417 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			417 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ReadConst.cpp - Code to constants and constant pools ---------------===//
 | 
						|
//
 | 
						|
// This file implements functionality to deserialize constants and entire 
 | 
						|
// constant pools.
 | 
						|
// 
 | 
						|
// Note that this library should be as fast as possible, reentrant, and 
 | 
						|
// threadsafe!!
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ReaderInternals.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
using std::make_pair;
 | 
						|
 | 
						|
const Type *BytecodeParser::parseTypeConstant(const uchar *&Buf,
 | 
						|
					      const uchar *EndBuf) {
 | 
						|
  unsigned PrimType;
 | 
						|
  if (read_vbr(Buf, EndBuf, PrimType)) return 0;
 | 
						|
 | 
						|
  const Type *Val = 0;
 | 
						|
  if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
 | 
						|
    return Val;
 | 
						|
  
 | 
						|
  switch (PrimType) {
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    unsigned Typ;
 | 
						|
    if (read_vbr(Buf, EndBuf, Typ)) return Val;
 | 
						|
    const Type *RetType = getType(Typ);
 | 
						|
    if (RetType == 0) return Val;
 | 
						|
 | 
						|
    unsigned NumParams;
 | 
						|
    if (read_vbr(Buf, EndBuf, NumParams)) return Val;
 | 
						|
 | 
						|
    std::vector<const Type*> Params;
 | 
						|
    while (NumParams--) {
 | 
						|
      if (read_vbr(Buf, EndBuf, Typ)) return Val;
 | 
						|
      const Type *Ty = getType(Typ);
 | 
						|
      if (Ty == 0) return Val;
 | 
						|
      Params.push_back(Ty);
 | 
						|
    }
 | 
						|
 | 
						|
    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | 
						|
    if (isVarArg) Params.pop_back();
 | 
						|
 | 
						|
    return FunctionType::get(RetType, Params, isVarArg);
 | 
						|
  }
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    unsigned ElTyp;
 | 
						|
    if (read_vbr(Buf, EndBuf, ElTyp)) return Val;
 | 
						|
    const Type *ElementType = getType(ElTyp);
 | 
						|
    if (ElementType == 0) return Val;
 | 
						|
 | 
						|
    unsigned NumElements;
 | 
						|
    if (read_vbr(Buf, EndBuf, NumElements)) return Val;
 | 
						|
 | 
						|
    BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size=" 
 | 
						|
              << NumElements << "\n");
 | 
						|
    return ArrayType::get(ElementType, NumElements);
 | 
						|
  }
 | 
						|
  case Type::StructTyID: {
 | 
						|
    unsigned Typ;
 | 
						|
    std::vector<const Type*> Elements;
 | 
						|
 | 
						|
    if (read_vbr(Buf, EndBuf, Typ)) return Val;
 | 
						|
    while (Typ) {         // List is terminated by void/0 typeid
 | 
						|
      const Type *Ty = getType(Typ);
 | 
						|
      if (Ty == 0) return Val;
 | 
						|
      Elements.push_back(Ty);
 | 
						|
      
 | 
						|
      if (read_vbr(Buf, EndBuf, Typ)) return Val;
 | 
						|
    }
 | 
						|
 | 
						|
    return StructType::get(Elements);
 | 
						|
  }
 | 
						|
  case Type::PointerTyID: {
 | 
						|
    unsigned ElTyp;
 | 
						|
    if (read_vbr(Buf, EndBuf, ElTyp)) return Val;
 | 
						|
    BCR_TRACE(5, "Pointer Type Constant #" << (ElTyp-14) << "\n");
 | 
						|
    const Type *ElementType = getType(ElTyp);
 | 
						|
    if (ElementType == 0) return Val;
 | 
						|
    return PointerType::get(ElementType);
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::OpaqueTyID: {
 | 
						|
    return OpaqueType::get();
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    std::cerr << __FILE__ << ":" << __LINE__
 | 
						|
              << ": Don't know how to deserialize"
 | 
						|
              << " primitive Type " << PrimType << "\n";
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// refineAbstractType - The callback method is invoked when one of the
 | 
						|
// elements of TypeValues becomes more concrete...
 | 
						|
//
 | 
						|
void BytecodeParser::refineAbstractType(const DerivedType *OldType, 
 | 
						|
					const Type *NewType) {
 | 
						|
  if (OldType == NewType &&
 | 
						|
      OldType->isAbstract()) return;  // Type is modified, but same
 | 
						|
 | 
						|
  TypeValuesListTy::iterator I = find(MethodTypeValues.begin(), 
 | 
						|
				      MethodTypeValues.end(), OldType);
 | 
						|
  if (I == MethodTypeValues.end()) {
 | 
						|
    I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), OldType);
 | 
						|
    assert(I != ModuleTypeValues.end() && 
 | 
						|
	   "Can't refine a type I don't know about!");
 | 
						|
  }
 | 
						|
 | 
						|
  if (OldType == NewType) {
 | 
						|
    assert(!OldType->isAbstract());
 | 
						|
    I->removeUserFromConcrete();
 | 
						|
  } else {
 | 
						|
    *I = NewType;  // Update to point to new, more refined type.
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// parseTypeConstants - We have to use this wierd code to handle recursive
 | 
						|
// types.  We know that recursive types will only reference the current slab of
 | 
						|
// values in the type plane, but they can forward reference types before they
 | 
						|
// have been read.  For example, Type #0 might be '{ Ty#1 }' and Type #1 might
 | 
						|
// be 'Ty#0*'.  When reading Type #0, type number one doesn't exist.  To fix
 | 
						|
// this ugly problem, we pesimistically insert an opaque type for each type we
 | 
						|
// are about to read.  This means that forward references will resolve to
 | 
						|
// something and when we reread the type later, we can replace the opaque type
 | 
						|
// with a new resolved concrete type.
 | 
						|
//
 | 
						|
void debug_type_tables();
 | 
						|
bool BytecodeParser::parseTypeConstants(const uchar *&Buf, const uchar *EndBuf,
 | 
						|
					TypeValuesListTy &Tab,
 | 
						|
					unsigned NumEntries) {
 | 
						|
  assert(Tab.size() == 0 && "should not have read type constants in before!");
 | 
						|
 | 
						|
  // Insert a bunch of opaque types to be resolved later...
 | 
						|
  for (unsigned i = 0; i < NumEntries; ++i)
 | 
						|
    Tab.push_back(PATypeHandle<Type>(OpaqueType::get(), this));
 | 
						|
 | 
						|
  // Loop through reading all of the types.  Forward types will make use of the
 | 
						|
  // opaque types just inserted.
 | 
						|
  //
 | 
						|
  for (unsigned i = 0; i < NumEntries; ++i) {
 | 
						|
    const Type *NewTy = parseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get();
 | 
						|
    if (NewTy == 0) return true;
 | 
						|
    BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy <<
 | 
						|
              "' Replacing: " << OldTy << "\n");
 | 
						|
 | 
						|
    // Don't insertValue the new type... instead we want to replace the opaque
 | 
						|
    // type with the new concrete value...
 | 
						|
    //
 | 
						|
 | 
						|
    // Refine the abstract type to the new type.  This causes all uses of the
 | 
						|
    // abstract type to use the newty.  This also will cause the opaque type
 | 
						|
    // to be deleted...
 | 
						|
    //
 | 
						|
    ((DerivedType*)Tab[i].get())->refineAbstractTypeTo(NewTy);
 | 
						|
 | 
						|
    // This should have replace the old opaque type with the new type in the
 | 
						|
    // value table... or with a preexisting type that was already in the system
 | 
						|
    assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
 | 
						|
  }
 | 
						|
 | 
						|
  BCR_TRACE(5, "Resulting types:\n");
 | 
						|
  for (unsigned i = 0; i < NumEntries; ++i) {
 | 
						|
    BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n");
 | 
						|
  }
 | 
						|
  debug_type_tables();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool BytecodeParser::parseConstantValue(const uchar *&Buf, const uchar *EndBuf,
 | 
						|
                                        const Type *Ty, Constant *&V) {
 | 
						|
 | 
						|
  // We must check for a ConstantExpr before switching by type because
 | 
						|
  // a ConstantExpr can be of any type, and has no explicit value.
 | 
						|
  // 
 | 
						|
  unsigned isExprNumArgs;               // 0 if not expr; numArgs if is expr
 | 
						|
  if (read_vbr(Buf, EndBuf, isExprNumArgs)) return true;
 | 
						|
  if (isExprNumArgs) {
 | 
						|
    // FIXME: Encoding of constant exprs could be much more compact!
 | 
						|
    unsigned Opcode;
 | 
						|
    std::vector<Constant*> ArgVec;
 | 
						|
    ArgVec.reserve(isExprNumArgs);
 | 
						|
    if (read_vbr(Buf, EndBuf, Opcode)) return true;    
 | 
						|
 | 
						|
    // Read the slot number and types of each of the arguments
 | 
						|
    for (unsigned i = 0; i != isExprNumArgs; ++i) {
 | 
						|
      unsigned ArgValSlot, ArgTypeSlot;
 | 
						|
      if (read_vbr(Buf, EndBuf, ArgValSlot)) return true;
 | 
						|
      if (read_vbr(Buf, EndBuf, ArgTypeSlot)) return true;
 | 
						|
      const Type *ArgTy = getType(ArgTypeSlot);
 | 
						|
      if (ArgTy == 0) return true;
 | 
						|
      
 | 
						|
      BCR_TRACE(4, "CE Arg " << i << ": Type: '" << ArgTy << "'  slot: "
 | 
						|
                << ArgValSlot << "\n");
 | 
						|
      
 | 
						|
      // Get the arg value from its slot if it exists, otherwise a placeholder
 | 
						|
      Constant *C = getConstantValue(ArgTy, ArgValSlot);
 | 
						|
      if (C == 0) return true;
 | 
						|
      ArgVec.push_back(C);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Construct a ConstantExpr of the appropriate kind
 | 
						|
    if (isExprNumArgs == 1) {           // All one-operand expressions
 | 
						|
      assert(Opcode == Instruction::Cast);
 | 
						|
      V = ConstantExpr::getCast(ArgVec[0], Ty);
 | 
						|
    } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
 | 
						|
      std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
 | 
						|
      V = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
 | 
						|
    } else {                            // All other 2-operand expressions
 | 
						|
      V = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Ok, not an ConstantExpr.  We now know how to read the given type...
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::BoolTyID: {
 | 
						|
    unsigned Val;
 | 
						|
    if (read_vbr(Buf, EndBuf, Val)) return true;
 | 
						|
    if (Val != 0 && Val != 1) return true;
 | 
						|
    V = ConstantBool::get(Val == 1);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::UByteTyID:   // Unsigned integer types...
 | 
						|
  case Type::UShortTyID:
 | 
						|
  case Type::UIntTyID: {
 | 
						|
    unsigned Val;
 | 
						|
    if (read_vbr(Buf, EndBuf, Val)) return true;
 | 
						|
    if (!ConstantUInt::isValueValidForType(Ty, Val)) return true;
 | 
						|
    V = ConstantUInt::get(Ty, Val);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ULongTyID: {
 | 
						|
    uint64_t Val;
 | 
						|
    if (read_vbr(Buf, EndBuf, Val)) return true;
 | 
						|
    V = ConstantUInt::get(Ty, Val);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::SByteTyID:   // Unsigned integer types...
 | 
						|
  case Type::ShortTyID:
 | 
						|
  case Type::IntTyID: {
 | 
						|
    int Val;
 | 
						|
    if (read_vbr(Buf, EndBuf, Val)) return true;
 | 
						|
    if (!ConstantSInt::isValueValidForType(Ty, Val)) return true;
 | 
						|
    V = ConstantSInt::get(Ty, Val);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::LongTyID: {
 | 
						|
    int64_t Val;
 | 
						|
    if (read_vbr(Buf, EndBuf, Val)) return true;
 | 
						|
    V = ConstantSInt::get(Ty, Val);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::FloatTyID: {
 | 
						|
    float F;
 | 
						|
    if (input_data(Buf, EndBuf, &F, &F+1)) return true;
 | 
						|
    V = ConstantFP::get(Ty, F);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::DoubleTyID: {
 | 
						|
    double Val;
 | 
						|
    if (input_data(Buf, EndBuf, &Val, &Val+1)) return true;
 | 
						|
    V = ConstantFP::get(Ty, Val);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::TypeTyID:
 | 
						|
    assert(0 && "Type constants should be handled seperately!!!");
 | 
						|
    abort();
 | 
						|
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const ArrayType *AT = cast<const ArrayType>(Ty);
 | 
						|
    unsigned NumElements = AT->getNumElements();
 | 
						|
 | 
						|
    std::vector<Constant*> Elements;
 | 
						|
    while (NumElements--) {   // Read all of the elements of the constant.
 | 
						|
      unsigned Slot;
 | 
						|
      if (read_vbr(Buf, EndBuf, Slot)) return true;
 | 
						|
      Constant *C = getConstantValue(AT->getElementType(), Slot);
 | 
						|
      if (!C) return true;
 | 
						|
      Elements.push_back(C);
 | 
						|
    }
 | 
						|
    V = ConstantArray::get(AT, Elements);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::StructTyID: {
 | 
						|
    const StructType *ST = cast<StructType>(Ty);
 | 
						|
    const StructType::ElementTypes &ET = ST->getElementTypes();
 | 
						|
 | 
						|
    std::vector<Constant *> Elements;
 | 
						|
    for (unsigned i = 0; i < ET.size(); ++i) {
 | 
						|
      unsigned Slot;
 | 
						|
      if (read_vbr(Buf, EndBuf, Slot)) return true;
 | 
						|
      Constant *C = getConstantValue(ET[i], Slot);
 | 
						|
      if (!C) return true;
 | 
						|
      Elements.push_back(C);
 | 
						|
    }
 | 
						|
 | 
						|
    V = ConstantStruct::get(ST, Elements);
 | 
						|
    break;
 | 
						|
  }    
 | 
						|
 | 
						|
  case Type::PointerTyID: {
 | 
						|
    const PointerType *PT = cast<const PointerType>(Ty);
 | 
						|
    unsigned SubClass;
 | 
						|
    if (read_vbr(Buf, EndBuf, SubClass)) return true;
 | 
						|
    switch (SubClass) {
 | 
						|
    case 0:    // ConstantPointerNull value...
 | 
						|
      V = ConstantPointerNull::get(PT);
 | 
						|
      break;
 | 
						|
 | 
						|
    case 1: {  // ConstantPointerRef value...
 | 
						|
      unsigned Slot;
 | 
						|
      if (read_vbr(Buf, EndBuf, Slot)) return true;
 | 
						|
      BCR_TRACE(4, "CPR: Type: '" << Ty << "'  slot: " << Slot << "\n");
 | 
						|
 | 
						|
      // Check to see if we have already read this global variable...
 | 
						|
      Value *Val = getValue(PT, Slot, false);
 | 
						|
      GlobalValue *GV;
 | 
						|
      if (Val) {
 | 
						|
        if (!(GV = dyn_cast<GlobalValue>(Val))) return true;
 | 
						|
        BCR_TRACE(5, "Value Found in ValueTable!\n");
 | 
						|
      } else {         // Nope... find or create a forward ref. for it
 | 
						|
        GlobalRefsType::iterator I = GlobalRefs.find(make_pair(PT, Slot));
 | 
						|
 | 
						|
        if (I != GlobalRefs.end()) {
 | 
						|
          BCR_TRACE(5, "Previous forward ref found!\n");
 | 
						|
          GV = cast<GlobalValue>(I->second);
 | 
						|
        } else {
 | 
						|
          BCR_TRACE(5, "Creating new forward ref to a global variable!\n");
 | 
						|
 | 
						|
	  // Create a placeholder for the global variable reference...
 | 
						|
          GlobalVariable *GVar =
 | 
						|
            new GlobalVariable(PT->getElementType(), false, true);
 | 
						|
          
 | 
						|
	  // Keep track of the fact that we have a forward ref to recycle it
 | 
						|
          GlobalRefs.insert(make_pair(make_pair(PT, Slot), GVar));
 | 
						|
          
 | 
						|
          // Must temporarily push this value into the module table...
 | 
						|
          TheModule->getGlobalList().push_back(GVar);
 | 
						|
          GV = GVar;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      V = ConstantPointerRef::get(GV);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    default:
 | 
						|
      BCR_TRACE(5, "UNKNOWN Pointer Constant Type!\n");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    std::cerr << __FILE__ << ":" << __LINE__ 
 | 
						|
              << ": Don't know how to deserialize constant value of type '"
 | 
						|
              << Ty->getName() << "'\n";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool BytecodeParser::ParseConstantPool(const uchar *&Buf, const uchar *EndBuf,
 | 
						|
				       ValueTable &Tab, 
 | 
						|
				       TypeValuesListTy &TypeTab) {
 | 
						|
  while (Buf < EndBuf) {
 | 
						|
    unsigned NumEntries, Typ;
 | 
						|
 | 
						|
    if (read_vbr(Buf, EndBuf, NumEntries) ||
 | 
						|
        read_vbr(Buf, EndBuf, Typ)) return true;
 | 
						|
    const Type *Ty = getType(Typ);
 | 
						|
    if (Ty == 0) return true;
 | 
						|
    BCR_TRACE(3, "Type: '" << Ty << "'  NumEntries: " << NumEntries << "\n");
 | 
						|
 | 
						|
    if (Typ == Type::TypeTyID) {
 | 
						|
      if (parseTypeConstants(Buf, EndBuf, TypeTab, NumEntries)) return true;
 | 
						|
    } else {
 | 
						|
      for (unsigned i = 0; i < NumEntries; ++i) {
 | 
						|
	Constant *I;
 | 
						|
        int Slot;
 | 
						|
	if (parseConstantValue(Buf, EndBuf, Ty, I)) return true;
 | 
						|
        assert(I && "parseConstantValue returned NULL!");
 | 
						|
	BCR_TRACE(4, "Read Constant: '" << I << "'\n");
 | 
						|
	if ((Slot = insertValue(I, Tab)) < 0) return true;
 | 
						|
 | 
						|
        // If we are reading a function constant table, make sure that we adjust
 | 
						|
        // the slot number to be the real global constant number.
 | 
						|
        //
 | 
						|
        if (&Tab != &ModuleValues)
 | 
						|
          Slot += ModuleValues[Typ].size();
 | 
						|
 | 
						|
        ResolveReferencesToValue(I, (unsigned)Slot);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Buf > EndBuf) return true;
 | 
						|
  return false;
 | 
						|
}
 |