e; ++i)
 | |
|       Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
 | |
|   }
 | |
| 
 | |
|   /// InferAllTypes - Infer/propagate as many types throughout the expression
 | |
|   /// patterns as possible.  Return true if all types are inferred, false
 | |
|   /// otherwise.  Bail out if a type contradiction is found.
 | |
|   bool InferAllTypes(
 | |
|       const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
 | |
| 
 | |
|   /// error - If this is the first error in the current resolution step,
 | |
|   /// print it and set the error flag.  Otherwise, continue silently.
 | |
|   void error(const Twine &Msg);
 | |
|   bool hasError() const {
 | |
|     return HasError;
 | |
|   }
 | |
|   void resetError() {
 | |
|     HasError = false;
 | |
|   }
 | |
| 
 | |
|   TypeInfer &getInfer() { return Infer; }
 | |
| 
 | |
|   void print(raw_ostream &OS) const;
 | |
|   void dump() const;
 | |
| 
 | |
| private:
 | |
|   TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
 | |
|   void ComputeNamedNodes();
 | |
|   void ComputeNamedNodes(TreePatternNode *N);
 | |
| };
 | |
| 
 | |
| 
 | |
| inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
 | |
|                                             const TypeSetByHwMode &InTy,
 | |
|                                             TreePattern &TP) {
 | |
|   TypeSetByHwMode VTS(InTy);
 | |
|   TP.getInfer().expandOverloads(VTS);
 | |
|   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
 | |
| }
 | |
| 
 | |
| inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
 | |
|                                             MVT::SimpleValueType InTy,
 | |
|                                             TreePattern &TP) {
 | |
|   TypeSetByHwMode VTS(InTy);
 | |
|   TP.getInfer().expandOverloads(VTS);
 | |
|   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
 | |
| }
 | |
| 
 | |
| inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
 | |
|                                             ValueTypeByHwMode InTy,
 | |
|                                             TreePattern &TP) {
 | |
|   TypeSetByHwMode VTS(InTy);
 | |
|   TP.getInfer().expandOverloads(VTS);
 | |
|   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
 | |
| /// that has a set ExecuteAlways / DefaultOps field.
 | |
| struct DAGDefaultOperand {
 | |
|   std::vector<TreePatternNodePtr> DefaultOps;
 | |
| };
 | |
| 
 | |
| class DAGInstruction {
 | |
|   std::vector<Record*> Results;
 | |
|   std::vector<Record*> Operands;
 | |
|   std::vector<Record*> ImpResults;
 | |
|   TreePatternNodePtr SrcPattern;
 | |
|   TreePatternNodePtr ResultPattern;
 | |
| 
 | |
| public:
 | |
|   DAGInstruction(const std::vector<Record*> &results,
 | |
|                  const std::vector<Record*> &operands,
 | |
|                  const std::vector<Record*> &impresults,
 | |
|                  TreePatternNodePtr srcpattern = nullptr,
 | |
|                  TreePatternNodePtr resultpattern = nullptr)
 | |
|     : Results(results), Operands(operands), ImpResults(impresults),
 | |
|       SrcPattern(srcpattern), ResultPattern(resultpattern) {}
 | |
| 
 | |
|   unsigned getNumResults() const { return Results.size(); }
 | |
|   unsigned getNumOperands() const { return Operands.size(); }
 | |
|   unsigned getNumImpResults() const { return ImpResults.size(); }
 | |
|   const std::vector<Record*>& getImpResults() const { return ImpResults; }
 | |
| 
 | |
|   Record *getResult(unsigned RN) const {
 | |
|     assert(RN < Results.size());
 | |
|     return Results[RN];
 | |
|   }
 | |
| 
 | |
|   Record *getOperand(unsigned ON) const {
 | |
|     assert(ON < Operands.size());
 | |
|     return Operands[ON];
 | |
|   }
 | |
| 
 | |
|   Record *getImpResult(unsigned RN) const {
 | |
|     assert(RN < ImpResults.size());
 | |
|     return ImpResults[RN];
 | |
|   }
 | |
| 
 | |
|   TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
 | |
|   TreePatternNodePtr getResultPattern() const { return ResultPattern; }
 | |
| };
 | |
| 
 | |
| /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
 | |
| /// processed to produce isel.
 | |
| class PatternToMatch {
 | |
|   Record          *SrcRecord;   // Originating Record for the pattern.
 | |
|   ListInit        *Predicates;  // Top level predicate conditions to match.
 | |
|   TreePatternNodePtr SrcPattern;      // Source pattern to match.
 | |
|   TreePatternNodePtr DstPattern;      // Resulting pattern.
 | |
|   std::vector<Record*> Dstregs; // Physical register defs being matched.
 | |
|   std::string      HwModeFeatures;
 | |
|   int              AddedComplexity; // Add to matching pattern complexity.
 | |
|   unsigned         ID;          // Unique ID for the record.
 | |
|   unsigned         ForceMode;   // Force this mode in type inference when set.
 | |
| 
 | |
| public:
 | |
|   PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNodePtr src,
 | |
|                  TreePatternNodePtr dst, std::vector<Record *> dstregs,
 | |
|                  int complexity, unsigned uid, unsigned setmode = 0,
 | |
|                  const Twine &hwmodefeatures = "")
 | |
|       : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src),
 | |
|         DstPattern(dst), Dstregs(std::move(dstregs)),
 | |
|         HwModeFeatures(hwmodefeatures.str()), AddedComplexity(complexity),
 | |
|         ID(uid), ForceMode(setmode) {}
 | |
| 
 | |
|   Record          *getSrcRecord()  const { return SrcRecord; }
 | |
|   ListInit        *getPredicates() const { return Predicates; }
 | |
|   TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
 | |
|   TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
 | |
|   TreePatternNode *getDstPattern() const { return DstPattern.get(); }
 | |
|   TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
 | |
|   const std::vector<Record*> &getDstRegs() const { return Dstregs; }
 | |
|   StringRef   getHwModeFeatures() const { return HwModeFeatures; }
 | |
|   int         getAddedComplexity() const { return AddedComplexity; }
 | |
|   unsigned getID() const { return ID; }
 | |
|   unsigned getForceMode() const { return ForceMode; }
 | |
| 
 | |
|   std::string getPredicateCheck() const;
 | |
|   void getPredicateRecords(SmallVectorImpl<Record *> &PredicateRecs) const;
 | |
| 
 | |
|   /// Compute the complexity metric for the input pattern.  This roughly
 | |
|   /// corresponds to the number of nodes that are covered.
 | |
|   int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
 | |
| };
 | |
| 
 | |
| class CodeGenDAGPatterns {
 | |
|   RecordKeeper &Records;
 | |
|   CodeGenTarget Target;
 | |
|   CodeGenIntrinsicTable Intrinsics;
 | |
| 
 | |
|   std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
 | |
|   std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
 | |
|       SDNodeXForms;
 | |
|   std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
 | |
|   std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
 | |
|       PatternFragments;
 | |
|   std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
 | |
|   std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
 | |
| 
 | |
|   // Specific SDNode definitions:
 | |
|   Record *intrinsic_void_sdnode;
 | |
|   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
 | |
| 
 | |
|   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
 | |
|   /// value is the pattern to match, the second pattern is the result to
 | |
|   /// emit.
 | |
|   std::vector<PatternToMatch> PatternsToMatch;
 | |
| 
 | |
|   TypeSetByHwMode LegalVTS;
 | |
| 
 | |
|   using PatternRewriterFn = std::function<void (TreePattern *)>;
 | |
|   PatternRewriterFn PatternRewriter;
 | |
| 
 | |
|   unsigned NumScopes = 0;
 | |
| 
 | |
| public:
 | |
|   CodeGenDAGPatterns(RecordKeeper &R,
 | |
|                      PatternRewriterFn PatternRewriter = nullptr);
 | |
| 
 | |
|   CodeGenTarget &getTargetInfo() { return Target; }
 | |
|   const CodeGenTarget &getTargetInfo() const { return Target; }
 | |
|   const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
 | |
| 
 | |
|   Record *getSDNodeNamed(StringRef Name) const;
 | |
| 
 | |
|   const SDNodeInfo &getSDNodeInfo(Record *R) const {
 | |
|     auto F = SDNodes.find(R);
 | |
|     assert(F != SDNodes.end() && "Unknown node!");
 | |
|     return F->second;
 | |
|   }
 | |
| 
 | |
|   // Node transformation lookups.
 | |
|   typedef std::pair<Record*, std::string> NodeXForm;
 | |
|   const NodeXForm &getSDNodeTransform(Record *R) const {
 | |
|     auto F = SDNodeXForms.find(R);
 | |
|     assert(F != SDNodeXForms.end() && "Invalid transform!");
 | |
|     return F->second;
 | |
|   }
 | |
| 
 | |
|   const ComplexPattern &getComplexPattern(Record *R) const {
 | |
|     auto F = ComplexPatterns.find(R);
 | |
|     assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
 | |
|     return F->second;
 | |
|   }
 | |
| 
 | |
|   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
 | |
|     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
 | |
|       if (Intrinsics[i].TheDef == R) return Intrinsics[i];
 | |
|     llvm_unreachable("Unknown intrinsic!");
 | |
|   }
 | |
| 
 | |
|   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
 | |
|     if (IID-1 < Intrinsics.size())
 | |
|       return Intrinsics[IID-1];
 | |
|     llvm_unreachable("Bad intrinsic ID!");
 | |
|   }
 | |
| 
 | |
|   unsigned getIntrinsicID(Record *R) const {
 | |
|     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
 | |
|       if (Intrinsics[i].TheDef == R) return i;
 | |
|     llvm_unreachable("Unknown intrinsic!");
 | |
|   }
 | |
| 
 | |
|   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
 | |
|     auto F = DefaultOperands.find(R);
 | |
|     assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
 | |
|     return F->second;
 | |
|   }
 | |
| 
 | |
|   // Pattern Fragment information.
 | |
|   TreePattern *getPatternFragment(Record *R) const {
 | |
|     auto F = PatternFragments.find(R);
 | |
|     assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
 | |
|     return F->second.get();
 | |
|   }
 | |
|   TreePattern *getPatternFragmentIfRead(Record *R) const {
 | |
|     auto F = PatternFragments.find(R);
 | |
|     if (F == PatternFragments.end())
 | |
|       return nullptr;
 | |
|     return F->second.get();
 | |
|   }
 | |
| 
 | |
|   typedef std::map<Record *, std::unique_ptr<TreePattern>,
 | |
|                    LessRecordByID>::const_iterator pf_iterator;
 | |
|   pf_iterator pf_begin() const { return PatternFragments.begin(); }
 | |
|   pf_iterator pf_end() const { return PatternFragments.end(); }
 | |
|   iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
 | |
| 
 | |
|   // Patterns to match information.
 | |
|   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
 | |
|   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
 | |
|   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
 | |
|   iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
 | |
| 
 | |
|   /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
 | |
|   typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
 | |
|   void parseInstructionPattern(
 | |
|       CodeGenInstruction &CGI, ListInit *Pattern,
 | |
|       DAGInstMap &DAGInsts);
 | |
| 
 | |
|   const DAGInstruction &getInstruction(Record *R) const {
 | |
|     auto F = Instructions.find(R);
 | |
|     assert(F != Instructions.end() && "Unknown instruction!");
 | |
|     return F->second;
 | |
|   }
 | |
| 
 | |
|   Record *get_intrinsic_void_sdnode() const {
 | |
|     return intrinsic_void_sdnode;
 | |
|   }
 | |
|   Record *get_intrinsic_w_chain_sdnode() const {
 | |
|     return intrinsic_w_chain_sdnode;
 | |
|   }
 | |
|   Record *get_intrinsic_wo_chain_sdnode() const {
 | |
|     return intrinsic_wo_chain_sdnode;
 | |
|   }
 | |
| 
 | |
|   unsigned allocateScope() { return ++NumScopes; }
 | |
| 
 | |
|   bool operandHasDefault(Record *Op) const {
 | |
|     return Op->isSubClassOf("OperandWithDefaultOps") &&
 | |
|       !getDefaultOperand(Op).DefaultOps.empty();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void ParseNodeInfo();
 | |
|   void ParseNodeTransforms();
 | |
|   void ParseComplexPatterns();
 | |
|   void ParsePatternFragments(bool OutFrags = false);
 | |
|   void ParseDefaultOperands();
 | |
|   void ParseInstructions();
 | |
|   void ParsePatterns();
 | |
|   void ExpandHwModeBasedTypes();
 | |
|   void InferInstructionFlags();
 | |
|   void GenerateVariants();
 | |
|   void VerifyInstructionFlags();
 | |
| 
 | |
|   void ParseOnePattern(Record *TheDef,
 | |
|                        TreePattern &Pattern, TreePattern &Result,
 | |
|                        const std::vector<Record *> &InstImpResults);
 | |
|   void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
 | |
|   void FindPatternInputsAndOutputs(
 | |
|       TreePattern &I, TreePatternNodePtr Pat,
 | |
|       std::map<std::string, TreePatternNodePtr> &InstInputs,
 | |
|       MapVector<std::string, TreePatternNodePtr,
 | |
|                 std::map<std::string, unsigned>> &InstResults,
 | |
|       std::vector<Record *> &InstImpResults);
 | |
| };
 | |
| 
 | |
| 
 | |
| inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
 | |
|                                              TreePattern &TP) const {
 | |
|     bool MadeChange = false;
 | |
|     for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
 | |
|       MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
 | |
|     return MadeChange;
 | |
|   }
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif
 |