7995 lines
		
	
	
		
			298 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			7995 lines
		
	
	
		
			298 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass munges the code in the input function to better prepare it for
 | 
						|
// SelectionDAG-based code generation. This works around limitations in it's
 | 
						|
// basic-block-at-a-time approach. It should eventually be removed.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/PointerIntPair.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/BranchProbabilityInfo.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/ProfileSummaryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/CodeGen/Analysis.h"
 | 
						|
#include "llvm/CodeGen/ISDOpcodes.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGNodes.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetPassConfig.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/IntrinsicsAArch64.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Statepoint.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/IR/ValueMap.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/BlockFrequency.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MachineValueType.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
 | 
						|
#include "llvm/Transforms/Utils/SizeOpts.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <memory>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "codegenprepare"
 | 
						|
 | 
						|
STATISTIC(NumBlocksElim, "Number of blocks eliminated");
 | 
						|
STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
 | 
						|
STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
 | 
						|
STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
 | 
						|
                      "sunken Cmps");
 | 
						|
STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
 | 
						|
                       "of sunken Casts");
 | 
						|
STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
 | 
						|
                          "computations were sunk");
 | 
						|
STATISTIC(NumMemoryInstsPhiCreated,
 | 
						|
          "Number of phis created when address "
 | 
						|
          "computations were sunk to memory instructions");
 | 
						|
STATISTIC(NumMemoryInstsSelectCreated,
 | 
						|
          "Number of select created when address "
 | 
						|
          "computations were sunk to memory instructions");
 | 
						|
STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
 | 
						|
STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
 | 
						|
STATISTIC(NumAndsAdded,
 | 
						|
          "Number of and mask instructions added to form ext loads");
 | 
						|
STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
 | 
						|
STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
 | 
						|
STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
 | 
						|
STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
 | 
						|
STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
 | 
						|
 | 
						|
static cl::opt<bool> DisableBranchOpts(
 | 
						|
  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
 | 
						|
  cl::desc("Disable branch optimizations in CodeGenPrepare"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
 | 
						|
                  cl::desc("Disable GC optimizations in CodeGenPrepare"));
 | 
						|
 | 
						|
static cl::opt<bool> DisableSelectToBranch(
 | 
						|
  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
 | 
						|
  cl::desc("Disable select to branch conversion."));
 | 
						|
 | 
						|
static cl::opt<bool> AddrSinkUsingGEPs(
 | 
						|
  "addr-sink-using-gep", cl::Hidden, cl::init(true),
 | 
						|
  cl::desc("Address sinking in CGP using GEPs."));
 | 
						|
 | 
						|
static cl::opt<bool> EnableAndCmpSinking(
 | 
						|
   "enable-andcmp-sinking", cl::Hidden, cl::init(true),
 | 
						|
   cl::desc("Enable sinkinig and/cmp into branches."));
 | 
						|
 | 
						|
static cl::opt<bool> DisableStoreExtract(
 | 
						|
    "disable-cgp-store-extract", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
 | 
						|
 | 
						|
static cl::opt<bool> StressStoreExtract(
 | 
						|
    "stress-cgp-store-extract", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
 | 
						|
 | 
						|
static cl::opt<bool> DisableExtLdPromotion(
 | 
						|
    "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
 | 
						|
             "CodeGenPrepare"));
 | 
						|
 | 
						|
static cl::opt<bool> StressExtLdPromotion(
 | 
						|
    "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
 | 
						|
             "optimization in CodeGenPrepare"));
 | 
						|
 | 
						|
static cl::opt<bool> DisablePreheaderProtect(
 | 
						|
    "disable-preheader-prot", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Disable protection against removing loop preheaders"));
 | 
						|
 | 
						|
static cl::opt<bool> ProfileGuidedSectionPrefix(
 | 
						|
    "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
 | 
						|
    cl::desc("Use profile info to add section prefix for hot/cold functions"));
 | 
						|
 | 
						|
static cl::opt<bool> ProfileUnknownInSpecialSection(
 | 
						|
    "profile-unknown-in-special-section", cl::Hidden, cl::init(false),
 | 
						|
    cl::ZeroOrMore,
 | 
						|
    cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
 | 
						|
             "profile, we cannot tell the function is cold for sure because "
 | 
						|
             "it may be a function newly added without ever being sampled. "
 | 
						|
             "With the flag enabled, compiler can put such profile unknown "
 | 
						|
             "functions into a special section, so runtime system can choose "
 | 
						|
             "to handle it in a different way than .text section, to save "
 | 
						|
             "RAM for example. "));
 | 
						|
 | 
						|
static cl::opt<unsigned> FreqRatioToSkipMerge(
 | 
						|
    "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
 | 
						|
    cl::desc("Skip merging empty blocks if (frequency of empty block) / "
 | 
						|
             "(frequency of destination block) is greater than this ratio"));
 | 
						|
 | 
						|
static cl::opt<bool> ForceSplitStore(
 | 
						|
    "force-split-store", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Force store splitting no matter what the target query says."));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
 | 
						|
    cl::desc("Enable merging of redundant sexts when one is dominating"
 | 
						|
    " the other."), cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> DisableComplexAddrModes(
 | 
						|
    "disable-complex-addr-modes", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Disables combining addressing modes with different parts "
 | 
						|
             "in optimizeMemoryInst."));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
 | 
						|
                cl::desc("Allow creation of Phis in Address sinking."));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
 | 
						|
                   cl::desc("Allow creation of selects in Address sinking."));
 | 
						|
 | 
						|
static cl::opt<bool> AddrSinkCombineBaseReg(
 | 
						|
    "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
 | 
						|
    cl::desc("Allow combining of BaseReg field in Address sinking."));
 | 
						|
 | 
						|
static cl::opt<bool> AddrSinkCombineBaseGV(
 | 
						|
    "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
 | 
						|
    cl::desc("Allow combining of BaseGV field in Address sinking."));
 | 
						|
 | 
						|
static cl::opt<bool> AddrSinkCombineBaseOffs(
 | 
						|
    "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
 | 
						|
    cl::desc("Allow combining of BaseOffs field in Address sinking."));
 | 
						|
 | 
						|
static cl::opt<bool> AddrSinkCombineScaledReg(
 | 
						|
    "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
 | 
						|
    cl::desc("Allow combining of ScaledReg field in Address sinking."));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
 | 
						|
                         cl::init(true),
 | 
						|
                         cl::desc("Enable splitting large offset of GEP."));
 | 
						|
 | 
						|
static cl::opt<bool> EnableICMP_EQToICMP_ST(
 | 
						|
    "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
 | 
						|
                     cl::desc("Enable BFI update verification for "
 | 
						|
                              "CodeGenPrepare."));
 | 
						|
 | 
						|
static cl::opt<bool> OptimizePhiTypes(
 | 
						|
    "cgp-optimize-phi-types", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Enable converting phi types in CodeGenPrepare"));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
enum ExtType {
 | 
						|
  ZeroExtension,   // Zero extension has been seen.
 | 
						|
  SignExtension,   // Sign extension has been seen.
 | 
						|
  BothExtension    // This extension type is used if we saw sext after
 | 
						|
                   // ZeroExtension had been set, or if we saw zext after
 | 
						|
                   // SignExtension had been set. It makes the type
 | 
						|
                   // information of a promoted instruction invalid.
 | 
						|
};
 | 
						|
 | 
						|
using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
 | 
						|
using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
 | 
						|
using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
 | 
						|
using SExts = SmallVector<Instruction *, 16>;
 | 
						|
using ValueToSExts = DenseMap<Value *, SExts>;
 | 
						|
 | 
						|
class TypePromotionTransaction;
 | 
						|
 | 
						|
  class CodeGenPrepare : public FunctionPass {
 | 
						|
    const TargetMachine *TM = nullptr;
 | 
						|
    const TargetSubtargetInfo *SubtargetInfo;
 | 
						|
    const TargetLowering *TLI = nullptr;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    const TargetTransformInfo *TTI = nullptr;
 | 
						|
    const TargetLibraryInfo *TLInfo;
 | 
						|
    const LoopInfo *LI;
 | 
						|
    std::unique_ptr<BlockFrequencyInfo> BFI;
 | 
						|
    std::unique_ptr<BranchProbabilityInfo> BPI;
 | 
						|
    ProfileSummaryInfo *PSI;
 | 
						|
 | 
						|
    /// As we scan instructions optimizing them, this is the next instruction
 | 
						|
    /// to optimize. Transforms that can invalidate this should update it.
 | 
						|
    BasicBlock::iterator CurInstIterator;
 | 
						|
 | 
						|
    /// Keeps track of non-local addresses that have been sunk into a block.
 | 
						|
    /// This allows us to avoid inserting duplicate code for blocks with
 | 
						|
    /// multiple load/stores of the same address. The usage of WeakTrackingVH
 | 
						|
    /// enables SunkAddrs to be treated as a cache whose entries can be
 | 
						|
    /// invalidated if a sunken address computation has been erased.
 | 
						|
    ValueMap<Value*, WeakTrackingVH> SunkAddrs;
 | 
						|
 | 
						|
    /// Keeps track of all instructions inserted for the current function.
 | 
						|
    SetOfInstrs InsertedInsts;
 | 
						|
 | 
						|
    /// Keeps track of the type of the related instruction before their
 | 
						|
    /// promotion for the current function.
 | 
						|
    InstrToOrigTy PromotedInsts;
 | 
						|
 | 
						|
    /// Keep track of instructions removed during promotion.
 | 
						|
    SetOfInstrs RemovedInsts;
 | 
						|
 | 
						|
    /// Keep track of sext chains based on their initial value.
 | 
						|
    DenseMap<Value *, Instruction *> SeenChainsForSExt;
 | 
						|
 | 
						|
    /// Keep track of GEPs accessing the same data structures such as structs or
 | 
						|
    /// arrays that are candidates to be split later because of their large
 | 
						|
    /// size.
 | 
						|
    MapVector<
 | 
						|
        AssertingVH<Value>,
 | 
						|
        SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
 | 
						|
        LargeOffsetGEPMap;
 | 
						|
 | 
						|
    /// Keep track of new GEP base after splitting the GEPs having large offset.
 | 
						|
    SmallSet<AssertingVH<Value>, 2> NewGEPBases;
 | 
						|
 | 
						|
    /// Map serial numbers to Large offset GEPs.
 | 
						|
    DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
 | 
						|
 | 
						|
    /// Keep track of SExt promoted.
 | 
						|
    ValueToSExts ValToSExtendedUses;
 | 
						|
 | 
						|
    /// True if the function has the OptSize attribute.
 | 
						|
    bool OptSize;
 | 
						|
 | 
						|
    /// DataLayout for the Function being processed.
 | 
						|
    const DataLayout *DL = nullptr;
 | 
						|
 | 
						|
    /// Building the dominator tree can be expensive, so we only build it
 | 
						|
    /// lazily and update it when required.
 | 
						|
    std::unique_ptr<DominatorTree> DT;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
 | 
						|
    CodeGenPrepare() : FunctionPass(ID) {
 | 
						|
      initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
    StringRef getPassName() const override { return "CodeGen Prepare"; }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      // FIXME: When we can selectively preserve passes, preserve the domtree.
 | 
						|
      AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | 
						|
      AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
      AU.addRequired<TargetPassConfig>();
 | 
						|
      AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
      AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    template <typename F>
 | 
						|
    void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
 | 
						|
      // Substituting can cause recursive simplifications, which can invalidate
 | 
						|
      // our iterator.  Use a WeakTrackingVH to hold onto it in case this
 | 
						|
      // happens.
 | 
						|
      Value *CurValue = &*CurInstIterator;
 | 
						|
      WeakTrackingVH IterHandle(CurValue);
 | 
						|
 | 
						|
      f();
 | 
						|
 | 
						|
      // If the iterator instruction was recursively deleted, start over at the
 | 
						|
      // start of the block.
 | 
						|
      if (IterHandle != CurValue) {
 | 
						|
        CurInstIterator = BB->begin();
 | 
						|
        SunkAddrs.clear();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Get the DominatorTree, building if necessary.
 | 
						|
    DominatorTree &getDT(Function &F) {
 | 
						|
      if (!DT)
 | 
						|
        DT = std::make_unique<DominatorTree>(F);
 | 
						|
      return *DT;
 | 
						|
    }
 | 
						|
 | 
						|
    void removeAllAssertingVHReferences(Value *V);
 | 
						|
    bool eliminateFallThrough(Function &F);
 | 
						|
    bool eliminateMostlyEmptyBlocks(Function &F);
 | 
						|
    BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
 | 
						|
    bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
 | 
						|
    void eliminateMostlyEmptyBlock(BasicBlock *BB);
 | 
						|
    bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
 | 
						|
                                       bool isPreheader);
 | 
						|
    bool makeBitReverse(Instruction &I);
 | 
						|
    bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
 | 
						|
    bool optimizeInst(Instruction *I, bool &ModifiedDT);
 | 
						|
    bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
 | 
						|
                            Type *AccessTy, unsigned AddrSpace);
 | 
						|
    bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
 | 
						|
    bool optimizeInlineAsmInst(CallInst *CS);
 | 
						|
    bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
 | 
						|
    bool optimizeExt(Instruction *&I);
 | 
						|
    bool optimizeExtUses(Instruction *I);
 | 
						|
    bool optimizeLoadExt(LoadInst *Load);
 | 
						|
    bool optimizeShiftInst(BinaryOperator *BO);
 | 
						|
    bool optimizeFunnelShift(IntrinsicInst *Fsh);
 | 
						|
    bool optimizeSelectInst(SelectInst *SI);
 | 
						|
    bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
 | 
						|
    bool optimizeSwitchInst(SwitchInst *SI);
 | 
						|
    bool optimizeExtractElementInst(Instruction *Inst);
 | 
						|
    bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
 | 
						|
    bool fixupDbgValue(Instruction *I);
 | 
						|
    bool placeDbgValues(Function &F);
 | 
						|
    bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
 | 
						|
                      LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
 | 
						|
    bool tryToPromoteExts(TypePromotionTransaction &TPT,
 | 
						|
                          const SmallVectorImpl<Instruction *> &Exts,
 | 
						|
                          SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
 | 
						|
                          unsigned CreatedInstsCost = 0);
 | 
						|
    bool mergeSExts(Function &F);
 | 
						|
    bool splitLargeGEPOffsets();
 | 
						|
    bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
 | 
						|
                         SmallPtrSetImpl<Instruction *> &DeletedInstrs);
 | 
						|
    bool optimizePhiTypes(Function &F);
 | 
						|
    bool performAddressTypePromotion(
 | 
						|
        Instruction *&Inst,
 | 
						|
        bool AllowPromotionWithoutCommonHeader,
 | 
						|
        bool HasPromoted, TypePromotionTransaction &TPT,
 | 
						|
        SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
 | 
						|
    bool splitBranchCondition(Function &F, bool &ModifiedDT);
 | 
						|
    bool simplifyOffsetableRelocate(GCStatepointInst &I);
 | 
						|
 | 
						|
    bool tryToSinkFreeOperands(Instruction *I);
 | 
						|
    bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
 | 
						|
                                     Value *Arg1, CmpInst *Cmp,
 | 
						|
                                     Intrinsic::ID IID);
 | 
						|
    bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
 | 
						|
    bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
 | 
						|
    bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
 | 
						|
    void verifyBFIUpdates(Function &F);
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char CodeGenPrepare::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
 | 
						|
                      "Optimize for code generation", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
 | 
						|
                    "Optimize for code generation", false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
 | 
						|
 | 
						|
bool CodeGenPrepare::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DL = &F.getParent()->getDataLayout();
 | 
						|
 | 
						|
  bool EverMadeChange = false;
 | 
						|
  // Clear per function information.
 | 
						|
  InsertedInsts.clear();
 | 
						|
  PromotedInsts.clear();
 | 
						|
 | 
						|
  TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
 | 
						|
  SubtargetInfo = TM->getSubtargetImpl(F);
 | 
						|
  TLI = SubtargetInfo->getTargetLowering();
 | 
						|
  TRI = SubtargetInfo->getRegisterInfo();
 | 
						|
  TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | 
						|
  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | 
						|
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  BPI.reset(new BranchProbabilityInfo(F, *LI));
 | 
						|
  BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
 | 
						|
  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | 
						|
  OptSize = F.hasOptSize();
 | 
						|
  if (ProfileGuidedSectionPrefix) {
 | 
						|
    // The hot attribute overwrites profile count based hotness while profile
 | 
						|
    // counts based hotness overwrite the cold attribute.
 | 
						|
    // This is a conservative behabvior.
 | 
						|
    if (F.hasFnAttribute(Attribute::Hot) ||
 | 
						|
        PSI->isFunctionHotInCallGraph(&F, *BFI))
 | 
						|
      F.setSectionPrefix("hot");
 | 
						|
    // If PSI shows this function is not hot, we will placed the function
 | 
						|
    // into unlikely section if (1) PSI shows this is a cold function, or
 | 
						|
    // (2) the function has a attribute of cold.
 | 
						|
    else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
 | 
						|
             F.hasFnAttribute(Attribute::Cold))
 | 
						|
      F.setSectionPrefix("unlikely");
 | 
						|
    else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
 | 
						|
             PSI->isFunctionHotnessUnknown(F))
 | 
						|
      F.setSectionPrefix("unknown");
 | 
						|
  }
 | 
						|
 | 
						|
  /// This optimization identifies DIV instructions that can be
 | 
						|
  /// profitably bypassed and carried out with a shorter, faster divide.
 | 
						|
  if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
 | 
						|
    const DenseMap<unsigned int, unsigned int> &BypassWidths =
 | 
						|
        TLI->getBypassSlowDivWidths();
 | 
						|
    BasicBlock* BB = &*F.begin();
 | 
						|
    while (BB != nullptr) {
 | 
						|
      // bypassSlowDivision may create new BBs, but we don't want to reapply the
 | 
						|
      // optimization to those blocks.
 | 
						|
      BasicBlock* Next = BB->getNextNode();
 | 
						|
      // F.hasOptSize is already checked in the outer if statement.
 | 
						|
      if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
 | 
						|
        EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
 | 
						|
      BB = Next;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Eliminate blocks that contain only PHI nodes and an
 | 
						|
  // unconditional branch.
 | 
						|
  EverMadeChange |= eliminateMostlyEmptyBlocks(F);
 | 
						|
 | 
						|
  bool ModifiedDT = false;
 | 
						|
  if (!DisableBranchOpts)
 | 
						|
    EverMadeChange |= splitBranchCondition(F, ModifiedDT);
 | 
						|
 | 
						|
  // Split some critical edges where one of the sources is an indirect branch,
 | 
						|
  // to help generate sane code for PHIs involving such edges.
 | 
						|
  EverMadeChange |= SplitIndirectBrCriticalEdges(F);
 | 
						|
 | 
						|
  bool MadeChange = true;
 | 
						|
  while (MadeChange) {
 | 
						|
    MadeChange = false;
 | 
						|
    DT.reset();
 | 
						|
    for (Function::iterator I = F.begin(); I != F.end(); ) {
 | 
						|
      BasicBlock *BB = &*I++;
 | 
						|
      bool ModifiedDTOnIteration = false;
 | 
						|
      MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
 | 
						|
 | 
						|
      // Restart BB iteration if the dominator tree of the Function was changed
 | 
						|
      if (ModifiedDTOnIteration)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
 | 
						|
      MadeChange |= mergeSExts(F);
 | 
						|
    if (!LargeOffsetGEPMap.empty())
 | 
						|
      MadeChange |= splitLargeGEPOffsets();
 | 
						|
    MadeChange |= optimizePhiTypes(F);
 | 
						|
 | 
						|
    if (MadeChange)
 | 
						|
      eliminateFallThrough(F);
 | 
						|
 | 
						|
    // Really free removed instructions during promotion.
 | 
						|
    for (Instruction *I : RemovedInsts)
 | 
						|
      I->deleteValue();
 | 
						|
 | 
						|
    EverMadeChange |= MadeChange;
 | 
						|
    SeenChainsForSExt.clear();
 | 
						|
    ValToSExtendedUses.clear();
 | 
						|
    RemovedInsts.clear();
 | 
						|
    LargeOffsetGEPMap.clear();
 | 
						|
    LargeOffsetGEPID.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  NewGEPBases.clear();
 | 
						|
  SunkAddrs.clear();
 | 
						|
 | 
						|
  if (!DisableBranchOpts) {
 | 
						|
    MadeChange = false;
 | 
						|
    // Use a set vector to get deterministic iteration order. The order the
 | 
						|
    // blocks are removed may affect whether or not PHI nodes in successors
 | 
						|
    // are removed.
 | 
						|
    SmallSetVector<BasicBlock*, 8> WorkList;
 | 
						|
    for (BasicBlock &BB : F) {
 | 
						|
      SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
 | 
						|
      MadeChange |= ConstantFoldTerminator(&BB, true);
 | 
						|
      if (!MadeChange) continue;
 | 
						|
 | 
						|
      for (SmallVectorImpl<BasicBlock*>::iterator
 | 
						|
             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
 | 
						|
        if (pred_empty(*II))
 | 
						|
          WorkList.insert(*II);
 | 
						|
    }
 | 
						|
 | 
						|
    // Delete the dead blocks and any of their dead successors.
 | 
						|
    MadeChange |= !WorkList.empty();
 | 
						|
    while (!WorkList.empty()) {
 | 
						|
      BasicBlock *BB = WorkList.pop_back_val();
 | 
						|
      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
 | 
						|
 | 
						|
      DeleteDeadBlock(BB);
 | 
						|
 | 
						|
      for (SmallVectorImpl<BasicBlock*>::iterator
 | 
						|
             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
 | 
						|
        if (pred_empty(*II))
 | 
						|
          WorkList.insert(*II);
 | 
						|
    }
 | 
						|
 | 
						|
    // Merge pairs of basic blocks with unconditional branches, connected by
 | 
						|
    // a single edge.
 | 
						|
    if (EverMadeChange || MadeChange)
 | 
						|
      MadeChange |= eliminateFallThrough(F);
 | 
						|
 | 
						|
    EverMadeChange |= MadeChange;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!DisableGCOpts) {
 | 
						|
    SmallVector<GCStatepointInst *, 2> Statepoints;
 | 
						|
    for (BasicBlock &BB : F)
 | 
						|
      for (Instruction &I : BB)
 | 
						|
        if (auto *SP = dyn_cast<GCStatepointInst>(&I))
 | 
						|
          Statepoints.push_back(SP);
 | 
						|
    for (auto &I : Statepoints)
 | 
						|
      EverMadeChange |= simplifyOffsetableRelocate(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Do this last to clean up use-before-def scenarios introduced by other
 | 
						|
  // preparatory transforms.
 | 
						|
  EverMadeChange |= placeDbgValues(F);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (VerifyBFIUpdates)
 | 
						|
    verifyBFIUpdates(F);
 | 
						|
#endif
 | 
						|
 | 
						|
  return EverMadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// An instruction is about to be deleted, so remove all references to it in our
 | 
						|
/// GEP-tracking data strcutures.
 | 
						|
void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
 | 
						|
  LargeOffsetGEPMap.erase(V);
 | 
						|
  NewGEPBases.erase(V);
 | 
						|
 | 
						|
  auto GEP = dyn_cast<GetElementPtrInst>(V);
 | 
						|
  if (!GEP)
 | 
						|
    return;
 | 
						|
 | 
						|
  LargeOffsetGEPID.erase(GEP);
 | 
						|
 | 
						|
  auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
 | 
						|
  if (VecI == LargeOffsetGEPMap.end())
 | 
						|
    return;
 | 
						|
 | 
						|
  auto &GEPVector = VecI->second;
 | 
						|
  const auto &I = std::find_if(GEPVector.begin(), GEPVector.end(),
 | 
						|
                               [=](auto &Elt) { return Elt.first == GEP; });
 | 
						|
  if (I == GEPVector.end())
 | 
						|
    return;
 | 
						|
 | 
						|
  GEPVector.erase(I);
 | 
						|
  if (GEPVector.empty())
 | 
						|
    LargeOffsetGEPMap.erase(VecI);
 | 
						|
}
 | 
						|
 | 
						|
// Verify BFI has been updated correctly by recomputing BFI and comparing them.
 | 
						|
void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
 | 
						|
  DominatorTree NewDT(F);
 | 
						|
  LoopInfo NewLI(NewDT);
 | 
						|
  BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
 | 
						|
  BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
 | 
						|
  NewBFI.verifyMatch(*BFI);
 | 
						|
}
 | 
						|
 | 
						|
/// Merge basic blocks which are connected by a single edge, where one of the
 | 
						|
/// basic blocks has a single successor pointing to the other basic block,
 | 
						|
/// which has a single predecessor.
 | 
						|
bool CodeGenPrepare::eliminateFallThrough(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  // Scan all of the blocks in the function, except for the entry block.
 | 
						|
  // Use a temporary array to avoid iterator being invalidated when
 | 
						|
  // deleting blocks.
 | 
						|
  SmallVector<WeakTrackingVH, 16> Blocks;
 | 
						|
  for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
 | 
						|
    Blocks.push_back(&Block);
 | 
						|
 | 
						|
  SmallSet<WeakTrackingVH, 16> Preds;
 | 
						|
  for (auto &Block : Blocks) {
 | 
						|
    auto *BB = cast_or_null<BasicBlock>(Block);
 | 
						|
    if (!BB)
 | 
						|
      continue;
 | 
						|
    // If the destination block has a single pred, then this is a trivial
 | 
						|
    // edge, just collapse it.
 | 
						|
    BasicBlock *SinglePred = BB->getSinglePredecessor();
 | 
						|
 | 
						|
    // Don't merge if BB's address is taken.
 | 
						|
    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
 | 
						|
 | 
						|
    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
 | 
						|
    if (Term && !Term->isConditional()) {
 | 
						|
      Changed = true;
 | 
						|
      LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
 | 
						|
 | 
						|
      // Merge BB into SinglePred and delete it.
 | 
						|
      MergeBlockIntoPredecessor(BB);
 | 
						|
      Preds.insert(SinglePred);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // (Repeatedly) merging blocks into their predecessors can create redundant
 | 
						|
  // debug intrinsics.
 | 
						|
  for (auto &Pred : Preds)
 | 
						|
    if (auto *BB = cast_or_null<BasicBlock>(Pred))
 | 
						|
      RemoveRedundantDbgInstrs(BB);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Find a destination block from BB if BB is mergeable empty block.
 | 
						|
BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
 | 
						|
  // If this block doesn't end with an uncond branch, ignore it.
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  if (!BI || !BI->isUnconditional())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If the instruction before the branch (skipping debug info) isn't a phi
 | 
						|
  // node, then other stuff is happening here.
 | 
						|
  BasicBlock::iterator BBI = BI->getIterator();
 | 
						|
  if (BBI != BB->begin()) {
 | 
						|
    --BBI;
 | 
						|
    while (isa<DbgInfoIntrinsic>(BBI)) {
 | 
						|
      if (BBI == BB->begin())
 | 
						|
        break;
 | 
						|
      --BBI;
 | 
						|
    }
 | 
						|
    if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do not break infinite loops.
 | 
						|
  BasicBlock *DestBB = BI->getSuccessor(0);
 | 
						|
  if (DestBB == BB)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!canMergeBlocks(BB, DestBB))
 | 
						|
    DestBB = nullptr;
 | 
						|
 | 
						|
  return DestBB;
 | 
						|
}
 | 
						|
 | 
						|
/// Eliminate blocks that contain only PHI nodes, debug info directives, and an
 | 
						|
/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
 | 
						|
/// edges in ways that are non-optimal for isel. Start by eliminating these
 | 
						|
/// blocks so we can split them the way we want them.
 | 
						|
bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
 | 
						|
  SmallPtrSet<BasicBlock *, 16> Preheaders;
 | 
						|
  SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
 | 
						|
  while (!LoopList.empty()) {
 | 
						|
    Loop *L = LoopList.pop_back_val();
 | 
						|
    llvm::append_range(LoopList, *L);
 | 
						|
    if (BasicBlock *Preheader = L->getLoopPreheader())
 | 
						|
      Preheaders.insert(Preheader);
 | 
						|
  }
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  // Copy blocks into a temporary array to avoid iterator invalidation issues
 | 
						|
  // as we remove them.
 | 
						|
  // Note that this intentionally skips the entry block.
 | 
						|
  SmallVector<WeakTrackingVH, 16> Blocks;
 | 
						|
  for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
 | 
						|
    Blocks.push_back(&Block);
 | 
						|
 | 
						|
  for (auto &Block : Blocks) {
 | 
						|
    BasicBlock *BB = cast_or_null<BasicBlock>(Block);
 | 
						|
    if (!BB)
 | 
						|
      continue;
 | 
						|
    BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
 | 
						|
    if (!DestBB ||
 | 
						|
        !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    eliminateMostlyEmptyBlock(BB);
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
 | 
						|
                                                   BasicBlock *DestBB,
 | 
						|
                                                   bool isPreheader) {
 | 
						|
  // Do not delete loop preheaders if doing so would create a critical edge.
 | 
						|
  // Loop preheaders can be good locations to spill registers. If the
 | 
						|
  // preheader is deleted and we create a critical edge, registers may be
 | 
						|
  // spilled in the loop body instead.
 | 
						|
  if (!DisablePreheaderProtect && isPreheader &&
 | 
						|
      !(BB->getSinglePredecessor() &&
 | 
						|
        BB->getSinglePredecessor()->getSingleSuccessor()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Skip merging if the block's successor is also a successor to any callbr
 | 
						|
  // that leads to this block.
 | 
						|
  // FIXME: Is this really needed? Is this a correctness issue?
 | 
						|
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
    if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
 | 
						|
      for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
 | 
						|
        if (DestBB == CBI->getSuccessor(i))
 | 
						|
          return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to skip merging if the unique predecessor of BB is terminated by a
 | 
						|
  // switch or indirect branch instruction, and BB is used as an incoming block
 | 
						|
  // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
 | 
						|
  // add COPY instructions in the predecessor of BB instead of BB (if it is not
 | 
						|
  // merged). Note that the critical edge created by merging such blocks wont be
 | 
						|
  // split in MachineSink because the jump table is not analyzable. By keeping
 | 
						|
  // such empty block (BB), ISel will place COPY instructions in BB, not in the
 | 
						|
  // predecessor of BB.
 | 
						|
  BasicBlock *Pred = BB->getUniquePredecessor();
 | 
						|
  if (!Pred ||
 | 
						|
      !(isa<SwitchInst>(Pred->getTerminator()) ||
 | 
						|
        isa<IndirectBrInst>(Pred->getTerminator())))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We use a simple cost heuristic which determine skipping merging is
 | 
						|
  // profitable if the cost of skipping merging is less than the cost of
 | 
						|
  // merging : Cost(skipping merging) < Cost(merging BB), where the
 | 
						|
  // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
 | 
						|
  // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
 | 
						|
  // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
 | 
						|
  //   Freq(Pred) / Freq(BB) > 2.
 | 
						|
  // Note that if there are multiple empty blocks sharing the same incoming
 | 
						|
  // value for the PHIs in the DestBB, we consider them together. In such
 | 
						|
  // case, Cost(merging BB) will be the sum of their frequencies.
 | 
						|
 | 
						|
  if (!isa<PHINode>(DestBB->begin()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
 | 
						|
 | 
						|
  // Find all other incoming blocks from which incoming values of all PHIs in
 | 
						|
  // DestBB are the same as the ones from BB.
 | 
						|
  for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
 | 
						|
       ++PI) {
 | 
						|
    BasicBlock *DestBBPred = *PI;
 | 
						|
    if (DestBBPred == BB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
 | 
						|
          return DestPN.getIncomingValueForBlock(BB) ==
 | 
						|
                 DestPN.getIncomingValueForBlock(DestBBPred);
 | 
						|
        }))
 | 
						|
      SameIncomingValueBBs.insert(DestBBPred);
 | 
						|
  }
 | 
						|
 | 
						|
  // See if all BB's incoming values are same as the value from Pred. In this
 | 
						|
  // case, no reason to skip merging because COPYs are expected to be place in
 | 
						|
  // Pred already.
 | 
						|
  if (SameIncomingValueBBs.count(Pred))
 | 
						|
    return true;
 | 
						|
 | 
						|
  BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
 | 
						|
  BlockFrequency BBFreq = BFI->getBlockFreq(BB);
 | 
						|
 | 
						|
  for (auto *SameValueBB : SameIncomingValueBBs)
 | 
						|
    if (SameValueBB->getUniquePredecessor() == Pred &&
 | 
						|
        DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
 | 
						|
      BBFreq += BFI->getBlockFreq(SameValueBB);
 | 
						|
 | 
						|
  return PredFreq.getFrequency() <=
 | 
						|
         BBFreq.getFrequency() * FreqRatioToSkipMerge;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we can merge BB into DestBB if there is a single
 | 
						|
/// unconditional branch between them, and BB contains no other non-phi
 | 
						|
/// instructions.
 | 
						|
bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
 | 
						|
                                    const BasicBlock *DestBB) const {
 | 
						|
  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
 | 
						|
  // the successor.  If there are more complex condition (e.g. preheaders),
 | 
						|
  // don't mess around with them.
 | 
						|
  for (const PHINode &PN : BB->phis()) {
 | 
						|
    for (const User *U : PN.users()) {
 | 
						|
      const Instruction *UI = cast<Instruction>(U);
 | 
						|
      if (UI->getParent() != DestBB || !isa<PHINode>(UI))
 | 
						|
        return false;
 | 
						|
      // If User is inside DestBB block and it is a PHINode then check
 | 
						|
      // incoming value. If incoming value is not from BB then this is
 | 
						|
      // a complex condition (e.g. preheaders) we want to avoid here.
 | 
						|
      if (UI->getParent() == DestBB) {
 | 
						|
        if (const PHINode *UPN = dyn_cast<PHINode>(UI))
 | 
						|
          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
 | 
						|
            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
 | 
						|
            if (Insn && Insn->getParent() == BB &&
 | 
						|
                Insn->getParent() != UPN->getIncomingBlock(I))
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
 | 
						|
  // and DestBB may have conflicting incoming values for the block.  If so, we
 | 
						|
  // can't merge the block.
 | 
						|
  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
 | 
						|
  if (!DestBBPN) return true;  // no conflict.
 | 
						|
 | 
						|
  // Collect the preds of BB.
 | 
						|
  SmallPtrSet<const BasicBlock*, 16> BBPreds;
 | 
						|
  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
    // It is faster to get preds from a PHI than with pred_iterator.
 | 
						|
    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      BBPreds.insert(BBPN->getIncomingBlock(i));
 | 
						|
  } else {
 | 
						|
    BBPreds.insert(pred_begin(BB), pred_end(BB));
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk the preds of DestBB.
 | 
						|
  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
 | 
						|
    if (BBPreds.count(Pred)) {   // Common predecessor?
 | 
						|
      for (const PHINode &PN : DestBB->phis()) {
 | 
						|
        const Value *V1 = PN.getIncomingValueForBlock(Pred);
 | 
						|
        const Value *V2 = PN.getIncomingValueForBlock(BB);
 | 
						|
 | 
						|
        // If V2 is a phi node in BB, look up what the mapped value will be.
 | 
						|
        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
 | 
						|
          if (V2PN->getParent() == BB)
 | 
						|
            V2 = V2PN->getIncomingValueForBlock(Pred);
 | 
						|
 | 
						|
        // If there is a conflict, bail out.
 | 
						|
        if (V1 != V2) return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Eliminate a basic block that has only phi's and an unconditional branch in
 | 
						|
/// it.
 | 
						|
void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
 | 
						|
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | 
						|
  BasicBlock *DestBB = BI->getSuccessor(0);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
 | 
						|
                    << *BB << *DestBB);
 | 
						|
 | 
						|
  // If the destination block has a single pred, then this is a trivial edge,
 | 
						|
  // just collapse it.
 | 
						|
  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
 | 
						|
    if (SinglePred != DestBB) {
 | 
						|
      assert(SinglePred == BB &&
 | 
						|
             "Single predecessor not the same as predecessor");
 | 
						|
      // Merge DestBB into SinglePred/BB and delete it.
 | 
						|
      MergeBlockIntoPredecessor(DestBB);
 | 
						|
      // Note: BB(=SinglePred) will not be deleted on this path.
 | 
						|
      // DestBB(=its single successor) is the one that was deleted.
 | 
						|
      LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
 | 
						|
  // to handle the new incoming edges it is about to have.
 | 
						|
  for (PHINode &PN : DestBB->phis()) {
 | 
						|
    // Remove the incoming value for BB, and remember it.
 | 
						|
    Value *InVal = PN.removeIncomingValue(BB, false);
 | 
						|
 | 
						|
    // Two options: either the InVal is a phi node defined in BB or it is some
 | 
						|
    // value that dominates BB.
 | 
						|
    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
 | 
						|
    if (InValPhi && InValPhi->getParent() == BB) {
 | 
						|
      // Add all of the input values of the input PHI as inputs of this phi.
 | 
						|
      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
 | 
						|
        PN.addIncoming(InValPhi->getIncomingValue(i),
 | 
						|
                       InValPhi->getIncomingBlock(i));
 | 
						|
    } else {
 | 
						|
      // Otherwise, add one instance of the dominating value for each edge that
 | 
						|
      // we will be adding.
 | 
						|
      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | 
						|
          PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
 | 
						|
      } else {
 | 
						|
        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
          PN.addIncoming(InVal, *PI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The PHIs are now updated, change everything that refers to BB to use
 | 
						|
  // DestBB and remove BB.
 | 
						|
  BB->replaceAllUsesWith(DestBB);
 | 
						|
  BB->eraseFromParent();
 | 
						|
  ++NumBlocksElim;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
 | 
						|
}
 | 
						|
 | 
						|
// Computes a map of base pointer relocation instructions to corresponding
 | 
						|
// derived pointer relocation instructions given a vector of all relocate calls
 | 
						|
static void computeBaseDerivedRelocateMap(
 | 
						|
    const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
 | 
						|
    DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
 | 
						|
        &RelocateInstMap) {
 | 
						|
  // Collect information in two maps: one primarily for locating the base object
 | 
						|
  // while filling the second map; the second map is the final structure holding
 | 
						|
  // a mapping between Base and corresponding Derived relocate calls
 | 
						|
  DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
 | 
						|
  for (auto *ThisRelocate : AllRelocateCalls) {
 | 
						|
    auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
 | 
						|
                            ThisRelocate->getDerivedPtrIndex());
 | 
						|
    RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
 | 
						|
  }
 | 
						|
  for (auto &Item : RelocateIdxMap) {
 | 
						|
    std::pair<unsigned, unsigned> Key = Item.first;
 | 
						|
    if (Key.first == Key.second)
 | 
						|
      // Base relocation: nothing to insert
 | 
						|
      continue;
 | 
						|
 | 
						|
    GCRelocateInst *I = Item.second;
 | 
						|
    auto BaseKey = std::make_pair(Key.first, Key.first);
 | 
						|
 | 
						|
    // We're iterating over RelocateIdxMap so we cannot modify it.
 | 
						|
    auto MaybeBase = RelocateIdxMap.find(BaseKey);
 | 
						|
    if (MaybeBase == RelocateIdxMap.end())
 | 
						|
      // TODO: We might want to insert a new base object relocate and gep off
 | 
						|
      // that, if there are enough derived object relocates.
 | 
						|
      continue;
 | 
						|
 | 
						|
    RelocateInstMap[MaybeBase->second].push_back(I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Accepts a GEP and extracts the operands into a vector provided they're all
 | 
						|
// small integer constants
 | 
						|
static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
 | 
						|
                                          SmallVectorImpl<Value *> &OffsetV) {
 | 
						|
  for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
 | 
						|
    // Only accept small constant integer operands
 | 
						|
    auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | 
						|
    if (!Op || Op->getZExtValue() > 20)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 1; i < GEP->getNumOperands(); i++)
 | 
						|
    OffsetV.push_back(GEP->getOperand(i));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Takes a RelocatedBase (base pointer relocation instruction) and Targets to
 | 
						|
// replace, computes a replacement, and affects it.
 | 
						|
static bool
 | 
						|
simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
 | 
						|
                          const SmallVectorImpl<GCRelocateInst *> &Targets) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  // We must ensure the relocation of derived pointer is defined after
 | 
						|
  // relocation of base pointer. If we find a relocation corresponding to base
 | 
						|
  // defined earlier than relocation of base then we move relocation of base
 | 
						|
  // right before found relocation. We consider only relocation in the same
 | 
						|
  // basic block as relocation of base. Relocations from other basic block will
 | 
						|
  // be skipped by optimization and we do not care about them.
 | 
						|
  for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
 | 
						|
       &*R != RelocatedBase; ++R)
 | 
						|
    if (auto *RI = dyn_cast<GCRelocateInst>(R))
 | 
						|
      if (RI->getStatepoint() == RelocatedBase->getStatepoint())
 | 
						|
        if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
 | 
						|
          RelocatedBase->moveBefore(RI);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
  for (GCRelocateInst *ToReplace : Targets) {
 | 
						|
    assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
 | 
						|
           "Not relocating a derived object of the original base object");
 | 
						|
    if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
 | 
						|
      // A duplicate relocate call. TODO: coalesce duplicates.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RelocatedBase->getParent() != ToReplace->getParent()) {
 | 
						|
      // Base and derived relocates are in different basic blocks.
 | 
						|
      // In this case transform is only valid when base dominates derived
 | 
						|
      // relocate. However it would be too expensive to check dominance
 | 
						|
      // for each such relocate, so we skip the whole transformation.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Value *Base = ToReplace->getBasePtr();
 | 
						|
    auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
 | 
						|
    if (!Derived || Derived->getPointerOperand() != Base)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SmallVector<Value *, 2> OffsetV;
 | 
						|
    if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Create a Builder and replace the target callsite with a gep
 | 
						|
    assert(RelocatedBase->getNextNode() &&
 | 
						|
           "Should always have one since it's not a terminator");
 | 
						|
 | 
						|
    // Insert after RelocatedBase
 | 
						|
    IRBuilder<> Builder(RelocatedBase->getNextNode());
 | 
						|
    Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
 | 
						|
 | 
						|
    // If gc_relocate does not match the actual type, cast it to the right type.
 | 
						|
    // In theory, there must be a bitcast after gc_relocate if the type does not
 | 
						|
    // match, and we should reuse it to get the derived pointer. But it could be
 | 
						|
    // cases like this:
 | 
						|
    // bb1:
 | 
						|
    //  ...
 | 
						|
    //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
 | 
						|
    //  br label %merge
 | 
						|
    //
 | 
						|
    // bb2:
 | 
						|
    //  ...
 | 
						|
    //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
 | 
						|
    //  br label %merge
 | 
						|
    //
 | 
						|
    // merge:
 | 
						|
    //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
 | 
						|
    //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
 | 
						|
    //
 | 
						|
    // In this case, we can not find the bitcast any more. So we insert a new bitcast
 | 
						|
    // no matter there is already one or not. In this way, we can handle all cases, and
 | 
						|
    // the extra bitcast should be optimized away in later passes.
 | 
						|
    Value *ActualRelocatedBase = RelocatedBase;
 | 
						|
    if (RelocatedBase->getType() != Base->getType()) {
 | 
						|
      ActualRelocatedBase =
 | 
						|
          Builder.CreateBitCast(RelocatedBase, Base->getType());
 | 
						|
    }
 | 
						|
    Value *Replacement = Builder.CreateGEP(
 | 
						|
        Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
 | 
						|
    Replacement->takeName(ToReplace);
 | 
						|
    // If the newly generated derived pointer's type does not match the original derived
 | 
						|
    // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
 | 
						|
    Value *ActualReplacement = Replacement;
 | 
						|
    if (Replacement->getType() != ToReplace->getType()) {
 | 
						|
      ActualReplacement =
 | 
						|
          Builder.CreateBitCast(Replacement, ToReplace->getType());
 | 
						|
    }
 | 
						|
    ToReplace->replaceAllUsesWith(ActualReplacement);
 | 
						|
    ToReplace->eraseFromParent();
 | 
						|
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
// Turns this:
 | 
						|
//
 | 
						|
// %base = ...
 | 
						|
// %ptr = gep %base + 15
 | 
						|
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
 | 
						|
// %base' = relocate(%tok, i32 4, i32 4)
 | 
						|
// %ptr' = relocate(%tok, i32 4, i32 5)
 | 
						|
// %val = load %ptr'
 | 
						|
//
 | 
						|
// into this:
 | 
						|
//
 | 
						|
// %base = ...
 | 
						|
// %ptr = gep %base + 15
 | 
						|
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
 | 
						|
// %base' = gc.relocate(%tok, i32 4, i32 4)
 | 
						|
// %ptr' = gep %base' + 15
 | 
						|
// %val = load %ptr'
 | 
						|
bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
 | 
						|
  for (auto *U : I.users())
 | 
						|
    if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
 | 
						|
      // Collect all the relocate calls associated with a statepoint
 | 
						|
      AllRelocateCalls.push_back(Relocate);
 | 
						|
 | 
						|
  // We need at least one base pointer relocation + one derived pointer
 | 
						|
  // relocation to mangle
 | 
						|
  if (AllRelocateCalls.size() < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // RelocateInstMap is a mapping from the base relocate instruction to the
 | 
						|
  // corresponding derived relocate instructions
 | 
						|
  DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
 | 
						|
  computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
 | 
						|
  if (RelocateInstMap.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto &Item : RelocateInstMap)
 | 
						|
    // Item.first is the RelocatedBase to offset against
 | 
						|
    // Item.second is the vector of Targets to replace
 | 
						|
    MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// Sink the specified cast instruction into its user blocks.
 | 
						|
static bool SinkCast(CastInst *CI) {
 | 
						|
  BasicBlock *DefBB = CI->getParent();
 | 
						|
 | 
						|
  /// InsertedCasts - Only insert a cast in each block once.
 | 
						|
  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
 | 
						|
       UI != E; ) {
 | 
						|
    Use &TheUse = UI.getUse();
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    // Figure out which BB this cast is used in.  For PHI's this is the
 | 
						|
    // appropriate predecessor block.
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | 
						|
      UserBB = PN->getIncomingBlock(TheUse);
 | 
						|
    }
 | 
						|
 | 
						|
    // Preincrement use iterator so we don't invalidate it.
 | 
						|
    ++UI;
 | 
						|
 | 
						|
    // The first insertion point of a block containing an EH pad is after the
 | 
						|
    // pad.  If the pad is the user, we cannot sink the cast past the pad.
 | 
						|
    if (User->isEHPad())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the block selected to receive the cast is an EH pad that does not
 | 
						|
    // allow non-PHI instructions before the terminator, we can't sink the
 | 
						|
    // cast.
 | 
						|
    if (UserBB->getTerminator()->isEHPad())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this user is in the same block as the cast, don't change the cast.
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
 | 
						|
    // If we have already inserted a cast into this block, use it.
 | 
						|
    CastInst *&InsertedCast = InsertedCasts[UserBB];
 | 
						|
 | 
						|
    if (!InsertedCast) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | 
						|
      assert(InsertPt != UserBB->end());
 | 
						|
      InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
 | 
						|
                                      CI->getType(), "", &*InsertPt);
 | 
						|
      InsertedCast->setDebugLoc(CI->getDebugLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace a use of the cast with a use of the new cast.
 | 
						|
    TheUse = InsertedCast;
 | 
						|
    MadeChange = true;
 | 
						|
    ++NumCastUses;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we removed all uses, nuke the cast.
 | 
						|
  if (CI->use_empty()) {
 | 
						|
    salvageDebugInfo(*CI);
 | 
						|
    CI->eraseFromParent();
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// If the specified cast instruction is a noop copy (e.g. it's casting from
 | 
						|
/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
 | 
						|
/// reduce the number of virtual registers that must be created and coalesced.
 | 
						|
///
 | 
						|
/// Return true if any changes are made.
 | 
						|
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
 | 
						|
                                       const DataLayout &DL) {
 | 
						|
  // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
 | 
						|
  // than sinking only nop casts, but is helpful on some platforms.
 | 
						|
  if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
 | 
						|
    if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
 | 
						|
                                 ASC->getDestAddressSpace()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a noop copy,
 | 
						|
  EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
 | 
						|
  EVT DstVT = TLI.getValueType(DL, CI->getType());
 | 
						|
 | 
						|
  // This is an fp<->int conversion?
 | 
						|
  if (SrcVT.isInteger() != DstVT.isInteger())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is an extension, it will be a zero or sign extension, which
 | 
						|
  // isn't a noop.
 | 
						|
  if (SrcVT.bitsLT(DstVT)) return false;
 | 
						|
 | 
						|
  // If these values will be promoted, find out what they will be promoted
 | 
						|
  // to.  This helps us consider truncates on PPC as noop copies when they
 | 
						|
  // are.
 | 
						|
  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
 | 
						|
      TargetLowering::TypePromoteInteger)
 | 
						|
    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
 | 
						|
  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
 | 
						|
      TargetLowering::TypePromoteInteger)
 | 
						|
    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
 | 
						|
 | 
						|
  // If, after promotion, these are the same types, this is a noop copy.
 | 
						|
  if (SrcVT != DstVT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return SinkCast(CI);
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
 | 
						|
                                                 Value *Arg0, Value *Arg1,
 | 
						|
                                                 CmpInst *Cmp,
 | 
						|
                                                 Intrinsic::ID IID) {
 | 
						|
  if (BO->getParent() != Cmp->getParent()) {
 | 
						|
    // We used to use a dominator tree here to allow multi-block optimization.
 | 
						|
    // But that was problematic because:
 | 
						|
    // 1. It could cause a perf regression by hoisting the math op into the
 | 
						|
    //    critical path.
 | 
						|
    // 2. It could cause a perf regression by creating a value that was live
 | 
						|
    //    across multiple blocks and increasing register pressure.
 | 
						|
    // 3. Use of a dominator tree could cause large compile-time regression.
 | 
						|
    //    This is because we recompute the DT on every change in the main CGP
 | 
						|
    //    run-loop. The recomputing is probably unnecessary in many cases, so if
 | 
						|
    //    that was fixed, using a DT here would be ok.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
 | 
						|
  if (BO->getOpcode() == Instruction::Add &&
 | 
						|
      IID == Intrinsic::usub_with_overflow) {
 | 
						|
    assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
 | 
						|
    Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert at the first instruction of the pair.
 | 
						|
  Instruction *InsertPt = nullptr;
 | 
						|
  for (Instruction &Iter : *Cmp->getParent()) {
 | 
						|
    // If BO is an XOR, it is not guaranteed that it comes after both inputs to
 | 
						|
    // the overflow intrinsic are defined.
 | 
						|
    if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
 | 
						|
      InsertPt = &Iter;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
 | 
						|
 | 
						|
  IRBuilder<> Builder(InsertPt);
 | 
						|
  Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
 | 
						|
  if (BO->getOpcode() != Instruction::Xor) {
 | 
						|
    Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
 | 
						|
    BO->replaceAllUsesWith(Math);
 | 
						|
  } else
 | 
						|
    assert(BO->hasOneUse() &&
 | 
						|
           "Patterns with XOr should use the BO only in the compare");
 | 
						|
  Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
 | 
						|
  Cmp->replaceAllUsesWith(OV);
 | 
						|
  Cmp->eraseFromParent();
 | 
						|
  BO->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Match special-case patterns that check for unsigned add overflow.
 | 
						|
static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
 | 
						|
                                                   BinaryOperator *&Add) {
 | 
						|
  // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
 | 
						|
  // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
 | 
						|
  Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
 | 
						|
 | 
						|
  // We are not expecting non-canonical/degenerate code. Just bail out.
 | 
						|
  if (isa<Constant>(A))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred = Cmp->getPredicate();
 | 
						|
  if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
 | 
						|
    B = ConstantInt::get(B->getType(), 1);
 | 
						|
  else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
 | 
						|
    B = ConstantInt::get(B->getType(), -1);
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check the users of the variable operand of the compare looking for an add
 | 
						|
  // with the adjusted constant.
 | 
						|
  for (User *U : A->users()) {
 | 
						|
    if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
 | 
						|
      Add = cast<BinaryOperator>(U);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to combine the compare into a call to the llvm.uadd.with.overflow
 | 
						|
/// intrinsic. Return true if any changes were made.
 | 
						|
bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
 | 
						|
                                               bool &ModifiedDT) {
 | 
						|
  Value *A, *B;
 | 
						|
  BinaryOperator *Add;
 | 
						|
  if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
 | 
						|
    if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
 | 
						|
      return false;
 | 
						|
    // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
 | 
						|
    A = Add->getOperand(0);
 | 
						|
    B = Add->getOperand(1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!TLI->shouldFormOverflowOp(ISD::UADDO,
 | 
						|
                                 TLI->getValueType(*DL, Add->getType()),
 | 
						|
                                 Add->hasNUsesOrMore(2)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We don't want to move around uses of condition values this late, so we
 | 
						|
  // check if it is legal to create the call to the intrinsic in the basic
 | 
						|
  // block containing the icmp.
 | 
						|
  if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
 | 
						|
                                   Intrinsic::uadd_with_overflow))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Reset callers - do not crash by iterating over a dead instruction.
 | 
						|
  ModifiedDT = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
 | 
						|
                                               bool &ModifiedDT) {
 | 
						|
  // We are not expecting non-canonical/degenerate code. Just bail out.
 | 
						|
  Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
 | 
						|
  if (isa<Constant>(A) && isa<Constant>(B))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Convert (A u> B) to (A u< B) to simplify pattern matching.
 | 
						|
  ICmpInst::Predicate Pred = Cmp->getPredicate();
 | 
						|
  if (Pred == ICmpInst::ICMP_UGT) {
 | 
						|
    std::swap(A, B);
 | 
						|
    Pred = ICmpInst::ICMP_ULT;
 | 
						|
  }
 | 
						|
  // Convert special-case: (A == 0) is the same as (A u< 1).
 | 
						|
  if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
 | 
						|
    B = ConstantInt::get(B->getType(), 1);
 | 
						|
    Pred = ICmpInst::ICMP_ULT;
 | 
						|
  }
 | 
						|
  // Convert special-case: (A != 0) is the same as (0 u< A).
 | 
						|
  if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
 | 
						|
    std::swap(A, B);
 | 
						|
    Pred = ICmpInst::ICMP_ULT;
 | 
						|
  }
 | 
						|
  if (Pred != ICmpInst::ICMP_ULT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Walk the users of a variable operand of a compare looking for a subtract or
 | 
						|
  // add with that same operand. Also match the 2nd operand of the compare to
 | 
						|
  // the add/sub, but that may be a negated constant operand of an add.
 | 
						|
  Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
 | 
						|
  BinaryOperator *Sub = nullptr;
 | 
						|
  for (User *U : CmpVariableOperand->users()) {
 | 
						|
    // A - B, A u< B --> usubo(A, B)
 | 
						|
    if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
 | 
						|
      Sub = cast<BinaryOperator>(U);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // A + (-C), A u< C (canonicalized form of (sub A, C))
 | 
						|
    const APInt *CmpC, *AddC;
 | 
						|
    if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
 | 
						|
        match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
 | 
						|
      Sub = cast<BinaryOperator>(U);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!Sub)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!TLI->shouldFormOverflowOp(ISD::USUBO,
 | 
						|
                                 TLI->getValueType(*DL, Sub->getType()),
 | 
						|
                                 Sub->hasNUsesOrMore(2)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
 | 
						|
                                   Cmp, Intrinsic::usub_with_overflow))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Reset callers - do not crash by iterating over a dead instruction.
 | 
						|
  ModifiedDT = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Sink the given CmpInst into user blocks to reduce the number of virtual
 | 
						|
/// registers that must be created and coalesced. This is a clear win except on
 | 
						|
/// targets with multiple condition code registers (PowerPC), where it might
 | 
						|
/// lose; some adjustment may be wanted there.
 | 
						|
///
 | 
						|
/// Return true if any changes are made.
 | 
						|
static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
 | 
						|
  if (TLI.hasMultipleConditionRegisters())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Avoid sinking soft-FP comparisons, since this can move them into a loop.
 | 
						|
  if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only insert a cmp in each block once.
 | 
						|
  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
 | 
						|
       UI != E; ) {
 | 
						|
    Use &TheUse = UI.getUse();
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    // Preincrement use iterator so we don't invalidate it.
 | 
						|
    ++UI;
 | 
						|
 | 
						|
    // Don't bother for PHI nodes.
 | 
						|
    if (isa<PHINode>(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Figure out which BB this cmp is used in.
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
    BasicBlock *DefBB = Cmp->getParent();
 | 
						|
 | 
						|
    // If this user is in the same block as the cmp, don't change the cmp.
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
 | 
						|
    // If we have already inserted a cmp into this block, use it.
 | 
						|
    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
 | 
						|
 | 
						|
    if (!InsertedCmp) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | 
						|
      assert(InsertPt != UserBB->end());
 | 
						|
      InsertedCmp =
 | 
						|
          CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
 | 
						|
                          Cmp->getOperand(0), Cmp->getOperand(1), "",
 | 
						|
                          &*InsertPt);
 | 
						|
      // Propagate the debug info.
 | 
						|
      InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace a use of the cmp with a use of the new cmp.
 | 
						|
    TheUse = InsertedCmp;
 | 
						|
    MadeChange = true;
 | 
						|
    ++NumCmpUses;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we removed all uses, nuke the cmp.
 | 
						|
  if (Cmp->use_empty()) {
 | 
						|
    Cmp->eraseFromParent();
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// For pattern like:
 | 
						|
///
 | 
						|
///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
 | 
						|
///   ...
 | 
						|
/// DomBB:
 | 
						|
///   ...
 | 
						|
///   br DomCond, TrueBB, CmpBB
 | 
						|
/// CmpBB: (with DomBB being the single predecessor)
 | 
						|
///   ...
 | 
						|
///   Cmp = icmp eq CmpOp0, CmpOp1
 | 
						|
///   ...
 | 
						|
///
 | 
						|
/// It would use two comparison on targets that lowering of icmp sgt/slt is
 | 
						|
/// different from lowering of icmp eq (PowerPC). This function try to convert
 | 
						|
/// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
 | 
						|
/// After that, DomCond and Cmp can use the same comparison so reduce one
 | 
						|
/// comparison.
 | 
						|
///
 | 
						|
/// Return true if any changes are made.
 | 
						|
static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
 | 
						|
                                       const TargetLowering &TLI) {
 | 
						|
  if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
 | 
						|
    return false;
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred = Cmp->getPredicate();
 | 
						|
  if (Pred != ICmpInst::ICMP_EQ)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If icmp eq has users other than BranchInst and SelectInst, converting it to
 | 
						|
  // icmp slt/sgt would introduce more redundant LLVM IR.
 | 
						|
  for (User *U : Cmp->users()) {
 | 
						|
    if (isa<BranchInst>(U))
 | 
						|
      continue;
 | 
						|
    if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
 | 
						|
      continue;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // This is a cheap/incomplete check for dominance - just match a single
 | 
						|
  // predecessor with a conditional branch.
 | 
						|
  BasicBlock *CmpBB = Cmp->getParent();
 | 
						|
  BasicBlock *DomBB = CmpBB->getSinglePredecessor();
 | 
						|
  if (!DomBB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We want to ensure that the only way control gets to the comparison of
 | 
						|
  // interest is that a less/greater than comparison on the same operands is
 | 
						|
  // false.
 | 
						|
  Value *DomCond;
 | 
						|
  BasicBlock *TrueBB, *FalseBB;
 | 
						|
  if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
 | 
						|
    return false;
 | 
						|
  if (CmpBB != FalseBB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
 | 
						|
  ICmpInst::Predicate DomPred;
 | 
						|
  if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
 | 
						|
    return false;
 | 
						|
  if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Convert the equality comparison to the opposite of the dominating
 | 
						|
  // comparison and swap the direction for all branch/select users.
 | 
						|
  // We have conceptually converted:
 | 
						|
  // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
 | 
						|
  // to
 | 
						|
  // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
 | 
						|
  // And similarly for branches.
 | 
						|
  for (User *U : Cmp->users()) {
 | 
						|
    if (auto *BI = dyn_cast<BranchInst>(U)) {
 | 
						|
      assert(BI->isConditional() && "Must be conditional");
 | 
						|
      BI->swapSuccessors();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (auto *SI = dyn_cast<SelectInst>(U)) {
 | 
						|
      // Swap operands
 | 
						|
      SI->swapValues();
 | 
						|
      SI->swapProfMetadata();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    llvm_unreachable("Must be a branch or a select");
 | 
						|
  }
 | 
						|
  Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
 | 
						|
  if (sinkCmpExpression(Cmp, *TLI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (combineToUAddWithOverflow(Cmp, ModifiedDT))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (combineToUSubWithOverflow(Cmp, ModifiedDT))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (foldICmpWithDominatingICmp(Cmp, *TLI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Duplicate and sink the given 'and' instruction into user blocks where it is
 | 
						|
/// used in a compare to allow isel to generate better code for targets where
 | 
						|
/// this operation can be combined.
 | 
						|
///
 | 
						|
/// Return true if any changes are made.
 | 
						|
static bool sinkAndCmp0Expression(Instruction *AndI,
 | 
						|
                                  const TargetLowering &TLI,
 | 
						|
                                  SetOfInstrs &InsertedInsts) {
 | 
						|
  // Double-check that we're not trying to optimize an instruction that was
 | 
						|
  // already optimized by some other part of this pass.
 | 
						|
  assert(!InsertedInsts.count(AndI) &&
 | 
						|
         "Attempting to optimize already optimized and instruction");
 | 
						|
  (void) InsertedInsts;
 | 
						|
 | 
						|
  // Nothing to do for single use in same basic block.
 | 
						|
  if (AndI->hasOneUse() &&
 | 
						|
      AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Try to avoid cases where sinking/duplicating is likely to increase register
 | 
						|
  // pressure.
 | 
						|
  if (!isa<ConstantInt>(AndI->getOperand(0)) &&
 | 
						|
      !isa<ConstantInt>(AndI->getOperand(1)) &&
 | 
						|
      AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto *U : AndI->users()) {
 | 
						|
    Instruction *User = cast<Instruction>(U);
 | 
						|
 | 
						|
    // Only sink 'and' feeding icmp with 0.
 | 
						|
    if (!isa<ICmpInst>(User))
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
 | 
						|
    if (!CmpC || !CmpC->isZero())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
 | 
						|
  LLVM_DEBUG(AndI->getParent()->dump());
 | 
						|
 | 
						|
  // Push the 'and' into the same block as the icmp 0.  There should only be
 | 
						|
  // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
 | 
						|
  // others, so we don't need to keep track of which BBs we insert into.
 | 
						|
  for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
 | 
						|
       UI != E; ) {
 | 
						|
    Use &TheUse = UI.getUse();
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    // Preincrement use iterator so we don't invalidate it.
 | 
						|
    ++UI;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
 | 
						|
 | 
						|
    // Keep the 'and' in the same place if the use is already in the same block.
 | 
						|
    Instruction *InsertPt =
 | 
						|
        User->getParent() == AndI->getParent() ? AndI : User;
 | 
						|
    Instruction *InsertedAnd =
 | 
						|
        BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
 | 
						|
                               AndI->getOperand(1), "", InsertPt);
 | 
						|
    // Propagate the debug info.
 | 
						|
    InsertedAnd->setDebugLoc(AndI->getDebugLoc());
 | 
						|
 | 
						|
    // Replace a use of the 'and' with a use of the new 'and'.
 | 
						|
    TheUse = InsertedAnd;
 | 
						|
    ++NumAndUses;
 | 
						|
    LLVM_DEBUG(User->getParent()->dump());
 | 
						|
  }
 | 
						|
 | 
						|
  // We removed all uses, nuke the and.
 | 
						|
  AndI->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the candidates could be combined with a shift instruction, which
 | 
						|
/// includes:
 | 
						|
/// 1. Truncate instruction
 | 
						|
/// 2. And instruction and the imm is a mask of the low bits:
 | 
						|
/// imm & (imm+1) == 0
 | 
						|
static bool isExtractBitsCandidateUse(Instruction *User) {
 | 
						|
  if (!isa<TruncInst>(User)) {
 | 
						|
    if (User->getOpcode() != Instruction::And ||
 | 
						|
        !isa<ConstantInt>(User->getOperand(1)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
 | 
						|
 | 
						|
    if ((Cimm & (Cimm + 1)).getBoolValue())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Sink both shift and truncate instruction to the use of truncate's BB.
 | 
						|
static bool
 | 
						|
SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
 | 
						|
                     DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
 | 
						|
                     const TargetLowering &TLI, const DataLayout &DL) {
 | 
						|
  BasicBlock *UserBB = User->getParent();
 | 
						|
  DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
 | 
						|
  auto *TruncI = cast<TruncInst>(User);
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  for (Value::user_iterator TruncUI = TruncI->user_begin(),
 | 
						|
                            TruncE = TruncI->user_end();
 | 
						|
       TruncUI != TruncE;) {
 | 
						|
 | 
						|
    Use &TruncTheUse = TruncUI.getUse();
 | 
						|
    Instruction *TruncUser = cast<Instruction>(*TruncUI);
 | 
						|
    // Preincrement use iterator so we don't invalidate it.
 | 
						|
 | 
						|
    ++TruncUI;
 | 
						|
 | 
						|
    int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
 | 
						|
    if (!ISDOpcode)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the use is actually a legal node, there will not be an
 | 
						|
    // implicit truncate.
 | 
						|
    // FIXME: always querying the result type is just an
 | 
						|
    // approximation; some nodes' legality is determined by the
 | 
						|
    // operand or other means. There's no good way to find out though.
 | 
						|
    if (TLI.isOperationLegalOrCustom(
 | 
						|
            ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't bother for PHI nodes.
 | 
						|
    if (isa<PHINode>(TruncUser))
 | 
						|
      continue;
 | 
						|
 | 
						|
    BasicBlock *TruncUserBB = TruncUser->getParent();
 | 
						|
 | 
						|
    if (UserBB == TruncUserBB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
 | 
						|
    CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
 | 
						|
 | 
						|
    if (!InsertedShift && !InsertedTrunc) {
 | 
						|
      BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
 | 
						|
      assert(InsertPt != TruncUserBB->end());
 | 
						|
      // Sink the shift
 | 
						|
      if (ShiftI->getOpcode() == Instruction::AShr)
 | 
						|
        InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
 | 
						|
                                                   "", &*InsertPt);
 | 
						|
      else
 | 
						|
        InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
 | 
						|
                                                   "", &*InsertPt);
 | 
						|
      InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
 | 
						|
 | 
						|
      // Sink the trunc
 | 
						|
      BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
 | 
						|
      TruncInsertPt++;
 | 
						|
      assert(TruncInsertPt != TruncUserBB->end());
 | 
						|
 | 
						|
      InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
 | 
						|
                                       TruncI->getType(), "", &*TruncInsertPt);
 | 
						|
      InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
 | 
						|
 | 
						|
      MadeChange = true;
 | 
						|
 | 
						|
      TruncTheUse = InsertedTrunc;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// Sink the shift *right* instruction into user blocks if the uses could
 | 
						|
/// potentially be combined with this shift instruction and generate BitExtract
 | 
						|
/// instruction. It will only be applied if the architecture supports BitExtract
 | 
						|
/// instruction. Here is an example:
 | 
						|
/// BB1:
 | 
						|
///   %x.extract.shift = lshr i64 %arg1, 32
 | 
						|
/// BB2:
 | 
						|
///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
 | 
						|
/// ==>
 | 
						|
///
 | 
						|
/// BB2:
 | 
						|
///   %x.extract.shift.1 = lshr i64 %arg1, 32
 | 
						|
///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
 | 
						|
///
 | 
						|
/// CodeGen will recognize the pattern in BB2 and generate BitExtract
 | 
						|
/// instruction.
 | 
						|
/// Return true if any changes are made.
 | 
						|
static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
 | 
						|
                                const TargetLowering &TLI,
 | 
						|
                                const DataLayout &DL) {
 | 
						|
  BasicBlock *DefBB = ShiftI->getParent();
 | 
						|
 | 
						|
  /// Only insert instructions in each block once.
 | 
						|
  DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
 | 
						|
 | 
						|
  bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
 | 
						|
       UI != E;) {
 | 
						|
    Use &TheUse = UI.getUse();
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
    // Preincrement use iterator so we don't invalidate it.
 | 
						|
    ++UI;
 | 
						|
 | 
						|
    // Don't bother for PHI nodes.
 | 
						|
    if (isa<PHINode>(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!isExtractBitsCandidateUse(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
 | 
						|
    if (UserBB == DefBB) {
 | 
						|
      // If the shift and truncate instruction are in the same BB. The use of
 | 
						|
      // the truncate(TruncUse) may still introduce another truncate if not
 | 
						|
      // legal. In this case, we would like to sink both shift and truncate
 | 
						|
      // instruction to the BB of TruncUse.
 | 
						|
      // for example:
 | 
						|
      // BB1:
 | 
						|
      // i64 shift.result = lshr i64 opnd, imm
 | 
						|
      // trunc.result = trunc shift.result to i16
 | 
						|
      //
 | 
						|
      // BB2:
 | 
						|
      //   ----> We will have an implicit truncate here if the architecture does
 | 
						|
      //   not have i16 compare.
 | 
						|
      // cmp i16 trunc.result, opnd2
 | 
						|
      //
 | 
						|
      if (isa<TruncInst>(User) && shiftIsLegal
 | 
						|
          // If the type of the truncate is legal, no truncate will be
 | 
						|
          // introduced in other basic blocks.
 | 
						|
          &&
 | 
						|
          (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
 | 
						|
        MadeChange =
 | 
						|
            SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // If we have already inserted a shift into this block, use it.
 | 
						|
    BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
 | 
						|
 | 
						|
    if (!InsertedShift) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | 
						|
      assert(InsertPt != UserBB->end());
 | 
						|
 | 
						|
      if (ShiftI->getOpcode() == Instruction::AShr)
 | 
						|
        InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
 | 
						|
                                                   "", &*InsertPt);
 | 
						|
      else
 | 
						|
        InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
 | 
						|
                                                   "", &*InsertPt);
 | 
						|
      InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
 | 
						|
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace a use of the shift with a use of the new shift.
 | 
						|
    TheUse = InsertedShift;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we removed all uses, or there are none, nuke the shift.
 | 
						|
  if (ShiftI->use_empty()) {
 | 
						|
    salvageDebugInfo(*ShiftI);
 | 
						|
    ShiftI->eraseFromParent();
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// If counting leading or trailing zeros is an expensive operation and a zero
 | 
						|
/// input is defined, add a check for zero to avoid calling the intrinsic.
 | 
						|
///
 | 
						|
/// We want to transform:
 | 
						|
///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
 | 
						|
///
 | 
						|
/// into:
 | 
						|
///   entry:
 | 
						|
///     %cmpz = icmp eq i64 %A, 0
 | 
						|
///     br i1 %cmpz, label %cond.end, label %cond.false
 | 
						|
///   cond.false:
 | 
						|
///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
 | 
						|
///     br label %cond.end
 | 
						|
///   cond.end:
 | 
						|
///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
 | 
						|
///
 | 
						|
/// If the transform is performed, return true and set ModifiedDT to true.
 | 
						|
static bool despeculateCountZeros(IntrinsicInst *CountZeros,
 | 
						|
                                  const TargetLowering *TLI,
 | 
						|
                                  const DataLayout *DL,
 | 
						|
                                  bool &ModifiedDT) {
 | 
						|
  // If a zero input is undefined, it doesn't make sense to despeculate that.
 | 
						|
  if (match(CountZeros->getOperand(1), m_One()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If it's cheap to speculate, there's nothing to do.
 | 
						|
  auto IntrinsicID = CountZeros->getIntrinsicID();
 | 
						|
  if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
 | 
						|
      (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only handle legal scalar cases. Anything else requires too much work.
 | 
						|
  Type *Ty = CountZeros->getType();
 | 
						|
  unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The intrinsic will be sunk behind a compare against zero and branch.
 | 
						|
  BasicBlock *StartBlock = CountZeros->getParent();
 | 
						|
  BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
 | 
						|
 | 
						|
  // Create another block after the count zero intrinsic. A PHI will be added
 | 
						|
  // in this block to select the result of the intrinsic or the bit-width
 | 
						|
  // constant if the input to the intrinsic is zero.
 | 
						|
  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
 | 
						|
  BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
 | 
						|
 | 
						|
  // Set up a builder to create a compare, conditional branch, and PHI.
 | 
						|
  IRBuilder<> Builder(CountZeros->getContext());
 | 
						|
  Builder.SetInsertPoint(StartBlock->getTerminator());
 | 
						|
  Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
 | 
						|
 | 
						|
  // Replace the unconditional branch that was created by the first split with
 | 
						|
  // a compare against zero and a conditional branch.
 | 
						|
  Value *Zero = Constant::getNullValue(Ty);
 | 
						|
  Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
 | 
						|
  Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
 | 
						|
  StartBlock->getTerminator()->eraseFromParent();
 | 
						|
 | 
						|
  // Create a PHI in the end block to select either the output of the intrinsic
 | 
						|
  // or the bit width of the operand.
 | 
						|
  Builder.SetInsertPoint(&EndBlock->front());
 | 
						|
  PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
 | 
						|
  CountZeros->replaceAllUsesWith(PN);
 | 
						|
  Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
 | 
						|
  PN->addIncoming(BitWidth, StartBlock);
 | 
						|
  PN->addIncoming(CountZeros, CallBlock);
 | 
						|
 | 
						|
  // We are explicitly handling the zero case, so we can set the intrinsic's
 | 
						|
  // undefined zero argument to 'true'. This will also prevent reprocessing the
 | 
						|
  // intrinsic; we only despeculate when a zero input is defined.
 | 
						|
  CountZeros->setArgOperand(1, Builder.getTrue());
 | 
						|
  ModifiedDT = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
 | 
						|
  BasicBlock *BB = CI->getParent();
 | 
						|
 | 
						|
  // Lower inline assembly if we can.
 | 
						|
  // If we found an inline asm expession, and if the target knows how to
 | 
						|
  // lower it to normal LLVM code, do so now.
 | 
						|
  if (CI->isInlineAsm()) {
 | 
						|
    if (TLI->ExpandInlineAsm(CI)) {
 | 
						|
      // Avoid invalidating the iterator.
 | 
						|
      CurInstIterator = BB->begin();
 | 
						|
      // Avoid processing instructions out of order, which could cause
 | 
						|
      // reuse before a value is defined.
 | 
						|
      SunkAddrs.clear();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Sink address computing for memory operands into the block.
 | 
						|
    if (optimizeInlineAsmInst(CI))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Align the pointer arguments to this call if the target thinks it's a good
 | 
						|
  // idea
 | 
						|
  unsigned MinSize, PrefAlign;
 | 
						|
  if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
 | 
						|
    for (auto &Arg : CI->arg_operands()) {
 | 
						|
      // We want to align both objects whose address is used directly and
 | 
						|
      // objects whose address is used in casts and GEPs, though it only makes
 | 
						|
      // sense for GEPs if the offset is a multiple of the desired alignment and
 | 
						|
      // if size - offset meets the size threshold.
 | 
						|
      if (!Arg->getType()->isPointerTy())
 | 
						|
        continue;
 | 
						|
      APInt Offset(DL->getIndexSizeInBits(
 | 
						|
                       cast<PointerType>(Arg->getType())->getAddressSpace()),
 | 
						|
                   0);
 | 
						|
      Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
 | 
						|
      uint64_t Offset2 = Offset.getLimitedValue();
 | 
						|
      if ((Offset2 & (PrefAlign-1)) != 0)
 | 
						|
        continue;
 | 
						|
      AllocaInst *AI;
 | 
						|
      if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
 | 
						|
          DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
 | 
						|
        AI->setAlignment(Align(PrefAlign));
 | 
						|
      // Global variables can only be aligned if they are defined in this
 | 
						|
      // object (i.e. they are uniquely initialized in this object), and
 | 
						|
      // over-aligning global variables that have an explicit section is
 | 
						|
      // forbidden.
 | 
						|
      GlobalVariable *GV;
 | 
						|
      if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
 | 
						|
          GV->getPointerAlignment(*DL) < PrefAlign &&
 | 
						|
          DL->getTypeAllocSize(GV->getValueType()) >=
 | 
						|
              MinSize + Offset2)
 | 
						|
        GV->setAlignment(MaybeAlign(PrefAlign));
 | 
						|
    }
 | 
						|
    // If this is a memcpy (or similar) then we may be able to improve the
 | 
						|
    // alignment
 | 
						|
    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
 | 
						|
      Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
 | 
						|
      MaybeAlign MIDestAlign = MI->getDestAlign();
 | 
						|
      if (!MIDestAlign || DestAlign > *MIDestAlign)
 | 
						|
        MI->setDestAlignment(DestAlign);
 | 
						|
      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
 | 
						|
        MaybeAlign MTISrcAlign = MTI->getSourceAlign();
 | 
						|
        Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
 | 
						|
        if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
 | 
						|
          MTI->setSourceAlignment(SrcAlign);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a cold call site, try to sink addressing computation into the
 | 
						|
  // cold block.  This interacts with our handling for loads and stores to
 | 
						|
  // ensure that we can fold all uses of a potential addressing computation
 | 
						|
  // into their uses.  TODO: generalize this to work over profiling data
 | 
						|
  if (CI->hasFnAttr(Attribute::Cold) &&
 | 
						|
      !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
 | 
						|
    for (auto &Arg : CI->arg_operands()) {
 | 
						|
      if (!Arg->getType()->isPointerTy())
 | 
						|
        continue;
 | 
						|
      unsigned AS = Arg->getType()->getPointerAddressSpace();
 | 
						|
      return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
 | 
						|
    }
 | 
						|
 | 
						|
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
 | 
						|
  if (II) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::assume: {
 | 
						|
      Value *Operand = II->getOperand(0);
 | 
						|
      II->eraseFromParent();
 | 
						|
      // Prune the operand, it's most likely dead.
 | 
						|
      resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(
 | 
						|
            Operand, TLInfo, nullptr,
 | 
						|
            [&](Value *V) { removeAllAssertingVHReferences(V); });
 | 
						|
      });
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::experimental_widenable_condition: {
 | 
						|
      // Give up on future widening oppurtunties so that we can fold away dead
 | 
						|
      // paths and merge blocks before going into block-local instruction
 | 
						|
      // selection.
 | 
						|
      if (II->use_empty()) {
 | 
						|
        II->eraseFromParent();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      Constant *RetVal = ConstantInt::getTrue(II->getContext());
 | 
						|
      resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
 | 
						|
        replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
 | 
						|
      });
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    case Intrinsic::objectsize:
 | 
						|
      llvm_unreachable("llvm.objectsize.* should have been lowered already");
 | 
						|
    case Intrinsic::is_constant:
 | 
						|
      llvm_unreachable("llvm.is.constant.* should have been lowered already");
 | 
						|
    case Intrinsic::aarch64_stlxr:
 | 
						|
    case Intrinsic::aarch64_stxr: {
 | 
						|
      ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
 | 
						|
      if (!ExtVal || !ExtVal->hasOneUse() ||
 | 
						|
          ExtVal->getParent() == CI->getParent())
 | 
						|
        return false;
 | 
						|
      // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
 | 
						|
      ExtVal->moveBefore(CI);
 | 
						|
      // Mark this instruction as "inserted by CGP", so that other
 | 
						|
      // optimizations don't touch it.
 | 
						|
      InsertedInsts.insert(ExtVal);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::launder_invariant_group:
 | 
						|
    case Intrinsic::strip_invariant_group: {
 | 
						|
      Value *ArgVal = II->getArgOperand(0);
 | 
						|
      auto it = LargeOffsetGEPMap.find(II);
 | 
						|
      if (it != LargeOffsetGEPMap.end()) {
 | 
						|
          // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
 | 
						|
          // Make sure not to have to deal with iterator invalidation
 | 
						|
          // after possibly adding ArgVal to LargeOffsetGEPMap.
 | 
						|
          auto GEPs = std::move(it->second);
 | 
						|
          LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
 | 
						|
          LargeOffsetGEPMap.erase(II);
 | 
						|
      }
 | 
						|
 | 
						|
      II->replaceAllUsesWith(ArgVal);
 | 
						|
      II->eraseFromParent();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    case Intrinsic::cttz:
 | 
						|
    case Intrinsic::ctlz:
 | 
						|
      // If counting zeros is expensive, try to avoid it.
 | 
						|
      return despeculateCountZeros(II, TLI, DL, ModifiedDT);
 | 
						|
    case Intrinsic::fshl:
 | 
						|
    case Intrinsic::fshr:
 | 
						|
      return optimizeFunnelShift(II);
 | 
						|
    case Intrinsic::dbg_value:
 | 
						|
      return fixupDbgValue(II);
 | 
						|
    case Intrinsic::vscale: {
 | 
						|
      // If datalayout has no special restrictions on vector data layout,
 | 
						|
      // replace `llvm.vscale` by an equivalent constant expression
 | 
						|
      // to benefit from cheap constant propagation.
 | 
						|
      Type *ScalableVectorTy =
 | 
						|
          VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
 | 
						|
      if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
 | 
						|
        auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
 | 
						|
        auto *One = ConstantInt::getSigned(II->getType(), 1);
 | 
						|
        auto *CGep =
 | 
						|
            ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
 | 
						|
        II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
 | 
						|
        II->eraseFromParent();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Intrinsic::masked_gather:
 | 
						|
      return optimizeGatherScatterInst(II, II->getArgOperand(0));
 | 
						|
    case Intrinsic::masked_scatter:
 | 
						|
      return optimizeGatherScatterInst(II, II->getArgOperand(1));
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<Value *, 2> PtrOps;
 | 
						|
    Type *AccessTy;
 | 
						|
    if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
 | 
						|
      while (!PtrOps.empty()) {
 | 
						|
        Value *PtrVal = PtrOps.pop_back_val();
 | 
						|
        unsigned AS = PtrVal->getType()->getPointerAddressSpace();
 | 
						|
        if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // From here on out we're working with named functions.
 | 
						|
  if (!CI->getCalledFunction()) return false;
 | 
						|
 | 
						|
  // Lower all default uses of _chk calls.  This is very similar
 | 
						|
  // to what InstCombineCalls does, but here we are only lowering calls
 | 
						|
  // to fortified library functions (e.g. __memcpy_chk) that have the default
 | 
						|
  // "don't know" as the objectsize.  Anything else should be left alone.
 | 
						|
  FortifiedLibCallSimplifier Simplifier(TLInfo, true);
 | 
						|
  IRBuilder<> Builder(CI);
 | 
						|
  if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
 | 
						|
    CI->replaceAllUsesWith(V);
 | 
						|
    CI->eraseFromParent();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Look for opportunities to duplicate return instructions to the predecessor
 | 
						|
/// to enable tail call optimizations. The case it is currently looking for is:
 | 
						|
/// @code
 | 
						|
/// bb0:
 | 
						|
///   %tmp0 = tail call i32 @f0()
 | 
						|
///   br label %return
 | 
						|
/// bb1:
 | 
						|
///   %tmp1 = tail call i32 @f1()
 | 
						|
///   br label %return
 | 
						|
/// bb2:
 | 
						|
///   %tmp2 = tail call i32 @f2()
 | 
						|
///   br label %return
 | 
						|
/// return:
 | 
						|
///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
 | 
						|
///   ret i32 %retval
 | 
						|
/// @endcode
 | 
						|
///
 | 
						|
/// =>
 | 
						|
///
 | 
						|
/// @code
 | 
						|
/// bb0:
 | 
						|
///   %tmp0 = tail call i32 @f0()
 | 
						|
///   ret i32 %tmp0
 | 
						|
/// bb1:
 | 
						|
///   %tmp1 = tail call i32 @f1()
 | 
						|
///   ret i32 %tmp1
 | 
						|
/// bb2:
 | 
						|
///   %tmp2 = tail call i32 @f2()
 | 
						|
///   ret i32 %tmp2
 | 
						|
/// @endcode
 | 
						|
bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
 | 
						|
  ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
 | 
						|
  if (!RetI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  PHINode *PN = nullptr;
 | 
						|
  ExtractValueInst *EVI = nullptr;
 | 
						|
  BitCastInst *BCI = nullptr;
 | 
						|
  Value *V = RetI->getReturnValue();
 | 
						|
  if (V) {
 | 
						|
    BCI = dyn_cast<BitCastInst>(V);
 | 
						|
    if (BCI)
 | 
						|
      V = BCI->getOperand(0);
 | 
						|
 | 
						|
    EVI = dyn_cast<ExtractValueInst>(V);
 | 
						|
    if (EVI) {
 | 
						|
      V = EVI->getOperand(0);
 | 
						|
      if (!std::all_of(EVI->idx_begin(), EVI->idx_end(),
 | 
						|
                       [](unsigned idx) { return idx == 0; }))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    PN = dyn_cast<PHINode>(V);
 | 
						|
    if (!PN)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (PN && PN->getParent() != BB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure there are no instructions between the PHI and return, or that the
 | 
						|
  // return is the first instruction in the block.
 | 
						|
  if (PN) {
 | 
						|
    BasicBlock::iterator BI = BB->begin();
 | 
						|
    // Skip over debug and the bitcast.
 | 
						|
    do {
 | 
						|
      ++BI;
 | 
						|
    } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI ||
 | 
						|
             isa<PseudoProbeInst>(BI));
 | 
						|
    if (&*BI != RetI)
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (BB->getFirstNonPHIOrDbg(true) != RetI)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
 | 
						|
  /// call.
 | 
						|
  const Function *F = BB->getParent();
 | 
						|
  SmallVector<BasicBlock*, 4> TailCallBBs;
 | 
						|
  if (PN) {
 | 
						|
    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
 | 
						|
      // Look through bitcasts.
 | 
						|
      Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
 | 
						|
      CallInst *CI = dyn_cast<CallInst>(IncomingVal);
 | 
						|
      BasicBlock *PredBB = PN->getIncomingBlock(I);
 | 
						|
      // Make sure the phi value is indeed produced by the tail call.
 | 
						|
      if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
 | 
						|
          TLI->mayBeEmittedAsTailCall(CI) &&
 | 
						|
          attributesPermitTailCall(F, CI, RetI, *TLI))
 | 
						|
        TailCallBBs.push_back(PredBB);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
 | 
						|
    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
 | 
						|
      if (!VisitedBBs.insert(*PI).second)
 | 
						|
        continue;
 | 
						|
      if (Instruction *I = (*PI)->rbegin()->getPrevNonDebugInstruction(true)) {
 | 
						|
        CallInst *CI = dyn_cast<CallInst>(I);
 | 
						|
        if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
 | 
						|
            attributesPermitTailCall(F, CI, RetI, *TLI))
 | 
						|
          TailCallBBs.push_back(*PI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto const &TailCallBB : TailCallBBs) {
 | 
						|
    // Make sure the call instruction is followed by an unconditional branch to
 | 
						|
    // the return block.
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
 | 
						|
    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Duplicate the return into TailCallBB.
 | 
						|
    (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
 | 
						|
    assert(!VerifyBFIUpdates ||
 | 
						|
           BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
 | 
						|
    BFI->setBlockFreq(
 | 
						|
        BB,
 | 
						|
        (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
 | 
						|
    ModifiedDT = Changed = true;
 | 
						|
    ++NumRetsDup;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we eliminated all predecessors of the block, delete the block now.
 | 
						|
  if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
 | 
						|
    BB->eraseFromParent();
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Memory Optimization
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// This is an extended version of TargetLowering::AddrMode
 | 
						|
/// which holds actual Value*'s for register values.
 | 
						|
struct ExtAddrMode : public TargetLowering::AddrMode {
 | 
						|
  Value *BaseReg = nullptr;
 | 
						|
  Value *ScaledReg = nullptr;
 | 
						|
  Value *OriginalValue = nullptr;
 | 
						|
  bool InBounds = true;
 | 
						|
 | 
						|
  enum FieldName {
 | 
						|
    NoField        = 0x00,
 | 
						|
    BaseRegField   = 0x01,
 | 
						|
    BaseGVField    = 0x02,
 | 
						|
    BaseOffsField  = 0x04,
 | 
						|
    ScaledRegField = 0x08,
 | 
						|
    ScaleField     = 0x10,
 | 
						|
    MultipleFields = 0xff
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  ExtAddrMode() = default;
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
  void dump() const;
 | 
						|
 | 
						|
  FieldName compare(const ExtAddrMode &other) {
 | 
						|
    // First check that the types are the same on each field, as differing types
 | 
						|
    // is something we can't cope with later on.
 | 
						|
    if (BaseReg && other.BaseReg &&
 | 
						|
        BaseReg->getType() != other.BaseReg->getType())
 | 
						|
      return MultipleFields;
 | 
						|
    if (BaseGV && other.BaseGV &&
 | 
						|
        BaseGV->getType() != other.BaseGV->getType())
 | 
						|
      return MultipleFields;
 | 
						|
    if (ScaledReg && other.ScaledReg &&
 | 
						|
        ScaledReg->getType() != other.ScaledReg->getType())
 | 
						|
      return MultipleFields;
 | 
						|
 | 
						|
    // Conservatively reject 'inbounds' mismatches.
 | 
						|
    if (InBounds != other.InBounds)
 | 
						|
      return MultipleFields;
 | 
						|
 | 
						|
    // Check each field to see if it differs.
 | 
						|
    unsigned Result = NoField;
 | 
						|
    if (BaseReg != other.BaseReg)
 | 
						|
      Result |= BaseRegField;
 | 
						|
    if (BaseGV != other.BaseGV)
 | 
						|
      Result |= BaseGVField;
 | 
						|
    if (BaseOffs != other.BaseOffs)
 | 
						|
      Result |= BaseOffsField;
 | 
						|
    if (ScaledReg != other.ScaledReg)
 | 
						|
      Result |= ScaledRegField;
 | 
						|
    // Don't count 0 as being a different scale, because that actually means
 | 
						|
    // unscaled (which will already be counted by having no ScaledReg).
 | 
						|
    if (Scale && other.Scale && Scale != other.Scale)
 | 
						|
      Result |= ScaleField;
 | 
						|
 | 
						|
    if (countPopulation(Result) > 1)
 | 
						|
      return MultipleFields;
 | 
						|
    else
 | 
						|
      return static_cast<FieldName>(Result);
 | 
						|
  }
 | 
						|
 | 
						|
  // An AddrMode is trivial if it involves no calculation i.e. it is just a base
 | 
						|
  // with no offset.
 | 
						|
  bool isTrivial() {
 | 
						|
    // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
 | 
						|
    // trivial if at most one of these terms is nonzero, except that BaseGV and
 | 
						|
    // BaseReg both being zero actually means a null pointer value, which we
 | 
						|
    // consider to be 'non-zero' here.
 | 
						|
    return !BaseOffs && !Scale && !(BaseGV && BaseReg);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
 | 
						|
    switch (Field) {
 | 
						|
    default:
 | 
						|
      return nullptr;
 | 
						|
    case BaseRegField:
 | 
						|
      return BaseReg;
 | 
						|
    case BaseGVField:
 | 
						|
      return BaseGV;
 | 
						|
    case ScaledRegField:
 | 
						|
      return ScaledReg;
 | 
						|
    case BaseOffsField:
 | 
						|
      return ConstantInt::get(IntPtrTy, BaseOffs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void SetCombinedField(FieldName Field, Value *V,
 | 
						|
                        const SmallVectorImpl<ExtAddrMode> &AddrModes) {
 | 
						|
    switch (Field) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unhandled fields are expected to be rejected earlier");
 | 
						|
      break;
 | 
						|
    case ExtAddrMode::BaseRegField:
 | 
						|
      BaseReg = V;
 | 
						|
      break;
 | 
						|
    case ExtAddrMode::BaseGVField:
 | 
						|
      // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
 | 
						|
      // in the BaseReg field.
 | 
						|
      assert(BaseReg == nullptr);
 | 
						|
      BaseReg = V;
 | 
						|
      BaseGV = nullptr;
 | 
						|
      break;
 | 
						|
    case ExtAddrMode::ScaledRegField:
 | 
						|
      ScaledReg = V;
 | 
						|
      // If we have a mix of scaled and unscaled addrmodes then we want scale
 | 
						|
      // to be the scale and not zero.
 | 
						|
      if (!Scale)
 | 
						|
        for (const ExtAddrMode &AM : AddrModes)
 | 
						|
          if (AM.Scale) {
 | 
						|
            Scale = AM.Scale;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
      break;
 | 
						|
    case ExtAddrMode::BaseOffsField:
 | 
						|
      // The offset is no longer a constant, so it goes in ScaledReg with a
 | 
						|
      // scale of 1.
 | 
						|
      assert(ScaledReg == nullptr);
 | 
						|
      ScaledReg = V;
 | 
						|
      Scale = 1;
 | 
						|
      BaseOffs = 0;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
 | 
						|
  AM.print(OS);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void ExtAddrMode::print(raw_ostream &OS) const {
 | 
						|
  bool NeedPlus = false;
 | 
						|
  OS << "[";
 | 
						|
  if (InBounds)
 | 
						|
    OS << "inbounds ";
 | 
						|
  if (BaseGV) {
 | 
						|
    OS << (NeedPlus ? " + " : "")
 | 
						|
       << "GV:";
 | 
						|
    BaseGV->printAsOperand(OS, /*PrintType=*/false);
 | 
						|
    NeedPlus = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BaseOffs) {
 | 
						|
    OS << (NeedPlus ? " + " : "")
 | 
						|
       << BaseOffs;
 | 
						|
    NeedPlus = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BaseReg) {
 | 
						|
    OS << (NeedPlus ? " + " : "")
 | 
						|
       << "Base:";
 | 
						|
    BaseReg->printAsOperand(OS, /*PrintType=*/false);
 | 
						|
    NeedPlus = true;
 | 
						|
  }
 | 
						|
  if (Scale) {
 | 
						|
    OS << (NeedPlus ? " + " : "")
 | 
						|
       << Scale << "*";
 | 
						|
    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  OS << ']';
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
 | 
						|
  print(dbgs());
 | 
						|
  dbgs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// This class provides transaction based operation on the IR.
 | 
						|
/// Every change made through this class is recorded in the internal state and
 | 
						|
/// can be undone (rollback) until commit is called.
 | 
						|
/// CGP does not check if instructions could be speculatively executed when
 | 
						|
/// moved. Preserving the original location would pessimize the debugging
 | 
						|
/// experience, as well as negatively impact the quality of sample PGO.
 | 
						|
class TypePromotionTransaction {
 | 
						|
  /// This represents the common interface of the individual transaction.
 | 
						|
  /// Each class implements the logic for doing one specific modification on
 | 
						|
  /// the IR via the TypePromotionTransaction.
 | 
						|
  class TypePromotionAction {
 | 
						|
  protected:
 | 
						|
    /// The Instruction modified.
 | 
						|
    Instruction *Inst;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Constructor of the action.
 | 
						|
    /// The constructor performs the related action on the IR.
 | 
						|
    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
 | 
						|
 | 
						|
    virtual ~TypePromotionAction() = default;
 | 
						|
 | 
						|
    /// Undo the modification done by this action.
 | 
						|
    /// When this method is called, the IR must be in the same state as it was
 | 
						|
    /// before this action was applied.
 | 
						|
    /// \pre Undoing the action works if and only if the IR is in the exact same
 | 
						|
    /// state as it was directly after this action was applied.
 | 
						|
    virtual void undo() = 0;
 | 
						|
 | 
						|
    /// Advocate every change made by this action.
 | 
						|
    /// When the results on the IR of the action are to be kept, it is important
 | 
						|
    /// to call this function, otherwise hidden information may be kept forever.
 | 
						|
    virtual void commit() {
 | 
						|
      // Nothing to be done, this action is not doing anything.
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Utility to remember the position of an instruction.
 | 
						|
  class InsertionHandler {
 | 
						|
    /// Position of an instruction.
 | 
						|
    /// Either an instruction:
 | 
						|
    /// - Is the first in a basic block: BB is used.
 | 
						|
    /// - Has a previous instruction: PrevInst is used.
 | 
						|
    union {
 | 
						|
      Instruction *PrevInst;
 | 
						|
      BasicBlock *BB;
 | 
						|
    } Point;
 | 
						|
 | 
						|
    /// Remember whether or not the instruction had a previous instruction.
 | 
						|
    bool HasPrevInstruction;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Record the position of \p Inst.
 | 
						|
    InsertionHandler(Instruction *Inst) {
 | 
						|
      BasicBlock::iterator It = Inst->getIterator();
 | 
						|
      HasPrevInstruction = (It != (Inst->getParent()->begin()));
 | 
						|
      if (HasPrevInstruction)
 | 
						|
        Point.PrevInst = &*--It;
 | 
						|
      else
 | 
						|
        Point.BB = Inst->getParent();
 | 
						|
    }
 | 
						|
 | 
						|
    /// Insert \p Inst at the recorded position.
 | 
						|
    void insert(Instruction *Inst) {
 | 
						|
      if (HasPrevInstruction) {
 | 
						|
        if (Inst->getParent())
 | 
						|
          Inst->removeFromParent();
 | 
						|
        Inst->insertAfter(Point.PrevInst);
 | 
						|
      } else {
 | 
						|
        Instruction *Position = &*Point.BB->getFirstInsertionPt();
 | 
						|
        if (Inst->getParent())
 | 
						|
          Inst->moveBefore(Position);
 | 
						|
        else
 | 
						|
          Inst->insertBefore(Position);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Move an instruction before another.
 | 
						|
  class InstructionMoveBefore : public TypePromotionAction {
 | 
						|
    /// Original position of the instruction.
 | 
						|
    InsertionHandler Position;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Move \p Inst before \p Before.
 | 
						|
    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
 | 
						|
        : TypePromotionAction(Inst), Position(Inst) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
 | 
						|
                        << "\n");
 | 
						|
      Inst->moveBefore(Before);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Move the instruction back to its original position.
 | 
						|
    void undo() override {
 | 
						|
      LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
 | 
						|
      Position.insert(Inst);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Set the operand of an instruction with a new value.
 | 
						|
  class OperandSetter : public TypePromotionAction {
 | 
						|
    /// Original operand of the instruction.
 | 
						|
    Value *Origin;
 | 
						|
 | 
						|
    /// Index of the modified instruction.
 | 
						|
    unsigned Idx;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Set \p Idx operand of \p Inst with \p NewVal.
 | 
						|
    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
 | 
						|
        : TypePromotionAction(Inst), Idx(Idx) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
 | 
						|
                        << "for:" << *Inst << "\n"
 | 
						|
                        << "with:" << *NewVal << "\n");
 | 
						|
      Origin = Inst->getOperand(Idx);
 | 
						|
      Inst->setOperand(Idx, NewVal);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Restore the original value of the instruction.
 | 
						|
    void undo() override {
 | 
						|
      LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
 | 
						|
                        << "for: " << *Inst << "\n"
 | 
						|
                        << "with: " << *Origin << "\n");
 | 
						|
      Inst->setOperand(Idx, Origin);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Hide the operands of an instruction.
 | 
						|
  /// Do as if this instruction was not using any of its operands.
 | 
						|
  class OperandsHider : public TypePromotionAction {
 | 
						|
    /// The list of original operands.
 | 
						|
    SmallVector<Value *, 4> OriginalValues;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Remove \p Inst from the uses of the operands of \p Inst.
 | 
						|
    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
 | 
						|
      unsigned NumOpnds = Inst->getNumOperands();
 | 
						|
      OriginalValues.reserve(NumOpnds);
 | 
						|
      for (unsigned It = 0; It < NumOpnds; ++It) {
 | 
						|
        // Save the current operand.
 | 
						|
        Value *Val = Inst->getOperand(It);
 | 
						|
        OriginalValues.push_back(Val);
 | 
						|
        // Set a dummy one.
 | 
						|
        // We could use OperandSetter here, but that would imply an overhead
 | 
						|
        // that we are not willing to pay.
 | 
						|
        Inst->setOperand(It, UndefValue::get(Val->getType()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Restore the original list of uses.
 | 
						|
    void undo() override {
 | 
						|
      LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
 | 
						|
      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
 | 
						|
        Inst->setOperand(It, OriginalValues[It]);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Build a truncate instruction.
 | 
						|
  class TruncBuilder : public TypePromotionAction {
 | 
						|
    Value *Val;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Build a truncate instruction of \p Opnd producing a \p Ty
 | 
						|
    /// result.
 | 
						|
    /// trunc Opnd to Ty.
 | 
						|
    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
 | 
						|
      IRBuilder<> Builder(Opnd);
 | 
						|
      Builder.SetCurrentDebugLocation(DebugLoc());
 | 
						|
      Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
 | 
						|
      LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    /// Get the built value.
 | 
						|
    Value *getBuiltValue() { return Val; }
 | 
						|
 | 
						|
    /// Remove the built instruction.
 | 
						|
    void undo() override {
 | 
						|
      LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
 | 
						|
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | 
						|
        IVal->eraseFromParent();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Build a sign extension instruction.
 | 
						|
  class SExtBuilder : public TypePromotionAction {
 | 
						|
    Value *Val;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Build a sign extension instruction of \p Opnd producing a \p Ty
 | 
						|
    /// result.
 | 
						|
    /// sext Opnd to Ty.
 | 
						|
    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
 | 
						|
        : TypePromotionAction(InsertPt) {
 | 
						|
      IRBuilder<> Builder(InsertPt);
 | 
						|
      Val = Builder.CreateSExt(Opnd, Ty, "promoted");
 | 
						|
      LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    /// Get the built value.
 | 
						|
    Value *getBuiltValue() { return Val; }
 | 
						|
 | 
						|
    /// Remove the built instruction.
 | 
						|
    void undo() override {
 | 
						|
      LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
 | 
						|
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | 
						|
        IVal->eraseFromParent();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Build a zero extension instruction.
 | 
						|
  class ZExtBuilder : public TypePromotionAction {
 | 
						|
    Value *Val;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Build a zero extension instruction of \p Opnd producing a \p Ty
 | 
						|
    /// result.
 | 
						|
    /// zext Opnd to Ty.
 | 
						|
    ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
 | 
						|
        : TypePromotionAction(InsertPt) {
 | 
						|
      IRBuilder<> Builder(InsertPt);
 | 
						|
      Builder.SetCurrentDebugLocation(DebugLoc());
 | 
						|
      Val = Builder.CreateZExt(Opnd, Ty, "promoted");
 | 
						|
      LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    /// Get the built value.
 | 
						|
    Value *getBuiltValue() { return Val; }
 | 
						|
 | 
						|
    /// Remove the built instruction.
 | 
						|
    void undo() override {
 | 
						|
      LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
 | 
						|
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | 
						|
        IVal->eraseFromParent();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Mutate an instruction to another type.
 | 
						|
  class TypeMutator : public TypePromotionAction {
 | 
						|
    /// Record the original type.
 | 
						|
    Type *OrigTy;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Mutate the type of \p Inst into \p NewTy.
 | 
						|
    TypeMutator(Instruction *Inst, Type *NewTy)
 | 
						|
        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
 | 
						|
                        << "\n");
 | 
						|
      Inst->mutateType(NewTy);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Mutate the instruction back to its original type.
 | 
						|
    void undo() override {
 | 
						|
      LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
 | 
						|
                        << "\n");
 | 
						|
      Inst->mutateType(OrigTy);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Replace the uses of an instruction by another instruction.
 | 
						|
  class UsesReplacer : public TypePromotionAction {
 | 
						|
    /// Helper structure to keep track of the replaced uses.
 | 
						|
    struct InstructionAndIdx {
 | 
						|
      /// The instruction using the instruction.
 | 
						|
      Instruction *Inst;
 | 
						|
 | 
						|
      /// The index where this instruction is used for Inst.
 | 
						|
      unsigned Idx;
 | 
						|
 | 
						|
      InstructionAndIdx(Instruction *Inst, unsigned Idx)
 | 
						|
          : Inst(Inst), Idx(Idx) {}
 | 
						|
    };
 | 
						|
 | 
						|
    /// Keep track of the original uses (pair Instruction, Index).
 | 
						|
    SmallVector<InstructionAndIdx, 4> OriginalUses;
 | 
						|
    /// Keep track of the debug users.
 | 
						|
    SmallVector<DbgValueInst *, 1> DbgValues;
 | 
						|
 | 
						|
    using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Replace all the use of \p Inst by \p New.
 | 
						|
    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
 | 
						|
                        << "\n");
 | 
						|
      // Record the original uses.
 | 
						|
      for (Use &U : Inst->uses()) {
 | 
						|
        Instruction *UserI = cast<Instruction>(U.getUser());
 | 
						|
        OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
 | 
						|
      }
 | 
						|
      // Record the debug uses separately. They are not in the instruction's
 | 
						|
      // use list, but they are replaced by RAUW.
 | 
						|
      findDbgValues(DbgValues, Inst);
 | 
						|
 | 
						|
      // Now, we can replace the uses.
 | 
						|
      Inst->replaceAllUsesWith(New);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Reassign the original uses of Inst to Inst.
 | 
						|
    void undo() override {
 | 
						|
      LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
 | 
						|
      for (use_iterator UseIt = OriginalUses.begin(),
 | 
						|
                        EndIt = OriginalUses.end();
 | 
						|
           UseIt != EndIt; ++UseIt) {
 | 
						|
        UseIt->Inst->setOperand(UseIt->Idx, Inst);
 | 
						|
      }
 | 
						|
      // RAUW has replaced all original uses with references to the new value,
 | 
						|
      // including the debug uses. Since we are undoing the replacements,
 | 
						|
      // the original debug uses must also be reinstated to maintain the
 | 
						|
      // correctness and utility of debug value instructions.
 | 
						|
      for (auto *DVI: DbgValues) {
 | 
						|
        LLVMContext &Ctx = Inst->getType()->getContext();
 | 
						|
        auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
 | 
						|
        DVI->setOperand(0, MV);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Remove an instruction from the IR.
 | 
						|
  class InstructionRemover : public TypePromotionAction {
 | 
						|
    /// Original position of the instruction.
 | 
						|
    InsertionHandler Inserter;
 | 
						|
 | 
						|
    /// Helper structure to hide all the link to the instruction. In other
 | 
						|
    /// words, this helps to do as if the instruction was removed.
 | 
						|
    OperandsHider Hider;
 | 
						|
 | 
						|
    /// Keep track of the uses replaced, if any.
 | 
						|
    UsesReplacer *Replacer = nullptr;
 | 
						|
 | 
						|
    /// Keep track of instructions removed.
 | 
						|
    SetOfInstrs &RemovedInsts;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Remove all reference of \p Inst and optionally replace all its
 | 
						|
    /// uses with New.
 | 
						|
    /// \p RemovedInsts Keep track of the instructions removed by this Action.
 | 
						|
    /// \pre If !Inst->use_empty(), then New != nullptr
 | 
						|
    InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
 | 
						|
                       Value *New = nullptr)
 | 
						|
        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
 | 
						|
          RemovedInsts(RemovedInsts) {
 | 
						|
      if (New)
 | 
						|
        Replacer = new UsesReplacer(Inst, New);
 | 
						|
      LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
 | 
						|
      RemovedInsts.insert(Inst);
 | 
						|
      /// The instructions removed here will be freed after completing
 | 
						|
      /// optimizeBlock() for all blocks as we need to keep track of the
 | 
						|
      /// removed instructions during promotion.
 | 
						|
      Inst->removeFromParent();
 | 
						|
    }
 | 
						|
 | 
						|
    ~InstructionRemover() override { delete Replacer; }
 | 
						|
 | 
						|
    /// Resurrect the instruction and reassign it to the proper uses if
 | 
						|
    /// new value was provided when build this action.
 | 
						|
    void undo() override {
 | 
						|
      LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
 | 
						|
      Inserter.insert(Inst);
 | 
						|
      if (Replacer)
 | 
						|
        Replacer->undo();
 | 
						|
      Hider.undo();
 | 
						|
      RemovedInsts.erase(Inst);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
public:
 | 
						|
  /// Restoration point.
 | 
						|
  /// The restoration point is a pointer to an action instead of an iterator
 | 
						|
  /// because the iterator may be invalidated but not the pointer.
 | 
						|
  using ConstRestorationPt = const TypePromotionAction *;
 | 
						|
 | 
						|
  TypePromotionTransaction(SetOfInstrs &RemovedInsts)
 | 
						|
      : RemovedInsts(RemovedInsts) {}
 | 
						|
 | 
						|
  /// Advocate every changes made in that transaction. Return true if any change
 | 
						|
  /// happen.
 | 
						|
  bool commit();
 | 
						|
 | 
						|
  /// Undo all the changes made after the given point.
 | 
						|
  void rollback(ConstRestorationPt Point);
 | 
						|
 | 
						|
  /// Get the current restoration point.
 | 
						|
  ConstRestorationPt getRestorationPoint() const;
 | 
						|
 | 
						|
  /// \name API for IR modification with state keeping to support rollback.
 | 
						|
  /// @{
 | 
						|
  /// Same as Instruction::setOperand.
 | 
						|
  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
 | 
						|
 | 
						|
  /// Same as Instruction::eraseFromParent.
 | 
						|
  void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
 | 
						|
 | 
						|
  /// Same as Value::replaceAllUsesWith.
 | 
						|
  void replaceAllUsesWith(Instruction *Inst, Value *New);
 | 
						|
 | 
						|
  /// Same as Value::mutateType.
 | 
						|
  void mutateType(Instruction *Inst, Type *NewTy);
 | 
						|
 | 
						|
  /// Same as IRBuilder::createTrunc.
 | 
						|
  Value *createTrunc(Instruction *Opnd, Type *Ty);
 | 
						|
 | 
						|
  /// Same as IRBuilder::createSExt.
 | 
						|
  Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
 | 
						|
 | 
						|
  /// Same as IRBuilder::createZExt.
 | 
						|
  Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
 | 
						|
 | 
						|
  /// Same as Instruction::moveBefore.
 | 
						|
  void moveBefore(Instruction *Inst, Instruction *Before);
 | 
						|
  /// @}
 | 
						|
 | 
						|
private:
 | 
						|
  /// The ordered list of actions made so far.
 | 
						|
  SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
 | 
						|
 | 
						|
  using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
 | 
						|
 | 
						|
  SetOfInstrs &RemovedInsts;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
 | 
						|
                                          Value *NewVal) {
 | 
						|
  Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
 | 
						|
      Inst, Idx, NewVal));
 | 
						|
}
 | 
						|
 | 
						|
void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
 | 
						|
                                                Value *NewVal) {
 | 
						|
  Actions.push_back(
 | 
						|
      std::make_unique<TypePromotionTransaction::InstructionRemover>(
 | 
						|
          Inst, RemovedInsts, NewVal));
 | 
						|
}
 | 
						|
 | 
						|
void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
 | 
						|
                                                  Value *New) {
 | 
						|
  Actions.push_back(
 | 
						|
      std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
 | 
						|
}
 | 
						|
 | 
						|
void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
 | 
						|
  Actions.push_back(
 | 
						|
      std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
 | 
						|
}
 | 
						|
 | 
						|
Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
 | 
						|
                                             Type *Ty) {
 | 
						|
  std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
 | 
						|
  Value *Val = Ptr->getBuiltValue();
 | 
						|
  Actions.push_back(std::move(Ptr));
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
Value *TypePromotionTransaction::createSExt(Instruction *Inst,
 | 
						|
                                            Value *Opnd, Type *Ty) {
 | 
						|
  std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
 | 
						|
  Value *Val = Ptr->getBuiltValue();
 | 
						|
  Actions.push_back(std::move(Ptr));
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
Value *TypePromotionTransaction::createZExt(Instruction *Inst,
 | 
						|
                                            Value *Opnd, Type *Ty) {
 | 
						|
  std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
 | 
						|
  Value *Val = Ptr->getBuiltValue();
 | 
						|
  Actions.push_back(std::move(Ptr));
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
void TypePromotionTransaction::moveBefore(Instruction *Inst,
 | 
						|
                                          Instruction *Before) {
 | 
						|
  Actions.push_back(
 | 
						|
      std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
 | 
						|
          Inst, Before));
 | 
						|
}
 | 
						|
 | 
						|
TypePromotionTransaction::ConstRestorationPt
 | 
						|
TypePromotionTransaction::getRestorationPoint() const {
 | 
						|
  return !Actions.empty() ? Actions.back().get() : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool TypePromotionTransaction::commit() {
 | 
						|
  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
 | 
						|
       ++It)
 | 
						|
    (*It)->commit();
 | 
						|
  bool Modified = !Actions.empty();
 | 
						|
  Actions.clear();
 | 
						|
  return Modified;
 | 
						|
}
 | 
						|
 | 
						|
void TypePromotionTransaction::rollback(
 | 
						|
    TypePromotionTransaction::ConstRestorationPt Point) {
 | 
						|
  while (!Actions.empty() && Point != Actions.back().get()) {
 | 
						|
    std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
 | 
						|
    Curr->undo();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// A helper class for matching addressing modes.
 | 
						|
///
 | 
						|
/// This encapsulates the logic for matching the target-legal addressing modes.
 | 
						|
class AddressingModeMatcher {
 | 
						|
  SmallVectorImpl<Instruction*> &AddrModeInsts;
 | 
						|
  const TargetLowering &TLI;
 | 
						|
  const TargetRegisterInfo &TRI;
 | 
						|
  const DataLayout &DL;
 | 
						|
 | 
						|
  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
 | 
						|
  /// the memory instruction that we're computing this address for.
 | 
						|
  Type *AccessTy;
 | 
						|
  unsigned AddrSpace;
 | 
						|
  Instruction *MemoryInst;
 | 
						|
 | 
						|
  /// This is the addressing mode that we're building up. This is
 | 
						|
  /// part of the return value of this addressing mode matching stuff.
 | 
						|
  ExtAddrMode &AddrMode;
 | 
						|
 | 
						|
  /// The instructions inserted by other CodeGenPrepare optimizations.
 | 
						|
  const SetOfInstrs &InsertedInsts;
 | 
						|
 | 
						|
  /// A map from the instructions to their type before promotion.
 | 
						|
  InstrToOrigTy &PromotedInsts;
 | 
						|
 | 
						|
  /// The ongoing transaction where every action should be registered.
 | 
						|
  TypePromotionTransaction &TPT;
 | 
						|
 | 
						|
  // A GEP which has too large offset to be folded into the addressing mode.
 | 
						|
  std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
 | 
						|
 | 
						|
  /// This is set to true when we should not do profitability checks.
 | 
						|
  /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
 | 
						|
  bool IgnoreProfitability;
 | 
						|
 | 
						|
  /// True if we are optimizing for size.
 | 
						|
  bool OptSize;
 | 
						|
 | 
						|
  ProfileSummaryInfo *PSI;
 | 
						|
  BlockFrequencyInfo *BFI;
 | 
						|
 | 
						|
  AddressingModeMatcher(
 | 
						|
      SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
 | 
						|
      const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
 | 
						|
      ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
 | 
						|
      InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
 | 
						|
      std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
 | 
						|
      bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
 | 
						|
      : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
 | 
						|
        DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
 | 
						|
        MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
 | 
						|
        PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP),
 | 
						|
        OptSize(OptSize), PSI(PSI), BFI(BFI) {
 | 
						|
    IgnoreProfitability = false;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  /// Find the maximal addressing mode that a load/store of V can fold,
 | 
						|
  /// give an access type of AccessTy.  This returns a list of involved
 | 
						|
  /// instructions in AddrModeInsts.
 | 
						|
  /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
 | 
						|
  /// optimizations.
 | 
						|
  /// \p PromotedInsts maps the instructions to their type before promotion.
 | 
						|
  /// \p The ongoing transaction where every action should be registered.
 | 
						|
  static ExtAddrMode
 | 
						|
  Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
 | 
						|
        SmallVectorImpl<Instruction *> &AddrModeInsts,
 | 
						|
        const TargetLowering &TLI, const TargetRegisterInfo &TRI,
 | 
						|
        const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
 | 
						|
        TypePromotionTransaction &TPT,
 | 
						|
        std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
 | 
						|
        bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
 | 
						|
    ExtAddrMode Result;
 | 
						|
 | 
						|
    bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
 | 
						|
                                         MemoryInst, Result, InsertedInsts,
 | 
						|
                                         PromotedInsts, TPT, LargeOffsetGEP,
 | 
						|
                                         OptSize, PSI, BFI)
 | 
						|
                       .matchAddr(V, 0);
 | 
						|
    (void)Success; assert(Success && "Couldn't select *anything*?");
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
 | 
						|
  bool matchAddr(Value *Addr, unsigned Depth);
 | 
						|
  bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
 | 
						|
                          bool *MovedAway = nullptr);
 | 
						|
  bool isProfitableToFoldIntoAddressingMode(Instruction *I,
 | 
						|
                                            ExtAddrMode &AMBefore,
 | 
						|
                                            ExtAddrMode &AMAfter);
 | 
						|
  bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
 | 
						|
  bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
 | 
						|
                             Value *PromotedOperand) const;
 | 
						|
};
 | 
						|
 | 
						|
class PhiNodeSet;
 | 
						|
 | 
						|
/// An iterator for PhiNodeSet.
 | 
						|
class PhiNodeSetIterator {
 | 
						|
  PhiNodeSet * const Set;
 | 
						|
  size_t CurrentIndex = 0;
 | 
						|
 | 
						|
public:
 | 
						|
  /// The constructor. Start should point to either a valid element, or be equal
 | 
						|
  /// to the size of the underlying SmallVector of the PhiNodeSet.
 | 
						|
  PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
 | 
						|
  PHINode * operator*() const;
 | 
						|
  PhiNodeSetIterator& operator++();
 | 
						|
  bool operator==(const PhiNodeSetIterator &RHS) const;
 | 
						|
  bool operator!=(const PhiNodeSetIterator &RHS) const;
 | 
						|
};
 | 
						|
 | 
						|
/// Keeps a set of PHINodes.
 | 
						|
///
 | 
						|
/// This is a minimal set implementation for a specific use case:
 | 
						|
/// It is very fast when there are very few elements, but also provides good
 | 
						|
/// performance when there are many. It is similar to SmallPtrSet, but also
 | 
						|
/// provides iteration by insertion order, which is deterministic and stable
 | 
						|
/// across runs. It is also similar to SmallSetVector, but provides removing
 | 
						|
/// elements in O(1) time. This is achieved by not actually removing the element
 | 
						|
/// from the underlying vector, so comes at the cost of using more memory, but
 | 
						|
/// that is fine, since PhiNodeSets are used as short lived objects.
 | 
						|
class PhiNodeSet {
 | 
						|
  friend class PhiNodeSetIterator;
 | 
						|
 | 
						|
  using MapType = SmallDenseMap<PHINode *, size_t, 32>;
 | 
						|
  using iterator =  PhiNodeSetIterator;
 | 
						|
 | 
						|
  /// Keeps the elements in the order of their insertion in the underlying
 | 
						|
  /// vector. To achieve constant time removal, it never deletes any element.
 | 
						|
  SmallVector<PHINode *, 32> NodeList;
 | 
						|
 | 
						|
  /// Keeps the elements in the underlying set implementation. This (and not the
 | 
						|
  /// NodeList defined above) is the source of truth on whether an element
 | 
						|
  /// is actually in the collection.
 | 
						|
  MapType NodeMap;
 | 
						|
 | 
						|
  /// Points to the first valid (not deleted) element when the set is not empty
 | 
						|
  /// and the value is not zero. Equals to the size of the underlying vector
 | 
						|
  /// when the set is empty. When the value is 0, as in the beginning, the
 | 
						|
  /// first element may or may not be valid.
 | 
						|
  size_t FirstValidElement = 0;
 | 
						|
 | 
						|
public:
 | 
						|
  /// Inserts a new element to the collection.
 | 
						|
  /// \returns true if the element is actually added, i.e. was not in the
 | 
						|
  /// collection before the operation.
 | 
						|
  bool insert(PHINode *Ptr) {
 | 
						|
    if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
 | 
						|
      NodeList.push_back(Ptr);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Removes the element from the collection.
 | 
						|
  /// \returns whether the element is actually removed, i.e. was in the
 | 
						|
  /// collection before the operation.
 | 
						|
  bool erase(PHINode *Ptr) {
 | 
						|
    auto it = NodeMap.find(Ptr);
 | 
						|
    if (it != NodeMap.end()) {
 | 
						|
      NodeMap.erase(Ptr);
 | 
						|
      SkipRemovedElements(FirstValidElement);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Removes all elements and clears the collection.
 | 
						|
  void clear() {
 | 
						|
    NodeMap.clear();
 | 
						|
    NodeList.clear();
 | 
						|
    FirstValidElement = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \returns an iterator that will iterate the elements in the order of
 | 
						|
  /// insertion.
 | 
						|
  iterator begin() {
 | 
						|
    if (FirstValidElement == 0)
 | 
						|
      SkipRemovedElements(FirstValidElement);
 | 
						|
    return PhiNodeSetIterator(this, FirstValidElement);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \returns an iterator that points to the end of the collection.
 | 
						|
  iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
 | 
						|
 | 
						|
  /// Returns the number of elements in the collection.
 | 
						|
  size_t size() const {
 | 
						|
    return NodeMap.size();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \returns 1 if the given element is in the collection, and 0 if otherwise.
 | 
						|
  size_t count(PHINode *Ptr) const {
 | 
						|
    return NodeMap.count(Ptr);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// Updates the CurrentIndex so that it will point to a valid element.
 | 
						|
  ///
 | 
						|
  /// If the element of NodeList at CurrentIndex is valid, it does not
 | 
						|
  /// change it. If there are no more valid elements, it updates CurrentIndex
 | 
						|
  /// to point to the end of the NodeList.
 | 
						|
  void SkipRemovedElements(size_t &CurrentIndex) {
 | 
						|
    while (CurrentIndex < NodeList.size()) {
 | 
						|
      auto it = NodeMap.find(NodeList[CurrentIndex]);
 | 
						|
      // If the element has been deleted and added again later, NodeMap will
 | 
						|
      // point to a different index, so CurrentIndex will still be invalid.
 | 
						|
      if (it != NodeMap.end() && it->second == CurrentIndex)
 | 
						|
        break;
 | 
						|
      ++CurrentIndex;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
 | 
						|
    : Set(Set), CurrentIndex(Start) {}
 | 
						|
 | 
						|
PHINode * PhiNodeSetIterator::operator*() const {
 | 
						|
  assert(CurrentIndex < Set->NodeList.size() &&
 | 
						|
         "PhiNodeSet access out of range");
 | 
						|
  return Set->NodeList[CurrentIndex];
 | 
						|
}
 | 
						|
 | 
						|
PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
 | 
						|
  assert(CurrentIndex < Set->NodeList.size() &&
 | 
						|
         "PhiNodeSet access out of range");
 | 
						|
  ++CurrentIndex;
 | 
						|
  Set->SkipRemovedElements(CurrentIndex);
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
 | 
						|
  return CurrentIndex == RHS.CurrentIndex;
 | 
						|
}
 | 
						|
 | 
						|
bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
 | 
						|
  return !((*this) == RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// Keep track of simplification of Phi nodes.
 | 
						|
/// Accept the set of all phi nodes and erase phi node from this set
 | 
						|
/// if it is simplified.
 | 
						|
class SimplificationTracker {
 | 
						|
  DenseMap<Value *, Value *> Storage;
 | 
						|
  const SimplifyQuery &SQ;
 | 
						|
  // Tracks newly created Phi nodes. The elements are iterated by insertion
 | 
						|
  // order.
 | 
						|
  PhiNodeSet AllPhiNodes;
 | 
						|
  // Tracks newly created Select nodes.
 | 
						|
  SmallPtrSet<SelectInst *, 32> AllSelectNodes;
 | 
						|
 | 
						|
public:
 | 
						|
  SimplificationTracker(const SimplifyQuery &sq)
 | 
						|
      : SQ(sq) {}
 | 
						|
 | 
						|
  Value *Get(Value *V) {
 | 
						|
    do {
 | 
						|
      auto SV = Storage.find(V);
 | 
						|
      if (SV == Storage.end())
 | 
						|
        return V;
 | 
						|
      V = SV->second;
 | 
						|
    } while (true);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Simplify(Value *Val) {
 | 
						|
    SmallVector<Value *, 32> WorkList;
 | 
						|
    SmallPtrSet<Value *, 32> Visited;
 | 
						|
    WorkList.push_back(Val);
 | 
						|
    while (!WorkList.empty()) {
 | 
						|
      auto *P = WorkList.pop_back_val();
 | 
						|
      if (!Visited.insert(P).second)
 | 
						|
        continue;
 | 
						|
      if (auto *PI = dyn_cast<Instruction>(P))
 | 
						|
        if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
 | 
						|
          for (auto *U : PI->users())
 | 
						|
            WorkList.push_back(cast<Value>(U));
 | 
						|
          Put(PI, V);
 | 
						|
          PI->replaceAllUsesWith(V);
 | 
						|
          if (auto *PHI = dyn_cast<PHINode>(PI))
 | 
						|
            AllPhiNodes.erase(PHI);
 | 
						|
          if (auto *Select = dyn_cast<SelectInst>(PI))
 | 
						|
            AllSelectNodes.erase(Select);
 | 
						|
          PI->eraseFromParent();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return Get(Val);
 | 
						|
  }
 | 
						|
 | 
						|
  void Put(Value *From, Value *To) {
 | 
						|
    Storage.insert({ From, To });
 | 
						|
  }
 | 
						|
 | 
						|
  void ReplacePhi(PHINode *From, PHINode *To) {
 | 
						|
    Value* OldReplacement = Get(From);
 | 
						|
    while (OldReplacement != From) {
 | 
						|
      From = To;
 | 
						|
      To = dyn_cast<PHINode>(OldReplacement);
 | 
						|
      OldReplacement = Get(From);
 | 
						|
    }
 | 
						|
    assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
 | 
						|
    Put(From, To);
 | 
						|
    From->replaceAllUsesWith(To);
 | 
						|
    AllPhiNodes.erase(From);
 | 
						|
    From->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
 | 
						|
 | 
						|
  void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
 | 
						|
 | 
						|
  void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
 | 
						|
 | 
						|
  unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
 | 
						|
 | 
						|
  unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
 | 
						|
 | 
						|
  void destroyNewNodes(Type *CommonType) {
 | 
						|
    // For safe erasing, replace the uses with dummy value first.
 | 
						|
    auto *Dummy = UndefValue::get(CommonType);
 | 
						|
    for (auto *I : AllPhiNodes) {
 | 
						|
      I->replaceAllUsesWith(Dummy);
 | 
						|
      I->eraseFromParent();
 | 
						|
    }
 | 
						|
    AllPhiNodes.clear();
 | 
						|
    for (auto *I : AllSelectNodes) {
 | 
						|
      I->replaceAllUsesWith(Dummy);
 | 
						|
      I->eraseFromParent();
 | 
						|
    }
 | 
						|
    AllSelectNodes.clear();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// A helper class for combining addressing modes.
 | 
						|
class AddressingModeCombiner {
 | 
						|
  typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
 | 
						|
  typedef std::pair<PHINode *, PHINode *> PHIPair;
 | 
						|
 | 
						|
private:
 | 
						|
  /// The addressing modes we've collected.
 | 
						|
  SmallVector<ExtAddrMode, 16> AddrModes;
 | 
						|
 | 
						|
  /// The field in which the AddrModes differ, when we have more than one.
 | 
						|
  ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
 | 
						|
 | 
						|
  /// Are the AddrModes that we have all just equal to their original values?
 | 
						|
  bool AllAddrModesTrivial = true;
 | 
						|
 | 
						|
  /// Common Type for all different fields in addressing modes.
 | 
						|
  Type *CommonType;
 | 
						|
 | 
						|
  /// SimplifyQuery for simplifyInstruction utility.
 | 
						|
  const SimplifyQuery &SQ;
 | 
						|
 | 
						|
  /// Original Address.
 | 
						|
  Value *Original;
 | 
						|
 | 
						|
public:
 | 
						|
  AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
 | 
						|
      : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
 | 
						|
 | 
						|
  /// Get the combined AddrMode
 | 
						|
  const ExtAddrMode &getAddrMode() const {
 | 
						|
    return AddrModes[0];
 | 
						|
  }
 | 
						|
 | 
						|
  /// Add a new AddrMode if it's compatible with the AddrModes we already
 | 
						|
  /// have.
 | 
						|
  /// \return True iff we succeeded in doing so.
 | 
						|
  bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
 | 
						|
    // Take note of if we have any non-trivial AddrModes, as we need to detect
 | 
						|
    // when all AddrModes are trivial as then we would introduce a phi or select
 | 
						|
    // which just duplicates what's already there.
 | 
						|
    AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
 | 
						|
 | 
						|
    // If this is the first addrmode then everything is fine.
 | 
						|
    if (AddrModes.empty()) {
 | 
						|
      AddrModes.emplace_back(NewAddrMode);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Figure out how different this is from the other address modes, which we
 | 
						|
    // can do just by comparing against the first one given that we only care
 | 
						|
    // about the cumulative difference.
 | 
						|
    ExtAddrMode::FieldName ThisDifferentField =
 | 
						|
      AddrModes[0].compare(NewAddrMode);
 | 
						|
    if (DifferentField == ExtAddrMode::NoField)
 | 
						|
      DifferentField = ThisDifferentField;
 | 
						|
    else if (DifferentField != ThisDifferentField)
 | 
						|
      DifferentField = ExtAddrMode::MultipleFields;
 | 
						|
 | 
						|
    // If NewAddrMode differs in more than one dimension we cannot handle it.
 | 
						|
    bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
 | 
						|
 | 
						|
    // If Scale Field is different then we reject.
 | 
						|
    CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
 | 
						|
 | 
						|
    // We also must reject the case when base offset is different and
 | 
						|
    // scale reg is not null, we cannot handle this case due to merge of
 | 
						|
    // different offsets will be used as ScaleReg.
 | 
						|
    CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
 | 
						|
                              !NewAddrMode.ScaledReg);
 | 
						|
 | 
						|
    // We also must reject the case when GV is different and BaseReg installed
 | 
						|
    // due to we want to use base reg as a merge of GV values.
 | 
						|
    CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
 | 
						|
                              !NewAddrMode.HasBaseReg);
 | 
						|
 | 
						|
    // Even if NewAddMode is the same we still need to collect it due to
 | 
						|
    // original value is different. And later we will need all original values
 | 
						|
    // as anchors during finding the common Phi node.
 | 
						|
    if (CanHandle)
 | 
						|
      AddrModes.emplace_back(NewAddrMode);
 | 
						|
    else
 | 
						|
      AddrModes.clear();
 | 
						|
 | 
						|
    return CanHandle;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Combine the addressing modes we've collected into a single
 | 
						|
  /// addressing mode.
 | 
						|
  /// \return True iff we successfully combined them or we only had one so
 | 
						|
  /// didn't need to combine them anyway.
 | 
						|
  bool combineAddrModes() {
 | 
						|
    // If we have no AddrModes then they can't be combined.
 | 
						|
    if (AddrModes.size() == 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // A single AddrMode can trivially be combined.
 | 
						|
    if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If the AddrModes we collected are all just equal to the value they are
 | 
						|
    // derived from then combining them wouldn't do anything useful.
 | 
						|
    if (AllAddrModesTrivial)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!addrModeCombiningAllowed())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Build a map between <original value, basic block where we saw it> to
 | 
						|
    // value of base register.
 | 
						|
    // Bail out if there is no common type.
 | 
						|
    FoldAddrToValueMapping Map;
 | 
						|
    if (!initializeMap(Map))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Value *CommonValue = findCommon(Map);
 | 
						|
    if (CommonValue)
 | 
						|
      AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
 | 
						|
    return CommonValue != nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// Initialize Map with anchor values. For address seen
 | 
						|
  /// we set the value of different field saw in this address.
 | 
						|
  /// At the same time we find a common type for different field we will
 | 
						|
  /// use to create new Phi/Select nodes. Keep it in CommonType field.
 | 
						|
  /// Return false if there is no common type found.
 | 
						|
  bool initializeMap(FoldAddrToValueMapping &Map) {
 | 
						|
    // Keep track of keys where the value is null. We will need to replace it
 | 
						|
    // with constant null when we know the common type.
 | 
						|
    SmallVector<Value *, 2> NullValue;
 | 
						|
    Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
 | 
						|
    for (auto &AM : AddrModes) {
 | 
						|
      Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
 | 
						|
      if (DV) {
 | 
						|
        auto *Type = DV->getType();
 | 
						|
        if (CommonType && CommonType != Type)
 | 
						|
          return false;
 | 
						|
        CommonType = Type;
 | 
						|
        Map[AM.OriginalValue] = DV;
 | 
						|
      } else {
 | 
						|
        NullValue.push_back(AM.OriginalValue);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(CommonType && "At least one non-null value must be!");
 | 
						|
    for (auto *V : NullValue)
 | 
						|
      Map[V] = Constant::getNullValue(CommonType);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// We have mapping between value A and other value B where B was a field in
 | 
						|
  /// addressing mode represented by A. Also we have an original value C
 | 
						|
  /// representing an address we start with. Traversing from C through phi and
 | 
						|
  /// selects we ended up with A's in a map. This utility function tries to find
 | 
						|
  /// a value V which is a field in addressing mode C and traversing through phi
 | 
						|
  /// nodes and selects we will end up in corresponded values B in a map.
 | 
						|
  /// The utility will create a new Phi/Selects if needed.
 | 
						|
  // The simple example looks as follows:
 | 
						|
  // BB1:
 | 
						|
  //   p1 = b1 + 40
 | 
						|
  //   br cond BB2, BB3
 | 
						|
  // BB2:
 | 
						|
  //   p2 = b2 + 40
 | 
						|
  //   br BB3
 | 
						|
  // BB3:
 | 
						|
  //   p = phi [p1, BB1], [p2, BB2]
 | 
						|
  //   v = load p
 | 
						|
  // Map is
 | 
						|
  //   p1 -> b1
 | 
						|
  //   p2 -> b2
 | 
						|
  // Request is
 | 
						|
  //   p -> ?
 | 
						|
  // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
 | 
						|
  Value *findCommon(FoldAddrToValueMapping &Map) {
 | 
						|
    // Tracks the simplification of newly created phi nodes. The reason we use
 | 
						|
    // this mapping is because we will add new created Phi nodes in AddrToBase.
 | 
						|
    // Simplification of Phi nodes is recursive, so some Phi node may
 | 
						|
    // be simplified after we added it to AddrToBase. In reality this
 | 
						|
    // simplification is possible only if original phi/selects were not
 | 
						|
    // simplified yet.
 | 
						|
    // Using this mapping we can find the current value in AddrToBase.
 | 
						|
    SimplificationTracker ST(SQ);
 | 
						|
 | 
						|
    // First step, DFS to create PHI nodes for all intermediate blocks.
 | 
						|
    // Also fill traverse order for the second step.
 | 
						|
    SmallVector<Value *, 32> TraverseOrder;
 | 
						|
    InsertPlaceholders(Map, TraverseOrder, ST);
 | 
						|
 | 
						|
    // Second Step, fill new nodes by merged values and simplify if possible.
 | 
						|
    FillPlaceholders(Map, TraverseOrder, ST);
 | 
						|
 | 
						|
    if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
 | 
						|
      ST.destroyNewNodes(CommonType);
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now we'd like to match New Phi nodes to existed ones.
 | 
						|
    unsigned PhiNotMatchedCount = 0;
 | 
						|
    if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
 | 
						|
      ST.destroyNewNodes(CommonType);
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    auto *Result = ST.Get(Map.find(Original)->second);
 | 
						|
    if (Result) {
 | 
						|
      NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
 | 
						|
      NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Try to match PHI node to Candidate.
 | 
						|
  /// Matcher tracks the matched Phi nodes.
 | 
						|
  bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
 | 
						|
                    SmallSetVector<PHIPair, 8> &Matcher,
 | 
						|
                    PhiNodeSet &PhiNodesToMatch) {
 | 
						|
    SmallVector<PHIPair, 8> WorkList;
 | 
						|
    Matcher.insert({ PHI, Candidate });
 | 
						|
    SmallSet<PHINode *, 8> MatchedPHIs;
 | 
						|
    MatchedPHIs.insert(PHI);
 | 
						|
    WorkList.push_back({ PHI, Candidate });
 | 
						|
    SmallSet<PHIPair, 8> Visited;
 | 
						|
    while (!WorkList.empty()) {
 | 
						|
      auto Item = WorkList.pop_back_val();
 | 
						|
      if (!Visited.insert(Item).second)
 | 
						|
        continue;
 | 
						|
      // We iterate over all incoming values to Phi to compare them.
 | 
						|
      // If values are different and both of them Phi and the first one is a
 | 
						|
      // Phi we added (subject to match) and both of them is in the same basic
 | 
						|
      // block then we can match our pair if values match. So we state that
 | 
						|
      // these values match and add it to work list to verify that.
 | 
						|
      for (auto B : Item.first->blocks()) {
 | 
						|
        Value *FirstValue = Item.first->getIncomingValueForBlock(B);
 | 
						|
        Value *SecondValue = Item.second->getIncomingValueForBlock(B);
 | 
						|
        if (FirstValue == SecondValue)
 | 
						|
          continue;
 | 
						|
 | 
						|
        PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
 | 
						|
        PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
 | 
						|
 | 
						|
        // One of them is not Phi or
 | 
						|
        // The first one is not Phi node from the set we'd like to match or
 | 
						|
        // Phi nodes from different basic blocks then
 | 
						|
        // we will not be able to match.
 | 
						|
        if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
 | 
						|
            FirstPhi->getParent() != SecondPhi->getParent())
 | 
						|
          return false;
 | 
						|
 | 
						|
        // If we already matched them then continue.
 | 
						|
        if (Matcher.count({ FirstPhi, SecondPhi }))
 | 
						|
          continue;
 | 
						|
        // So the values are different and does not match. So we need them to
 | 
						|
        // match. (But we register no more than one match per PHI node, so that
 | 
						|
        // we won't later try to replace them twice.)
 | 
						|
        if (MatchedPHIs.insert(FirstPhi).second)
 | 
						|
          Matcher.insert({ FirstPhi, SecondPhi });
 | 
						|
        // But me must check it.
 | 
						|
        WorkList.push_back({ FirstPhi, SecondPhi });
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// For the given set of PHI nodes (in the SimplificationTracker) try
 | 
						|
  /// to find their equivalents.
 | 
						|
  /// Returns false if this matching fails and creation of new Phi is disabled.
 | 
						|
  bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
 | 
						|
                   unsigned &PhiNotMatchedCount) {
 | 
						|
    // Matched and PhiNodesToMatch iterate their elements in a deterministic
 | 
						|
    // order, so the replacements (ReplacePhi) are also done in a deterministic
 | 
						|
    // order.
 | 
						|
    SmallSetVector<PHIPair, 8> Matched;
 | 
						|
    SmallPtrSet<PHINode *, 8> WillNotMatch;
 | 
						|
    PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
 | 
						|
    while (PhiNodesToMatch.size()) {
 | 
						|
      PHINode *PHI = *PhiNodesToMatch.begin();
 | 
						|
 | 
						|
      // Add us, if no Phi nodes in the basic block we do not match.
 | 
						|
      WillNotMatch.clear();
 | 
						|
      WillNotMatch.insert(PHI);
 | 
						|
 | 
						|
      // Traverse all Phis until we found equivalent or fail to do that.
 | 
						|
      bool IsMatched = false;
 | 
						|
      for (auto &P : PHI->getParent()->phis()) {
 | 
						|
        if (&P == PHI)
 | 
						|
          continue;
 | 
						|
        if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
 | 
						|
          break;
 | 
						|
        // If it does not match, collect all Phi nodes from matcher.
 | 
						|
        // if we end up with no match, them all these Phi nodes will not match
 | 
						|
        // later.
 | 
						|
        for (auto M : Matched)
 | 
						|
          WillNotMatch.insert(M.first);
 | 
						|
        Matched.clear();
 | 
						|
      }
 | 
						|
      if (IsMatched) {
 | 
						|
        // Replace all matched values and erase them.
 | 
						|
        for (auto MV : Matched)
 | 
						|
          ST.ReplacePhi(MV.first, MV.second);
 | 
						|
        Matched.clear();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // If we are not allowed to create new nodes then bail out.
 | 
						|
      if (!AllowNewPhiNodes)
 | 
						|
        return false;
 | 
						|
      // Just remove all seen values in matcher. They will not match anything.
 | 
						|
      PhiNotMatchedCount += WillNotMatch.size();
 | 
						|
      for (auto *P : WillNotMatch)
 | 
						|
        PhiNodesToMatch.erase(P);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  /// Fill the placeholders with values from predecessors and simplify them.
 | 
						|
  void FillPlaceholders(FoldAddrToValueMapping &Map,
 | 
						|
                        SmallVectorImpl<Value *> &TraverseOrder,
 | 
						|
                        SimplificationTracker &ST) {
 | 
						|
    while (!TraverseOrder.empty()) {
 | 
						|
      Value *Current = TraverseOrder.pop_back_val();
 | 
						|
      assert(Map.find(Current) != Map.end() && "No node to fill!!!");
 | 
						|
      Value *V = Map[Current];
 | 
						|
 | 
						|
      if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
 | 
						|
        // CurrentValue also must be Select.
 | 
						|
        auto *CurrentSelect = cast<SelectInst>(Current);
 | 
						|
        auto *TrueValue = CurrentSelect->getTrueValue();
 | 
						|
        assert(Map.find(TrueValue) != Map.end() && "No True Value!");
 | 
						|
        Select->setTrueValue(ST.Get(Map[TrueValue]));
 | 
						|
        auto *FalseValue = CurrentSelect->getFalseValue();
 | 
						|
        assert(Map.find(FalseValue) != Map.end() && "No False Value!");
 | 
						|
        Select->setFalseValue(ST.Get(Map[FalseValue]));
 | 
						|
      } else {
 | 
						|
        // Must be a Phi node then.
 | 
						|
        auto *PHI = cast<PHINode>(V);
 | 
						|
        // Fill the Phi node with values from predecessors.
 | 
						|
        for (auto *B : predecessors(PHI->getParent())) {
 | 
						|
          Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
 | 
						|
          assert(Map.find(PV) != Map.end() && "No predecessor Value!");
 | 
						|
          PHI->addIncoming(ST.Get(Map[PV]), B);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Map[Current] = ST.Simplify(V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// Starting from original value recursively iterates over def-use chain up to
 | 
						|
  /// known ending values represented in a map. For each traversed phi/select
 | 
						|
  /// inserts a placeholder Phi or Select.
 | 
						|
  /// Reports all new created Phi/Select nodes by adding them to set.
 | 
						|
  /// Also reports and order in what values have been traversed.
 | 
						|
  void InsertPlaceholders(FoldAddrToValueMapping &Map,
 | 
						|
                          SmallVectorImpl<Value *> &TraverseOrder,
 | 
						|
                          SimplificationTracker &ST) {
 | 
						|
    SmallVector<Value *, 32> Worklist;
 | 
						|
    assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
 | 
						|
           "Address must be a Phi or Select node");
 | 
						|
    auto *Dummy = UndefValue::get(CommonType);
 | 
						|
    Worklist.push_back(Original);
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      Value *Current = Worklist.pop_back_val();
 | 
						|
      // if it is already visited or it is an ending value then skip it.
 | 
						|
      if (Map.find(Current) != Map.end())
 | 
						|
        continue;
 | 
						|
      TraverseOrder.push_back(Current);
 | 
						|
 | 
						|
      // CurrentValue must be a Phi node or select. All others must be covered
 | 
						|
      // by anchors.
 | 
						|
      if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
 | 
						|
        // Is it OK to get metadata from OrigSelect?!
 | 
						|
        // Create a Select placeholder with dummy value.
 | 
						|
        SelectInst *Select = SelectInst::Create(
 | 
						|
            CurrentSelect->getCondition(), Dummy, Dummy,
 | 
						|
            CurrentSelect->getName(), CurrentSelect, CurrentSelect);
 | 
						|
        Map[Current] = Select;
 | 
						|
        ST.insertNewSelect(Select);
 | 
						|
        // We are interested in True and False values.
 | 
						|
        Worklist.push_back(CurrentSelect->getTrueValue());
 | 
						|
        Worklist.push_back(CurrentSelect->getFalseValue());
 | 
						|
      } else {
 | 
						|
        // It must be a Phi node then.
 | 
						|
        PHINode *CurrentPhi = cast<PHINode>(Current);
 | 
						|
        unsigned PredCount = CurrentPhi->getNumIncomingValues();
 | 
						|
        PHINode *PHI =
 | 
						|
            PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
 | 
						|
        Map[Current] = PHI;
 | 
						|
        ST.insertNewPhi(PHI);
 | 
						|
        for (Value *P : CurrentPhi->incoming_values())
 | 
						|
          Worklist.push_back(P);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool addrModeCombiningAllowed() {
 | 
						|
    if (DisableComplexAddrModes)
 | 
						|
      return false;
 | 
						|
    switch (DifferentField) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case ExtAddrMode::BaseRegField:
 | 
						|
      return AddrSinkCombineBaseReg;
 | 
						|
    case ExtAddrMode::BaseGVField:
 | 
						|
      return AddrSinkCombineBaseGV;
 | 
						|
    case ExtAddrMode::BaseOffsField:
 | 
						|
      return AddrSinkCombineBaseOffs;
 | 
						|
    case ExtAddrMode::ScaledRegField:
 | 
						|
      return AddrSinkCombineScaledReg;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Try adding ScaleReg*Scale to the current addressing mode.
 | 
						|
/// Return true and update AddrMode if this addr mode is legal for the target,
 | 
						|
/// false if not.
 | 
						|
bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
 | 
						|
                                             unsigned Depth) {
 | 
						|
  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
 | 
						|
  // mode.  Just process that directly.
 | 
						|
  if (Scale == 1)
 | 
						|
    return matchAddr(ScaleReg, Depth);
 | 
						|
 | 
						|
  // If the scale is 0, it takes nothing to add this.
 | 
						|
  if (Scale == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we already have a scale of this value, we can add to it, otherwise, we
 | 
						|
  // need an available scale field.
 | 
						|
  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ExtAddrMode TestAddrMode = AddrMode;
 | 
						|
 | 
						|
  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
 | 
						|
  // [A+B + A*7] -> [B+A*8].
 | 
						|
  TestAddrMode.Scale += Scale;
 | 
						|
  TestAddrMode.ScaledReg = ScaleReg;
 | 
						|
 | 
						|
  // If the new address isn't legal, bail out.
 | 
						|
  if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // It was legal, so commit it.
 | 
						|
  AddrMode = TestAddrMode;
 | 
						|
 | 
						|
  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
 | 
						|
  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
 | 
						|
  // X*Scale + C*Scale to addr mode.
 | 
						|
  ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
 | 
						|
  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
 | 
						|
      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
 | 
						|
      CI->getValue().isSignedIntN(64)) {
 | 
						|
    TestAddrMode.InBounds = false;
 | 
						|
    TestAddrMode.ScaledReg = AddLHS;
 | 
						|
    TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
 | 
						|
 | 
						|
    // If this addressing mode is legal, commit it and remember that we folded
 | 
						|
    // this instruction.
 | 
						|
    if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
 | 
						|
      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
 | 
						|
      AddrMode = TestAddrMode;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, not (x+c)*scale, just return what we have.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// This is a little filter, which returns true if an addressing computation
 | 
						|
/// involving I might be folded into a load/store accessing it.
 | 
						|
/// This doesn't need to be perfect, but needs to accept at least
 | 
						|
/// the set of instructions that MatchOperationAddr can.
 | 
						|
static bool MightBeFoldableInst(Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::BitCast:
 | 
						|
  case Instruction::AddrSpaceCast:
 | 
						|
    // Don't touch identity bitcasts.
 | 
						|
    if (I->getType() == I->getOperand(0)->getType())
 | 
						|
      return false;
 | 
						|
    return I->getType()->isIntOrPtrTy();
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | 
						|
    return true;
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // We know the input is intptr_t, so this is foldable.
 | 
						|
    return true;
 | 
						|
  case Instruction::Add:
 | 
						|
    return true;
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::Shl:
 | 
						|
    // Can only handle X*C and X << C.
 | 
						|
    return isa<ConstantInt>(I->getOperand(1));
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether or not \p Val is a legal instruction for \p TLI.
 | 
						|
/// \note \p Val is assumed to be the product of some type promotion.
 | 
						|
/// Therefore if \p Val has an undefined state in \p TLI, this is assumed
 | 
						|
/// to be legal, as the non-promoted value would have had the same state.
 | 
						|
static bool isPromotedInstructionLegal(const TargetLowering &TLI,
 | 
						|
                                       const DataLayout &DL, Value *Val) {
 | 
						|
  Instruction *PromotedInst = dyn_cast<Instruction>(Val);
 | 
						|
  if (!PromotedInst)
 | 
						|
    return false;
 | 
						|
  int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
 | 
						|
  // If the ISDOpcode is undefined, it was undefined before the promotion.
 | 
						|
  if (!ISDOpcode)
 | 
						|
    return true;
 | 
						|
  // Otherwise, check if the promoted instruction is legal or not.
 | 
						|
  return TLI.isOperationLegalOrCustom(
 | 
						|
      ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Hepler class to perform type promotion.
 | 
						|
class TypePromotionHelper {
 | 
						|
  /// Utility function to add a promoted instruction \p ExtOpnd to
 | 
						|
  /// \p PromotedInsts and record the type of extension we have seen.
 | 
						|
  static void addPromotedInst(InstrToOrigTy &PromotedInsts,
 | 
						|
                              Instruction *ExtOpnd,
 | 
						|
                              bool IsSExt) {
 | 
						|
    ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
 | 
						|
    InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
 | 
						|
    if (It != PromotedInsts.end()) {
 | 
						|
      // If the new extension is same as original, the information in
 | 
						|
      // PromotedInsts[ExtOpnd] is still correct.
 | 
						|
      if (It->second.getInt() == ExtTy)
 | 
						|
        return;
 | 
						|
 | 
						|
      // Now the new extension is different from old extension, we make
 | 
						|
      // the type information invalid by setting extension type to
 | 
						|
      // BothExtension.
 | 
						|
      ExtTy = BothExtension;
 | 
						|
    }
 | 
						|
    PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Utility function to query the original type of instruction \p Opnd
 | 
						|
  /// with a matched extension type. If the extension doesn't match, we
 | 
						|
  /// cannot use the information we had on the original type.
 | 
						|
  /// BothExtension doesn't match any extension type.
 | 
						|
  static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
 | 
						|
                                 Instruction *Opnd,
 | 
						|
                                 bool IsSExt) {
 | 
						|
    ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
 | 
						|
    InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
 | 
						|
    if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
 | 
						|
      return It->second.getPointer();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Utility function to check whether or not a sign or zero extension
 | 
						|
  /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
 | 
						|
  /// either using the operands of \p Inst or promoting \p Inst.
 | 
						|
  /// The type of the extension is defined by \p IsSExt.
 | 
						|
  /// In other words, check if:
 | 
						|
  /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
 | 
						|
  /// #1 Promotion applies:
 | 
						|
  /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
 | 
						|
  /// #2 Operand reuses:
 | 
						|
  /// ext opnd1 to ConsideredExtType.
 | 
						|
  /// \p PromotedInsts maps the instructions to their type before promotion.
 | 
						|
  static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
 | 
						|
                            const InstrToOrigTy &PromotedInsts, bool IsSExt);
 | 
						|
 | 
						|
  /// Utility function to determine if \p OpIdx should be promoted when
 | 
						|
  /// promoting \p Inst.
 | 
						|
  static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
 | 
						|
    return !(isa<SelectInst>(Inst) && OpIdx == 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Utility function to promote the operand of \p Ext when this
 | 
						|
  /// operand is a promotable trunc or sext or zext.
 | 
						|
  /// \p PromotedInsts maps the instructions to their type before promotion.
 | 
						|
  /// \p CreatedInstsCost[out] contains the cost of all instructions
 | 
						|
  /// created to promote the operand of Ext.
 | 
						|
  /// Newly added extensions are inserted in \p Exts.
 | 
						|
  /// Newly added truncates are inserted in \p Truncs.
 | 
						|
  /// Should never be called directly.
 | 
						|
  /// \return The promoted value which is used instead of Ext.
 | 
						|
  static Value *promoteOperandForTruncAndAnyExt(
 | 
						|
      Instruction *Ext, TypePromotionTransaction &TPT,
 | 
						|
      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
 | 
						|
      SmallVectorImpl<Instruction *> *Exts,
 | 
						|
      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
 | 
						|
 | 
						|
  /// Utility function to promote the operand of \p Ext when this
 | 
						|
  /// operand is promotable and is not a supported trunc or sext.
 | 
						|
  /// \p PromotedInsts maps the instructions to their type before promotion.
 | 
						|
  /// \p CreatedInstsCost[out] contains the cost of all the instructions
 | 
						|
  /// created to promote the operand of Ext.
 | 
						|
  /// Newly added extensions are inserted in \p Exts.
 | 
						|
  /// Newly added truncates are inserted in \p Truncs.
 | 
						|
  /// Should never be called directly.
 | 
						|
  /// \return The promoted value which is used instead of Ext.
 | 
						|
  static Value *promoteOperandForOther(Instruction *Ext,
 | 
						|
                                       TypePromotionTransaction &TPT,
 | 
						|
                                       InstrToOrigTy &PromotedInsts,
 | 
						|
                                       unsigned &CreatedInstsCost,
 | 
						|
                                       SmallVectorImpl<Instruction *> *Exts,
 | 
						|
                                       SmallVectorImpl<Instruction *> *Truncs,
 | 
						|
                                       const TargetLowering &TLI, bool IsSExt);
 | 
						|
 | 
						|
  /// \see promoteOperandForOther.
 | 
						|
  static Value *signExtendOperandForOther(
 | 
						|
      Instruction *Ext, TypePromotionTransaction &TPT,
 | 
						|
      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
 | 
						|
      SmallVectorImpl<Instruction *> *Exts,
 | 
						|
      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
 | 
						|
    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
 | 
						|
                                  Exts, Truncs, TLI, true);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \see promoteOperandForOther.
 | 
						|
  static Value *zeroExtendOperandForOther(
 | 
						|
      Instruction *Ext, TypePromotionTransaction &TPT,
 | 
						|
      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
 | 
						|
      SmallVectorImpl<Instruction *> *Exts,
 | 
						|
      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
 | 
						|
    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
 | 
						|
                                  Exts, Truncs, TLI, false);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  /// Type for the utility function that promotes the operand of Ext.
 | 
						|
  using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
 | 
						|
                            InstrToOrigTy &PromotedInsts,
 | 
						|
                            unsigned &CreatedInstsCost,
 | 
						|
                            SmallVectorImpl<Instruction *> *Exts,
 | 
						|
                            SmallVectorImpl<Instruction *> *Truncs,
 | 
						|
                            const TargetLowering &TLI);
 | 
						|
 | 
						|
  /// Given a sign/zero extend instruction \p Ext, return the appropriate
 | 
						|
  /// action to promote the operand of \p Ext instead of using Ext.
 | 
						|
  /// \return NULL if no promotable action is possible with the current
 | 
						|
  /// sign extension.
 | 
						|
  /// \p InsertedInsts keeps track of all the instructions inserted by the
 | 
						|
  /// other CodeGenPrepare optimizations. This information is important
 | 
						|
  /// because we do not want to promote these instructions as CodeGenPrepare
 | 
						|
  /// will reinsert them later. Thus creating an infinite loop: create/remove.
 | 
						|
  /// \p PromotedInsts maps the instructions to their type before promotion.
 | 
						|
  static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
 | 
						|
                          const TargetLowering &TLI,
 | 
						|
                          const InstrToOrigTy &PromotedInsts);
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
 | 
						|
                                        Type *ConsideredExtType,
 | 
						|
                                        const InstrToOrigTy &PromotedInsts,
 | 
						|
                                        bool IsSExt) {
 | 
						|
  // The promotion helper does not know how to deal with vector types yet.
 | 
						|
  // To be able to fix that, we would need to fix the places where we
 | 
						|
  // statically extend, e.g., constants and such.
 | 
						|
  if (Inst->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can always get through zext.
 | 
						|
  if (isa<ZExtInst>(Inst))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // sext(sext) is ok too.
 | 
						|
  if (IsSExt && isa<SExtInst>(Inst))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can get through binary operator, if it is legal. In other words, the
 | 
						|
  // binary operator must have a nuw or nsw flag.
 | 
						|
  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
 | 
						|
  if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) &&
 | 
						|
      ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
 | 
						|
       (IsSExt && BinOp->hasNoSignedWrap())))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
 | 
						|
  if ((Inst->getOpcode() == Instruction::And ||
 | 
						|
       Inst->getOpcode() == Instruction::Or))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
 | 
						|
  if (Inst->getOpcode() == Instruction::Xor) {
 | 
						|
    const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
 | 
						|
    // Make sure it is not a NOT.
 | 
						|
    if (Cst && !Cst->getValue().isAllOnesValue())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
 | 
						|
  // It may change a poisoned value into a regular value, like
 | 
						|
  //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
 | 
						|
  //          poisoned value                    regular value
 | 
						|
  // It should be OK since undef covers valid value.
 | 
						|
  if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
 | 
						|
  // It may change a poisoned value into a regular value, like
 | 
						|
  //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
 | 
						|
  //          poisoned value                    regular value
 | 
						|
  // It should be OK since undef covers valid value.
 | 
						|
  if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
 | 
						|
    const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
 | 
						|
    if (ExtInst->hasOneUse()) {
 | 
						|
      const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
 | 
						|
      if (AndInst && AndInst->getOpcode() == Instruction::And) {
 | 
						|
        const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
 | 
						|
        if (Cst &&
 | 
						|
            Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we can do the following simplification.
 | 
						|
  // ext(trunc(opnd)) --> ext(opnd)
 | 
						|
  if (!isa<TruncInst>(Inst))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *OpndVal = Inst->getOperand(0);
 | 
						|
  // Check if we can use this operand in the extension.
 | 
						|
  // If the type is larger than the result type of the extension, we cannot.
 | 
						|
  if (!OpndVal->getType()->isIntegerTy() ||
 | 
						|
      OpndVal->getType()->getIntegerBitWidth() >
 | 
						|
          ConsideredExtType->getIntegerBitWidth())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the operand of the truncate is not an instruction, we will not have
 | 
						|
  // any information on the dropped bits.
 | 
						|
  // (Actually we could for constant but it is not worth the extra logic).
 | 
						|
  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
 | 
						|
  if (!Opnd)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the source of the type is narrow enough.
 | 
						|
  // I.e., check that trunc just drops extended bits of the same kind of
 | 
						|
  // the extension.
 | 
						|
  // #1 get the type of the operand and check the kind of the extended bits.
 | 
						|
  const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
 | 
						|
  if (OpndType)
 | 
						|
    ;
 | 
						|
  else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
 | 
						|
    OpndType = Opnd->getOperand(0)->getType();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // #2 check that the truncate just drops extended bits.
 | 
						|
  return Inst->getType()->getIntegerBitWidth() >=
 | 
						|
         OpndType->getIntegerBitWidth();
 | 
						|
}
 | 
						|
 | 
						|
TypePromotionHelper::Action TypePromotionHelper::getAction(
 | 
						|
    Instruction *Ext, const SetOfInstrs &InsertedInsts,
 | 
						|
    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
 | 
						|
  assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
 | 
						|
         "Unexpected instruction type");
 | 
						|
  Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
 | 
						|
  Type *ExtTy = Ext->getType();
 | 
						|
  bool IsSExt = isa<SExtInst>(Ext);
 | 
						|
  // If the operand of the extension is not an instruction, we cannot
 | 
						|
  // get through.
 | 
						|
  // If it, check we can get through.
 | 
						|
  if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Do not promote if the operand has been added by codegenprepare.
 | 
						|
  // Otherwise, it means we are undoing an optimization that is likely to be
 | 
						|
  // redone, thus causing potential infinite loop.
 | 
						|
  if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // SExt or Trunc instructions.
 | 
						|
  // Return the related handler.
 | 
						|
  if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
 | 
						|
      isa<ZExtInst>(ExtOpnd))
 | 
						|
    return promoteOperandForTruncAndAnyExt;
 | 
						|
 | 
						|
  // Regular instruction.
 | 
						|
  // Abort early if we will have to insert non-free instructions.
 | 
						|
  if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
 | 
						|
    return nullptr;
 | 
						|
  return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
 | 
						|
}
 | 
						|
 | 
						|
Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
 | 
						|
    Instruction *SExt, TypePromotionTransaction &TPT,
 | 
						|
    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
 | 
						|
    SmallVectorImpl<Instruction *> *Exts,
 | 
						|
    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
 | 
						|
  // By construction, the operand of SExt is an instruction. Otherwise we cannot
 | 
						|
  // get through it and this method should not be called.
 | 
						|
  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
 | 
						|
  Value *ExtVal = SExt;
 | 
						|
  bool HasMergedNonFreeExt = false;
 | 
						|
  if (isa<ZExtInst>(SExtOpnd)) {
 | 
						|
    // Replace s|zext(zext(opnd))
 | 
						|
    // => zext(opnd).
 | 
						|
    HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
 | 
						|
    Value *ZExt =
 | 
						|
        TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
 | 
						|
    TPT.replaceAllUsesWith(SExt, ZExt);
 | 
						|
    TPT.eraseInstruction(SExt);
 | 
						|
    ExtVal = ZExt;
 | 
						|
  } else {
 | 
						|
    // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
 | 
						|
    // => z|sext(opnd).
 | 
						|
    TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
 | 
						|
  }
 | 
						|
  CreatedInstsCost = 0;
 | 
						|
 | 
						|
  // Remove dead code.
 | 
						|
  if (SExtOpnd->use_empty())
 | 
						|
    TPT.eraseInstruction(SExtOpnd);
 | 
						|
 | 
						|
  // Check if the extension is still needed.
 | 
						|
  Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
 | 
						|
  if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
 | 
						|
    if (ExtInst) {
 | 
						|
      if (Exts)
 | 
						|
        Exts->push_back(ExtInst);
 | 
						|
      CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
 | 
						|
    }
 | 
						|
    return ExtVal;
 | 
						|
  }
 | 
						|
 | 
						|
  // At this point we have: ext ty opnd to ty.
 | 
						|
  // Reassign the uses of ExtInst to the opnd and remove ExtInst.
 | 
						|
  Value *NextVal = ExtInst->getOperand(0);
 | 
						|
  TPT.eraseInstruction(ExtInst, NextVal);
 | 
						|
  return NextVal;
 | 
						|
}
 | 
						|
 | 
						|
Value *TypePromotionHelper::promoteOperandForOther(
 | 
						|
    Instruction *Ext, TypePromotionTransaction &TPT,
 | 
						|
    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
 | 
						|
    SmallVectorImpl<Instruction *> *Exts,
 | 
						|
    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
 | 
						|
    bool IsSExt) {
 | 
						|
  // By construction, the operand of Ext is an instruction. Otherwise we cannot
 | 
						|
  // get through it and this method should not be called.
 | 
						|
  Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
 | 
						|
  CreatedInstsCost = 0;
 | 
						|
  if (!ExtOpnd->hasOneUse()) {
 | 
						|
    // ExtOpnd will be promoted.
 | 
						|
    // All its uses, but Ext, will need to use a truncated value of the
 | 
						|
    // promoted version.
 | 
						|
    // Create the truncate now.
 | 
						|
    Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
 | 
						|
    if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
 | 
						|
      // Insert it just after the definition.
 | 
						|
      ITrunc->moveAfter(ExtOpnd);
 | 
						|
      if (Truncs)
 | 
						|
        Truncs->push_back(ITrunc);
 | 
						|
    }
 | 
						|
 | 
						|
    TPT.replaceAllUsesWith(ExtOpnd, Trunc);
 | 
						|
    // Restore the operand of Ext (which has been replaced by the previous call
 | 
						|
    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
 | 
						|
    TPT.setOperand(Ext, 0, ExtOpnd);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get through the Instruction:
 | 
						|
  // 1. Update its type.
 | 
						|
  // 2. Replace the uses of Ext by Inst.
 | 
						|
  // 3. Extend each operand that needs to be extended.
 | 
						|
 | 
						|
  // Remember the original type of the instruction before promotion.
 | 
						|
  // This is useful to know that the high bits are sign extended bits.
 | 
						|
  addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
 | 
						|
  // Step #1.
 | 
						|
  TPT.mutateType(ExtOpnd, Ext->getType());
 | 
						|
  // Step #2.
 | 
						|
  TPT.replaceAllUsesWith(Ext, ExtOpnd);
 | 
						|
  // Step #3.
 | 
						|
  Instruction *ExtForOpnd = Ext;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
 | 
						|
  for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
 | 
						|
       ++OpIdx) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
 | 
						|
    if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
 | 
						|
        !shouldExtOperand(ExtOpnd, OpIdx)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "No need to propagate\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Check if we can statically extend the operand.
 | 
						|
    Value *Opnd = ExtOpnd->getOperand(OpIdx);
 | 
						|
    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Statically extend\n");
 | 
						|
      unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
 | 
						|
      APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
 | 
						|
                            : Cst->getValue().zext(BitWidth);
 | 
						|
      TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // UndefValue are typed, so we have to statically sign extend them.
 | 
						|
    if (isa<UndefValue>(Opnd)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Statically extend\n");
 | 
						|
      TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise we have to explicitly sign extend the operand.
 | 
						|
    // Check if Ext was reused to extend an operand.
 | 
						|
    if (!ExtForOpnd) {
 | 
						|
      // If yes, create a new one.
 | 
						|
      LLVM_DEBUG(dbgs() << "More operands to ext\n");
 | 
						|
      Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
 | 
						|
        : TPT.createZExt(Ext, Opnd, Ext->getType());
 | 
						|
      if (!isa<Instruction>(ValForExtOpnd)) {
 | 
						|
        TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      ExtForOpnd = cast<Instruction>(ValForExtOpnd);
 | 
						|
    }
 | 
						|
    if (Exts)
 | 
						|
      Exts->push_back(ExtForOpnd);
 | 
						|
    TPT.setOperand(ExtForOpnd, 0, Opnd);
 | 
						|
 | 
						|
    // Move the sign extension before the insertion point.
 | 
						|
    TPT.moveBefore(ExtForOpnd, ExtOpnd);
 | 
						|
    TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
 | 
						|
    CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
 | 
						|
    // If more sext are required, new instructions will have to be created.
 | 
						|
    ExtForOpnd = nullptr;
 | 
						|
  }
 | 
						|
  if (ExtForOpnd == Ext) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Extension is useless now\n");
 | 
						|
    TPT.eraseInstruction(Ext);
 | 
						|
  }
 | 
						|
  return ExtOpnd;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether or not promoting an instruction to a wider type is profitable.
 | 
						|
/// \p NewCost gives the cost of extension instructions created by the
 | 
						|
/// promotion.
 | 
						|
/// \p OldCost gives the cost of extension instructions before the promotion
 | 
						|
/// plus the number of instructions that have been
 | 
						|
/// matched in the addressing mode the promotion.
 | 
						|
/// \p PromotedOperand is the value that has been promoted.
 | 
						|
/// \return True if the promotion is profitable, false otherwise.
 | 
						|
bool AddressingModeMatcher::isPromotionProfitable(
 | 
						|
    unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
 | 
						|
  LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
 | 
						|
                    << '\n');
 | 
						|
  // The cost of the new extensions is greater than the cost of the
 | 
						|
  // old extension plus what we folded.
 | 
						|
  // This is not profitable.
 | 
						|
  if (NewCost > OldCost)
 | 
						|
    return false;
 | 
						|
  if (NewCost < OldCost)
 | 
						|
    return true;
 | 
						|
  // The promotion is neutral but it may help folding the sign extension in
 | 
						|
  // loads for instance.
 | 
						|
  // Check that we did not create an illegal instruction.
 | 
						|
  return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
 | 
						|
}
 | 
						|
 | 
						|
/// Given an instruction or constant expr, see if we can fold the operation
 | 
						|
/// into the addressing mode. If so, update the addressing mode and return
 | 
						|
/// true, otherwise return false without modifying AddrMode.
 | 
						|
/// If \p MovedAway is not NULL, it contains the information of whether or
 | 
						|
/// not AddrInst has to be folded into the addressing mode on success.
 | 
						|
/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
 | 
						|
/// because it has been moved away.
 | 
						|
/// Thus AddrInst must not be added in the matched instructions.
 | 
						|
/// This state can happen when AddrInst is a sext, since it may be moved away.
 | 
						|
/// Therefore, AddrInst may not be valid when MovedAway is true and it must
 | 
						|
/// not be referenced anymore.
 | 
						|
bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
 | 
						|
                                               unsigned Depth,
 | 
						|
                                               bool *MovedAway) {
 | 
						|
  // Avoid exponential behavior on extremely deep expression trees.
 | 
						|
  if (Depth >= 5) return false;
 | 
						|
 | 
						|
  // By default, all matched instructions stay in place.
 | 
						|
  if (MovedAway)
 | 
						|
    *MovedAway = false;
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | 
						|
    return matchAddr(AddrInst->getOperand(0), Depth);
 | 
						|
  case Instruction::IntToPtr: {
 | 
						|
    auto AS = AddrInst->getType()->getPointerAddressSpace();
 | 
						|
    auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
 | 
						|
    // This inttoptr is a no-op if the integer type is pointer sized.
 | 
						|
    if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
 | 
						|
      return matchAddr(AddrInst->getOperand(0), Depth);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // BitCast is always a noop, and we can handle it as long as it is
 | 
						|
    // int->int or pointer->pointer (we don't want int<->fp or something).
 | 
						|
    if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
 | 
						|
        // Don't touch identity bitcasts.  These were probably put here by LSR,
 | 
						|
        // and we don't want to mess around with them.  Assume it knows what it
 | 
						|
        // is doing.
 | 
						|
        AddrInst->getOperand(0)->getType() != AddrInst->getType())
 | 
						|
      return matchAddr(AddrInst->getOperand(0), Depth);
 | 
						|
    return false;
 | 
						|
  case Instruction::AddrSpaceCast: {
 | 
						|
    unsigned SrcAS
 | 
						|
      = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
 | 
						|
    unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
 | 
						|
    if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
 | 
						|
      return matchAddr(AddrInst->getOperand(0), Depth);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case Instruction::Add: {
 | 
						|
    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
 | 
						|
    ExtAddrMode BackupAddrMode = AddrMode;
 | 
						|
    unsigned OldSize = AddrModeInsts.size();
 | 
						|
    // Start a transaction at this point.
 | 
						|
    // The LHS may match but not the RHS.
 | 
						|
    // Therefore, we need a higher level restoration point to undo partially
 | 
						|
    // matched operation.
 | 
						|
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
        TPT.getRestorationPoint();
 | 
						|
 | 
						|
    AddrMode.InBounds = false;
 | 
						|
    if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
 | 
						|
        matchAddr(AddrInst->getOperand(0), Depth+1))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Restore the old addr mode info.
 | 
						|
    AddrMode = BackupAddrMode;
 | 
						|
    AddrModeInsts.resize(OldSize);
 | 
						|
    TPT.rollback(LastKnownGood);
 | 
						|
 | 
						|
    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
 | 
						|
    if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
 | 
						|
        matchAddr(AddrInst->getOperand(1), Depth+1))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise we definitely can't merge the ADD in.
 | 
						|
    AddrMode = BackupAddrMode;
 | 
						|
    AddrModeInsts.resize(OldSize);
 | 
						|
    TPT.rollback(LastKnownGood);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  //case Instruction::Or:
 | 
						|
  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
 | 
						|
  //break;
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // Can only handle X*C and X << C.
 | 
						|
    AddrMode.InBounds = false;
 | 
						|
    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
 | 
						|
    if (!RHS || RHS->getBitWidth() > 64)
 | 
						|
      return false;
 | 
						|
    int64_t Scale = RHS->getSExtValue();
 | 
						|
    if (Opcode == Instruction::Shl)
 | 
						|
      Scale = 1LL << Scale;
 | 
						|
 | 
						|
    return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
 | 
						|
  }
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    // Scan the GEP.  We check it if it contains constant offsets and at most
 | 
						|
    // one variable offset.
 | 
						|
    int VariableOperand = -1;
 | 
						|
    unsigned VariableScale = 0;
 | 
						|
 | 
						|
    int64_t ConstantOffset = 0;
 | 
						|
    gep_type_iterator GTI = gep_type_begin(AddrInst);
 | 
						|
    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
 | 
						|
      if (StructType *STy = GTI.getStructTypeOrNull()) {
 | 
						|
        const StructLayout *SL = DL.getStructLayout(STy);
 | 
						|
        unsigned Idx =
 | 
						|
          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
 | 
						|
        ConstantOffset += SL->getElementOffset(Idx);
 | 
						|
      } else {
 | 
						|
        TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
 | 
						|
        if (TS.isNonZero()) {
 | 
						|
          // The optimisations below currently only work for fixed offsets.
 | 
						|
          if (TS.isScalable())
 | 
						|
            return false;
 | 
						|
          int64_t TypeSize = TS.getFixedSize();
 | 
						|
          if (ConstantInt *CI =
 | 
						|
                  dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
 | 
						|
            const APInt &CVal = CI->getValue();
 | 
						|
            if (CVal.getMinSignedBits() <= 64) {
 | 
						|
              ConstantOffset += CVal.getSExtValue() * TypeSize;
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // We only allow one variable index at the moment.
 | 
						|
          if (VariableOperand != -1)
 | 
						|
            return false;
 | 
						|
 | 
						|
          // Remember the variable index.
 | 
						|
          VariableOperand = i;
 | 
						|
          VariableScale = TypeSize;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // A common case is for the GEP to only do a constant offset.  In this case,
 | 
						|
    // just add it to the disp field and check validity.
 | 
						|
    if (VariableOperand == -1) {
 | 
						|
      AddrMode.BaseOffs += ConstantOffset;
 | 
						|
      if (ConstantOffset == 0 ||
 | 
						|
          TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
 | 
						|
        // Check to see if we can fold the base pointer in too.
 | 
						|
        if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
 | 
						|
          if (!cast<GEPOperator>(AddrInst)->isInBounds())
 | 
						|
            AddrMode.InBounds = false;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
 | 
						|
                 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
 | 
						|
                 ConstantOffset > 0) {
 | 
						|
        // Record GEPs with non-zero offsets as candidates for splitting in the
 | 
						|
        // event that the offset cannot fit into the r+i addressing mode.
 | 
						|
        // Simple and common case that only one GEP is used in calculating the
 | 
						|
        // address for the memory access.
 | 
						|
        Value *Base = AddrInst->getOperand(0);
 | 
						|
        auto *BaseI = dyn_cast<Instruction>(Base);
 | 
						|
        auto *GEP = cast<GetElementPtrInst>(AddrInst);
 | 
						|
        if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
 | 
						|
            (BaseI && !isa<CastInst>(BaseI) &&
 | 
						|
             !isa<GetElementPtrInst>(BaseI))) {
 | 
						|
          // Make sure the parent block allows inserting non-PHI instructions
 | 
						|
          // before the terminator.
 | 
						|
          BasicBlock *Parent =
 | 
						|
              BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
 | 
						|
          if (!Parent->getTerminator()->isEHPad())
 | 
						|
            LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      AddrMode.BaseOffs -= ConstantOffset;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Save the valid addressing mode in case we can't match.
 | 
						|
    ExtAddrMode BackupAddrMode = AddrMode;
 | 
						|
    unsigned OldSize = AddrModeInsts.size();
 | 
						|
 | 
						|
    // See if the scale and offset amount is valid for this target.
 | 
						|
    AddrMode.BaseOffs += ConstantOffset;
 | 
						|
    if (!cast<GEPOperator>(AddrInst)->isInBounds())
 | 
						|
      AddrMode.InBounds = false;
 | 
						|
 | 
						|
    // Match the base operand of the GEP.
 | 
						|
    if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
 | 
						|
      // If it couldn't be matched, just stuff the value in a register.
 | 
						|
      if (AddrMode.HasBaseReg) {
 | 
						|
        AddrMode = BackupAddrMode;
 | 
						|
        AddrModeInsts.resize(OldSize);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      AddrMode.HasBaseReg = true;
 | 
						|
      AddrMode.BaseReg = AddrInst->getOperand(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // Match the remaining variable portion of the GEP.
 | 
						|
    if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
 | 
						|
                          Depth)) {
 | 
						|
      // If it couldn't be matched, try stuffing the base into a register
 | 
						|
      // instead of matching it, and retrying the match of the scale.
 | 
						|
      AddrMode = BackupAddrMode;
 | 
						|
      AddrModeInsts.resize(OldSize);
 | 
						|
      if (AddrMode.HasBaseReg)
 | 
						|
        return false;
 | 
						|
      AddrMode.HasBaseReg = true;
 | 
						|
      AddrMode.BaseReg = AddrInst->getOperand(0);
 | 
						|
      AddrMode.BaseOffs += ConstantOffset;
 | 
						|
      if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
 | 
						|
                            VariableScale, Depth)) {
 | 
						|
        // If even that didn't work, bail.
 | 
						|
        AddrMode = BackupAddrMode;
 | 
						|
        AddrModeInsts.resize(OldSize);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::ZExt: {
 | 
						|
    Instruction *Ext = dyn_cast<Instruction>(AddrInst);
 | 
						|
    if (!Ext)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Try to move this ext out of the way of the addressing mode.
 | 
						|
    // Ask for a method for doing so.
 | 
						|
    TypePromotionHelper::Action TPH =
 | 
						|
        TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
 | 
						|
    if (!TPH)
 | 
						|
      return false;
 | 
						|
 | 
						|
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
        TPT.getRestorationPoint();
 | 
						|
    unsigned CreatedInstsCost = 0;
 | 
						|
    unsigned ExtCost = !TLI.isExtFree(Ext);
 | 
						|
    Value *PromotedOperand =
 | 
						|
        TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
 | 
						|
    // SExt has been moved away.
 | 
						|
    // Thus either it will be rematched later in the recursive calls or it is
 | 
						|
    // gone. Anyway, we must not fold it into the addressing mode at this point.
 | 
						|
    // E.g.,
 | 
						|
    // op = add opnd, 1
 | 
						|
    // idx = ext op
 | 
						|
    // addr = gep base, idx
 | 
						|
    // is now:
 | 
						|
    // promotedOpnd = ext opnd            <- no match here
 | 
						|
    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
 | 
						|
    // addr = gep base, op                <- match
 | 
						|
    if (MovedAway)
 | 
						|
      *MovedAway = true;
 | 
						|
 | 
						|
    assert(PromotedOperand &&
 | 
						|
           "TypePromotionHelper should have filtered out those cases");
 | 
						|
 | 
						|
    ExtAddrMode BackupAddrMode = AddrMode;
 | 
						|
    unsigned OldSize = AddrModeInsts.size();
 | 
						|
 | 
						|
    if (!matchAddr(PromotedOperand, Depth) ||
 | 
						|
        // The total of the new cost is equal to the cost of the created
 | 
						|
        // instructions.
 | 
						|
        // The total of the old cost is equal to the cost of the extension plus
 | 
						|
        // what we have saved in the addressing mode.
 | 
						|
        !isPromotionProfitable(CreatedInstsCost,
 | 
						|
                               ExtCost + (AddrModeInsts.size() - OldSize),
 | 
						|
                               PromotedOperand)) {
 | 
						|
      AddrMode = BackupAddrMode;
 | 
						|
      AddrModeInsts.resize(OldSize);
 | 
						|
      LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
 | 
						|
      TPT.rollback(LastKnownGood);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// If we can, try to add the value of 'Addr' into the current addressing mode.
 | 
						|
/// If Addr can't be added to AddrMode this returns false and leaves AddrMode
 | 
						|
/// unmodified. This assumes that Addr is either a pointer type or intptr_t
 | 
						|
/// for the target.
 | 
						|
///
 | 
						|
bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
 | 
						|
  // Start a transaction at this point that we will rollback if the matching
 | 
						|
  // fails.
 | 
						|
  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
      TPT.getRestorationPoint();
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
 | 
						|
    if (CI->getValue().isSignedIntN(64)) {
 | 
						|
      // Fold in immediates if legal for the target.
 | 
						|
      AddrMode.BaseOffs += CI->getSExtValue();
 | 
						|
      if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
 | 
						|
        return true;
 | 
						|
      AddrMode.BaseOffs -= CI->getSExtValue();
 | 
						|
    }
 | 
						|
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
 | 
						|
    // If this is a global variable, try to fold it into the addressing mode.
 | 
						|
    if (!AddrMode.BaseGV) {
 | 
						|
      AddrMode.BaseGV = GV;
 | 
						|
      if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
 | 
						|
        return true;
 | 
						|
      AddrMode.BaseGV = nullptr;
 | 
						|
    }
 | 
						|
  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
 | 
						|
    ExtAddrMode BackupAddrMode = AddrMode;
 | 
						|
    unsigned OldSize = AddrModeInsts.size();
 | 
						|
 | 
						|
    // Check to see if it is possible to fold this operation.
 | 
						|
    bool MovedAway = false;
 | 
						|
    if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
 | 
						|
      // This instruction may have been moved away. If so, there is nothing
 | 
						|
      // to check here.
 | 
						|
      if (MovedAway)
 | 
						|
        return true;
 | 
						|
      // Okay, it's possible to fold this.  Check to see if it is actually
 | 
						|
      // *profitable* to do so.  We use a simple cost model to avoid increasing
 | 
						|
      // register pressure too much.
 | 
						|
      if (I->hasOneUse() ||
 | 
						|
          isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
 | 
						|
        AddrModeInsts.push_back(I);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // It isn't profitable to do this, roll back.
 | 
						|
      //cerr << "NOT FOLDING: " << *I;
 | 
						|
      AddrMode = BackupAddrMode;
 | 
						|
      AddrModeInsts.resize(OldSize);
 | 
						|
      TPT.rollback(LastKnownGood);
 | 
						|
    }
 | 
						|
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
 | 
						|
    if (matchOperationAddr(CE, CE->getOpcode(), Depth))
 | 
						|
      return true;
 | 
						|
    TPT.rollback(LastKnownGood);
 | 
						|
  } else if (isa<ConstantPointerNull>(Addr)) {
 | 
						|
    // Null pointer gets folded without affecting the addressing mode.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Worse case, the target should support [reg] addressing modes. :)
 | 
						|
  if (!AddrMode.HasBaseReg) {
 | 
						|
    AddrMode.HasBaseReg = true;
 | 
						|
    AddrMode.BaseReg = Addr;
 | 
						|
    // Still check for legality in case the target supports [imm] but not [i+r].
 | 
						|
    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
 | 
						|
      return true;
 | 
						|
    AddrMode.HasBaseReg = false;
 | 
						|
    AddrMode.BaseReg = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the base register is already taken, see if we can do [r+r].
 | 
						|
  if (AddrMode.Scale == 0) {
 | 
						|
    AddrMode.Scale = 1;
 | 
						|
    AddrMode.ScaledReg = Addr;
 | 
						|
    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
 | 
						|
      return true;
 | 
						|
    AddrMode.Scale = 0;
 | 
						|
    AddrMode.ScaledReg = nullptr;
 | 
						|
  }
 | 
						|
  // Couldn't match.
 | 
						|
  TPT.rollback(LastKnownGood);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check to see if all uses of OpVal by the specified inline asm call are due
 | 
						|
/// to memory operands. If so, return true, otherwise return false.
 | 
						|
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
 | 
						|
                                    const TargetLowering &TLI,
 | 
						|
                                    const TargetRegisterInfo &TRI) {
 | 
						|
  const Function *F = CI->getFunction();
 | 
						|
  TargetLowering::AsmOperandInfoVector TargetConstraints =
 | 
						|
      TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | 
						|
    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | 
						|
 | 
						|
    // Compute the constraint code and ConstraintType to use.
 | 
						|
    TLI.ComputeConstraintToUse(OpInfo, SDValue());
 | 
						|
 | 
						|
    // If this asm operand is our Value*, and if it isn't an indirect memory
 | 
						|
    // operand, we can't fold it!
 | 
						|
    if (OpInfo.CallOperandVal == OpVal &&
 | 
						|
        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
 | 
						|
         !OpInfo.isIndirect))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Max number of memory uses to look at before aborting the search to conserve
 | 
						|
// compile time.
 | 
						|
static constexpr int MaxMemoryUsesToScan = 20;
 | 
						|
 | 
						|
/// Recursively walk all the uses of I until we find a memory use.
 | 
						|
/// If we find an obviously non-foldable instruction, return true.
 | 
						|
/// Add the ultimately found memory instructions to MemoryUses.
 | 
						|
static bool FindAllMemoryUses(
 | 
						|
    Instruction *I,
 | 
						|
    SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
 | 
						|
    SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
 | 
						|
    const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
 | 
						|
    BlockFrequencyInfo *BFI, int SeenInsts = 0) {
 | 
						|
  // If we already considered this instruction, we're done.
 | 
						|
  if (!ConsideredInsts.insert(I).second)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is an obviously unfoldable instruction, bail out.
 | 
						|
  if (!MightBeFoldableInst(I))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Loop over all the uses, recursively processing them.
 | 
						|
  for (Use &U : I->uses()) {
 | 
						|
    // Conservatively return true if we're seeing a large number or a deep chain
 | 
						|
    // of users. This avoids excessive compilation times in pathological cases.
 | 
						|
    if (SeenInsts++ >= MaxMemoryUsesToScan)
 | 
						|
      return true;
 | 
						|
 | 
						|
    Instruction *UserI = cast<Instruction>(U.getUser());
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
 | 
						|
      MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
 | 
						|
      unsigned opNo = U.getOperandNo();
 | 
						|
      if (opNo != StoreInst::getPointerOperandIndex())
 | 
						|
        return true; // Storing addr, not into addr.
 | 
						|
      MemoryUses.push_back(std::make_pair(SI, opNo));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
 | 
						|
      unsigned opNo = U.getOperandNo();
 | 
						|
      if (opNo != AtomicRMWInst::getPointerOperandIndex())
 | 
						|
        return true; // Storing addr, not into addr.
 | 
						|
      MemoryUses.push_back(std::make_pair(RMW, opNo));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
 | 
						|
      unsigned opNo = U.getOperandNo();
 | 
						|
      if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
 | 
						|
        return true; // Storing addr, not into addr.
 | 
						|
      MemoryUses.push_back(std::make_pair(CmpX, opNo));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
 | 
						|
      if (CI->hasFnAttr(Attribute::Cold)) {
 | 
						|
        // If this is a cold call, we can sink the addressing calculation into
 | 
						|
        // the cold path.  See optimizeCallInst
 | 
						|
        bool OptForSize = OptSize ||
 | 
						|
          llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
 | 
						|
        if (!OptForSize)
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
 | 
						|
      if (!IA) return true;
 | 
						|
 | 
						|
      // If this is a memory operand, we're cool, otherwise bail out.
 | 
						|
      if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
 | 
						|
        return true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
 | 
						|
                          PSI, BFI, SeenInsts))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if Val is already known to be live at the use site that we're
 | 
						|
/// folding it into. If so, there is no cost to include it in the addressing
 | 
						|
/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
 | 
						|
/// instruction already.
 | 
						|
bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
 | 
						|
                                                   Value *KnownLive2) {
 | 
						|
  // If Val is either of the known-live values, we know it is live!
 | 
						|
  if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // All values other than instructions and arguments (e.g. constants) are live.
 | 
						|
  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
 | 
						|
 | 
						|
  // If Val is a constant sized alloca in the entry block, it is live, this is
 | 
						|
  // true because it is just a reference to the stack/frame pointer, which is
 | 
						|
  // live for the whole function.
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
 | 
						|
    if (AI->isStaticAlloca())
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Check to see if this value is already used in the memory instruction's
 | 
						|
  // block.  If so, it's already live into the block at the very least, so we
 | 
						|
  // can reasonably fold it.
 | 
						|
  return Val->isUsedInBasicBlock(MemoryInst->getParent());
 | 
						|
}
 | 
						|
 | 
						|
/// It is possible for the addressing mode of the machine to fold the specified
 | 
						|
/// instruction into a load or store that ultimately uses it.
 | 
						|
/// However, the specified instruction has multiple uses.
 | 
						|
/// Given this, it may actually increase register pressure to fold it
 | 
						|
/// into the load. For example, consider this code:
 | 
						|
///
 | 
						|
///     X = ...
 | 
						|
///     Y = X+1
 | 
						|
///     use(Y)   -> nonload/store
 | 
						|
///     Z = Y+1
 | 
						|
///     load Z
 | 
						|
///
 | 
						|
/// In this case, Y has multiple uses, and can be folded into the load of Z
 | 
						|
/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
 | 
						|
/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
 | 
						|
/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
 | 
						|
/// number of computations either.
 | 
						|
///
 | 
						|
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
 | 
						|
/// X was live across 'load Z' for other reasons, we actually *would* want to
 | 
						|
/// fold the addressing mode in the Z case.  This would make Y die earlier.
 | 
						|
bool AddressingModeMatcher::
 | 
						|
isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
 | 
						|
                                     ExtAddrMode &AMAfter) {
 | 
						|
  if (IgnoreProfitability) return true;
 | 
						|
 | 
						|
  // AMBefore is the addressing mode before this instruction was folded into it,
 | 
						|
  // and AMAfter is the addressing mode after the instruction was folded.  Get
 | 
						|
  // the set of registers referenced by AMAfter and subtract out those
 | 
						|
  // referenced by AMBefore: this is the set of values which folding in this
 | 
						|
  // address extends the lifetime of.
 | 
						|
  //
 | 
						|
  // Note that there are only two potential values being referenced here,
 | 
						|
  // BaseReg and ScaleReg (global addresses are always available, as are any
 | 
						|
  // folded immediates).
 | 
						|
  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
 | 
						|
 | 
						|
  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
 | 
						|
  // lifetime wasn't extended by adding this instruction.
 | 
						|
  if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | 
						|
    BaseReg = nullptr;
 | 
						|
  if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | 
						|
    ScaledReg = nullptr;
 | 
						|
 | 
						|
  // If folding this instruction (and it's subexprs) didn't extend any live
 | 
						|
  // ranges, we're ok with it.
 | 
						|
  if (!BaseReg && !ScaledReg)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If all uses of this instruction can have the address mode sunk into them,
 | 
						|
  // we can remove the addressing mode and effectively trade one live register
 | 
						|
  // for another (at worst.)  In this context, folding an addressing mode into
 | 
						|
  // the use is just a particularly nice way of sinking it.
 | 
						|
  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
 | 
						|
  SmallPtrSet<Instruction*, 16> ConsideredInsts;
 | 
						|
  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
 | 
						|
                        PSI, BFI))
 | 
						|
    return false;  // Has a non-memory, non-foldable use!
 | 
						|
 | 
						|
  // Now that we know that all uses of this instruction are part of a chain of
 | 
						|
  // computation involving only operations that could theoretically be folded
 | 
						|
  // into a memory use, loop over each of these memory operation uses and see
 | 
						|
  // if they could  *actually* fold the instruction.  The assumption is that
 | 
						|
  // addressing modes are cheap and that duplicating the computation involved
 | 
						|
  // many times is worthwhile, even on a fastpath. For sinking candidates
 | 
						|
  // (i.e. cold call sites), this serves as a way to prevent excessive code
 | 
						|
  // growth since most architectures have some reasonable small and fast way to
 | 
						|
  // compute an effective address.  (i.e LEA on x86)
 | 
						|
  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
 | 
						|
  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
 | 
						|
    Instruction *User = MemoryUses[i].first;
 | 
						|
    unsigned OpNo = MemoryUses[i].second;
 | 
						|
 | 
						|
    // Get the access type of this use.  If the use isn't a pointer, we don't
 | 
						|
    // know what it accesses.
 | 
						|
    Value *Address = User->getOperand(OpNo);
 | 
						|
    PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
 | 
						|
    if (!AddrTy)
 | 
						|
      return false;
 | 
						|
    Type *AddressAccessTy = AddrTy->getElementType();
 | 
						|
    unsigned AS = AddrTy->getAddressSpace();
 | 
						|
 | 
						|
    // Do a match against the root of this address, ignoring profitability. This
 | 
						|
    // will tell us if the addressing mode for the memory operation will
 | 
						|
    // *actually* cover the shared instruction.
 | 
						|
    ExtAddrMode Result;
 | 
						|
    std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
 | 
						|
                                                                      0);
 | 
						|
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
        TPT.getRestorationPoint();
 | 
						|
    AddressingModeMatcher Matcher(
 | 
						|
        MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
 | 
						|
        InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI);
 | 
						|
    Matcher.IgnoreProfitability = true;
 | 
						|
    bool Success = Matcher.matchAddr(Address, 0);
 | 
						|
    (void)Success; assert(Success && "Couldn't select *anything*?");
 | 
						|
 | 
						|
    // The match was to check the profitability, the changes made are not
 | 
						|
    // part of the original matcher. Therefore, they should be dropped
 | 
						|
    // otherwise the original matcher will not present the right state.
 | 
						|
    TPT.rollback(LastKnownGood);
 | 
						|
 | 
						|
    // If the match didn't cover I, then it won't be shared by it.
 | 
						|
    if (!is_contained(MatchedAddrModeInsts, I))
 | 
						|
      return false;
 | 
						|
 | 
						|
    MatchedAddrModeInsts.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the specified values are defined in a
 | 
						|
/// different basic block than BB.
 | 
						|
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return I->getParent() != BB;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Sink addressing mode computation immediate before MemoryInst if doing so
 | 
						|
/// can be done without increasing register pressure.  The need for the
 | 
						|
/// register pressure constraint means this can end up being an all or nothing
 | 
						|
/// decision for all uses of the same addressing computation.
 | 
						|
///
 | 
						|
/// Load and Store Instructions often have addressing modes that can do
 | 
						|
/// significant amounts of computation. As such, instruction selection will try
 | 
						|
/// to get the load or store to do as much computation as possible for the
 | 
						|
/// program. The problem is that isel can only see within a single block. As
 | 
						|
/// such, we sink as much legal addressing mode work into the block as possible.
 | 
						|
///
 | 
						|
/// This method is used to optimize both load/store and inline asms with memory
 | 
						|
/// operands.  It's also used to sink addressing computations feeding into cold
 | 
						|
/// call sites into their (cold) basic block.
 | 
						|
///
 | 
						|
/// The motivation for handling sinking into cold blocks is that doing so can
 | 
						|
/// both enable other address mode sinking (by satisfying the register pressure
 | 
						|
/// constraint above), and reduce register pressure globally (by removing the
 | 
						|
/// addressing mode computation from the fast path entirely.).
 | 
						|
bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
 | 
						|
                                        Type *AccessTy, unsigned AddrSpace) {
 | 
						|
  Value *Repl = Addr;
 | 
						|
 | 
						|
  // Try to collapse single-value PHI nodes.  This is necessary to undo
 | 
						|
  // unprofitable PRE transformations.
 | 
						|
  SmallVector<Value*, 8> worklist;
 | 
						|
  SmallPtrSet<Value*, 16> Visited;
 | 
						|
  worklist.push_back(Addr);
 | 
						|
 | 
						|
  // Use a worklist to iteratively look through PHI and select nodes, and
 | 
						|
  // ensure that the addressing mode obtained from the non-PHI/select roots of
 | 
						|
  // the graph are compatible.
 | 
						|
  bool PhiOrSelectSeen = false;
 | 
						|
  SmallVector<Instruction*, 16> AddrModeInsts;
 | 
						|
  const SimplifyQuery SQ(*DL, TLInfo);
 | 
						|
  AddressingModeCombiner AddrModes(SQ, Addr);
 | 
						|
  TypePromotionTransaction TPT(RemovedInsts);
 | 
						|
  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
      TPT.getRestorationPoint();
 | 
						|
  while (!worklist.empty()) {
 | 
						|
    Value *V = worklist.back();
 | 
						|
    worklist.pop_back();
 | 
						|
 | 
						|
    // We allow traversing cyclic Phi nodes.
 | 
						|
    // In case of success after this loop we ensure that traversing through
 | 
						|
    // Phi nodes ends up with all cases to compute address of the form
 | 
						|
    //    BaseGV + Base + Scale * Index + Offset
 | 
						|
    // where Scale and Offset are constans and BaseGV, Base and Index
 | 
						|
    // are exactly the same Values in all cases.
 | 
						|
    // It means that BaseGV, Scale and Offset dominate our memory instruction
 | 
						|
    // and have the same value as they had in address computation represented
 | 
						|
    // as Phi. So we can safely sink address computation to memory instruction.
 | 
						|
    if (!Visited.insert(V).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // For a PHI node, push all of its incoming values.
 | 
						|
    if (PHINode *P = dyn_cast<PHINode>(V)) {
 | 
						|
      for (Value *IncValue : P->incoming_values())
 | 
						|
        worklist.push_back(IncValue);
 | 
						|
      PhiOrSelectSeen = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Similar for select.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
 | 
						|
      worklist.push_back(SI->getFalseValue());
 | 
						|
      worklist.push_back(SI->getTrueValue());
 | 
						|
      PhiOrSelectSeen = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // For non-PHIs, determine the addressing mode being computed.  Note that
 | 
						|
    // the result may differ depending on what other uses our candidate
 | 
						|
    // addressing instructions might have.
 | 
						|
    AddrModeInsts.clear();
 | 
						|
    std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
 | 
						|
                                                                      0);
 | 
						|
    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
 | 
						|
        V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
 | 
						|
        InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
 | 
						|
        BFI.get());
 | 
						|
 | 
						|
    GetElementPtrInst *GEP = LargeOffsetGEP.first;
 | 
						|
    if (GEP && !NewGEPBases.count(GEP)) {
 | 
						|
      // If splitting the underlying data structure can reduce the offset of a
 | 
						|
      // GEP, collect the GEP.  Skip the GEPs that are the new bases of
 | 
						|
      // previously split data structures.
 | 
						|
      LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
 | 
						|
      if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
 | 
						|
        LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
 | 
						|
    }
 | 
						|
 | 
						|
    NewAddrMode.OriginalValue = V;
 | 
						|
    if (!AddrModes.addNewAddrMode(NewAddrMode))
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to combine the AddrModes we've collected. If we couldn't collect any,
 | 
						|
  // or we have multiple but either couldn't combine them or combining them
 | 
						|
  // wouldn't do anything useful, bail out now.
 | 
						|
  if (!AddrModes.combineAddrModes()) {
 | 
						|
    TPT.rollback(LastKnownGood);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  bool Modified = TPT.commit();
 | 
						|
 | 
						|
  // Get the combined AddrMode (or the only AddrMode, if we only had one).
 | 
						|
  ExtAddrMode AddrMode = AddrModes.getAddrMode();
 | 
						|
 | 
						|
  // If all the instructions matched are already in this BB, don't do anything.
 | 
						|
  // If we saw a Phi node then it is not local definitely, and if we saw a select
 | 
						|
  // then we want to push the address calculation past it even if it's already
 | 
						|
  // in this BB.
 | 
						|
  if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
 | 
						|
        return IsNonLocalValue(V, MemoryInst->getParent());
 | 
						|
                  })) {
 | 
						|
    LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
 | 
						|
                      << "\n");
 | 
						|
    return Modified;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert this computation right after this user.  Since our caller is
 | 
						|
  // scanning from the top of the BB to the bottom, reuse of the expr are
 | 
						|
  // guaranteed to happen later.
 | 
						|
  IRBuilder<> Builder(MemoryInst);
 | 
						|
 | 
						|
  // Now that we determined the addressing expression we want to use and know
 | 
						|
  // that we have to sink it into this block.  Check to see if we have already
 | 
						|
  // done this for some other load/store instr in this block.  If so, reuse
 | 
						|
  // the computation.  Before attempting reuse, check if the address is valid
 | 
						|
  // as it may have been erased.
 | 
						|
 | 
						|
  WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
 | 
						|
 | 
						|
  Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
 | 
						|
  if (SunkAddr) {
 | 
						|
    LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
 | 
						|
                      << " for " << *MemoryInst << "\n");
 | 
						|
    if (SunkAddr->getType() != Addr->getType())
 | 
						|
      SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
 | 
						|
  } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
 | 
						|
                                   SubtargetInfo->addrSinkUsingGEPs())) {
 | 
						|
    // By default, we use the GEP-based method when AA is used later. This
 | 
						|
    // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
 | 
						|
    LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
 | 
						|
                      << " for " << *MemoryInst << "\n");
 | 
						|
    Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
 | 
						|
    Value *ResultPtr = nullptr, *ResultIndex = nullptr;
 | 
						|
 | 
						|
    // First, find the pointer.
 | 
						|
    if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
 | 
						|
      ResultPtr = AddrMode.BaseReg;
 | 
						|
      AddrMode.BaseReg = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
 | 
						|
      // We can't add more than one pointer together, nor can we scale a
 | 
						|
      // pointer (both of which seem meaningless).
 | 
						|
      if (ResultPtr || AddrMode.Scale != 1)
 | 
						|
        return Modified;
 | 
						|
 | 
						|
      ResultPtr = AddrMode.ScaledReg;
 | 
						|
      AddrMode.Scale = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // It is only safe to sign extend the BaseReg if we know that the math
 | 
						|
    // required to create it did not overflow before we extend it. Since
 | 
						|
    // the original IR value was tossed in favor of a constant back when
 | 
						|
    // the AddrMode was created we need to bail out gracefully if widths
 | 
						|
    // do not match instead of extending it.
 | 
						|
    //
 | 
						|
    // (See below for code to add the scale.)
 | 
						|
    if (AddrMode.Scale) {
 | 
						|
      Type *ScaledRegTy = AddrMode.ScaledReg->getType();
 | 
						|
      if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
 | 
						|
          cast<IntegerType>(ScaledRegTy)->getBitWidth())
 | 
						|
        return Modified;
 | 
						|
    }
 | 
						|
 | 
						|
    if (AddrMode.BaseGV) {
 | 
						|
      if (ResultPtr)
 | 
						|
        return Modified;
 | 
						|
 | 
						|
      ResultPtr = AddrMode.BaseGV;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the real base value actually came from an inttoptr, then the matcher
 | 
						|
    // will look through it and provide only the integer value. In that case,
 | 
						|
    // use it here.
 | 
						|
    if (!DL->isNonIntegralPointerType(Addr->getType())) {
 | 
						|
      if (!ResultPtr && AddrMode.BaseReg) {
 | 
						|
        ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
 | 
						|
                                           "sunkaddr");
 | 
						|
        AddrMode.BaseReg = nullptr;
 | 
						|
      } else if (!ResultPtr && AddrMode.Scale == 1) {
 | 
						|
        ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
 | 
						|
                                           "sunkaddr");
 | 
						|
        AddrMode.Scale = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ResultPtr &&
 | 
						|
        !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
 | 
						|
      SunkAddr = Constant::getNullValue(Addr->getType());
 | 
						|
    } else if (!ResultPtr) {
 | 
						|
      return Modified;
 | 
						|
    } else {
 | 
						|
      Type *I8PtrTy =
 | 
						|
          Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
 | 
						|
      Type *I8Ty = Builder.getInt8Ty();
 | 
						|
 | 
						|
      // Start with the base register. Do this first so that subsequent address
 | 
						|
      // matching finds it last, which will prevent it from trying to match it
 | 
						|
      // as the scaled value in case it happens to be a mul. That would be
 | 
						|
      // problematic if we've sunk a different mul for the scale, because then
 | 
						|
      // we'd end up sinking both muls.
 | 
						|
      if (AddrMode.BaseReg) {
 | 
						|
        Value *V = AddrMode.BaseReg;
 | 
						|
        if (V->getType() != IntPtrTy)
 | 
						|
          V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
 | 
						|
 | 
						|
        ResultIndex = V;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add the scale value.
 | 
						|
      if (AddrMode.Scale) {
 | 
						|
        Value *V = AddrMode.ScaledReg;
 | 
						|
        if (V->getType() == IntPtrTy) {
 | 
						|
          // done.
 | 
						|
        } else {
 | 
						|
          assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | 
						|
                 cast<IntegerType>(V->getType())->getBitWidth() &&
 | 
						|
                 "We can't transform if ScaledReg is too narrow");
 | 
						|
          V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
 | 
						|
        }
 | 
						|
 | 
						|
        if (AddrMode.Scale != 1)
 | 
						|
          V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
 | 
						|
                                "sunkaddr");
 | 
						|
        if (ResultIndex)
 | 
						|
          ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
 | 
						|
        else
 | 
						|
          ResultIndex = V;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add in the Base Offset if present.
 | 
						|
      if (AddrMode.BaseOffs) {
 | 
						|
        Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | 
						|
        if (ResultIndex) {
 | 
						|
          // We need to add this separately from the scale above to help with
 | 
						|
          // SDAG consecutive load/store merging.
 | 
						|
          if (ResultPtr->getType() != I8PtrTy)
 | 
						|
            ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
 | 
						|
          ResultPtr =
 | 
						|
              AddrMode.InBounds
 | 
						|
                  ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
 | 
						|
                                              "sunkaddr")
 | 
						|
                  : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
 | 
						|
        }
 | 
						|
 | 
						|
        ResultIndex = V;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!ResultIndex) {
 | 
						|
        SunkAddr = ResultPtr;
 | 
						|
      } else {
 | 
						|
        if (ResultPtr->getType() != I8PtrTy)
 | 
						|
          ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
 | 
						|
        SunkAddr =
 | 
						|
            AddrMode.InBounds
 | 
						|
                ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
 | 
						|
                                            "sunkaddr")
 | 
						|
                : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
 | 
						|
      }
 | 
						|
 | 
						|
      if (SunkAddr->getType() != Addr->getType())
 | 
						|
        SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // We'd require a ptrtoint/inttoptr down the line, which we can't do for
 | 
						|
    // non-integral pointers, so in that case bail out now.
 | 
						|
    Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
 | 
						|
    Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
 | 
						|
    PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
 | 
						|
    PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
 | 
						|
    if (DL->isNonIntegralPointerType(Addr->getType()) ||
 | 
						|
        (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
 | 
						|
        (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
 | 
						|
        (AddrMode.BaseGV &&
 | 
						|
         DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
 | 
						|
      return Modified;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
 | 
						|
                      << " for " << *MemoryInst << "\n");
 | 
						|
    Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
 | 
						|
    Value *Result = nullptr;
 | 
						|
 | 
						|
    // Start with the base register. Do this first so that subsequent address
 | 
						|
    // matching finds it last, which will prevent it from trying to match it
 | 
						|
    // as the scaled value in case it happens to be a mul. That would be
 | 
						|
    // problematic if we've sunk a different mul for the scale, because then
 | 
						|
    // we'd end up sinking both muls.
 | 
						|
    if (AddrMode.BaseReg) {
 | 
						|
      Value *V = AddrMode.BaseReg;
 | 
						|
      if (V->getType()->isPointerTy())
 | 
						|
        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
 | 
						|
      if (V->getType() != IntPtrTy)
 | 
						|
        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
 | 
						|
      Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the scale value.
 | 
						|
    if (AddrMode.Scale) {
 | 
						|
      Value *V = AddrMode.ScaledReg;
 | 
						|
      if (V->getType() == IntPtrTy) {
 | 
						|
        // done.
 | 
						|
      } else if (V->getType()->isPointerTy()) {
 | 
						|
        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
 | 
						|
      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | 
						|
                 cast<IntegerType>(V->getType())->getBitWidth()) {
 | 
						|
        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
 | 
						|
      } else {
 | 
						|
        // It is only safe to sign extend the BaseReg if we know that the math
 | 
						|
        // required to create it did not overflow before we extend it. Since
 | 
						|
        // the original IR value was tossed in favor of a constant back when
 | 
						|
        // the AddrMode was created we need to bail out gracefully if widths
 | 
						|
        // do not match instead of extending it.
 | 
						|
        Instruction *I = dyn_cast_or_null<Instruction>(Result);
 | 
						|
        if (I && (Result != AddrMode.BaseReg))
 | 
						|
          I->eraseFromParent();
 | 
						|
        return Modified;
 | 
						|
      }
 | 
						|
      if (AddrMode.Scale != 1)
 | 
						|
        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
 | 
						|
                              "sunkaddr");
 | 
						|
      if (Result)
 | 
						|
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | 
						|
      else
 | 
						|
        Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add in the BaseGV if present.
 | 
						|
    if (AddrMode.BaseGV) {
 | 
						|
      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
 | 
						|
      if (Result)
 | 
						|
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | 
						|
      else
 | 
						|
        Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add in the Base Offset if present.
 | 
						|
    if (AddrMode.BaseOffs) {
 | 
						|
      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | 
						|
      if (Result)
 | 
						|
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | 
						|
      else
 | 
						|
        Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Result)
 | 
						|
      SunkAddr = Constant::getNullValue(Addr->getType());
 | 
						|
    else
 | 
						|
      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
 | 
						|
  }
 | 
						|
 | 
						|
  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
 | 
						|
  // Store the newly computed address into the cache. In the case we reused a
 | 
						|
  // value, this should be idempotent.
 | 
						|
  SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
 | 
						|
 | 
						|
  // If we have no uses, recursively delete the value and all dead instructions
 | 
						|
  // using it.
 | 
						|
  if (Repl->use_empty()) {
 | 
						|
    resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
 | 
						|
      RecursivelyDeleteTriviallyDeadInstructions(
 | 
						|
          Repl, TLInfo, nullptr,
 | 
						|
          [&](Value *V) { removeAllAssertingVHReferences(V); });
 | 
						|
    });
 | 
						|
  }
 | 
						|
  ++NumMemoryInsts;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
 | 
						|
/// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
 | 
						|
/// only handle a 2 operand GEP in the same basic block or a splat constant
 | 
						|
/// vector. The 2 operands to the GEP must have a scalar pointer and a vector
 | 
						|
/// index.
 | 
						|
///
 | 
						|
/// If the existing GEP has a vector base pointer that is splat, we can look
 | 
						|
/// through the splat to find the scalar pointer. If we can't find a scalar
 | 
						|
/// pointer there's nothing we can do.
 | 
						|
///
 | 
						|
/// If we have a GEP with more than 2 indices where the middle indices are all
 | 
						|
/// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
 | 
						|
///
 | 
						|
/// If the final index isn't a vector or is a splat, we can emit a scalar GEP
 | 
						|
/// followed by a GEP with an all zeroes vector index. This will enable
 | 
						|
/// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
 | 
						|
/// zero index.
 | 
						|
bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
 | 
						|
                                               Value *Ptr) {
 | 
						|
  Value *NewAddr;
 | 
						|
 | 
						|
  if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
 | 
						|
    // Don't optimize GEPs that don't have indices.
 | 
						|
    if (!GEP->hasIndices())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
 | 
						|
    // FIXME: We should support this by sinking the GEP.
 | 
						|
    if (MemoryInst->getParent() != GEP->getParent())
 | 
						|
      return false;
 | 
						|
 | 
						|
    SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end());
 | 
						|
 | 
						|
    bool RewriteGEP = false;
 | 
						|
 | 
						|
    if (Ops[0]->getType()->isVectorTy()) {
 | 
						|
      Ops[0] = getSplatValue(Ops[0]);
 | 
						|
      if (!Ops[0])
 | 
						|
        return false;
 | 
						|
      RewriteGEP = true;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned FinalIndex = Ops.size() - 1;
 | 
						|
 | 
						|
    // Ensure all but the last index is 0.
 | 
						|
    // FIXME: This isn't strictly required. All that's required is that they are
 | 
						|
    // all scalars or splats.
 | 
						|
    for (unsigned i = 1; i < FinalIndex; ++i) {
 | 
						|
      auto *C = dyn_cast<Constant>(Ops[i]);
 | 
						|
      if (!C)
 | 
						|
        return false;
 | 
						|
      if (isa<VectorType>(C->getType()))
 | 
						|
        C = C->getSplatValue();
 | 
						|
      auto *CI = dyn_cast_or_null<ConstantInt>(C);
 | 
						|
      if (!CI || !CI->isZero())
 | 
						|
        return false;
 | 
						|
      // Scalarize the index if needed.
 | 
						|
      Ops[i] = CI;
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to scalarize the final index.
 | 
						|
    if (Ops[FinalIndex]->getType()->isVectorTy()) {
 | 
						|
      if (Value *V = getSplatValue(Ops[FinalIndex])) {
 | 
						|
        auto *C = dyn_cast<ConstantInt>(V);
 | 
						|
        // Don't scalarize all zeros vector.
 | 
						|
        if (!C || !C->isZero()) {
 | 
						|
          Ops[FinalIndex] = V;
 | 
						|
          RewriteGEP = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we made any changes or the we have extra operands, we need to generate
 | 
						|
    // new instructions.
 | 
						|
    if (!RewriteGEP && Ops.size() == 2)
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
 | 
						|
 | 
						|
    IRBuilder<> Builder(MemoryInst);
 | 
						|
 | 
						|
    Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
 | 
						|
 | 
						|
    // If the final index isn't a vector, emit a scalar GEP containing all ops
 | 
						|
    // and a vector GEP with all zeroes final index.
 | 
						|
    if (!Ops[FinalIndex]->getType()->isVectorTy()) {
 | 
						|
      NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front());
 | 
						|
      auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
 | 
						|
      NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy));
 | 
						|
    } else {
 | 
						|
      Value *Base = Ops[0];
 | 
						|
      Value *Index = Ops[FinalIndex];
 | 
						|
 | 
						|
      // Create a scalar GEP if there are more than 2 operands.
 | 
						|
      if (Ops.size() != 2) {
 | 
						|
        // Replace the last index with 0.
 | 
						|
        Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy);
 | 
						|
        Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front());
 | 
						|
      }
 | 
						|
 | 
						|
      // Now create the GEP with scalar pointer and vector index.
 | 
						|
      NewAddr = Builder.CreateGEP(Base, Index);
 | 
						|
    }
 | 
						|
  } else if (!isa<Constant>(Ptr)) {
 | 
						|
    // Not a GEP, maybe its a splat and we can create a GEP to enable
 | 
						|
    // SelectionDAGBuilder to use it as a uniform base.
 | 
						|
    Value *V = getSplatValue(Ptr);
 | 
						|
    if (!V)
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
 | 
						|
 | 
						|
    IRBuilder<> Builder(MemoryInst);
 | 
						|
 | 
						|
    // Emit a vector GEP with a scalar pointer and all 0s vector index.
 | 
						|
    Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
 | 
						|
    auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
 | 
						|
    NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy));
 | 
						|
  } else {
 | 
						|
    // Constant, SelectionDAGBuilder knows to check if its a splat.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
 | 
						|
 | 
						|
  // If we have no uses, recursively delete the value and all dead instructions
 | 
						|
  // using it.
 | 
						|
  if (Ptr->use_empty())
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(
 | 
						|
        Ptr, TLInfo, nullptr,
 | 
						|
        [&](Value *V) { removeAllAssertingVHReferences(V); });
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// If there are any memory operands, use OptimizeMemoryInst to sink their
 | 
						|
/// address computing into the block when possible / profitable.
 | 
						|
bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  const TargetRegisterInfo *TRI =
 | 
						|
      TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
 | 
						|
  TargetLowering::AsmOperandInfoVector TargetConstraints =
 | 
						|
      TLI->ParseConstraints(*DL, TRI, *CS);
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | 
						|
    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | 
						|
 | 
						|
    // Compute the constraint code and ConstraintType to use.
 | 
						|
    TLI->ComputeConstraintToUse(OpInfo, SDValue());
 | 
						|
 | 
						|
    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | 
						|
        OpInfo.isIndirect) {
 | 
						|
      Value *OpVal = CS->getArgOperand(ArgNo++);
 | 
						|
      MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
 | 
						|
    } else if (OpInfo.Type == InlineAsm::isInput)
 | 
						|
      ArgNo++;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if all the uses of \p Val are equivalent (or free) zero or
 | 
						|
/// sign extensions.
 | 
						|
static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
 | 
						|
  assert(!Val->use_empty() && "Input must have at least one use");
 | 
						|
  const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
 | 
						|
  bool IsSExt = isa<SExtInst>(FirstUser);
 | 
						|
  Type *ExtTy = FirstUser->getType();
 | 
						|
  for (const User *U : Val->users()) {
 | 
						|
    const Instruction *UI = cast<Instruction>(U);
 | 
						|
    if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
 | 
						|
      return false;
 | 
						|
    Type *CurTy = UI->getType();
 | 
						|
    // Same input and output types: Same instruction after CSE.
 | 
						|
    if (CurTy == ExtTy)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If IsSExt is true, we are in this situation:
 | 
						|
    // a = Val
 | 
						|
    // b = sext ty1 a to ty2
 | 
						|
    // c = sext ty1 a to ty3
 | 
						|
    // Assuming ty2 is shorter than ty3, this could be turned into:
 | 
						|
    // a = Val
 | 
						|
    // b = sext ty1 a to ty2
 | 
						|
    // c = sext ty2 b to ty3
 | 
						|
    // However, the last sext is not free.
 | 
						|
    if (IsSExt)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // This is a ZExt, maybe this is free to extend from one type to another.
 | 
						|
    // In that case, we would not account for a different use.
 | 
						|
    Type *NarrowTy;
 | 
						|
    Type *LargeTy;
 | 
						|
    if (ExtTy->getScalarType()->getIntegerBitWidth() >
 | 
						|
        CurTy->getScalarType()->getIntegerBitWidth()) {
 | 
						|
      NarrowTy = CurTy;
 | 
						|
      LargeTy = ExtTy;
 | 
						|
    } else {
 | 
						|
      NarrowTy = ExtTy;
 | 
						|
      LargeTy = CurTy;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!TLI.isZExtFree(NarrowTy, LargeTy))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  // All uses are the same or can be derived from one another for free.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to speculatively promote extensions in \p Exts and continue
 | 
						|
/// promoting through newly promoted operands recursively as far as doing so is
 | 
						|
/// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
 | 
						|
/// When some promotion happened, \p TPT contains the proper state to revert
 | 
						|
/// them.
 | 
						|
///
 | 
						|
/// \return true if some promotion happened, false otherwise.
 | 
						|
bool CodeGenPrepare::tryToPromoteExts(
 | 
						|
    TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
 | 
						|
    SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
 | 
						|
    unsigned CreatedInstsCost) {
 | 
						|
  bool Promoted = false;
 | 
						|
 | 
						|
  // Iterate over all the extensions to try to promote them.
 | 
						|
  for (auto *I : Exts) {
 | 
						|
    // Early check if we directly have ext(load).
 | 
						|
    if (isa<LoadInst>(I->getOperand(0))) {
 | 
						|
      ProfitablyMovedExts.push_back(I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check whether or not we want to do any promotion.  The reason we have
 | 
						|
    // this check inside the for loop is to catch the case where an extension
 | 
						|
    // is directly fed by a load because in such case the extension can be moved
 | 
						|
    // up without any promotion on its operands.
 | 
						|
    if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Get the action to perform the promotion.
 | 
						|
    TypePromotionHelper::Action TPH =
 | 
						|
        TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
 | 
						|
    // Check if we can promote.
 | 
						|
    if (!TPH) {
 | 
						|
      // Save the current extension as we cannot move up through its operand.
 | 
						|
      ProfitablyMovedExts.push_back(I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Save the current state.
 | 
						|
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
        TPT.getRestorationPoint();
 | 
						|
    SmallVector<Instruction *, 4> NewExts;
 | 
						|
    unsigned NewCreatedInstsCost = 0;
 | 
						|
    unsigned ExtCost = !TLI->isExtFree(I);
 | 
						|
    // Promote.
 | 
						|
    Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
 | 
						|
                             &NewExts, nullptr, *TLI);
 | 
						|
    assert(PromotedVal &&
 | 
						|
           "TypePromotionHelper should have filtered out those cases");
 | 
						|
 | 
						|
    // We would be able to merge only one extension in a load.
 | 
						|
    // Therefore, if we have more than 1 new extension we heuristically
 | 
						|
    // cut this search path, because it means we degrade the code quality.
 | 
						|
    // With exactly 2, the transformation is neutral, because we will merge
 | 
						|
    // one extension but leave one. However, we optimistically keep going,
 | 
						|
    // because the new extension may be removed too.
 | 
						|
    long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
 | 
						|
    // FIXME: It would be possible to propagate a negative value instead of
 | 
						|
    // conservatively ceiling it to 0.
 | 
						|
    TotalCreatedInstsCost =
 | 
						|
        std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
 | 
						|
    if (!StressExtLdPromotion &&
 | 
						|
        (TotalCreatedInstsCost > 1 ||
 | 
						|
         !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
 | 
						|
      // This promotion is not profitable, rollback to the previous state, and
 | 
						|
      // save the current extension in ProfitablyMovedExts as the latest
 | 
						|
      // speculative promotion turned out to be unprofitable.
 | 
						|
      TPT.rollback(LastKnownGood);
 | 
						|
      ProfitablyMovedExts.push_back(I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Continue promoting NewExts as far as doing so is profitable.
 | 
						|
    SmallVector<Instruction *, 2> NewlyMovedExts;
 | 
						|
    (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
 | 
						|
    bool NewPromoted = false;
 | 
						|
    for (auto *ExtInst : NewlyMovedExts) {
 | 
						|
      Instruction *MovedExt = cast<Instruction>(ExtInst);
 | 
						|
      Value *ExtOperand = MovedExt->getOperand(0);
 | 
						|
      // If we have reached to a load, we need this extra profitability check
 | 
						|
      // as it could potentially be merged into an ext(load).
 | 
						|
      if (isa<LoadInst>(ExtOperand) &&
 | 
						|
          !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
 | 
						|
            (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
 | 
						|
        continue;
 | 
						|
 | 
						|
      ProfitablyMovedExts.push_back(MovedExt);
 | 
						|
      NewPromoted = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If none of speculative promotions for NewExts is profitable, rollback
 | 
						|
    // and save the current extension (I) as the last profitable extension.
 | 
						|
    if (!NewPromoted) {
 | 
						|
      TPT.rollback(LastKnownGood);
 | 
						|
      ProfitablyMovedExts.push_back(I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // The promotion is profitable.
 | 
						|
    Promoted = true;
 | 
						|
  }
 | 
						|
  return Promoted;
 | 
						|
}
 | 
						|
 | 
						|
/// Merging redundant sexts when one is dominating the other.
 | 
						|
bool CodeGenPrepare::mergeSExts(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto &Entry : ValToSExtendedUses) {
 | 
						|
    SExts &Insts = Entry.second;
 | 
						|
    SExts CurPts;
 | 
						|
    for (Instruction *Inst : Insts) {
 | 
						|
      if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
 | 
						|
          Inst->getOperand(0) != Entry.first)
 | 
						|
        continue;
 | 
						|
      bool inserted = false;
 | 
						|
      for (auto &Pt : CurPts) {
 | 
						|
        if (getDT(F).dominates(Inst, Pt)) {
 | 
						|
          Pt->replaceAllUsesWith(Inst);
 | 
						|
          RemovedInsts.insert(Pt);
 | 
						|
          Pt->removeFromParent();
 | 
						|
          Pt = Inst;
 | 
						|
          inserted = true;
 | 
						|
          Changed = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (!getDT(F).dominates(Pt, Inst))
 | 
						|
          // Give up if we need to merge in a common dominator as the
 | 
						|
          // experiments show it is not profitable.
 | 
						|
          continue;
 | 
						|
        Inst->replaceAllUsesWith(Pt);
 | 
						|
        RemovedInsts.insert(Inst);
 | 
						|
        Inst->removeFromParent();
 | 
						|
        inserted = true;
 | 
						|
        Changed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (!inserted)
 | 
						|
        CurPts.push_back(Inst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// Splitting large data structures so that the GEPs accessing them can have
 | 
						|
// smaller offsets so that they can be sunk to the same blocks as their users.
 | 
						|
// For example, a large struct starting from %base is split into two parts
 | 
						|
// where the second part starts from %new_base.
 | 
						|
//
 | 
						|
// Before:
 | 
						|
// BB0:
 | 
						|
//   %base     =
 | 
						|
//
 | 
						|
// BB1:
 | 
						|
//   %gep0     = gep %base, off0
 | 
						|
//   %gep1     = gep %base, off1
 | 
						|
//   %gep2     = gep %base, off2
 | 
						|
//
 | 
						|
// BB2:
 | 
						|
//   %load1    = load %gep0
 | 
						|
//   %load2    = load %gep1
 | 
						|
//   %load3    = load %gep2
 | 
						|
//
 | 
						|
// After:
 | 
						|
// BB0:
 | 
						|
//   %base     =
 | 
						|
//   %new_base = gep %base, off0
 | 
						|
//
 | 
						|
// BB1:
 | 
						|
//   %new_gep0 = %new_base
 | 
						|
//   %new_gep1 = gep %new_base, off1 - off0
 | 
						|
//   %new_gep2 = gep %new_base, off2 - off0
 | 
						|
//
 | 
						|
// BB2:
 | 
						|
//   %load1    = load i32, i32* %new_gep0
 | 
						|
//   %load2    = load i32, i32* %new_gep1
 | 
						|
//   %load3    = load i32, i32* %new_gep2
 | 
						|
//
 | 
						|
// %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
 | 
						|
// their offsets are smaller enough to fit into the addressing mode.
 | 
						|
bool CodeGenPrepare::splitLargeGEPOffsets() {
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto &Entry : LargeOffsetGEPMap) {
 | 
						|
    Value *OldBase = Entry.first;
 | 
						|
    SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
 | 
						|
        &LargeOffsetGEPs = Entry.second;
 | 
						|
    auto compareGEPOffset =
 | 
						|
        [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
 | 
						|
            const std::pair<GetElementPtrInst *, int64_t> &RHS) {
 | 
						|
          if (LHS.first == RHS.first)
 | 
						|
            return false;
 | 
						|
          if (LHS.second != RHS.second)
 | 
						|
            return LHS.second < RHS.second;
 | 
						|
          return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
 | 
						|
        };
 | 
						|
    // Sorting all the GEPs of the same data structures based on the offsets.
 | 
						|
    llvm::sort(LargeOffsetGEPs, compareGEPOffset);
 | 
						|
    LargeOffsetGEPs.erase(
 | 
						|
        std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
 | 
						|
        LargeOffsetGEPs.end());
 | 
						|
    // Skip if all the GEPs have the same offsets.
 | 
						|
    if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
 | 
						|
      continue;
 | 
						|
    GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
 | 
						|
    int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
 | 
						|
    Value *NewBaseGEP = nullptr;
 | 
						|
 | 
						|
    auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
 | 
						|
    while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
 | 
						|
      GetElementPtrInst *GEP = LargeOffsetGEP->first;
 | 
						|
      int64_t Offset = LargeOffsetGEP->second;
 | 
						|
      if (Offset != BaseOffset) {
 | 
						|
        TargetLowering::AddrMode AddrMode;
 | 
						|
        AddrMode.BaseOffs = Offset - BaseOffset;
 | 
						|
        // The result type of the GEP might not be the type of the memory
 | 
						|
        // access.
 | 
						|
        if (!TLI->isLegalAddressingMode(*DL, AddrMode,
 | 
						|
                                        GEP->getResultElementType(),
 | 
						|
                                        GEP->getAddressSpace())) {
 | 
						|
          // We need to create a new base if the offset to the current base is
 | 
						|
          // too large to fit into the addressing mode. So, a very large struct
 | 
						|
          // may be split into several parts.
 | 
						|
          BaseGEP = GEP;
 | 
						|
          BaseOffset = Offset;
 | 
						|
          NewBaseGEP = nullptr;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Generate a new GEP to replace the current one.
 | 
						|
      LLVMContext &Ctx = GEP->getContext();
 | 
						|
      Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
 | 
						|
      Type *I8PtrTy =
 | 
						|
          Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
 | 
						|
      Type *I8Ty = Type::getInt8Ty(Ctx);
 | 
						|
 | 
						|
      if (!NewBaseGEP) {
 | 
						|
        // Create a new base if we don't have one yet.  Find the insertion
 | 
						|
        // pointer for the new base first.
 | 
						|
        BasicBlock::iterator NewBaseInsertPt;
 | 
						|
        BasicBlock *NewBaseInsertBB;
 | 
						|
        if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
 | 
						|
          // If the base of the struct is an instruction, the new base will be
 | 
						|
          // inserted close to it.
 | 
						|
          NewBaseInsertBB = BaseI->getParent();
 | 
						|
          if (isa<PHINode>(BaseI))
 | 
						|
            NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
 | 
						|
          else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
 | 
						|
            NewBaseInsertBB =
 | 
						|
                SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
 | 
						|
            NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
 | 
						|
          } else
 | 
						|
            NewBaseInsertPt = std::next(BaseI->getIterator());
 | 
						|
        } else {
 | 
						|
          // If the current base is an argument or global value, the new base
 | 
						|
          // will be inserted to the entry block.
 | 
						|
          NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
 | 
						|
          NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
 | 
						|
        }
 | 
						|
        IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
 | 
						|
        // Create a new base.
 | 
						|
        Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
 | 
						|
        NewBaseGEP = OldBase;
 | 
						|
        if (NewBaseGEP->getType() != I8PtrTy)
 | 
						|
          NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
 | 
						|
        NewBaseGEP =
 | 
						|
            NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
 | 
						|
        NewGEPBases.insert(NewBaseGEP);
 | 
						|
      }
 | 
						|
 | 
						|
      IRBuilder<> Builder(GEP);
 | 
						|
      Value *NewGEP = NewBaseGEP;
 | 
						|
      if (Offset == BaseOffset) {
 | 
						|
        if (GEP->getType() != I8PtrTy)
 | 
						|
          NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
 | 
						|
      } else {
 | 
						|
        // Calculate the new offset for the new GEP.
 | 
						|
        Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
 | 
						|
        NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
 | 
						|
 | 
						|
        if (GEP->getType() != I8PtrTy)
 | 
						|
          NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
 | 
						|
      }
 | 
						|
      GEP->replaceAllUsesWith(NewGEP);
 | 
						|
      LargeOffsetGEPID.erase(GEP);
 | 
						|
      LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
 | 
						|
      GEP->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::optimizePhiType(
 | 
						|
    PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
 | 
						|
    SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
 | 
						|
  // We are looking for a collection on interconnected phi nodes that together
 | 
						|
  // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
 | 
						|
  // are of the same type. Convert the whole set of nodes to the type of the
 | 
						|
  // bitcast.
 | 
						|
  Type *PhiTy = I->getType();
 | 
						|
  Type *ConvertTy = nullptr;
 | 
						|
  if (Visited.count(I) ||
 | 
						|
      (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<Instruction *, 4> Worklist;
 | 
						|
  Worklist.push_back(cast<Instruction>(I));
 | 
						|
  SmallPtrSet<PHINode *, 4> PhiNodes;
 | 
						|
  PhiNodes.insert(I);
 | 
						|
  Visited.insert(I);
 | 
						|
  SmallPtrSet<Instruction *, 4> Defs;
 | 
						|
  SmallPtrSet<Instruction *, 4> Uses;
 | 
						|
  // This works by adding extra bitcasts between load/stores and removing
 | 
						|
  // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
 | 
						|
  // we can get in the situation where we remove a bitcast in one iteration
 | 
						|
  // just to add it again in the next. We need to ensure that at least one
 | 
						|
  // bitcast we remove are anchored to something that will not change back.
 | 
						|
  bool AnyAnchored = false;
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *II = Worklist.pop_back_val();
 | 
						|
 | 
						|
    if (auto *Phi = dyn_cast<PHINode>(II)) {
 | 
						|
      // Handle Defs, which might also be PHI's
 | 
						|
      for (Value *V : Phi->incoming_values()) {
 | 
						|
        if (auto *OpPhi = dyn_cast<PHINode>(V)) {
 | 
						|
          if (!PhiNodes.count(OpPhi)) {
 | 
						|
            if (Visited.count(OpPhi))
 | 
						|
              return false;
 | 
						|
            PhiNodes.insert(OpPhi);
 | 
						|
            Visited.insert(OpPhi);
 | 
						|
            Worklist.push_back(OpPhi);
 | 
						|
          }
 | 
						|
        } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
 | 
						|
          if (!OpLoad->isSimple())
 | 
						|
            return false;
 | 
						|
          if (!Defs.count(OpLoad)) {
 | 
						|
            Defs.insert(OpLoad);
 | 
						|
            Worklist.push_back(OpLoad);
 | 
						|
          }
 | 
						|
        } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
 | 
						|
          if (!Defs.count(OpEx)) {
 | 
						|
            Defs.insert(OpEx);
 | 
						|
            Worklist.push_back(OpEx);
 | 
						|
          }
 | 
						|
        } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
 | 
						|
          if (!ConvertTy)
 | 
						|
            ConvertTy = OpBC->getOperand(0)->getType();
 | 
						|
          if (OpBC->getOperand(0)->getType() != ConvertTy)
 | 
						|
            return false;
 | 
						|
          if (!Defs.count(OpBC)) {
 | 
						|
            Defs.insert(OpBC);
 | 
						|
            Worklist.push_back(OpBC);
 | 
						|
            AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
 | 
						|
                           !isa<ExtractElementInst>(OpBC->getOperand(0));
 | 
						|
          }
 | 
						|
        } else if (!isa<UndefValue>(V)) {
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle uses which might also be phi's
 | 
						|
    for (User *V : II->users()) {
 | 
						|
      if (auto *OpPhi = dyn_cast<PHINode>(V)) {
 | 
						|
        if (!PhiNodes.count(OpPhi)) {
 | 
						|
          if (Visited.count(OpPhi))
 | 
						|
            return false;
 | 
						|
          PhiNodes.insert(OpPhi);
 | 
						|
          Visited.insert(OpPhi);
 | 
						|
          Worklist.push_back(OpPhi);
 | 
						|
        }
 | 
						|
      } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
 | 
						|
        if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
 | 
						|
          return false;
 | 
						|
        Uses.insert(OpStore);
 | 
						|
      } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
 | 
						|
        if (!ConvertTy)
 | 
						|
          ConvertTy = OpBC->getType();
 | 
						|
        if (OpBC->getType() != ConvertTy)
 | 
						|
          return false;
 | 
						|
        Uses.insert(OpBC);
 | 
						|
        AnyAnchored |=
 | 
						|
            any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
 | 
						|
      } else {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
 | 
						|
                    << *ConvertTy << "\n");
 | 
						|
 | 
						|
  // Create all the new phi nodes of the new type, and bitcast any loads to the
 | 
						|
  // correct type.
 | 
						|
  ValueToValueMap ValMap;
 | 
						|
  ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy);
 | 
						|
  for (Instruction *D : Defs) {
 | 
						|
    if (isa<BitCastInst>(D)) {
 | 
						|
      ValMap[D] = D->getOperand(0);
 | 
						|
      DeletedInstrs.insert(D);
 | 
						|
    } else {
 | 
						|
      ValMap[D] =
 | 
						|
          new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (PHINode *Phi : PhiNodes)
 | 
						|
    ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
 | 
						|
                                  Phi->getName() + ".tc", Phi);
 | 
						|
  // Pipe together all the PhiNodes.
 | 
						|
  for (PHINode *Phi : PhiNodes) {
 | 
						|
    PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
 | 
						|
    for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
 | 
						|
      NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
 | 
						|
                          Phi->getIncomingBlock(i));
 | 
						|
    Visited.insert(NewPhi);
 | 
						|
  }
 | 
						|
  // And finally pipe up the stores and bitcasts
 | 
						|
  for (Instruction *U : Uses) {
 | 
						|
    if (isa<BitCastInst>(U)) {
 | 
						|
      DeletedInstrs.insert(U);
 | 
						|
      U->replaceAllUsesWith(ValMap[U->getOperand(0)]);
 | 
						|
    } else {
 | 
						|
      U->setOperand(0,
 | 
						|
                    new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Save the removed phis to be deleted later.
 | 
						|
  for (PHINode *Phi : PhiNodes)
 | 
						|
    DeletedInstrs.insert(Phi);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::optimizePhiTypes(Function &F) {
 | 
						|
  if (!OptimizePhiTypes)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  SmallPtrSet<PHINode *, 4> Visited;
 | 
						|
  SmallPtrSet<Instruction *, 4> DeletedInstrs;
 | 
						|
 | 
						|
  // Attempt to optimize all the phis in the functions to the correct type.
 | 
						|
  for (auto &BB : F)
 | 
						|
    for (auto &Phi : BB.phis())
 | 
						|
      Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
 | 
						|
 | 
						|
  // Remove any old phi's that have been converted.
 | 
						|
  for (auto *I : DeletedInstrs) {
 | 
						|
    I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | 
						|
    I->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true, if an ext(load) can be formed from an extension in
 | 
						|
/// \p MovedExts.
 | 
						|
bool CodeGenPrepare::canFormExtLd(
 | 
						|
    const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
 | 
						|
    Instruction *&Inst, bool HasPromoted) {
 | 
						|
  for (auto *MovedExtInst : MovedExts) {
 | 
						|
    if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
 | 
						|
      LI = cast<LoadInst>(MovedExtInst->getOperand(0));
 | 
						|
      Inst = MovedExtInst;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!LI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If they're already in the same block, there's nothing to do.
 | 
						|
  // Make the cheap checks first if we did not promote.
 | 
						|
  // If we promoted, we need to check if it is indeed profitable.
 | 
						|
  if (!HasPromoted && LI->getParent() == Inst->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return TLI->isExtLoad(LI, Inst, *DL);
 | 
						|
}
 | 
						|
 | 
						|
/// Move a zext or sext fed by a load into the same basic block as the load,
 | 
						|
/// unless conditions are unfavorable. This allows SelectionDAG to fold the
 | 
						|
/// extend into the load.
 | 
						|
///
 | 
						|
/// E.g.,
 | 
						|
/// \code
 | 
						|
/// %ld = load i32* %addr
 | 
						|
/// %add = add nuw i32 %ld, 4
 | 
						|
/// %zext = zext i32 %add to i64
 | 
						|
// \endcode
 | 
						|
/// =>
 | 
						|
/// \code
 | 
						|
/// %ld = load i32* %addr
 | 
						|
/// %zext = zext i32 %ld to i64
 | 
						|
/// %add = add nuw i64 %zext, 4
 | 
						|
/// \encode
 | 
						|
/// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
 | 
						|
/// allow us to match zext(load i32*) to i64.
 | 
						|
///
 | 
						|
/// Also, try to promote the computations used to obtain a sign extended
 | 
						|
/// value used into memory accesses.
 | 
						|
/// E.g.,
 | 
						|
/// \code
 | 
						|
/// a = add nsw i32 b, 3
 | 
						|
/// d = sext i32 a to i64
 | 
						|
/// e = getelementptr ..., i64 d
 | 
						|
/// \endcode
 | 
						|
/// =>
 | 
						|
/// \code
 | 
						|
/// f = sext i32 b to i64
 | 
						|
/// a = add nsw i64 f, 3
 | 
						|
/// e = getelementptr ..., i64 a
 | 
						|
/// \endcode
 | 
						|
///
 | 
						|
/// \p Inst[in/out] the extension may be modified during the process if some
 | 
						|
/// promotions apply.
 | 
						|
bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
 | 
						|
  bool AllowPromotionWithoutCommonHeader = false;
 | 
						|
  /// See if it is an interesting sext operations for the address type
 | 
						|
  /// promotion before trying to promote it, e.g., the ones with the right
 | 
						|
  /// type and used in memory accesses.
 | 
						|
  bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
 | 
						|
      *Inst, AllowPromotionWithoutCommonHeader);
 | 
						|
  TypePromotionTransaction TPT(RemovedInsts);
 | 
						|
  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
      TPT.getRestorationPoint();
 | 
						|
  SmallVector<Instruction *, 1> Exts;
 | 
						|
  SmallVector<Instruction *, 2> SpeculativelyMovedExts;
 | 
						|
  Exts.push_back(Inst);
 | 
						|
 | 
						|
  bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
 | 
						|
 | 
						|
  // Look for a load being extended.
 | 
						|
  LoadInst *LI = nullptr;
 | 
						|
  Instruction *ExtFedByLoad;
 | 
						|
 | 
						|
  // Try to promote a chain of computation if it allows to form an extended
 | 
						|
  // load.
 | 
						|
  if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
 | 
						|
    assert(LI && ExtFedByLoad && "Expect a valid load and extension");
 | 
						|
    TPT.commit();
 | 
						|
    // Move the extend into the same block as the load.
 | 
						|
    ExtFedByLoad->moveAfter(LI);
 | 
						|
    ++NumExtsMoved;
 | 
						|
    Inst = ExtFedByLoad;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Continue promoting SExts if known as considerable depending on targets.
 | 
						|
  if (ATPConsiderable &&
 | 
						|
      performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
 | 
						|
                                  HasPromoted, TPT, SpeculativelyMovedExts))
 | 
						|
    return true;
 | 
						|
 | 
						|
  TPT.rollback(LastKnownGood);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Perform address type promotion if doing so is profitable.
 | 
						|
// If AllowPromotionWithoutCommonHeader == false, we should find other sext
 | 
						|
// instructions that sign extended the same initial value. However, if
 | 
						|
// AllowPromotionWithoutCommonHeader == true, we expect promoting the
 | 
						|
// extension is just profitable.
 | 
						|
bool CodeGenPrepare::performAddressTypePromotion(
 | 
						|
    Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
 | 
						|
    bool HasPromoted, TypePromotionTransaction &TPT,
 | 
						|
    SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
 | 
						|
  bool Promoted = false;
 | 
						|
  SmallPtrSet<Instruction *, 1> UnhandledExts;
 | 
						|
  bool AllSeenFirst = true;
 | 
						|
  for (auto *I : SpeculativelyMovedExts) {
 | 
						|
    Value *HeadOfChain = I->getOperand(0);
 | 
						|
    DenseMap<Value *, Instruction *>::iterator AlreadySeen =
 | 
						|
        SeenChainsForSExt.find(HeadOfChain);
 | 
						|
    // If there is an unhandled SExt which has the same header, try to promote
 | 
						|
    // it as well.
 | 
						|
    if (AlreadySeen != SeenChainsForSExt.end()) {
 | 
						|
      if (AlreadySeen->second != nullptr)
 | 
						|
        UnhandledExts.insert(AlreadySeen->second);
 | 
						|
      AllSeenFirst = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
 | 
						|
                        SpeculativelyMovedExts.size() == 1)) {
 | 
						|
    TPT.commit();
 | 
						|
    if (HasPromoted)
 | 
						|
      Promoted = true;
 | 
						|
    for (auto *I : SpeculativelyMovedExts) {
 | 
						|
      Value *HeadOfChain = I->getOperand(0);
 | 
						|
      SeenChainsForSExt[HeadOfChain] = nullptr;
 | 
						|
      ValToSExtendedUses[HeadOfChain].push_back(I);
 | 
						|
    }
 | 
						|
    // Update Inst as promotion happen.
 | 
						|
    Inst = SpeculativelyMovedExts.pop_back_val();
 | 
						|
  } else {
 | 
						|
    // This is the first chain visited from the header, keep the current chain
 | 
						|
    // as unhandled. Defer to promote this until we encounter another SExt
 | 
						|
    // chain derived from the same header.
 | 
						|
    for (auto *I : SpeculativelyMovedExts) {
 | 
						|
      Value *HeadOfChain = I->getOperand(0);
 | 
						|
      SeenChainsForSExt[HeadOfChain] = Inst;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AllSeenFirst && !UnhandledExts.empty())
 | 
						|
    for (auto *VisitedSExt : UnhandledExts) {
 | 
						|
      if (RemovedInsts.count(VisitedSExt))
 | 
						|
        continue;
 | 
						|
      TypePromotionTransaction TPT(RemovedInsts);
 | 
						|
      SmallVector<Instruction *, 1> Exts;
 | 
						|
      SmallVector<Instruction *, 2> Chains;
 | 
						|
      Exts.push_back(VisitedSExt);
 | 
						|
      bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
 | 
						|
      TPT.commit();
 | 
						|
      if (HasPromoted)
 | 
						|
        Promoted = true;
 | 
						|
      for (auto *I : Chains) {
 | 
						|
        Value *HeadOfChain = I->getOperand(0);
 | 
						|
        // Mark this as handled.
 | 
						|
        SeenChainsForSExt[HeadOfChain] = nullptr;
 | 
						|
        ValToSExtendedUses[HeadOfChain].push_back(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  return Promoted;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
 | 
						|
  BasicBlock *DefBB = I->getParent();
 | 
						|
 | 
						|
  // If the result of a {s|z}ext and its source are both live out, rewrite all
 | 
						|
  // other uses of the source with result of extension.
 | 
						|
  Value *Src = I->getOperand(0);
 | 
						|
  if (Src->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only do this xform if truncating is free.
 | 
						|
  if (!TLI->isTruncateFree(I->getType(), Src->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only safe to perform the optimization if the source is also defined in
 | 
						|
  // this block.
 | 
						|
  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool DefIsLiveOut = false;
 | 
						|
  for (User *U : I->users()) {
 | 
						|
    Instruction *UI = cast<Instruction>(U);
 | 
						|
 | 
						|
    // Figure out which BB this ext is used in.
 | 
						|
    BasicBlock *UserBB = UI->getParent();
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
    DefIsLiveOut = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (!DefIsLiveOut)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure none of the uses are PHI nodes.
 | 
						|
  for (User *U : Src->users()) {
 | 
						|
    Instruction *UI = cast<Instruction>(U);
 | 
						|
    BasicBlock *UserBB = UI->getParent();
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
    // Be conservative. We don't want this xform to end up introducing
 | 
						|
    // reloads just before load / store instructions.
 | 
						|
    if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // InsertedTruncs - Only insert one trunc in each block once.
 | 
						|
  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Use &U : Src->uses()) {
 | 
						|
    Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
 | 
						|
    // Figure out which BB this ext is used in.
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
 | 
						|
    // Both src and def are live in this block. Rewrite the use.
 | 
						|
    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
 | 
						|
 | 
						|
    if (!InsertedTrunc) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | 
						|
      assert(InsertPt != UserBB->end());
 | 
						|
      InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
 | 
						|
      InsertedInsts.insert(InsertedTrunc);
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace a use of the {s|z}ext source with a use of the result.
 | 
						|
    U = InsertedTrunc;
 | 
						|
    ++NumExtUses;
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
// Find loads whose uses only use some of the loaded value's bits.  Add an "and"
 | 
						|
// just after the load if the target can fold this into one extload instruction,
 | 
						|
// with the hope of eliminating some of the other later "and" instructions using
 | 
						|
// the loaded value.  "and"s that are made trivially redundant by the insertion
 | 
						|
// of the new "and" are removed by this function, while others (e.g. those whose
 | 
						|
// path from the load goes through a phi) are left for isel to potentially
 | 
						|
// remove.
 | 
						|
//
 | 
						|
// For example:
 | 
						|
//
 | 
						|
// b0:
 | 
						|
//   x = load i32
 | 
						|
//   ...
 | 
						|
// b1:
 | 
						|
//   y = and x, 0xff
 | 
						|
//   z = use y
 | 
						|
//
 | 
						|
// becomes:
 | 
						|
//
 | 
						|
// b0:
 | 
						|
//   x = load i32
 | 
						|
//   x' = and x, 0xff
 | 
						|
//   ...
 | 
						|
// b1:
 | 
						|
//   z = use x'
 | 
						|
//
 | 
						|
// whereas:
 | 
						|
//
 | 
						|
// b0:
 | 
						|
//   x1 = load i32
 | 
						|
//   ...
 | 
						|
// b1:
 | 
						|
//   x2 = load i32
 | 
						|
//   ...
 | 
						|
// b2:
 | 
						|
//   x = phi x1, x2
 | 
						|
//   y = and x, 0xff
 | 
						|
//
 | 
						|
// becomes (after a call to optimizeLoadExt for each load):
 | 
						|
//
 | 
						|
// b0:
 | 
						|
//   x1 = load i32
 | 
						|
//   x1' = and x1, 0xff
 | 
						|
//   ...
 | 
						|
// b1:
 | 
						|
//   x2 = load i32
 | 
						|
//   x2' = and x2, 0xff
 | 
						|
//   ...
 | 
						|
// b2:
 | 
						|
//   x = phi x1', x2'
 | 
						|
//   y = and x, 0xff
 | 
						|
bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
 | 
						|
  if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Skip loads we've already transformed.
 | 
						|
  if (Load->hasOneUse() &&
 | 
						|
      InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Look at all uses of Load, looking through phis, to determine how many bits
 | 
						|
  // of the loaded value are needed.
 | 
						|
  SmallVector<Instruction *, 8> WorkList;
 | 
						|
  SmallPtrSet<Instruction *, 16> Visited;
 | 
						|
  SmallVector<Instruction *, 8> AndsToMaybeRemove;
 | 
						|
  for (auto *U : Load->users())
 | 
						|
    WorkList.push_back(cast<Instruction>(U));
 | 
						|
 | 
						|
  EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
 | 
						|
  unsigned BitWidth = LoadResultVT.getSizeInBits();
 | 
						|
  APInt DemandBits(BitWidth, 0);
 | 
						|
  APInt WidestAndBits(BitWidth, 0);
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Instruction *I = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
 | 
						|
    // Break use-def graph loops.
 | 
						|
    if (!Visited.insert(I).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // For a PHI node, push all of its users.
 | 
						|
    if (auto *Phi = dyn_cast<PHINode>(I)) {
 | 
						|
      for (auto *U : Phi->users())
 | 
						|
        WorkList.push_back(cast<Instruction>(U));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::And: {
 | 
						|
      auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
 | 
						|
      if (!AndC)
 | 
						|
        return false;
 | 
						|
      APInt AndBits = AndC->getValue();
 | 
						|
      DemandBits |= AndBits;
 | 
						|
      // Keep track of the widest and mask we see.
 | 
						|
      if (AndBits.ugt(WidestAndBits))
 | 
						|
        WidestAndBits = AndBits;
 | 
						|
      if (AndBits == WidestAndBits && I->getOperand(0) == Load)
 | 
						|
        AndsToMaybeRemove.push_back(I);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Instruction::Shl: {
 | 
						|
      auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
 | 
						|
      if (!ShlC)
 | 
						|
        return false;
 | 
						|
      uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
 | 
						|
      DemandBits.setLowBits(BitWidth - ShiftAmt);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Instruction::Trunc: {
 | 
						|
      EVT TruncVT = TLI->getValueType(*DL, I->getType());
 | 
						|
      unsigned TruncBitWidth = TruncVT.getSizeInBits();
 | 
						|
      DemandBits.setLowBits(TruncBitWidth);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  uint32_t ActiveBits = DemandBits.getActiveBits();
 | 
						|
  // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
 | 
						|
  // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
 | 
						|
  // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
 | 
						|
  // (and (load x) 1) is not matched as a single instruction, rather as a LDR
 | 
						|
  // followed by an AND.
 | 
						|
  // TODO: Look into removing this restriction by fixing backends to either
 | 
						|
  // return false for isLoadExtLegal for i1 or have them select this pattern to
 | 
						|
  // a single instruction.
 | 
						|
  //
 | 
						|
  // Also avoid hoisting if we didn't see any ands with the exact DemandBits
 | 
						|
  // mask, since these are the only ands that will be removed by isel.
 | 
						|
  if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
 | 
						|
      WidestAndBits != DemandBits)
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVMContext &Ctx = Load->getType()->getContext();
 | 
						|
  Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
 | 
						|
  EVT TruncVT = TLI->getValueType(*DL, TruncTy);
 | 
						|
 | 
						|
  // Reject cases that won't be matched as extloads.
 | 
						|
  if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
 | 
						|
      !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  IRBuilder<> Builder(Load->getNextNode());
 | 
						|
  auto *NewAnd = cast<Instruction>(
 | 
						|
      Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
 | 
						|
  // Mark this instruction as "inserted by CGP", so that other
 | 
						|
  // optimizations don't touch it.
 | 
						|
  InsertedInsts.insert(NewAnd);
 | 
						|
 | 
						|
  // Replace all uses of load with new and (except for the use of load in the
 | 
						|
  // new and itself).
 | 
						|
  Load->replaceAllUsesWith(NewAnd);
 | 
						|
  NewAnd->setOperand(0, Load);
 | 
						|
 | 
						|
  // Remove any and instructions that are now redundant.
 | 
						|
  for (auto *And : AndsToMaybeRemove)
 | 
						|
    // Check that the and mask is the same as the one we decided to put on the
 | 
						|
    // new and.
 | 
						|
    if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
 | 
						|
      And->replaceAllUsesWith(NewAnd);
 | 
						|
      if (&*CurInstIterator == And)
 | 
						|
        CurInstIterator = std::next(And->getIterator());
 | 
						|
      And->eraseFromParent();
 | 
						|
      ++NumAndUses;
 | 
						|
    }
 | 
						|
 | 
						|
  ++NumAndsAdded;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if V (an operand of a select instruction) is an expensive instruction
 | 
						|
/// that is only used once.
 | 
						|
static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
 | 
						|
  auto *I = dyn_cast<Instruction>(V);
 | 
						|
  // If it's safe to speculatively execute, then it should not have side
 | 
						|
  // effects; therefore, it's safe to sink and possibly *not* execute.
 | 
						|
  return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
 | 
						|
         TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >=
 | 
						|
         TargetTransformInfo::TCC_Expensive;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if a SelectInst should be turned into an explicit branch.
 | 
						|
static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
 | 
						|
                                                const TargetLowering *TLI,
 | 
						|
                                                SelectInst *SI) {
 | 
						|
  // If even a predictable select is cheap, then a branch can't be cheaper.
 | 
						|
  if (!TLI->isPredictableSelectExpensive())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: This should use the same heuristics as IfConversion to determine
 | 
						|
  // whether a select is better represented as a branch.
 | 
						|
 | 
						|
  // If metadata tells us that the select condition is obviously predictable,
 | 
						|
  // then we want to replace the select with a branch.
 | 
						|
  uint64_t TrueWeight, FalseWeight;
 | 
						|
  if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
 | 
						|
    uint64_t Max = std::max(TrueWeight, FalseWeight);
 | 
						|
    uint64_t Sum = TrueWeight + FalseWeight;
 | 
						|
    if (Sum != 0) {
 | 
						|
      auto Probability = BranchProbability::getBranchProbability(Max, Sum);
 | 
						|
      if (Probability > TLI->getPredictableBranchThreshold())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
 | 
						|
 | 
						|
  // If a branch is predictable, an out-of-order CPU can avoid blocking on its
 | 
						|
  // comparison condition. If the compare has more than one use, there's
 | 
						|
  // probably another cmov or setcc around, so it's not worth emitting a branch.
 | 
						|
  if (!Cmp || !Cmp->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If either operand of the select is expensive and only needed on one side
 | 
						|
  // of the select, we should form a branch.
 | 
						|
  if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
 | 
						|
      sinkSelectOperand(TTI, SI->getFalseValue()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// If \p isTrue is true, return the true value of \p SI, otherwise return
 | 
						|
/// false value of \p SI. If the true/false value of \p SI is defined by any
 | 
						|
/// select instructions in \p Selects, look through the defining select
 | 
						|
/// instruction until the true/false value is not defined in \p Selects.
 | 
						|
static Value *getTrueOrFalseValue(
 | 
						|
    SelectInst *SI, bool isTrue,
 | 
						|
    const SmallPtrSet<const Instruction *, 2> &Selects) {
 | 
						|
  Value *V = nullptr;
 | 
						|
 | 
						|
  for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
 | 
						|
       DefSI = dyn_cast<SelectInst>(V)) {
 | 
						|
    assert(DefSI->getCondition() == SI->getCondition() &&
 | 
						|
           "The condition of DefSI does not match with SI");
 | 
						|
    V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
 | 
						|
  }
 | 
						|
 | 
						|
  assert(V && "Failed to get select true/false value");
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
 | 
						|
  assert(Shift->isShift() && "Expected a shift");
 | 
						|
 | 
						|
  // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
 | 
						|
  // general vector shifts, and (3) the shift amount is a select-of-splatted
 | 
						|
  // values, hoist the shifts before the select:
 | 
						|
  //   shift Op0, (select Cond, TVal, FVal) -->
 | 
						|
  //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
 | 
						|
  //
 | 
						|
  // This is inverting a generic IR transform when we know that the cost of a
 | 
						|
  // general vector shift is more than the cost of 2 shift-by-scalars.
 | 
						|
  // We can't do this effectively in SDAG because we may not be able to
 | 
						|
  // determine if the select operands are splats from within a basic block.
 | 
						|
  Type *Ty = Shift->getType();
 | 
						|
  if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
 | 
						|
    return false;
 | 
						|
  Value *Cond, *TVal, *FVal;
 | 
						|
  if (!match(Shift->getOperand(1),
 | 
						|
             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
 | 
						|
    return false;
 | 
						|
  if (!isSplatValue(TVal) || !isSplatValue(FVal))
 | 
						|
    return false;
 | 
						|
 | 
						|
  IRBuilder<> Builder(Shift);
 | 
						|
  BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
 | 
						|
  Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
 | 
						|
  Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
 | 
						|
  Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
 | 
						|
  Shift->replaceAllUsesWith(NewSel);
 | 
						|
  Shift->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
 | 
						|
  Intrinsic::ID Opcode = Fsh->getIntrinsicID();
 | 
						|
  assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
 | 
						|
         "Expected a funnel shift");
 | 
						|
 | 
						|
  // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
 | 
						|
  // than general vector shifts, and (3) the shift amount is select-of-splatted
 | 
						|
  // values, hoist the funnel shifts before the select:
 | 
						|
  //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
 | 
						|
  //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
 | 
						|
  //
 | 
						|
  // This is inverting a generic IR transform when we know that the cost of a
 | 
						|
  // general vector shift is more than the cost of 2 shift-by-scalars.
 | 
						|
  // We can't do this effectively in SDAG because we may not be able to
 | 
						|
  // determine if the select operands are splats from within a basic block.
 | 
						|
  Type *Ty = Fsh->getType();
 | 
						|
  if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
 | 
						|
    return false;
 | 
						|
  Value *Cond, *TVal, *FVal;
 | 
						|
  if (!match(Fsh->getOperand(2),
 | 
						|
             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
 | 
						|
    return false;
 | 
						|
  if (!isSplatValue(TVal) || !isSplatValue(FVal))
 | 
						|
    return false;
 | 
						|
 | 
						|
  IRBuilder<> Builder(Fsh);
 | 
						|
  Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
 | 
						|
  Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal });
 | 
						|
  Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal });
 | 
						|
  Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
 | 
						|
  Fsh->replaceAllUsesWith(NewSel);
 | 
						|
  Fsh->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// If we have a SelectInst that will likely profit from branch prediction,
 | 
						|
/// turn it into a branch.
 | 
						|
bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
 | 
						|
  if (DisableSelectToBranch)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find all consecutive select instructions that share the same condition.
 | 
						|
  SmallVector<SelectInst *, 2> ASI;
 | 
						|
  ASI.push_back(SI);
 | 
						|
  for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
 | 
						|
       It != SI->getParent()->end(); ++It) {
 | 
						|
    SelectInst *I = dyn_cast<SelectInst>(&*It);
 | 
						|
    if (I && SI->getCondition() == I->getCondition()) {
 | 
						|
      ASI.push_back(I);
 | 
						|
    } else {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SelectInst *LastSI = ASI.back();
 | 
						|
  // Increment the current iterator to skip all the rest of select instructions
 | 
						|
  // because they will be either "not lowered" or "all lowered" to branch.
 | 
						|
  CurInstIterator = std::next(LastSI->getIterator());
 | 
						|
 | 
						|
  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
 | 
						|
 | 
						|
  // Can we convert the 'select' to CF ?
 | 
						|
  if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
 | 
						|
    return false;
 | 
						|
 | 
						|
  TargetLowering::SelectSupportKind SelectKind;
 | 
						|
  if (VectorCond)
 | 
						|
    SelectKind = TargetLowering::VectorMaskSelect;
 | 
						|
  else if (SI->getType()->isVectorTy())
 | 
						|
    SelectKind = TargetLowering::ScalarCondVectorVal;
 | 
						|
  else
 | 
						|
    SelectKind = TargetLowering::ScalarValSelect;
 | 
						|
 | 
						|
  if (TLI->isSelectSupported(SelectKind) &&
 | 
						|
      (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
 | 
						|
       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The DominatorTree needs to be rebuilt by any consumers after this
 | 
						|
  // transformation. We simply reset here rather than setting the ModifiedDT
 | 
						|
  // flag to avoid restarting the function walk in runOnFunction for each
 | 
						|
  // select optimized.
 | 
						|
  DT.reset();
 | 
						|
 | 
						|
  // Transform a sequence like this:
 | 
						|
  //    start:
 | 
						|
  //       %cmp = cmp uge i32 %a, %b
 | 
						|
  //       %sel = select i1 %cmp, i32 %c, i32 %d
 | 
						|
  //
 | 
						|
  // Into:
 | 
						|
  //    start:
 | 
						|
  //       %cmp = cmp uge i32 %a, %b
 | 
						|
  //       %cmp.frozen = freeze %cmp
 | 
						|
  //       br i1 %cmp.frozen, label %select.true, label %select.false
 | 
						|
  //    select.true:
 | 
						|
  //       br label %select.end
 | 
						|
  //    select.false:
 | 
						|
  //       br label %select.end
 | 
						|
  //    select.end:
 | 
						|
  //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
 | 
						|
  //
 | 
						|
  // %cmp should be frozen, otherwise it may introduce undefined behavior.
 | 
						|
  // In addition, we may sink instructions that produce %c or %d from
 | 
						|
  // the entry block into the destination(s) of the new branch.
 | 
						|
  // If the true or false blocks do not contain a sunken instruction, that
 | 
						|
  // block and its branch may be optimized away. In that case, one side of the
 | 
						|
  // first branch will point directly to select.end, and the corresponding PHI
 | 
						|
  // predecessor block will be the start block.
 | 
						|
 | 
						|
  // First, we split the block containing the select into 2 blocks.
 | 
						|
  BasicBlock *StartBlock = SI->getParent();
 | 
						|
  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
 | 
						|
  BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
 | 
						|
  BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
 | 
						|
 | 
						|
  // Delete the unconditional branch that was just created by the split.
 | 
						|
  StartBlock->getTerminator()->eraseFromParent();
 | 
						|
 | 
						|
  // These are the new basic blocks for the conditional branch.
 | 
						|
  // At least one will become an actual new basic block.
 | 
						|
  BasicBlock *TrueBlock = nullptr;
 | 
						|
  BasicBlock *FalseBlock = nullptr;
 | 
						|
  BranchInst *TrueBranch = nullptr;
 | 
						|
  BranchInst *FalseBranch = nullptr;
 | 
						|
 | 
						|
  // Sink expensive instructions into the conditional blocks to avoid executing
 | 
						|
  // them speculatively.
 | 
						|
  for (SelectInst *SI : ASI) {
 | 
						|
    if (sinkSelectOperand(TTI, SI->getTrueValue())) {
 | 
						|
      if (TrueBlock == nullptr) {
 | 
						|
        TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
 | 
						|
                                       EndBlock->getParent(), EndBlock);
 | 
						|
        TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
 | 
						|
        TrueBranch->setDebugLoc(SI->getDebugLoc());
 | 
						|
      }
 | 
						|
      auto *TrueInst = cast<Instruction>(SI->getTrueValue());
 | 
						|
      TrueInst->moveBefore(TrueBranch);
 | 
						|
    }
 | 
						|
    if (sinkSelectOperand(TTI, SI->getFalseValue())) {
 | 
						|
      if (FalseBlock == nullptr) {
 | 
						|
        FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
 | 
						|
                                        EndBlock->getParent(), EndBlock);
 | 
						|
        FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
 | 
						|
        FalseBranch->setDebugLoc(SI->getDebugLoc());
 | 
						|
      }
 | 
						|
      auto *FalseInst = cast<Instruction>(SI->getFalseValue());
 | 
						|
      FalseInst->moveBefore(FalseBranch);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there was nothing to sink, then arbitrarily choose the 'false' side
 | 
						|
  // for a new input value to the PHI.
 | 
						|
  if (TrueBlock == FalseBlock) {
 | 
						|
    assert(TrueBlock == nullptr &&
 | 
						|
           "Unexpected basic block transform while optimizing select");
 | 
						|
 | 
						|
    FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
 | 
						|
                                    EndBlock->getParent(), EndBlock);
 | 
						|
    auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
 | 
						|
    FalseBranch->setDebugLoc(SI->getDebugLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert the real conditional branch based on the original condition.
 | 
						|
  // If we did not create a new block for one of the 'true' or 'false' paths
 | 
						|
  // of the condition, it means that side of the branch goes to the end block
 | 
						|
  // directly and the path originates from the start block from the point of
 | 
						|
  // view of the new PHI.
 | 
						|
  BasicBlock *TT, *FT;
 | 
						|
  if (TrueBlock == nullptr) {
 | 
						|
    TT = EndBlock;
 | 
						|
    FT = FalseBlock;
 | 
						|
    TrueBlock = StartBlock;
 | 
						|
  } else if (FalseBlock == nullptr) {
 | 
						|
    TT = TrueBlock;
 | 
						|
    FT = EndBlock;
 | 
						|
    FalseBlock = StartBlock;
 | 
						|
  } else {
 | 
						|
    TT = TrueBlock;
 | 
						|
    FT = FalseBlock;
 | 
						|
  }
 | 
						|
  IRBuilder<> IB(SI);
 | 
						|
  auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
 | 
						|
  IB.CreateCondBr(CondFr, TT, FT, SI);
 | 
						|
 | 
						|
  SmallPtrSet<const Instruction *, 2> INS;
 | 
						|
  INS.insert(ASI.begin(), ASI.end());
 | 
						|
  // Use reverse iterator because later select may use the value of the
 | 
						|
  // earlier select, and we need to propagate value through earlier select
 | 
						|
  // to get the PHI operand.
 | 
						|
  for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
 | 
						|
    SelectInst *SI = *It;
 | 
						|
    // The select itself is replaced with a PHI Node.
 | 
						|
    PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
 | 
						|
    PN->takeName(SI);
 | 
						|
    PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
 | 
						|
    PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
 | 
						|
    PN->setDebugLoc(SI->getDebugLoc());
 | 
						|
 | 
						|
    SI->replaceAllUsesWith(PN);
 | 
						|
    SI->eraseFromParent();
 | 
						|
    INS.erase(SI);
 | 
						|
    ++NumSelectsExpanded;
 | 
						|
  }
 | 
						|
 | 
						|
  // Instruct OptimizeBlock to skip to the next block.
 | 
						|
  CurInstIterator = StartBlock->end();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Some targets only accept certain types for splat inputs. For example a VDUP
 | 
						|
/// in MVE takes a GPR (integer) register, and the instruction that incorporate
 | 
						|
/// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
 | 
						|
bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
 | 
						|
  if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
 | 
						|
                            m_Undef(), m_ZeroMask())))
 | 
						|
    return false;
 | 
						|
  Type *NewType = TLI->shouldConvertSplatType(SVI);
 | 
						|
  if (!NewType)
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
 | 
						|
  assert(!NewType->isVectorTy() && "Expected a scalar type!");
 | 
						|
  assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
 | 
						|
         "Expected a type of the same size!");
 | 
						|
  auto *NewVecType =
 | 
						|
      FixedVectorType::get(NewType, SVIVecType->getNumElements());
 | 
						|
 | 
						|
  // Create a bitcast (shuffle (insert (bitcast(..))))
 | 
						|
  IRBuilder<> Builder(SVI->getContext());
 | 
						|
  Builder.SetInsertPoint(SVI);
 | 
						|
  Value *BC1 = Builder.CreateBitCast(
 | 
						|
      cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
 | 
						|
  Value *Insert = Builder.CreateInsertElement(UndefValue::get(NewVecType), BC1,
 | 
						|
                                              (uint64_t)0);
 | 
						|
  Value *Shuffle = Builder.CreateShuffleVector(Insert, SVI->getShuffleMask());
 | 
						|
  Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
 | 
						|
 | 
						|
  SVI->replaceAllUsesWith(BC2);
 | 
						|
  RecursivelyDeleteTriviallyDeadInstructions(
 | 
						|
      SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
 | 
						|
 | 
						|
  // Also hoist the bitcast up to its operand if it they are not in the same
 | 
						|
  // block.
 | 
						|
  if (auto *BCI = dyn_cast<Instruction>(BC1))
 | 
						|
    if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
 | 
						|
      if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
 | 
						|
          !Op->isTerminator() && !Op->isEHPad())
 | 
						|
        BCI->moveAfter(Op);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
 | 
						|
  // If the operands of I can be folded into a target instruction together with
 | 
						|
  // I, duplicate and sink them.
 | 
						|
  SmallVector<Use *, 4> OpsToSink;
 | 
						|
  if (!TLI->shouldSinkOperands(I, OpsToSink))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // OpsToSink can contain multiple uses in a use chain (e.g.
 | 
						|
  // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
 | 
						|
  // uses must come first, so we process the ops in reverse order so as to not
 | 
						|
  // create invalid IR.
 | 
						|
  BasicBlock *TargetBB = I->getParent();
 | 
						|
  bool Changed = false;
 | 
						|
  SmallVector<Use *, 4> ToReplace;
 | 
						|
  for (Use *U : reverse(OpsToSink)) {
 | 
						|
    auto *UI = cast<Instruction>(U->get());
 | 
						|
    if (UI->getParent() == TargetBB || isa<PHINode>(UI))
 | 
						|
      continue;
 | 
						|
    ToReplace.push_back(U);
 | 
						|
  }
 | 
						|
 | 
						|
  SetVector<Instruction *> MaybeDead;
 | 
						|
  DenseMap<Instruction *, Instruction *> NewInstructions;
 | 
						|
  Instruction *InsertPoint = I;
 | 
						|
  for (Use *U : ToReplace) {
 | 
						|
    auto *UI = cast<Instruction>(U->get());
 | 
						|
    Instruction *NI = UI->clone();
 | 
						|
    NewInstructions[UI] = NI;
 | 
						|
    MaybeDead.insert(UI);
 | 
						|
    LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
 | 
						|
    NI->insertBefore(InsertPoint);
 | 
						|
    InsertPoint = NI;
 | 
						|
    InsertedInsts.insert(NI);
 | 
						|
 | 
						|
    // Update the use for the new instruction, making sure that we update the
 | 
						|
    // sunk instruction uses, if it is part of a chain that has already been
 | 
						|
    // sunk.
 | 
						|
    Instruction *OldI = cast<Instruction>(U->getUser());
 | 
						|
    if (NewInstructions.count(OldI))
 | 
						|
      NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
 | 
						|
    else
 | 
						|
      U->set(NI);
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove instructions that are dead after sinking.
 | 
						|
  for (auto *I : MaybeDead) {
 | 
						|
    if (!I->hasNUsesOrMore(1)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
 | 
						|
      I->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
 | 
						|
  Value *Cond = SI->getCondition();
 | 
						|
  Type *OldType = Cond->getType();
 | 
						|
  LLVMContext &Context = Cond->getContext();
 | 
						|
  MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
 | 
						|
  unsigned RegWidth = RegType.getSizeInBits();
 | 
						|
 | 
						|
  if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the register width is greater than the type width, expand the condition
 | 
						|
  // of the switch instruction and each case constant to the width of the
 | 
						|
  // register. By widening the type of the switch condition, subsequent
 | 
						|
  // comparisons (for case comparisons) will not need to be extended to the
 | 
						|
  // preferred register width, so we will potentially eliminate N-1 extends,
 | 
						|
  // where N is the number of cases in the switch.
 | 
						|
  auto *NewType = Type::getIntNTy(Context, RegWidth);
 | 
						|
 | 
						|
  // Zero-extend the switch condition and case constants unless the switch
 | 
						|
  // condition is a function argument that is already being sign-extended.
 | 
						|
  // In that case, we can avoid an unnecessary mask/extension by sign-extending
 | 
						|
  // everything instead.
 | 
						|
  Instruction::CastOps ExtType = Instruction::ZExt;
 | 
						|
  if (auto *Arg = dyn_cast<Argument>(Cond))
 | 
						|
    if (Arg->hasSExtAttr())
 | 
						|
      ExtType = Instruction::SExt;
 | 
						|
 | 
						|
  auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
 | 
						|
  ExtInst->insertBefore(SI);
 | 
						|
  ExtInst->setDebugLoc(SI->getDebugLoc());
 | 
						|
  SI->setCondition(ExtInst);
 | 
						|
  for (auto Case : SI->cases()) {
 | 
						|
    APInt NarrowConst = Case.getCaseValue()->getValue();
 | 
						|
    APInt WideConst = (ExtType == Instruction::ZExt) ?
 | 
						|
                      NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
 | 
						|
    Case.setValue(ConstantInt::get(Context, WideConst));
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Helper class to promote a scalar operation to a vector one.
 | 
						|
/// This class is used to move downward extractelement transition.
 | 
						|
/// E.g.,
 | 
						|
/// a = vector_op <2 x i32>
 | 
						|
/// b = extractelement <2 x i32> a, i32 0
 | 
						|
/// c = scalar_op b
 | 
						|
/// store c
 | 
						|
///
 | 
						|
/// =>
 | 
						|
/// a = vector_op <2 x i32>
 | 
						|
/// c = vector_op a (equivalent to scalar_op on the related lane)
 | 
						|
/// * d = extractelement <2 x i32> c, i32 0
 | 
						|
/// * store d
 | 
						|
/// Assuming both extractelement and store can be combine, we get rid of the
 | 
						|
/// transition.
 | 
						|
class VectorPromoteHelper {
 | 
						|
  /// DataLayout associated with the current module.
 | 
						|
  const DataLayout &DL;
 | 
						|
 | 
						|
  /// Used to perform some checks on the legality of vector operations.
 | 
						|
  const TargetLowering &TLI;
 | 
						|
 | 
						|
  /// Used to estimated the cost of the promoted chain.
 | 
						|
  const TargetTransformInfo &TTI;
 | 
						|
 | 
						|
  /// The transition being moved downwards.
 | 
						|
  Instruction *Transition;
 | 
						|
 | 
						|
  /// The sequence of instructions to be promoted.
 | 
						|
  SmallVector<Instruction *, 4> InstsToBePromoted;
 | 
						|
 | 
						|
  /// Cost of combining a store and an extract.
 | 
						|
  unsigned StoreExtractCombineCost;
 | 
						|
 | 
						|
  /// Instruction that will be combined with the transition.
 | 
						|
  Instruction *CombineInst = nullptr;
 | 
						|
 | 
						|
  /// The instruction that represents the current end of the transition.
 | 
						|
  /// Since we are faking the promotion until we reach the end of the chain
 | 
						|
  /// of computation, we need a way to get the current end of the transition.
 | 
						|
  Instruction *getEndOfTransition() const {
 | 
						|
    if (InstsToBePromoted.empty())
 | 
						|
      return Transition;
 | 
						|
    return InstsToBePromoted.back();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return the index of the original value in the transition.
 | 
						|
  /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
 | 
						|
  /// c, is at index 0.
 | 
						|
  unsigned getTransitionOriginalValueIdx() const {
 | 
						|
    assert(isa<ExtractElementInst>(Transition) &&
 | 
						|
           "Other kind of transitions are not supported yet");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return the index of the index in the transition.
 | 
						|
  /// E.g., for "extractelement <2 x i32> c, i32 0" the index
 | 
						|
  /// is at index 1.
 | 
						|
  unsigned getTransitionIdx() const {
 | 
						|
    assert(isa<ExtractElementInst>(Transition) &&
 | 
						|
           "Other kind of transitions are not supported yet");
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Get the type of the transition.
 | 
						|
  /// This is the type of the original value.
 | 
						|
  /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
 | 
						|
  /// transition is <2 x i32>.
 | 
						|
  Type *getTransitionType() const {
 | 
						|
    return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Promote \p ToBePromoted by moving \p Def downward through.
 | 
						|
  /// I.e., we have the following sequence:
 | 
						|
  /// Def = Transition <ty1> a to <ty2>
 | 
						|
  /// b = ToBePromoted <ty2> Def, ...
 | 
						|
  /// =>
 | 
						|
  /// b = ToBePromoted <ty1> a, ...
 | 
						|
  /// Def = Transition <ty1> ToBePromoted to <ty2>
 | 
						|
  void promoteImpl(Instruction *ToBePromoted);
 | 
						|
 | 
						|
  /// Check whether or not it is profitable to promote all the
 | 
						|
  /// instructions enqueued to be promoted.
 | 
						|
  bool isProfitableToPromote() {
 | 
						|
    Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
 | 
						|
    unsigned Index = isa<ConstantInt>(ValIdx)
 | 
						|
                         ? cast<ConstantInt>(ValIdx)->getZExtValue()
 | 
						|
                         : -1;
 | 
						|
    Type *PromotedType = getTransitionType();
 | 
						|
 | 
						|
    StoreInst *ST = cast<StoreInst>(CombineInst);
 | 
						|
    unsigned AS = ST->getPointerAddressSpace();
 | 
						|
    unsigned Align = ST->getAlignment();
 | 
						|
    // Check if this store is supported.
 | 
						|
    if (!TLI.allowsMisalignedMemoryAccesses(
 | 
						|
            TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
 | 
						|
            Align)) {
 | 
						|
      // If this is not supported, there is no way we can combine
 | 
						|
      // the extract with the store.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // The scalar chain of computation has to pay for the transition
 | 
						|
    // scalar to vector.
 | 
						|
    // The vector chain has to account for the combining cost.
 | 
						|
    uint64_t ScalarCost =
 | 
						|
        TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
 | 
						|
    uint64_t VectorCost = StoreExtractCombineCost;
 | 
						|
    enum TargetTransformInfo::TargetCostKind CostKind =
 | 
						|
      TargetTransformInfo::TCK_RecipThroughput;
 | 
						|
    for (const auto &Inst : InstsToBePromoted) {
 | 
						|
      // Compute the cost.
 | 
						|
      // By construction, all instructions being promoted are arithmetic ones.
 | 
						|
      // Moreover, one argument is a constant that can be viewed as a splat
 | 
						|
      // constant.
 | 
						|
      Value *Arg0 = Inst->getOperand(0);
 | 
						|
      bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
 | 
						|
                            isa<ConstantFP>(Arg0);
 | 
						|
      TargetTransformInfo::OperandValueKind Arg0OVK =
 | 
						|
          IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
 | 
						|
                         : TargetTransformInfo::OK_AnyValue;
 | 
						|
      TargetTransformInfo::OperandValueKind Arg1OVK =
 | 
						|
          !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
 | 
						|
                          : TargetTransformInfo::OK_AnyValue;
 | 
						|
      ScalarCost += TTI.getArithmeticInstrCost(
 | 
						|
          Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK);
 | 
						|
      VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
 | 
						|
                                               CostKind,
 | 
						|
                                               Arg0OVK, Arg1OVK);
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
 | 
						|
               << ScalarCost << "\nVector: " << VectorCost << '\n');
 | 
						|
    return ScalarCost > VectorCost;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Generate a constant vector with \p Val with the same
 | 
						|
  /// number of elements as the transition.
 | 
						|
  /// \p UseSplat defines whether or not \p Val should be replicated
 | 
						|
  /// across the whole vector.
 | 
						|
  /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
 | 
						|
  /// otherwise we generate a vector with as many undef as possible:
 | 
						|
  /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
 | 
						|
  /// used at the index of the extract.
 | 
						|
  Value *getConstantVector(Constant *Val, bool UseSplat) const {
 | 
						|
    unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
 | 
						|
    if (!UseSplat) {
 | 
						|
      // If we cannot determine where the constant must be, we have to
 | 
						|
      // use a splat constant.
 | 
						|
      Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
 | 
						|
      if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
 | 
						|
        ExtractIdx = CstVal->getSExtValue();
 | 
						|
      else
 | 
						|
        UseSplat = true;
 | 
						|
    }
 | 
						|
 | 
						|
    ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
 | 
						|
    if (UseSplat)
 | 
						|
      return ConstantVector::getSplat(EC, Val);
 | 
						|
 | 
						|
    if (!EC.isScalable()) {
 | 
						|
      SmallVector<Constant *, 4> ConstVec;
 | 
						|
      UndefValue *UndefVal = UndefValue::get(Val->getType());
 | 
						|
      for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
 | 
						|
        if (Idx == ExtractIdx)
 | 
						|
          ConstVec.push_back(Val);
 | 
						|
        else
 | 
						|
          ConstVec.push_back(UndefVal);
 | 
						|
      }
 | 
						|
      return ConstantVector::get(ConstVec);
 | 
						|
    } else
 | 
						|
      llvm_unreachable(
 | 
						|
          "Generate scalable vector for non-splat is unimplemented");
 | 
						|
  }
 | 
						|
 | 
						|
  /// Check if promoting to a vector type an operand at \p OperandIdx
 | 
						|
  /// in \p Use can trigger undefined behavior.
 | 
						|
  static bool canCauseUndefinedBehavior(const Instruction *Use,
 | 
						|
                                        unsigned OperandIdx) {
 | 
						|
    // This is not safe to introduce undef when the operand is on
 | 
						|
    // the right hand side of a division-like instruction.
 | 
						|
    if (OperandIdx != 1)
 | 
						|
      return false;
 | 
						|
    switch (Use->getOpcode()) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::URem:
 | 
						|
      return true;
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::FRem:
 | 
						|
      return !Use->hasNoNaNs();
 | 
						|
    }
 | 
						|
    llvm_unreachable(nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
 | 
						|
                      const TargetTransformInfo &TTI, Instruction *Transition,
 | 
						|
                      unsigned CombineCost)
 | 
						|
      : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
 | 
						|
        StoreExtractCombineCost(CombineCost) {
 | 
						|
    assert(Transition && "Do not know how to promote null");
 | 
						|
  }
 | 
						|
 | 
						|
  /// Check if we can promote \p ToBePromoted to \p Type.
 | 
						|
  bool canPromote(const Instruction *ToBePromoted) const {
 | 
						|
    // We could support CastInst too.
 | 
						|
    return isa<BinaryOperator>(ToBePromoted);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Check if it is profitable to promote \p ToBePromoted
 | 
						|
  /// by moving downward the transition through.
 | 
						|
  bool shouldPromote(const Instruction *ToBePromoted) const {
 | 
						|
    // Promote only if all the operands can be statically expanded.
 | 
						|
    // Indeed, we do not want to introduce any new kind of transitions.
 | 
						|
    for (const Use &U : ToBePromoted->operands()) {
 | 
						|
      const Value *Val = U.get();
 | 
						|
      if (Val == getEndOfTransition()) {
 | 
						|
        // If the use is a division and the transition is on the rhs,
 | 
						|
        // we cannot promote the operation, otherwise we may create a
 | 
						|
        // division by zero.
 | 
						|
        if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
 | 
						|
          return false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
 | 
						|
          !isa<ConstantFP>(Val))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    // Check that the resulting operation is legal.
 | 
						|
    int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
 | 
						|
    if (!ISDOpcode)
 | 
						|
      return false;
 | 
						|
    return StressStoreExtract ||
 | 
						|
           TLI.isOperationLegalOrCustom(
 | 
						|
               ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
 | 
						|
  }
 | 
						|
 | 
						|
  /// Check whether or not \p Use can be combined
 | 
						|
  /// with the transition.
 | 
						|
  /// I.e., is it possible to do Use(Transition) => AnotherUse?
 | 
						|
  bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
 | 
						|
 | 
						|
  /// Record \p ToBePromoted as part of the chain to be promoted.
 | 
						|
  void enqueueForPromotion(Instruction *ToBePromoted) {
 | 
						|
    InstsToBePromoted.push_back(ToBePromoted);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Set the instruction that will be combined with the transition.
 | 
						|
  void recordCombineInstruction(Instruction *ToBeCombined) {
 | 
						|
    assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
 | 
						|
    CombineInst = ToBeCombined;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Promote all the instructions enqueued for promotion if it is
 | 
						|
  /// is profitable.
 | 
						|
  /// \return True if the promotion happened, false otherwise.
 | 
						|
  bool promote() {
 | 
						|
    // Check if there is something to promote.
 | 
						|
    // Right now, if we do not have anything to combine with,
 | 
						|
    // we assume the promotion is not profitable.
 | 
						|
    if (InstsToBePromoted.empty() || !CombineInst)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Check cost.
 | 
						|
    if (!StressStoreExtract && !isProfitableToPromote())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Promote.
 | 
						|
    for (auto &ToBePromoted : InstsToBePromoted)
 | 
						|
      promoteImpl(ToBePromoted);
 | 
						|
    InstsToBePromoted.clear();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
 | 
						|
  // At this point, we know that all the operands of ToBePromoted but Def
 | 
						|
  // can be statically promoted.
 | 
						|
  // For Def, we need to use its parameter in ToBePromoted:
 | 
						|
  // b = ToBePromoted ty1 a
 | 
						|
  // Def = Transition ty1 b to ty2
 | 
						|
  // Move the transition down.
 | 
						|
  // 1. Replace all uses of the promoted operation by the transition.
 | 
						|
  // = ... b => = ... Def.
 | 
						|
  assert(ToBePromoted->getType() == Transition->getType() &&
 | 
						|
         "The type of the result of the transition does not match "
 | 
						|
         "the final type");
 | 
						|
  ToBePromoted->replaceAllUsesWith(Transition);
 | 
						|
  // 2. Update the type of the uses.
 | 
						|
  // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
 | 
						|
  Type *TransitionTy = getTransitionType();
 | 
						|
  ToBePromoted->mutateType(TransitionTy);
 | 
						|
  // 3. Update all the operands of the promoted operation with promoted
 | 
						|
  // operands.
 | 
						|
  // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
 | 
						|
  for (Use &U : ToBePromoted->operands()) {
 | 
						|
    Value *Val = U.get();
 | 
						|
    Value *NewVal = nullptr;
 | 
						|
    if (Val == Transition)
 | 
						|
      NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
 | 
						|
    else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
 | 
						|
             isa<ConstantFP>(Val)) {
 | 
						|
      // Use a splat constant if it is not safe to use undef.
 | 
						|
      NewVal = getConstantVector(
 | 
						|
          cast<Constant>(Val),
 | 
						|
          isa<UndefValue>(Val) ||
 | 
						|
              canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
 | 
						|
    } else
 | 
						|
      llvm_unreachable("Did you modified shouldPromote and forgot to update "
 | 
						|
                       "this?");
 | 
						|
    ToBePromoted->setOperand(U.getOperandNo(), NewVal);
 | 
						|
  }
 | 
						|
  Transition->moveAfter(ToBePromoted);
 | 
						|
  Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
 | 
						|
}
 | 
						|
 | 
						|
/// Some targets can do store(extractelement) with one instruction.
 | 
						|
/// Try to push the extractelement towards the stores when the target
 | 
						|
/// has this feature and this is profitable.
 | 
						|
bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
 | 
						|
  unsigned CombineCost = std::numeric_limits<unsigned>::max();
 | 
						|
  if (DisableStoreExtract ||
 | 
						|
      (!StressStoreExtract &&
 | 
						|
       !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
 | 
						|
                                       Inst->getOperand(1), CombineCost)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // At this point we know that Inst is a vector to scalar transition.
 | 
						|
  // Try to move it down the def-use chain, until:
 | 
						|
  // - We can combine the transition with its single use
 | 
						|
  //   => we got rid of the transition.
 | 
						|
  // - We escape the current basic block
 | 
						|
  //   => we would need to check that we are moving it at a cheaper place and
 | 
						|
  //      we do not do that for now.
 | 
						|
  BasicBlock *Parent = Inst->getParent();
 | 
						|
  LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
 | 
						|
  VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
 | 
						|
  // If the transition has more than one use, assume this is not going to be
 | 
						|
  // beneficial.
 | 
						|
  while (Inst->hasOneUse()) {
 | 
						|
    Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
 | 
						|
    LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
 | 
						|
 | 
						|
    if (ToBePromoted->getParent() != Parent) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
 | 
						|
                        << ToBePromoted->getParent()->getName()
 | 
						|
                        << ") than the transition (" << Parent->getName()
 | 
						|
                        << ").\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VPH.canCombine(ToBePromoted)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
 | 
						|
                        << "will be combined with: " << *ToBePromoted << '\n');
 | 
						|
      VPH.recordCombineInstruction(ToBePromoted);
 | 
						|
      bool Changed = VPH.promote();
 | 
						|
      NumStoreExtractExposed += Changed;
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Try promoting.\n");
 | 
						|
    if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
 | 
						|
      return false;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
 | 
						|
 | 
						|
    VPH.enqueueForPromotion(ToBePromoted);
 | 
						|
    Inst = ToBePromoted;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// For the instruction sequence of store below, F and I values
 | 
						|
/// are bundled together as an i64 value before being stored into memory.
 | 
						|
/// Sometimes it is more efficient to generate separate stores for F and I,
 | 
						|
/// which can remove the bitwise instructions or sink them to colder places.
 | 
						|
///
 | 
						|
///   (store (or (zext (bitcast F to i32) to i64),
 | 
						|
///              (shl (zext I to i64), 32)), addr)  -->
 | 
						|
///   (store F, addr) and (store I, addr+4)
 | 
						|
///
 | 
						|
/// Similarly, splitting for other merged store can also be beneficial, like:
 | 
						|
/// For pair of {i32, i32}, i64 store --> two i32 stores.
 | 
						|
/// For pair of {i32, i16}, i64 store --> two i32 stores.
 | 
						|
/// For pair of {i16, i16}, i32 store --> two i16 stores.
 | 
						|
/// For pair of {i16, i8},  i32 store --> two i16 stores.
 | 
						|
/// For pair of {i8, i8},   i16 store --> two i8 stores.
 | 
						|
///
 | 
						|
/// We allow each target to determine specifically which kind of splitting is
 | 
						|
/// supported.
 | 
						|
///
 | 
						|
/// The store patterns are commonly seen from the simple code snippet below
 | 
						|
/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
 | 
						|
///   void goo(const std::pair<int, float> &);
 | 
						|
///   hoo() {
 | 
						|
///     ...
 | 
						|
///     goo(std::make_pair(tmp, ftmp));
 | 
						|
///     ...
 | 
						|
///   }
 | 
						|
///
 | 
						|
/// Although we already have similar splitting in DAG Combine, we duplicate
 | 
						|
/// it in CodeGenPrepare to catch the case in which pattern is across
 | 
						|
/// multiple BBs. The logic in DAG Combine is kept to catch case generated
 | 
						|
/// during code expansion.
 | 
						|
static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
 | 
						|
                                const TargetLowering &TLI) {
 | 
						|
  // Handle simple but common cases only.
 | 
						|
  Type *StoreType = SI.getValueOperand()->getType();
 | 
						|
 | 
						|
  // The code below assumes shifting a value by <number of bits>,
 | 
						|
  // whereas scalable vectors would have to be shifted by
 | 
						|
  // <2log(vscale) + number of bits> in order to store the
 | 
						|
  // low/high parts. Bailing out for now.
 | 
						|
  if (isa<ScalableVectorType>(StoreType))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!DL.typeSizeEqualsStoreSize(StoreType) ||
 | 
						|
      DL.getTypeSizeInBits(StoreType) == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
 | 
						|
  Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
 | 
						|
  if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't split the store if it is volatile.
 | 
						|
  if (SI.isVolatile())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Match the following patterns:
 | 
						|
  // (store (or (zext LValue to i64),
 | 
						|
  //            (shl (zext HValue to i64), 32)), HalfValBitSize)
 | 
						|
  //  or
 | 
						|
  // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
 | 
						|
  //            (zext LValue to i64),
 | 
						|
  // Expect both operands of OR and the first operand of SHL have only
 | 
						|
  // one use.
 | 
						|
  Value *LValue, *HValue;
 | 
						|
  if (!match(SI.getValueOperand(),
 | 
						|
             m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
 | 
						|
                    m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
 | 
						|
                                   m_SpecificInt(HalfValBitSize))))))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check LValue and HValue are int with size less or equal than 32.
 | 
						|
  if (!LValue->getType()->isIntegerTy() ||
 | 
						|
      DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
 | 
						|
      !HValue->getType()->isIntegerTy() ||
 | 
						|
      DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
 | 
						|
  // as the input of target query.
 | 
						|
  auto *LBC = dyn_cast<BitCastInst>(LValue);
 | 
						|
  auto *HBC = dyn_cast<BitCastInst>(HValue);
 | 
						|
  EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
 | 
						|
                  : EVT::getEVT(LValue->getType());
 | 
						|
  EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
 | 
						|
                   : EVT::getEVT(HValue->getType());
 | 
						|
  if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Start to split store.
 | 
						|
  IRBuilder<> Builder(SI.getContext());
 | 
						|
  Builder.SetInsertPoint(&SI);
 | 
						|
 | 
						|
  // If LValue/HValue is a bitcast in another BB, create a new one in current
 | 
						|
  // BB so it may be merged with the splitted stores by dag combiner.
 | 
						|
  if (LBC && LBC->getParent() != SI.getParent())
 | 
						|
    LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
 | 
						|
  if (HBC && HBC->getParent() != SI.getParent())
 | 
						|
    HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
 | 
						|
 | 
						|
  bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
 | 
						|
  auto CreateSplitStore = [&](Value *V, bool Upper) {
 | 
						|
    V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
 | 
						|
    Value *Addr = Builder.CreateBitCast(
 | 
						|
        SI.getOperand(1),
 | 
						|
        SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
 | 
						|
    Align Alignment = SI.getAlign();
 | 
						|
    const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
 | 
						|
    if (IsOffsetStore) {
 | 
						|
      Addr = Builder.CreateGEP(
 | 
						|
          SplitStoreType, Addr,
 | 
						|
          ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
 | 
						|
 | 
						|
      // When splitting the store in half, naturally one half will retain the
 | 
						|
      // alignment of the original wider store, regardless of whether it was
 | 
						|
      // over-aligned or not, while the other will require adjustment.
 | 
						|
      Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
 | 
						|
    }
 | 
						|
    Builder.CreateAlignedStore(V, Addr, Alignment);
 | 
						|
  };
 | 
						|
 | 
						|
  CreateSplitStore(LValue, false);
 | 
						|
  CreateSplitStore(HValue, true);
 | 
						|
 | 
						|
  // Delete the old store.
 | 
						|
  SI.eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if the GEP has two operands, the first operand is of a sequential
 | 
						|
// type, and the second operand is a constant.
 | 
						|
static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
 | 
						|
  gep_type_iterator I = gep_type_begin(*GEP);
 | 
						|
  return GEP->getNumOperands() == 2 &&
 | 
						|
      I.isSequential() &&
 | 
						|
      isa<ConstantInt>(GEP->getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
// Try unmerging GEPs to reduce liveness interference (register pressure) across
 | 
						|
// IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
 | 
						|
// reducing liveness interference across those edges benefits global register
 | 
						|
// allocation. Currently handles only certain cases.
 | 
						|
//
 | 
						|
// For example, unmerge %GEPI and %UGEPI as below.
 | 
						|
//
 | 
						|
// ---------- BEFORE ----------
 | 
						|
// SrcBlock:
 | 
						|
//   ...
 | 
						|
//   %GEPIOp = ...
 | 
						|
//   ...
 | 
						|
//   %GEPI = gep %GEPIOp, Idx
 | 
						|
//   ...
 | 
						|
//   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
 | 
						|
//   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
 | 
						|
//   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
 | 
						|
//   %UGEPI)
 | 
						|
//
 | 
						|
// DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
 | 
						|
// DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
 | 
						|
// ...
 | 
						|
//
 | 
						|
// DstBi:
 | 
						|
//   ...
 | 
						|
//   %UGEPI = gep %GEPIOp, UIdx
 | 
						|
// ...
 | 
						|
// ---------------------------
 | 
						|
//
 | 
						|
// ---------- AFTER ----------
 | 
						|
// SrcBlock:
 | 
						|
//   ... (same as above)
 | 
						|
//    (* %GEPI is still alive on the indirectbr edges)
 | 
						|
//    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
 | 
						|
//    unmerging)
 | 
						|
// ...
 | 
						|
//
 | 
						|
// DstBi:
 | 
						|
//   ...
 | 
						|
//   %UGEPI = gep %GEPI, (UIdx-Idx)
 | 
						|
//   ...
 | 
						|
// ---------------------------
 | 
						|
//
 | 
						|
// The register pressure on the IndirectBr edges is reduced because %GEPIOp is
 | 
						|
// no longer alive on them.
 | 
						|
//
 | 
						|
// We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
 | 
						|
// of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
 | 
						|
// not to disable further simplications and optimizations as a result of GEP
 | 
						|
// merging.
 | 
						|
//
 | 
						|
// Note this unmerging may increase the length of the data flow critical path
 | 
						|
// (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
 | 
						|
// between the register pressure and the length of data-flow critical
 | 
						|
// path. Restricting this to the uncommon IndirectBr case would minimize the
 | 
						|
// impact of potentially longer critical path, if any, and the impact on compile
 | 
						|
// time.
 | 
						|
static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
 | 
						|
                                             const TargetTransformInfo *TTI) {
 | 
						|
  BasicBlock *SrcBlock = GEPI->getParent();
 | 
						|
  // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
 | 
						|
  // (non-IndirectBr) cases exit early here.
 | 
						|
  if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
 | 
						|
    return false;
 | 
						|
  // Check that GEPI is a simple gep with a single constant index.
 | 
						|
  if (!GEPSequentialConstIndexed(GEPI))
 | 
						|
    return false;
 | 
						|
  ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
 | 
						|
  // Check that GEPI is a cheap one.
 | 
						|
  if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
 | 
						|
                         TargetTransformInfo::TCK_SizeAndLatency)
 | 
						|
      > TargetTransformInfo::TCC_Basic)
 | 
						|
    return false;
 | 
						|
  Value *GEPIOp = GEPI->getOperand(0);
 | 
						|
  // Check that GEPIOp is an instruction that's also defined in SrcBlock.
 | 
						|
  if (!isa<Instruction>(GEPIOp))
 | 
						|
    return false;
 | 
						|
  auto *GEPIOpI = cast<Instruction>(GEPIOp);
 | 
						|
  if (GEPIOpI->getParent() != SrcBlock)
 | 
						|
    return false;
 | 
						|
  // Check that GEP is used outside the block, meaning it's alive on the
 | 
						|
  // IndirectBr edge(s).
 | 
						|
  if (find_if(GEPI->users(), [&](User *Usr) {
 | 
						|
        if (auto *I = dyn_cast<Instruction>(Usr)) {
 | 
						|
          if (I->getParent() != SrcBlock) {
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        return false;
 | 
						|
      }) == GEPI->users().end())
 | 
						|
    return false;
 | 
						|
  // The second elements of the GEP chains to be unmerged.
 | 
						|
  std::vector<GetElementPtrInst *> UGEPIs;
 | 
						|
  // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
 | 
						|
  // on IndirectBr edges.
 | 
						|
  for (User *Usr : GEPIOp->users()) {
 | 
						|
    if (Usr == GEPI) continue;
 | 
						|
    // Check if Usr is an Instruction. If not, give up.
 | 
						|
    if (!isa<Instruction>(Usr))
 | 
						|
      return false;
 | 
						|
    auto *UI = cast<Instruction>(Usr);
 | 
						|
    // Check if Usr in the same block as GEPIOp, which is fine, skip.
 | 
						|
    if (UI->getParent() == SrcBlock)
 | 
						|
      continue;
 | 
						|
    // Check if Usr is a GEP. If not, give up.
 | 
						|
    if (!isa<GetElementPtrInst>(Usr))
 | 
						|
      return false;
 | 
						|
    auto *UGEPI = cast<GetElementPtrInst>(Usr);
 | 
						|
    // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
 | 
						|
    // the pointer operand to it. If so, record it in the vector. If not, give
 | 
						|
    // up.
 | 
						|
    if (!GEPSequentialConstIndexed(UGEPI))
 | 
						|
      return false;
 | 
						|
    if (UGEPI->getOperand(0) != GEPIOp)
 | 
						|
      return false;
 | 
						|
    if (GEPIIdx->getType() !=
 | 
						|
        cast<ConstantInt>(UGEPI->getOperand(1))->getType())
 | 
						|
      return false;
 | 
						|
    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
 | 
						|
    if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
 | 
						|
                           TargetTransformInfo::TCK_SizeAndLatency)
 | 
						|
        > TargetTransformInfo::TCC_Basic)
 | 
						|
      return false;
 | 
						|
    UGEPIs.push_back(UGEPI);
 | 
						|
  }
 | 
						|
  if (UGEPIs.size() == 0)
 | 
						|
    return false;
 | 
						|
  // Check the materializing cost of (Uidx-Idx).
 | 
						|
  for (GetElementPtrInst *UGEPI : UGEPIs) {
 | 
						|
    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
 | 
						|
    APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
 | 
						|
    unsigned ImmCost =
 | 
						|
      TTI->getIntImmCost(NewIdx, GEPIIdx->getType(),
 | 
						|
                         TargetTransformInfo::TCK_SizeAndLatency);
 | 
						|
    if (ImmCost > TargetTransformInfo::TCC_Basic)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  // Now unmerge between GEPI and UGEPIs.
 | 
						|
  for (GetElementPtrInst *UGEPI : UGEPIs) {
 | 
						|
    UGEPI->setOperand(0, GEPI);
 | 
						|
    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
 | 
						|
    Constant *NewUGEPIIdx =
 | 
						|
        ConstantInt::get(GEPIIdx->getType(),
 | 
						|
                         UGEPIIdx->getValue() - GEPIIdx->getValue());
 | 
						|
    UGEPI->setOperand(1, NewUGEPIIdx);
 | 
						|
    // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
 | 
						|
    // inbounds to avoid UB.
 | 
						|
    if (!GEPI->isInBounds()) {
 | 
						|
      UGEPI->setIsInBounds(false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
 | 
						|
  // alive on IndirectBr edges).
 | 
						|
  assert(find_if(GEPIOp->users(), [&](User *Usr) {
 | 
						|
        return cast<Instruction>(Usr)->getParent() != SrcBlock;
 | 
						|
      }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
 | 
						|
  // Bail out if we inserted the instruction to prevent optimizations from
 | 
						|
  // stepping on each other's toes.
 | 
						|
  if (InsertedInsts.count(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: Move into the switch on opcode below here.
 | 
						|
  if (PHINode *P = dyn_cast<PHINode>(I)) {
 | 
						|
    // It is possible for very late stage optimizations (such as SimplifyCFG)
 | 
						|
    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
 | 
						|
    // trivial PHI, go ahead and zap it here.
 | 
						|
    if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
 | 
						|
      LargeOffsetGEPMap.erase(P);
 | 
						|
      P->replaceAllUsesWith(V);
 | 
						|
      P->eraseFromParent();
 | 
						|
      ++NumPHIsElim;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | 
						|
    // If the source of the cast is a constant, then this should have
 | 
						|
    // already been constant folded.  The only reason NOT to constant fold
 | 
						|
    // it is if something (e.g. LSR) was careful to place the constant
 | 
						|
    // evaluation in a block other than then one that uses it (e.g. to hoist
 | 
						|
    // the address of globals out of a loop).  If this is the case, we don't
 | 
						|
    // want to forward-subst the cast.
 | 
						|
    if (isa<Constant>(CI->getOperand(0)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
 | 
						|
      /// Sink a zext or sext into its user blocks if the target type doesn't
 | 
						|
      /// fit in one register
 | 
						|
      if (TLI->getTypeAction(CI->getContext(),
 | 
						|
                             TLI->getValueType(*DL, CI->getType())) ==
 | 
						|
          TargetLowering::TypeExpandInteger) {
 | 
						|
        return SinkCast(CI);
 | 
						|
      } else {
 | 
						|
        bool MadeChange = optimizeExt(I);
 | 
						|
        return MadeChange | optimizeExtUses(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *Cmp = dyn_cast<CmpInst>(I))
 | 
						|
    if (optimizeCmp(Cmp, ModifiedDT))
 | 
						|
      return true;
 | 
						|
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
    LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
 | 
						|
    bool Modified = optimizeLoadExt(LI);
 | 
						|
    unsigned AS = LI->getPointerAddressSpace();
 | 
						|
    Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
 | 
						|
    return Modified;
 | 
						|
  }
 | 
						|
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
    if (splitMergedValStore(*SI, *DL, *TLI))
 | 
						|
      return true;
 | 
						|
    SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
 | 
						|
    unsigned AS = SI->getPointerAddressSpace();
 | 
						|
    return optimizeMemoryInst(I, SI->getOperand(1),
 | 
						|
                              SI->getOperand(0)->getType(), AS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
 | 
						|
      unsigned AS = RMW->getPointerAddressSpace();
 | 
						|
      return optimizeMemoryInst(I, RMW->getPointerOperand(),
 | 
						|
                                RMW->getType(), AS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
 | 
						|
      unsigned AS = CmpX->getPointerAddressSpace();
 | 
						|
      return optimizeMemoryInst(I, CmpX->getPointerOperand(),
 | 
						|
                                CmpX->getCompareOperand()->getType(), AS);
 | 
						|
  }
 | 
						|
 | 
						|
  BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
 | 
						|
 | 
						|
  if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking)
 | 
						|
    return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
 | 
						|
 | 
						|
  // TODO: Move this into the switch on opcode - it handles shifts already.
 | 
						|
  if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
 | 
						|
                BinOp->getOpcode() == Instruction::LShr)) {
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
 | 
						|
    if (CI && TLI->hasExtractBitsInsn())
 | 
						|
      if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
    if (GEPI->hasAllZeroIndices()) {
 | 
						|
      /// The GEP operand must be a pointer, so must its result -> BitCast
 | 
						|
      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
 | 
						|
                                        GEPI->getName(), GEPI);
 | 
						|
      NC->setDebugLoc(GEPI->getDebugLoc());
 | 
						|
      GEPI->replaceAllUsesWith(NC);
 | 
						|
      GEPI->eraseFromParent();
 | 
						|
      ++NumGEPsElim;
 | 
						|
      optimizeInst(NC, ModifiedDT);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
 | 
						|
    // freeze(icmp a, const)) -> icmp (freeze a), const
 | 
						|
    // This helps generate efficient conditional jumps.
 | 
						|
    Instruction *CmpI = nullptr;
 | 
						|
    if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
 | 
						|
      CmpI = II;
 | 
						|
    else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
 | 
						|
      CmpI = F->getFastMathFlags().none() ? F : nullptr;
 | 
						|
 | 
						|
    if (CmpI && CmpI->hasOneUse()) {
 | 
						|
      auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
 | 
						|
      bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
 | 
						|
                    isa<ConstantPointerNull>(Op0);
 | 
						|
      bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
 | 
						|
                    isa<ConstantPointerNull>(Op1);
 | 
						|
      if (Const0 || Const1) {
 | 
						|
        if (!Const0 || !Const1) {
 | 
						|
          auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
 | 
						|
          F->takeName(FI);
 | 
						|
          CmpI->setOperand(Const0 ? 1 : 0, F);
 | 
						|
        }
 | 
						|
        FI->replaceAllUsesWith(CmpI);
 | 
						|
        FI->eraseFromParent();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (tryToSinkFreeOperands(I))
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    return optimizeShiftInst(cast<BinaryOperator>(I));
 | 
						|
  case Instruction::Call:
 | 
						|
    return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
 | 
						|
  case Instruction::Select:
 | 
						|
    return optimizeSelectInst(cast<SelectInst>(I));
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
 | 
						|
  case Instruction::Switch:
 | 
						|
    return optimizeSwitchInst(cast<SwitchInst>(I));
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    return optimizeExtractElementInst(cast<ExtractElementInst>(I));
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Given an OR instruction, check to see if this is a bitreverse
 | 
						|
/// idiom. If so, insert the new intrinsic and return true.
 | 
						|
bool CodeGenPrepare::makeBitReverse(Instruction &I) {
 | 
						|
  if (!I.getType()->isIntegerTy() ||
 | 
						|
      !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
 | 
						|
                                     TLI->getValueType(*DL, I.getType(), true)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<Instruction*, 4> Insts;
 | 
						|
  if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
 | 
						|
    return false;
 | 
						|
  Instruction *LastInst = Insts.back();
 | 
						|
  I.replaceAllUsesWith(LastInst);
 | 
						|
  RecursivelyDeleteTriviallyDeadInstructions(
 | 
						|
      &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// In this pass we look for GEP and cast instructions that are used
 | 
						|
// across basic blocks and rewrite them to improve basic-block-at-a-time
 | 
						|
// selection.
 | 
						|
bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
 | 
						|
  SunkAddrs.clear();
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  CurInstIterator = BB.begin();
 | 
						|
  while (CurInstIterator != BB.end()) {
 | 
						|
    MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
 | 
						|
    if (ModifiedDT)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool MadeBitReverse = true;
 | 
						|
  while (MadeBitReverse) {
 | 
						|
    MadeBitReverse = false;
 | 
						|
    for (auto &I : reverse(BB)) {
 | 
						|
      if (makeBitReverse(I)) {
 | 
						|
        MadeBitReverse = MadeChange = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
// Some CGP optimizations may move or alter what's computed in a block. Check
 | 
						|
// whether a dbg.value intrinsic could be pointed at a more appropriate operand.
 | 
						|
bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
 | 
						|
  assert(isa<DbgValueInst>(I));
 | 
						|
  DbgValueInst &DVI = *cast<DbgValueInst>(I);
 | 
						|
 | 
						|
  // Does this dbg.value refer to a sunk address calculation?
 | 
						|
  Value *Location = DVI.getVariableLocation();
 | 
						|
  WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
 | 
						|
  Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
 | 
						|
  if (SunkAddr) {
 | 
						|
    // Point dbg.value at locally computed address, which should give the best
 | 
						|
    // opportunity to be accurately lowered. This update may change the type of
 | 
						|
    // pointer being referred to; however this makes no difference to debugging
 | 
						|
    // information, and we can't generate bitcasts that may affect codegen.
 | 
						|
    DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(),
 | 
						|
                                           ValueAsMetadata::get(SunkAddr)));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// A llvm.dbg.value may be using a value before its definition, due to
 | 
						|
// optimizations in this pass and others. Scan for such dbg.values, and rescue
 | 
						|
// them by moving the dbg.value to immediately after the value definition.
 | 
						|
// FIXME: Ideally this should never be necessary, and this has the potential
 | 
						|
// to re-order dbg.value intrinsics.
 | 
						|
bool CodeGenPrepare::placeDbgValues(Function &F) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  DominatorTree DT(F);
 | 
						|
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
 | 
						|
      Instruction *Insn = &*BI++;
 | 
						|
      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
 | 
						|
      if (!DVI)
 | 
						|
        continue;
 | 
						|
 | 
						|
      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
 | 
						|
 | 
						|
      if (!VI || VI->isTerminator())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If VI is a phi in a block with an EHPad terminator, we can't insert
 | 
						|
      // after it.
 | 
						|
      if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the defining instruction dominates the dbg.value, we do not need
 | 
						|
      // to move the dbg.value.
 | 
						|
      if (DT.dominates(VI, DVI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
 | 
						|
                        << *DVI << ' ' << *VI);
 | 
						|
      DVI->removeFromParent();
 | 
						|
      if (isa<PHINode>(VI))
 | 
						|
        DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
 | 
						|
      else
 | 
						|
        DVI->insertAfter(VI);
 | 
						|
      MadeChange = true;
 | 
						|
      ++NumDbgValueMoved;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// Scale down both weights to fit into uint32_t.
 | 
						|
static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
 | 
						|
  uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
 | 
						|
  uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
 | 
						|
  NewTrue = NewTrue / Scale;
 | 
						|
  NewFalse = NewFalse / Scale;
 | 
						|
}
 | 
						|
 | 
						|
/// Some targets prefer to split a conditional branch like:
 | 
						|
/// \code
 | 
						|
///   %0 = icmp ne i32 %a, 0
 | 
						|
///   %1 = icmp ne i32 %b, 0
 | 
						|
///   %or.cond = or i1 %0, %1
 | 
						|
///   br i1 %or.cond, label %TrueBB, label %FalseBB
 | 
						|
/// \endcode
 | 
						|
/// into multiple branch instructions like:
 | 
						|
/// \code
 | 
						|
///   bb1:
 | 
						|
///     %0 = icmp ne i32 %a, 0
 | 
						|
///     br i1 %0, label %TrueBB, label %bb2
 | 
						|
///   bb2:
 | 
						|
///     %1 = icmp ne i32 %b, 0
 | 
						|
///     br i1 %1, label %TrueBB, label %FalseBB
 | 
						|
/// \endcode
 | 
						|
/// This usually allows instruction selection to do even further optimizations
 | 
						|
/// and combine the compare with the branch instruction. Currently this is
 | 
						|
/// applied for targets which have "cheap" jump instructions.
 | 
						|
///
 | 
						|
/// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
 | 
						|
///
 | 
						|
bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
 | 
						|
  if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (auto &BB : F) {
 | 
						|
    // Does this BB end with the following?
 | 
						|
    //   %cond1 = icmp|fcmp|binary instruction ...
 | 
						|
    //   %cond2 = icmp|fcmp|binary instruction ...
 | 
						|
    //   %cond.or = or|and i1 %cond1, cond2
 | 
						|
    //   br i1 %cond.or label %dest1, label %dest2"
 | 
						|
    BinaryOperator *LogicOp;
 | 
						|
    BasicBlock *TBB, *FBB;
 | 
						|
    if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto *Br1 = cast<BranchInst>(BB.getTerminator());
 | 
						|
    if (Br1->getMetadata(LLVMContext::MD_unpredictable))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // The merging of mostly empty BB can cause a degenerate branch.
 | 
						|
    if (TBB == FBB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Opc;
 | 
						|
    Value *Cond1, *Cond2;
 | 
						|
    if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
 | 
						|
                             m_OneUse(m_Value(Cond2)))))
 | 
						|
      Opc = Instruction::And;
 | 
						|
    else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
 | 
						|
                                 m_OneUse(m_Value(Cond2)))))
 | 
						|
      Opc = Instruction::Or;
 | 
						|
    else
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
 | 
						|
        !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
 | 
						|
 | 
						|
    // Create a new BB.
 | 
						|
    auto *TmpBB =
 | 
						|
        BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
 | 
						|
                           BB.getParent(), BB.getNextNode());
 | 
						|
 | 
						|
    // Update original basic block by using the first condition directly by the
 | 
						|
    // branch instruction and removing the no longer needed and/or instruction.
 | 
						|
    Br1->setCondition(Cond1);
 | 
						|
    LogicOp->eraseFromParent();
 | 
						|
 | 
						|
    // Depending on the condition we have to either replace the true or the
 | 
						|
    // false successor of the original branch instruction.
 | 
						|
    if (Opc == Instruction::And)
 | 
						|
      Br1->setSuccessor(0, TmpBB);
 | 
						|
    else
 | 
						|
      Br1->setSuccessor(1, TmpBB);
 | 
						|
 | 
						|
    // Fill in the new basic block.
 | 
						|
    auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
 | 
						|
    if (auto *I = dyn_cast<Instruction>(Cond2)) {
 | 
						|
      I->removeFromParent();
 | 
						|
      I->insertBefore(Br2);
 | 
						|
    }
 | 
						|
 | 
						|
    // Update PHI nodes in both successors. The original BB needs to be
 | 
						|
    // replaced in one successor's PHI nodes, because the branch comes now from
 | 
						|
    // the newly generated BB (NewBB). In the other successor we need to add one
 | 
						|
    // incoming edge to the PHI nodes, because both branch instructions target
 | 
						|
    // now the same successor. Depending on the original branch condition
 | 
						|
    // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
 | 
						|
    // we perform the correct update for the PHI nodes.
 | 
						|
    // This doesn't change the successor order of the just created branch
 | 
						|
    // instruction (or any other instruction).
 | 
						|
    if (Opc == Instruction::Or)
 | 
						|
      std::swap(TBB, FBB);
 | 
						|
 | 
						|
    // Replace the old BB with the new BB.
 | 
						|
    TBB->replacePhiUsesWith(&BB, TmpBB);
 | 
						|
 | 
						|
    // Add another incoming edge form the new BB.
 | 
						|
    for (PHINode &PN : FBB->phis()) {
 | 
						|
      auto *Val = PN.getIncomingValueForBlock(&BB);
 | 
						|
      PN.addIncoming(Val, TmpBB);
 | 
						|
    }
 | 
						|
 | 
						|
    // Update the branch weights (from SelectionDAGBuilder::
 | 
						|
    // FindMergedConditions).
 | 
						|
    if (Opc == Instruction::Or) {
 | 
						|
      // Codegen X | Y as:
 | 
						|
      // BB1:
 | 
						|
      //   jmp_if_X TBB
 | 
						|
      //   jmp TmpBB
 | 
						|
      // TmpBB:
 | 
						|
      //   jmp_if_Y TBB
 | 
						|
      //   jmp FBB
 | 
						|
      //
 | 
						|
 | 
						|
      // We have flexibility in setting Prob for BB1 and Prob for NewBB.
 | 
						|
      // The requirement is that
 | 
						|
      //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
 | 
						|
      //     = TrueProb for original BB.
 | 
						|
      // Assuming the original weights are A and B, one choice is to set BB1's
 | 
						|
      // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
 | 
						|
      // assumes that
 | 
						|
      //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
 | 
						|
      // Another choice is to assume TrueProb for BB1 equals to TrueProb for
 | 
						|
      // TmpBB, but the math is more complicated.
 | 
						|
      uint64_t TrueWeight, FalseWeight;
 | 
						|
      if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
 | 
						|
        uint64_t NewTrueWeight = TrueWeight;
 | 
						|
        uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
 | 
						|
        scaleWeights(NewTrueWeight, NewFalseWeight);
 | 
						|
        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
 | 
						|
                         .createBranchWeights(TrueWeight, FalseWeight));
 | 
						|
 | 
						|
        NewTrueWeight = TrueWeight;
 | 
						|
        NewFalseWeight = 2 * FalseWeight;
 | 
						|
        scaleWeights(NewTrueWeight, NewFalseWeight);
 | 
						|
        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
 | 
						|
                         .createBranchWeights(TrueWeight, FalseWeight));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Codegen X & Y as:
 | 
						|
      // BB1:
 | 
						|
      //   jmp_if_X TmpBB
 | 
						|
      //   jmp FBB
 | 
						|
      // TmpBB:
 | 
						|
      //   jmp_if_Y TBB
 | 
						|
      //   jmp FBB
 | 
						|
      //
 | 
						|
      //  This requires creation of TmpBB after CurBB.
 | 
						|
 | 
						|
      // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
 | 
						|
      // The requirement is that
 | 
						|
      //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
 | 
						|
      //     = FalseProb for original BB.
 | 
						|
      // Assuming the original weights are A and B, one choice is to set BB1's
 | 
						|
      // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
 | 
						|
      // assumes that
 | 
						|
      //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
 | 
						|
      uint64_t TrueWeight, FalseWeight;
 | 
						|
      if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
 | 
						|
        uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
 | 
						|
        uint64_t NewFalseWeight = FalseWeight;
 | 
						|
        scaleWeights(NewTrueWeight, NewFalseWeight);
 | 
						|
        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
 | 
						|
                         .createBranchWeights(TrueWeight, FalseWeight));
 | 
						|
 | 
						|
        NewTrueWeight = 2 * TrueWeight;
 | 
						|
        NewFalseWeight = FalseWeight;
 | 
						|
        scaleWeights(NewTrueWeight, NewFalseWeight);
 | 
						|
        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
 | 
						|
                         .createBranchWeights(TrueWeight, FalseWeight));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ModifiedDT = true;
 | 
						|
    MadeChange = true;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
 | 
						|
               TmpBB->dump());
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 |