1317 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1317 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// This pass implements a data flow analysis that propagates debug location
 | 
						|
/// information by inserting additional DBG_VALUE instructions into the machine
 | 
						|
/// instruction stream. The pass internally builds debug location liveness
 | 
						|
/// ranges to determine the points where additional DBG_VALUEs need to be
 | 
						|
/// inserted.
 | 
						|
///
 | 
						|
/// This is a separate pass from DbgValueHistoryCalculator to facilitate
 | 
						|
/// testing and improve modularity.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/SparseBitVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/UniqueVector.h"
 | 
						|
#include "llvm/CodeGen/LexicalScopes.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/RegisterScavenging.h"
 | 
						|
#include "llvm/CodeGen/TargetFrameLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetPassConfig.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/IR/DIBuilder.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <functional>
 | 
						|
#include <queue>
 | 
						|
#include <tuple>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "livedebugvalues"
 | 
						|
 | 
						|
STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
 | 
						|
 | 
						|
// If @MI is a DBG_VALUE with debug value described by a defined
 | 
						|
// register, returns the number of this register. In the other case, returns 0.
 | 
						|
static Register isDbgValueDescribedByReg(const MachineInstr &MI) {
 | 
						|
  assert(MI.isDebugValue() && "expected a DBG_VALUE");
 | 
						|
  assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
 | 
						|
  // If location of variable is described using a register (directly
 | 
						|
  // or indirectly), this register is always a first operand.
 | 
						|
  return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : Register();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class LiveDebugValues : public MachineFunctionPass {
 | 
						|
private:
 | 
						|
  const TargetRegisterInfo *TRI;
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
  const TargetFrameLowering *TFI;
 | 
						|
  BitVector CalleeSavedRegs;
 | 
						|
  LexicalScopes LS;
 | 
						|
 | 
						|
  enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
 | 
						|
 | 
						|
  /// Keeps track of lexical scopes associated with a user value's source
 | 
						|
  /// location.
 | 
						|
  class UserValueScopes {
 | 
						|
    DebugLoc DL;
 | 
						|
    LexicalScopes &LS;
 | 
						|
    SmallPtrSet<const MachineBasicBlock *, 4> LBlocks;
 | 
						|
 | 
						|
  public:
 | 
						|
    UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {}
 | 
						|
 | 
						|
    /// Return true if current scope dominates at least one machine
 | 
						|
    /// instruction in a given machine basic block.
 | 
						|
    bool dominates(MachineBasicBlock *MBB) {
 | 
						|
      if (LBlocks.empty())
 | 
						|
        LS.getMachineBasicBlocks(DL, LBlocks);
 | 
						|
      return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  using FragmentInfo = DIExpression::FragmentInfo;
 | 
						|
  using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
 | 
						|
 | 
						|
  /// Storage for identifying a potentially inlined instance of a variable,
 | 
						|
  /// or a fragment thereof.
 | 
						|
  class DebugVariable {
 | 
						|
    const DILocalVariable *Variable;
 | 
						|
    OptFragmentInfo Fragment;
 | 
						|
    const DILocation *InlinedAt;
 | 
						|
 | 
						|
    /// Fragment that will overlap all other fragments. Used as default when
 | 
						|
    /// caller demands a fragment.
 | 
						|
    static const FragmentInfo DefaultFragment;
 | 
						|
 | 
						|
  public:
 | 
						|
    DebugVariable(const DILocalVariable *Var, OptFragmentInfo &&FragmentInfo,
 | 
						|
                  const DILocation *InlinedAt)
 | 
						|
        : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {}
 | 
						|
 | 
						|
    DebugVariable(const DILocalVariable *Var, OptFragmentInfo &FragmentInfo,
 | 
						|
                  const DILocation *InlinedAt)
 | 
						|
        : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {}
 | 
						|
 | 
						|
    DebugVariable(const DILocalVariable *Var, const DIExpression *DIExpr,
 | 
						|
                  const DILocation *InlinedAt)
 | 
						|
        : DebugVariable(Var, DIExpr->getFragmentInfo(), InlinedAt) {}
 | 
						|
 | 
						|
    DebugVariable(const MachineInstr &MI)
 | 
						|
        : DebugVariable(MI.getDebugVariable(),
 | 
						|
                        MI.getDebugExpression()->getFragmentInfo(),
 | 
						|
                        MI.getDebugLoc()->getInlinedAt()) {}
 | 
						|
 | 
						|
    const DILocalVariable *getVar() const { return Variable; }
 | 
						|
    const OptFragmentInfo &getFragment() const { return Fragment; }
 | 
						|
    const DILocation *getInlinedAt() const { return InlinedAt; }
 | 
						|
 | 
						|
    const FragmentInfo getFragmentDefault() const {
 | 
						|
      return Fragment.getValueOr(DefaultFragment);
 | 
						|
    }
 | 
						|
 | 
						|
    static bool isFragmentDefault(FragmentInfo &F) {
 | 
						|
      return F == DefaultFragment;
 | 
						|
    }
 | 
						|
 | 
						|
    bool operator==(const DebugVariable &Other) const {
 | 
						|
      return std::tie(Variable, Fragment, InlinedAt) ==
 | 
						|
             std::tie(Other.Variable, Other.Fragment, Other.InlinedAt);
 | 
						|
    }
 | 
						|
 | 
						|
    bool operator<(const DebugVariable &Other) const {
 | 
						|
      return std::tie(Variable, Fragment, InlinedAt) <
 | 
						|
             std::tie(Other.Variable, Other.Fragment, Other.InlinedAt);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  friend struct llvm::DenseMapInfo<DebugVariable>;
 | 
						|
 | 
						|
  /// A pair of debug variable and value location.
 | 
						|
  struct VarLoc {
 | 
						|
    // The location at which a spilled variable resides. It consists of a
 | 
						|
    // register and an offset.
 | 
						|
    struct SpillLoc {
 | 
						|
      unsigned SpillBase;
 | 
						|
      int SpillOffset;
 | 
						|
      bool operator==(const SpillLoc &Other) const {
 | 
						|
        return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    const DebugVariable Var;
 | 
						|
    const MachineInstr &MI; ///< Only used for cloning a new DBG_VALUE.
 | 
						|
    mutable UserValueScopes UVS;
 | 
						|
    enum VarLocKind {
 | 
						|
      InvalidKind = 0,
 | 
						|
      RegisterKind,
 | 
						|
      SpillLocKind,
 | 
						|
      ImmediateKind,
 | 
						|
      EntryValueKind
 | 
						|
    } Kind = InvalidKind;
 | 
						|
 | 
						|
    /// The value location. Stored separately to avoid repeatedly
 | 
						|
    /// extracting it from MI.
 | 
						|
    union {
 | 
						|
      uint64_t RegNo;
 | 
						|
      SpillLoc SpillLocation;
 | 
						|
      uint64_t Hash;
 | 
						|
      int64_t Immediate;
 | 
						|
      const ConstantFP *FPImm;
 | 
						|
      const ConstantInt *CImm;
 | 
						|
    } Loc;
 | 
						|
 | 
						|
    VarLoc(const MachineInstr &MI, LexicalScopes &LS,
 | 
						|
          VarLocKind K = InvalidKind)
 | 
						|
        : Var(MI), MI(MI), UVS(MI.getDebugLoc(), LS){
 | 
						|
      static_assert((sizeof(Loc) == sizeof(uint64_t)),
 | 
						|
                    "hash does not cover all members of Loc");
 | 
						|
      assert(MI.isDebugValue() && "not a DBG_VALUE");
 | 
						|
      assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
 | 
						|
      if (int RegNo = isDbgValueDescribedByReg(MI)) {
 | 
						|
        Kind = MI.isDebugEntryValue() ? EntryValueKind : RegisterKind;
 | 
						|
        Loc.RegNo = RegNo;
 | 
						|
      } else if (MI.getOperand(0).isImm()) {
 | 
						|
        Kind = ImmediateKind;
 | 
						|
        Loc.Immediate = MI.getOperand(0).getImm();
 | 
						|
      } else if (MI.getOperand(0).isFPImm()) {
 | 
						|
        Kind = ImmediateKind;
 | 
						|
        Loc.FPImm = MI.getOperand(0).getFPImm();
 | 
						|
      } else if (MI.getOperand(0).isCImm()) {
 | 
						|
        Kind = ImmediateKind;
 | 
						|
        Loc.CImm = MI.getOperand(0).getCImm();
 | 
						|
      }
 | 
						|
      assert((Kind != ImmediateKind || !MI.isDebugEntryValue()) &&
 | 
						|
             "entry values must be register locations");
 | 
						|
    }
 | 
						|
 | 
						|
    /// The constructor for spill locations.
 | 
						|
    VarLoc(const MachineInstr &MI, unsigned SpillBase, int SpillOffset,
 | 
						|
           LexicalScopes &LS)
 | 
						|
        : Var(MI), MI(MI), UVS(MI.getDebugLoc(), LS) {
 | 
						|
      assert(MI.isDebugValue() && "not a DBG_VALUE");
 | 
						|
      assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
 | 
						|
      Kind = SpillLocKind;
 | 
						|
      Loc.SpillLocation = {SpillBase, SpillOffset};
 | 
						|
    }
 | 
						|
 | 
						|
    // Is the Loc field a constant or constant object?
 | 
						|
    bool isConstant() const { return Kind == ImmediateKind; }
 | 
						|
 | 
						|
    /// If this variable is described by a register, return it,
 | 
						|
    /// otherwise return 0.
 | 
						|
    unsigned isDescribedByReg() const {
 | 
						|
      if (Kind == RegisterKind)
 | 
						|
        return Loc.RegNo;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Determine whether the lexical scope of this value's debug location
 | 
						|
    /// dominates MBB.
 | 
						|
    bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); }
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
    LLVM_DUMP_METHOD void dump() const { MI.dump(); }
 | 
						|
#endif
 | 
						|
 | 
						|
    bool operator==(const VarLoc &Other) const {
 | 
						|
      return Kind == Other.Kind && Var == Other.Var &&
 | 
						|
             Loc.Hash == Other.Loc.Hash;
 | 
						|
    }
 | 
						|
 | 
						|
    /// This operator guarantees that VarLocs are sorted by Variable first.
 | 
						|
    bool operator<(const VarLoc &Other) const {
 | 
						|
      return std::tie(Var, Kind, Loc.Hash) <
 | 
						|
             std::tie(Other.Var, Other.Kind, Other.Loc.Hash);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  using DebugParamMap = SmallDenseMap<const DILocalVariable *, MachineInstr *>;
 | 
						|
  using VarLocMap = UniqueVector<VarLoc>;
 | 
						|
  using VarLocSet = SparseBitVector<>;
 | 
						|
  using VarLocInMBB = SmallDenseMap<const MachineBasicBlock *, VarLocSet>;
 | 
						|
  struct TransferDebugPair {
 | 
						|
    MachineInstr *TransferInst;
 | 
						|
    MachineInstr *DebugInst;
 | 
						|
  };
 | 
						|
  using TransferMap = SmallVector<TransferDebugPair, 4>;
 | 
						|
 | 
						|
  // Types for recording sets of variable fragments that overlap. For a given
 | 
						|
  // local variable, we record all other fragments of that variable that could
 | 
						|
  // overlap it, to reduce search time.
 | 
						|
  using FragmentOfVar =
 | 
						|
      std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
 | 
						|
  using OverlapMap =
 | 
						|
      DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
 | 
						|
 | 
						|
  // Helper while building OverlapMap, a map of all fragments seen for a given
 | 
						|
  // DILocalVariable.
 | 
						|
  using VarToFragments =
 | 
						|
      DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
 | 
						|
 | 
						|
  /// This holds the working set of currently open ranges. For fast
 | 
						|
  /// access, this is done both as a set of VarLocIDs, and a map of
 | 
						|
  /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
 | 
						|
  /// previous open ranges for the same variable.
 | 
						|
  class OpenRangesSet {
 | 
						|
    VarLocSet VarLocs;
 | 
						|
    SmallDenseMap<DebugVariable, unsigned, 8> Vars;
 | 
						|
    OverlapMap &OverlappingFragments;
 | 
						|
 | 
						|
  public:
 | 
						|
    OpenRangesSet(OverlapMap &_OLapMap) : OverlappingFragments(_OLapMap) {}
 | 
						|
 | 
						|
    const VarLocSet &getVarLocs() const { return VarLocs; }
 | 
						|
 | 
						|
    /// Terminate all open ranges for Var by removing it from the set.
 | 
						|
    void erase(DebugVariable Var);
 | 
						|
 | 
						|
    /// Terminate all open ranges listed in \c KillSet by removing
 | 
						|
    /// them from the set.
 | 
						|
    void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) {
 | 
						|
      VarLocs.intersectWithComplement(KillSet);
 | 
						|
      for (unsigned ID : KillSet)
 | 
						|
        Vars.erase(VarLocIDs[ID].Var);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Insert a new range into the set.
 | 
						|
    void insert(unsigned VarLocID, DebugVariable Var) {
 | 
						|
      VarLocs.set(VarLocID);
 | 
						|
      Vars.insert({Var, VarLocID});
 | 
						|
    }
 | 
						|
 | 
						|
    /// Empty the set.
 | 
						|
    void clear() {
 | 
						|
      VarLocs.clear();
 | 
						|
      Vars.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    /// Return whether the set is empty or not.
 | 
						|
    bool empty() const {
 | 
						|
      assert(Vars.empty() == VarLocs.empty() && "open ranges are inconsistent");
 | 
						|
      return VarLocs.empty();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF,
 | 
						|
                          unsigned &Reg);
 | 
						|
  /// If a given instruction is identified as a spill, return the spill location
 | 
						|
  /// and set \p Reg to the spilled register.
 | 
						|
  Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
 | 
						|
                                                  MachineFunction *MF,
 | 
						|
                                                  unsigned &Reg);
 | 
						|
  /// Given a spill instruction, extract the register and offset used to
 | 
						|
  /// address the spill location in a target independent way.
 | 
						|
  VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
 | 
						|
  void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                               TransferMap &Transfers, VarLocMap &VarLocIDs,
 | 
						|
                               unsigned OldVarID, TransferKind Kind,
 | 
						|
                               unsigned NewReg = 0);
 | 
						|
 | 
						|
  void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                          VarLocMap &VarLocIDs);
 | 
						|
  void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                                  VarLocMap &VarLocIDs, TransferMap &Transfers);
 | 
						|
  void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                       VarLocMap &VarLocIDs, TransferMap &Transfers,
 | 
						|
                       DebugParamMap &DebugEntryVals,
 | 
						|
                       SparseBitVector<> &KillSet);
 | 
						|
  void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                            VarLocMap &VarLocIDs, TransferMap &Transfers);
 | 
						|
  void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                           VarLocMap &VarLocIDs, TransferMap &Transfers,
 | 
						|
                           DebugParamMap &DebugEntryVals);
 | 
						|
  bool transferTerminatorInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                              VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
 | 
						|
 | 
						|
  bool process(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
               VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
 | 
						|
               TransferMap &Transfers, DebugParamMap &DebugEntryVals,
 | 
						|
               bool transferChanges, OverlapMap &OverlapFragments,
 | 
						|
               VarToFragments &SeenFragments);
 | 
						|
 | 
						|
  void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
 | 
						|
                             OverlapMap &OLapMap);
 | 
						|
 | 
						|
  bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
 | 
						|
            const VarLocMap &VarLocIDs,
 | 
						|
            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
 | 
						|
            SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
 | 
						|
 | 
						|
  bool ExtendRanges(MachineFunction &MF);
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  /// Default construct and initialize the pass.
 | 
						|
  LiveDebugValues();
 | 
						|
 | 
						|
  /// Tell the pass manager which passes we depend on and what
 | 
						|
  /// information we preserve.
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
 | 
						|
  MachineFunctionProperties getRequiredProperties() const override {
 | 
						|
    return MachineFunctionProperties().set(
 | 
						|
        MachineFunctionProperties::Property::NoVRegs);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Print to ostream with a message.
 | 
						|
  void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
 | 
						|
                        const VarLocMap &VarLocIDs, const char *msg,
 | 
						|
                        raw_ostream &Out) const;
 | 
						|
 | 
						|
  /// Calculate the liveness information for the given machine function.
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
template <> struct DenseMapInfo<LiveDebugValues::DebugVariable> {
 | 
						|
  using DV = LiveDebugValues::DebugVariable;
 | 
						|
  using OptFragmentInfo = LiveDebugValues::OptFragmentInfo;
 | 
						|
  using FragmentInfo = LiveDebugValues::FragmentInfo;
 | 
						|
 | 
						|
  // Empty key: no key should be generated that has no DILocalVariable.
 | 
						|
  static inline DV getEmptyKey() {
 | 
						|
    return DV(nullptr, OptFragmentInfo(), nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Difference in tombstone is that the Optional is meaningful
 | 
						|
  static inline DV getTombstoneKey() {
 | 
						|
    return DV(nullptr, OptFragmentInfo({0, 0}), nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getHashValue(const DV &D) {
 | 
						|
    unsigned HV = 0;
 | 
						|
    const OptFragmentInfo &Fragment = D.getFragment();
 | 
						|
    if (Fragment)
 | 
						|
      HV = DenseMapInfo<FragmentInfo>::getHashValue(*Fragment);
 | 
						|
 | 
						|
    return hash_combine(D.getVar(), HV, D.getInlinedAt());
 | 
						|
  }
 | 
						|
 | 
						|
  static bool isEqual(const DV &A, const DV &B) { return A == B; }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace llvm
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//            Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
const DIExpression::FragmentInfo
 | 
						|
    LiveDebugValues::DebugVariable::DefaultFragment = {
 | 
						|
        std::numeric_limits<uint64_t>::max(),
 | 
						|
        std::numeric_limits<uint64_t>::min()};
 | 
						|
 | 
						|
char LiveDebugValues::ID = 0;
 | 
						|
 | 
						|
char &llvm::LiveDebugValuesID = LiveDebugValues::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis",
 | 
						|
                false, false)
 | 
						|
 | 
						|
/// Default construct and initialize the pass.
 | 
						|
LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
 | 
						|
  initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
/// Tell the pass manager which passes we depend on and what information we
 | 
						|
/// preserve.
 | 
						|
void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
/// Erase a variable from the set of open ranges, and additionally erase any
 | 
						|
/// fragments that may overlap it.
 | 
						|
void LiveDebugValues::OpenRangesSet::erase(DebugVariable Var) {
 | 
						|
  // Erasure helper.
 | 
						|
  auto DoErase = [this](DebugVariable VarToErase) {
 | 
						|
    auto It = Vars.find(VarToErase);
 | 
						|
    if (It != Vars.end()) {
 | 
						|
      unsigned ID = It->second;
 | 
						|
      VarLocs.reset(ID);
 | 
						|
      Vars.erase(It);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // Erase the variable/fragment that ends here.
 | 
						|
  DoErase(Var);
 | 
						|
 | 
						|
  // Extract the fragment. Interpret an empty fragment as one that covers all
 | 
						|
  // possible bits.
 | 
						|
  FragmentInfo ThisFragment = Var.getFragmentDefault();
 | 
						|
 | 
						|
  // There may be fragments that overlap the designated fragment. Look them up
 | 
						|
  // in the pre-computed overlap map, and erase them too.
 | 
						|
  auto MapIt = OverlappingFragments.find({Var.getVar(), ThisFragment});
 | 
						|
  if (MapIt != OverlappingFragments.end()) {
 | 
						|
    for (auto Fragment : MapIt->second) {
 | 
						|
      LiveDebugValues::OptFragmentInfo FragmentHolder;
 | 
						|
      if (!DebugVariable::isFragmentDefault(Fragment))
 | 
						|
        FragmentHolder = LiveDebugValues::OptFragmentInfo(Fragment);
 | 
						|
      DoErase({Var.getVar(), FragmentHolder, Var.getInlinedAt()});
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//            Debug Range Extension Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
 | 
						|
                                       const VarLocInMBB &V,
 | 
						|
                                       const VarLocMap &VarLocIDs,
 | 
						|
                                       const char *msg,
 | 
						|
                                       raw_ostream &Out) const {
 | 
						|
  Out << '\n' << msg << '\n';
 | 
						|
  for (const MachineBasicBlock &BB : MF) {
 | 
						|
    const VarLocSet &L = V.lookup(&BB);
 | 
						|
    if (L.empty())
 | 
						|
      continue;
 | 
						|
    Out << "MBB: " << BB.getNumber() << ":\n";
 | 
						|
    for (unsigned VLL : L) {
 | 
						|
      const VarLoc &VL = VarLocIDs[VLL];
 | 
						|
      Out << " Var: " << VL.Var.getVar()->getName();
 | 
						|
      Out << " MI: ";
 | 
						|
      VL.dump();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
LiveDebugValues::VarLoc::SpillLoc
 | 
						|
LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
 | 
						|
  assert(MI.hasOneMemOperand() &&
 | 
						|
         "Spill instruction does not have exactly one memory operand?");
 | 
						|
  auto MMOI = MI.memoperands_begin();
 | 
						|
  const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
 | 
						|
  assert(PVal->kind() == PseudoSourceValue::FixedStack &&
 | 
						|
         "Inconsistent memory operand in spill instruction");
 | 
						|
  int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
 | 
						|
  const MachineBasicBlock *MBB = MI.getParent();
 | 
						|
  unsigned Reg;
 | 
						|
  int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
 | 
						|
  return {Reg, Offset};
 | 
						|
}
 | 
						|
 | 
						|
/// End all previous ranges related to @MI and start a new range from @MI
 | 
						|
/// if it is a DBG_VALUE instr.
 | 
						|
void LiveDebugValues::transferDebugValue(const MachineInstr &MI,
 | 
						|
                                         OpenRangesSet &OpenRanges,
 | 
						|
                                         VarLocMap &VarLocIDs) {
 | 
						|
  if (!MI.isDebugValue())
 | 
						|
    return;
 | 
						|
  const DILocalVariable *Var = MI.getDebugVariable();
 | 
						|
  const DIExpression *Expr = MI.getDebugExpression();
 | 
						|
  const DILocation *DebugLoc = MI.getDebugLoc();
 | 
						|
  const DILocation *InlinedAt = DebugLoc->getInlinedAt();
 | 
						|
  assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
 | 
						|
         "Expected inlined-at fields to agree");
 | 
						|
 | 
						|
  // End all previous ranges of Var.
 | 
						|
  DebugVariable V(Var, Expr, InlinedAt);
 | 
						|
  OpenRanges.erase(V);
 | 
						|
 | 
						|
  // Add the VarLoc to OpenRanges from this DBG_VALUE.
 | 
						|
  unsigned ID;
 | 
						|
  if (isDbgValueDescribedByReg(MI) || MI.getOperand(0).isImm() ||
 | 
						|
      MI.getOperand(0).isFPImm() || MI.getOperand(0).isCImm()) {
 | 
						|
    // Use normal VarLoc constructor for registers and immediates.
 | 
						|
    VarLoc VL(MI, LS);
 | 
						|
    ID = VarLocIDs.insert(VL);
 | 
						|
    OpenRanges.insert(ID, VL.Var);
 | 
						|
  } else if (MI.hasOneMemOperand()) {
 | 
						|
    // It's a stack spill -- fetch spill base and offset.
 | 
						|
    VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
 | 
						|
    VarLoc VL(MI, SpillLocation.SpillBase, SpillLocation.SpillOffset, LS);
 | 
						|
    ID = VarLocIDs.insert(VL);
 | 
						|
    OpenRanges.insert(ID, VL.Var);
 | 
						|
  } else {
 | 
						|
    // This must be an undefined location. We should leave OpenRanges closed.
 | 
						|
    assert(MI.getOperand(0).isReg() && MI.getOperand(0).getReg() == 0 &&
 | 
						|
           "Unexpected non-undef DBG_VALUE encountered");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LiveDebugValues::emitEntryValues(MachineInstr &MI,
 | 
						|
                                      OpenRangesSet &OpenRanges,
 | 
						|
                                      VarLocMap &VarLocIDs,
 | 
						|
                                      TransferMap &Transfers,
 | 
						|
                                      DebugParamMap &DebugEntryVals,
 | 
						|
                                      SparseBitVector<> &KillSet) {
 | 
						|
  MachineFunction *MF = MI.getParent()->getParent();
 | 
						|
  for (unsigned ID : KillSet) {
 | 
						|
    if (!VarLocIDs[ID].Var.getVar()->isParameter())
 | 
						|
      continue;
 | 
						|
 | 
						|
    const MachineInstr *CurrDebugInstr = &VarLocIDs[ID].MI;
 | 
						|
 | 
						|
    // If parameter's DBG_VALUE is not in the map that means we can't
 | 
						|
    // generate parameter's entry value.
 | 
						|
    if (!DebugEntryVals.count(CurrDebugInstr->getDebugVariable()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto ParamDebugInstr = DebugEntryVals[CurrDebugInstr->getDebugVariable()];
 | 
						|
    DIExpression *NewExpr = DIExpression::prepend(
 | 
						|
        ParamDebugInstr->getDebugExpression(), DIExpression::EntryValue);
 | 
						|
    MachineInstr *EntryValDbgMI =
 | 
						|
        BuildMI(*MF, ParamDebugInstr->getDebugLoc(), ParamDebugInstr->getDesc(),
 | 
						|
                ParamDebugInstr->isIndirectDebugValue(),
 | 
						|
                ParamDebugInstr->getOperand(0).getReg(),
 | 
						|
                ParamDebugInstr->getDebugVariable(), NewExpr);
 | 
						|
 | 
						|
    if (ParamDebugInstr->isIndirectDebugValue())
 | 
						|
      EntryValDbgMI->getOperand(1).setImm(
 | 
						|
          ParamDebugInstr->getOperand(1).getImm());
 | 
						|
 | 
						|
    Transfers.push_back({&MI, EntryValDbgMI});
 | 
						|
    VarLoc VL(*EntryValDbgMI, LS);
 | 
						|
    unsigned EntryValLocID = VarLocIDs.insert(VL);
 | 
						|
    OpenRanges.insert(EntryValLocID, VL.Var);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
 | 
						|
/// with \p OldVarID should be deleted form \p OpenRanges and replaced with
 | 
						|
/// new VarLoc. If \p NewReg is different than default zero value then the
 | 
						|
/// new location will be register location created by the copy like instruction,
 | 
						|
/// otherwise it is variable's location on the stack.
 | 
						|
void LiveDebugValues::insertTransferDebugPair(
 | 
						|
    MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
 | 
						|
    VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind,
 | 
						|
    unsigned NewReg) {
 | 
						|
  const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI;
 | 
						|
  MachineFunction *MF = MI.getParent()->getParent();
 | 
						|
  MachineInstr *NewDebugInstr;
 | 
						|
 | 
						|
  auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &DebugInstr,
 | 
						|
                        &VarLocIDs](VarLoc &VL, MachineInstr *NewDebugInstr) {
 | 
						|
    unsigned LocId = VarLocIDs.insert(VL);
 | 
						|
 | 
						|
    // Close this variable's previous location range.
 | 
						|
    DebugVariable V(*DebugInstr);
 | 
						|
    OpenRanges.erase(V);
 | 
						|
 | 
						|
    OpenRanges.insert(LocId, VL.Var);
 | 
						|
    // The newly created DBG_VALUE instruction NewDebugInstr must be inserted
 | 
						|
    // after MI. Keep track of the pairing.
 | 
						|
    TransferDebugPair MIP = {&MI, NewDebugInstr};
 | 
						|
    Transfers.push_back(MIP);
 | 
						|
  };
 | 
						|
 | 
						|
  // End all previous ranges of Var.
 | 
						|
  OpenRanges.erase(VarLocIDs[OldVarID].Var);
 | 
						|
  switch (Kind) {
 | 
						|
  case TransferKind::TransferCopy: {
 | 
						|
    assert(NewReg &&
 | 
						|
           "No register supplied when handling a copy of a debug value");
 | 
						|
    // Create a DBG_VALUE instruction to describe the Var in its new
 | 
						|
    // register location.
 | 
						|
    NewDebugInstr = BuildMI(
 | 
						|
        *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(),
 | 
						|
        DebugInstr->isIndirectDebugValue(), NewReg,
 | 
						|
        DebugInstr->getDebugVariable(), DebugInstr->getDebugExpression());
 | 
						|
    if (DebugInstr->isIndirectDebugValue())
 | 
						|
      NewDebugInstr->getOperand(1).setImm(DebugInstr->getOperand(1).getImm());
 | 
						|
    VarLoc VL(*NewDebugInstr, LS);
 | 
						|
    ProcessVarLoc(VL, NewDebugInstr);
 | 
						|
    LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register copy: ";
 | 
						|
               NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
 | 
						|
                                    /*SkipOpers*/false, /*SkipDebugLoc*/false,
 | 
						|
                                    /*AddNewLine*/true, TII));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case TransferKind::TransferSpill: {
 | 
						|
    // Create a DBG_VALUE instruction to describe the Var in its spilled
 | 
						|
    // location.
 | 
						|
    VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
 | 
						|
    auto *SpillExpr = DIExpression::prepend(DebugInstr->getDebugExpression(),
 | 
						|
                                            DIExpression::ApplyOffset,
 | 
						|
                                            SpillLocation.SpillOffset);
 | 
						|
    NewDebugInstr = BuildMI(
 | 
						|
        *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), true,
 | 
						|
        SpillLocation.SpillBase, DebugInstr->getDebugVariable(), SpillExpr);
 | 
						|
    VarLoc VL(*NewDebugInstr, SpillLocation.SpillBase,
 | 
						|
              SpillLocation.SpillOffset, LS);
 | 
						|
    ProcessVarLoc(VL, NewDebugInstr);
 | 
						|
    LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for spill: ";
 | 
						|
               NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
 | 
						|
                                    /*SkipOpers*/false, /*SkipDebugLoc*/false,
 | 
						|
                                    /*AddNewLine*/true, TII));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case TransferKind::TransferRestore: {
 | 
						|
    assert(NewReg &&
 | 
						|
           "No register supplied when handling a restore of a debug value");
 | 
						|
    MachineFunction *MF = MI.getMF();
 | 
						|
    DIBuilder DIB(*const_cast<Function &>(MF->getFunction()).getParent());
 | 
						|
    NewDebugInstr =
 | 
						|
        BuildMI(*MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), false,
 | 
						|
                NewReg, DebugInstr->getDebugVariable(), DIB.createExpression());
 | 
						|
    VarLoc VL(*NewDebugInstr, LS);
 | 
						|
    ProcessVarLoc(VL, NewDebugInstr);
 | 
						|
    LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register restore: ";
 | 
						|
               NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
 | 
						|
                                    /*SkipOpers*/false, /*SkipDebugLoc*/false,
 | 
						|
                                    /*AddNewLine*/true, TII));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid transfer kind");
 | 
						|
}
 | 
						|
 | 
						|
/// A definition of a register may mark the end of a range.
 | 
						|
void LiveDebugValues::transferRegisterDef(
 | 
						|
    MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
 | 
						|
    TransferMap &Transfers, DebugParamMap &DebugEntryVals) {
 | 
						|
  MachineFunction *MF = MI.getMF();
 | 
						|
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
 | 
						|
  unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
 | 
						|
  SparseBitVector<> KillSet;
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    // Determine whether the operand is a register def.  Assume that call
 | 
						|
    // instructions never clobber SP, because some backends (e.g., AArch64)
 | 
						|
    // never list SP in the regmask.
 | 
						|
    if (MO.isReg() && MO.isDef() && MO.getReg() &&
 | 
						|
        Register::isPhysicalRegister(MO.getReg()) &&
 | 
						|
        !(MI.isCall() && MO.getReg() == SP)) {
 | 
						|
      // Remove ranges of all aliased registers.
 | 
						|
      for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
 | 
						|
        for (unsigned ID : OpenRanges.getVarLocs())
 | 
						|
          if (VarLocIDs[ID].isDescribedByReg() == *RAI)
 | 
						|
            KillSet.set(ID);
 | 
						|
    } else if (MO.isRegMask()) {
 | 
						|
      // Remove ranges of all clobbered registers. Register masks don't usually
 | 
						|
      // list SP as preserved.  While the debug info may be off for an
 | 
						|
      // instruction or two around callee-cleanup calls, transferring the
 | 
						|
      // DEBUG_VALUE across the call is still a better user experience.
 | 
						|
      for (unsigned ID : OpenRanges.getVarLocs()) {
 | 
						|
        unsigned Reg = VarLocIDs[ID].isDescribedByReg();
 | 
						|
        if (Reg && Reg != SP && MO.clobbersPhysReg(Reg))
 | 
						|
          KillSet.set(ID);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  OpenRanges.erase(KillSet, VarLocIDs);
 | 
						|
 | 
						|
  if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
 | 
						|
    auto &TM = TPC->getTM<TargetMachine>();
 | 
						|
    if (TM.Options.EnableDebugEntryValues)
 | 
						|
      emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, DebugEntryVals,
 | 
						|
                      KillSet);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Decide if @MI is a spill instruction and return true if it is. We use 2
 | 
						|
/// criteria to make this decision:
 | 
						|
/// - Is this instruction a store to a spill slot?
 | 
						|
/// - Is there a register operand that is both used and killed?
 | 
						|
/// TODO: Store optimization can fold spills into other stores (including
 | 
						|
/// other spills). We do not handle this yet (more than one memory operand).
 | 
						|
bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
 | 
						|
                                         MachineFunction *MF, unsigned &Reg) {
 | 
						|
  SmallVector<const MachineMemOperand*, 1> Accesses;
 | 
						|
 | 
						|
  // TODO: Handle multiple stores folded into one.
 | 
						|
  if (!MI.hasOneMemOperand())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
 | 
						|
    return false; // This is not a spill instruction, since no valid size was
 | 
						|
                  // returned from either function.
 | 
						|
 | 
						|
  auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
 | 
						|
    if (!MO.isReg() || !MO.isUse()) {
 | 
						|
      Reg = 0;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    Reg = MO.getReg();
 | 
						|
    return MO.isKill();
 | 
						|
  };
 | 
						|
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    // In a spill instruction generated by the InlineSpiller the spilled
 | 
						|
    // register has its kill flag set.
 | 
						|
    if (isKilledReg(MO, Reg))
 | 
						|
      return true;
 | 
						|
    if (Reg != 0) {
 | 
						|
      // Check whether next instruction kills the spilled register.
 | 
						|
      // FIXME: Current solution does not cover search for killed register in
 | 
						|
      // bundles and instructions further down the chain.
 | 
						|
      auto NextI = std::next(MI.getIterator());
 | 
						|
      // Skip next instruction that points to basic block end iterator.
 | 
						|
      if (MI.getParent()->end() == NextI)
 | 
						|
        continue;
 | 
						|
      unsigned RegNext;
 | 
						|
      for (const MachineOperand &MONext : NextI->operands()) {
 | 
						|
        // Return true if we came across the register from the
 | 
						|
        // previous spill instruction that is killed in NextI.
 | 
						|
        if (isKilledReg(MONext, RegNext) && RegNext == Reg)
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Return false if we didn't find spilled register.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Optional<LiveDebugValues::VarLoc::SpillLoc>
 | 
						|
LiveDebugValues::isRestoreInstruction(const MachineInstr &MI,
 | 
						|
                                      MachineFunction *MF, unsigned &Reg) {
 | 
						|
  if (!MI.hasOneMemOperand())
 | 
						|
    return None;
 | 
						|
 | 
						|
  // FIXME: Handle folded restore instructions with more than one memory
 | 
						|
  // operand.
 | 
						|
  if (MI.getRestoreSize(TII)) {
 | 
						|
    Reg = MI.getOperand(0).getReg();
 | 
						|
    return extractSpillBaseRegAndOffset(MI);
 | 
						|
  }
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
/// A spilled register may indicate that we have to end the current range of
 | 
						|
/// a variable and create a new one for the spill location.
 | 
						|
/// A restored register may indicate the reverse situation.
 | 
						|
/// We don't want to insert any instructions in process(), so we just create
 | 
						|
/// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
 | 
						|
/// It will be inserted into the BB when we're done iterating over the
 | 
						|
/// instructions.
 | 
						|
void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI,
 | 
						|
                                                 OpenRangesSet &OpenRanges,
 | 
						|
                                                 VarLocMap &VarLocIDs,
 | 
						|
                                                 TransferMap &Transfers) {
 | 
						|
  MachineFunction *MF = MI.getMF();
 | 
						|
  TransferKind TKind;
 | 
						|
  unsigned Reg;
 | 
						|
  Optional<VarLoc::SpillLoc> Loc;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
 | 
						|
 | 
						|
  if (isSpillInstruction(MI, MF, Reg)) {
 | 
						|
    TKind = TransferKind::TransferSpill;
 | 
						|
    LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
 | 
						|
    LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
 | 
						|
                      << "\n");
 | 
						|
  } else {
 | 
						|
    if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
 | 
						|
      return;
 | 
						|
    TKind = TransferKind::TransferRestore;
 | 
						|
    LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
 | 
						|
    LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
 | 
						|
                      << "\n");
 | 
						|
  }
 | 
						|
  // Check if the register or spill location is the location of a debug value.
 | 
						|
  for (unsigned ID : OpenRanges.getVarLocs()) {
 | 
						|
    if (TKind == TransferKind::TransferSpill &&
 | 
						|
        VarLocIDs[ID].isDescribedByReg() == Reg) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
 | 
						|
                        << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
 | 
						|
    } else if (TKind == TransferKind::TransferRestore &&
 | 
						|
               VarLocIDs[ID].Loc.SpillLocation == *Loc) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
 | 
						|
                        << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
 | 
						|
    } else
 | 
						|
      continue;
 | 
						|
    insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TKind,
 | 
						|
                            Reg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If \p MI is a register copy instruction, that copies a previously tracked
 | 
						|
/// value from one register to another register that is callee saved, we
 | 
						|
/// create new DBG_VALUE instruction  described with copy destination register.
 | 
						|
void LiveDebugValues::transferRegisterCopy(MachineInstr &MI,
 | 
						|
                                           OpenRangesSet &OpenRanges,
 | 
						|
                                           VarLocMap &VarLocIDs,
 | 
						|
                                           TransferMap &Transfers) {
 | 
						|
  const MachineOperand *SrcRegOp, *DestRegOp;
 | 
						|
 | 
						|
  if (!TII->isCopyInstr(MI, SrcRegOp, DestRegOp) || !SrcRegOp->isKill() ||
 | 
						|
      !DestRegOp->isDef())
 | 
						|
    return;
 | 
						|
 | 
						|
  auto isCalleSavedReg = [&](unsigned Reg) {
 | 
						|
    for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
 | 
						|
      if (CalleeSavedRegs.test(*RAI))
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  unsigned SrcReg = SrcRegOp->getReg();
 | 
						|
  unsigned DestReg = DestRegOp->getReg();
 | 
						|
 | 
						|
  // We want to recognize instructions where destination register is callee
 | 
						|
  // saved register. If register that could be clobbered by the call is
 | 
						|
  // included, there would be a great chance that it is going to be clobbered
 | 
						|
  // soon. It is more likely that previous register location, which is callee
 | 
						|
  // saved, is going to stay unclobbered longer, even if it is killed.
 | 
						|
  if (!isCalleSavedReg(DestReg))
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned ID : OpenRanges.getVarLocs()) {
 | 
						|
    if (VarLocIDs[ID].isDescribedByReg() == SrcReg) {
 | 
						|
      insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID,
 | 
						|
                              TransferKind::TransferCopy, DestReg);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Terminate all open ranges at the end of the current basic block.
 | 
						|
bool LiveDebugValues::transferTerminatorInst(MachineInstr &MI,
 | 
						|
                                             OpenRangesSet &OpenRanges,
 | 
						|
                                             VarLocInMBB &OutLocs,
 | 
						|
                                             const VarLocMap &VarLocIDs) {
 | 
						|
  bool Changed = false;
 | 
						|
  const MachineBasicBlock *CurMBB = MI.getParent();
 | 
						|
  if (!(MI.isTerminator() || (&MI == &CurMBB->back())))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (OpenRanges.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(for (unsigned ID
 | 
						|
                  : OpenRanges.getVarLocs()) {
 | 
						|
    // Copy OpenRanges to OutLocs, if not already present.
 | 
						|
    dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  ";
 | 
						|
    VarLocIDs[ID].dump();
 | 
						|
  });
 | 
						|
  VarLocSet &VLS = OutLocs[CurMBB];
 | 
						|
  Changed = VLS |= OpenRanges.getVarLocs();
 | 
						|
  // New OutLocs set may be different due to spill, restore or register
 | 
						|
  // copy instruction processing.
 | 
						|
  if (Changed)
 | 
						|
    VLS = OpenRanges.getVarLocs();
 | 
						|
  OpenRanges.clear();
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Accumulate a mapping between each DILocalVariable fragment and other
 | 
						|
/// fragments of that DILocalVariable which overlap. This reduces work during
 | 
						|
/// the data-flow stage from "Find any overlapping fragments" to "Check if the
 | 
						|
/// known-to-overlap fragments are present".
 | 
						|
/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
 | 
						|
///           fragment usage.
 | 
						|
/// \param SeenFragments Map from DILocalVariable to all fragments of that
 | 
						|
///           Variable which are known to exist.
 | 
						|
/// \param OverlappingFragments The overlap map being constructed, from one
 | 
						|
///           Var/Fragment pair to a vector of fragments known to overlap.
 | 
						|
void LiveDebugValues::accumulateFragmentMap(MachineInstr &MI,
 | 
						|
                                            VarToFragments &SeenFragments,
 | 
						|
                                            OverlapMap &OverlappingFragments) {
 | 
						|
  DebugVariable MIVar(MI);
 | 
						|
  FragmentInfo ThisFragment = MIVar.getFragmentDefault();
 | 
						|
 | 
						|
  // If this is the first sighting of this variable, then we are guaranteed
 | 
						|
  // there are currently no overlapping fragments either. Initialize the set
 | 
						|
  // of seen fragments, record no overlaps for the current one, and return.
 | 
						|
  auto SeenIt = SeenFragments.find(MIVar.getVar());
 | 
						|
  if (SeenIt == SeenFragments.end()) {
 | 
						|
    SmallSet<FragmentInfo, 4> OneFragment;
 | 
						|
    OneFragment.insert(ThisFragment);
 | 
						|
    SeenFragments.insert({MIVar.getVar(), OneFragment});
 | 
						|
 | 
						|
    OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}});
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this particular Variable/Fragment pair already exists in the overlap
 | 
						|
  // map, it has already been accounted for.
 | 
						|
  auto IsInOLapMap =
 | 
						|
      OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}});
 | 
						|
  if (!IsInOLapMap.second)
 | 
						|
    return;
 | 
						|
 | 
						|
  auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
 | 
						|
  auto &AllSeenFragments = SeenIt->second;
 | 
						|
 | 
						|
  // Otherwise, examine all other seen fragments for this variable, with "this"
 | 
						|
  // fragment being a previously unseen fragment. Record any pair of
 | 
						|
  // overlapping fragments.
 | 
						|
  for (auto &ASeenFragment : AllSeenFragments) {
 | 
						|
    // Does this previously seen fragment overlap?
 | 
						|
    if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
 | 
						|
      // Yes: Mark the current fragment as being overlapped.
 | 
						|
      ThisFragmentsOverlaps.push_back(ASeenFragment);
 | 
						|
      // Mark the previously seen fragment as being overlapped by the current
 | 
						|
      // one.
 | 
						|
      auto ASeenFragmentsOverlaps =
 | 
						|
          OverlappingFragments.find({MIVar.getVar(), ASeenFragment});
 | 
						|
      assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
 | 
						|
             "Previously seen var fragment has no vector of overlaps");
 | 
						|
      ASeenFragmentsOverlaps->second.push_back(ThisFragment);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  AllSeenFragments.insert(ThisFragment);
 | 
						|
}
 | 
						|
 | 
						|
/// This routine creates OpenRanges and OutLocs.
 | 
						|
bool LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                              VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
 | 
						|
                              TransferMap &Transfers, DebugParamMap &DebugEntryVals,
 | 
						|
                              bool transferChanges,
 | 
						|
                              OverlapMap &OverlapFragments,
 | 
						|
                              VarToFragments &SeenFragments) {
 | 
						|
  bool Changed = false;
 | 
						|
  transferDebugValue(MI, OpenRanges, VarLocIDs);
 | 
						|
  transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers,
 | 
						|
                      DebugEntryVals);
 | 
						|
  if (transferChanges) {
 | 
						|
    transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
 | 
						|
    transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
 | 
						|
  } else {
 | 
						|
    // Build up a map of overlapping fragments on the first run through.
 | 
						|
    if (MI.isDebugValue())
 | 
						|
      accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
 | 
						|
  }
 | 
						|
  Changed = transferTerminatorInst(MI, OpenRanges, OutLocs, VarLocIDs);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// This routine joins the analysis results of all incoming edges in @MBB by
 | 
						|
/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
 | 
						|
/// source variable in all the predecessors of @MBB reside in the same location.
 | 
						|
bool LiveDebugValues::join(
 | 
						|
    MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
 | 
						|
    const VarLocMap &VarLocIDs,
 | 
						|
    SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
 | 
						|
    SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
 | 
						|
  LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  VarLocSet InLocsT; // Temporary incoming locations.
 | 
						|
 | 
						|
  // For all predecessors of this MBB, find the set of VarLocs that
 | 
						|
  // can be joined.
 | 
						|
  int NumVisited = 0;
 | 
						|
  for (auto p : MBB.predecessors()) {
 | 
						|
    // Ignore unvisited predecessor blocks.  As we are processing
 | 
						|
    // the blocks in reverse post-order any unvisited block can
 | 
						|
    // be considered to not remove any incoming values.
 | 
						|
    if (!Visited.count(p)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber()
 | 
						|
                        << "\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    auto OL = OutLocs.find(p);
 | 
						|
    // Join is null in case of empty OutLocs from any of the pred.
 | 
						|
    if (OL == OutLocs.end())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Just copy over the Out locs to incoming locs for the first visited
 | 
						|
    // predecessor, and for all other predecessors join the Out locs.
 | 
						|
    if (!NumVisited)
 | 
						|
      InLocsT = OL->second;
 | 
						|
    else
 | 
						|
      InLocsT &= OL->second;
 | 
						|
 | 
						|
    LLVM_DEBUG({
 | 
						|
      if (!InLocsT.empty()) {
 | 
						|
        for (auto ID : InLocsT)
 | 
						|
          dbgs() << "  gathered candidate incoming var: "
 | 
						|
                 << VarLocIDs[ID].Var.getVar()->getName() << "\n";
 | 
						|
      }
 | 
						|
    });
 | 
						|
 | 
						|
    NumVisited++;
 | 
						|
  }
 | 
						|
 | 
						|
  // Filter out DBG_VALUES that are out of scope.
 | 
						|
  VarLocSet KillSet;
 | 
						|
  bool IsArtificial = ArtificialBlocks.count(&MBB);
 | 
						|
  if (!IsArtificial) {
 | 
						|
    for (auto ID : InLocsT) {
 | 
						|
      if (!VarLocIDs[ID].dominates(MBB)) {
 | 
						|
        KillSet.set(ID);
 | 
						|
        LLVM_DEBUG({
 | 
						|
          auto Name = VarLocIDs[ID].Var.getVar()->getName();
 | 
						|
          dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n";
 | 
						|
        });
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  InLocsT.intersectWithComplement(KillSet);
 | 
						|
 | 
						|
  // As we are processing blocks in reverse post-order we
 | 
						|
  // should have processed at least one predecessor, unless it
 | 
						|
  // is the entry block which has no predecessor.
 | 
						|
  assert((NumVisited || MBB.pred_empty()) &&
 | 
						|
         "Should have processed at least one predecessor");
 | 
						|
  if (InLocsT.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  VarLocSet &ILS = InLocs[&MBB];
 | 
						|
 | 
						|
  // Insert DBG_VALUE instructions, if not already inserted.
 | 
						|
  VarLocSet Diff = InLocsT;
 | 
						|
  Diff.intersectWithComplement(ILS);
 | 
						|
  for (auto ID : Diff) {
 | 
						|
    // This VarLoc is not found in InLocs i.e. it is not yet inserted. So, a
 | 
						|
    // new range is started for the var from the mbb's beginning by inserting
 | 
						|
    // a new DBG_VALUE. process() will end this range however appropriate.
 | 
						|
    const VarLoc &DiffIt = VarLocIDs[ID];
 | 
						|
    const MachineInstr *DebugInstr = &DiffIt.MI;
 | 
						|
    MachineInstr *MI = nullptr;
 | 
						|
    if (DiffIt.isConstant()) {
 | 
						|
      MachineOperand MO(DebugInstr->getOperand(0));
 | 
						|
      MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(),
 | 
						|
                   DebugInstr->getDesc(), false, MO,
 | 
						|
                   DebugInstr->getDebugVariable(),
 | 
						|
                   DebugInstr->getDebugExpression());
 | 
						|
    } else {
 | 
						|
      MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(),
 | 
						|
                   DebugInstr->getDesc(), DebugInstr->isIndirectDebugValue(),
 | 
						|
                   DebugInstr->getOperand(0).getReg(),
 | 
						|
                   DebugInstr->getDebugVariable(),
 | 
						|
                   DebugInstr->getDebugExpression());
 | 
						|
      if (DebugInstr->isIndirectDebugValue())
 | 
						|
        MI->getOperand(1).setImm(DebugInstr->getOperand(1).getImm());
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
 | 
						|
    ILS.set(ID);
 | 
						|
    ++NumInserted;
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Calculate the liveness information for the given machine function and
 | 
						|
/// extend ranges across basic blocks.
 | 
						|
bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
 | 
						|
  LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  bool OLChanged = false;
 | 
						|
  bool MBBJoined = false;
 | 
						|
 | 
						|
  VarLocMap VarLocIDs;         // Map VarLoc<>unique ID for use in bitvectors.
 | 
						|
  OverlapMap OverlapFragments; // Map of overlapping variable fragments
 | 
						|
  OpenRangesSet OpenRanges(OverlapFragments);
 | 
						|
                              // Ranges that are open until end of bb.
 | 
						|
  VarLocInMBB OutLocs;        // Ranges that exist beyond bb.
 | 
						|
  VarLocInMBB InLocs;         // Ranges that are incoming after joining.
 | 
						|
  TransferMap Transfers;      // DBG_VALUEs associated with spills.
 | 
						|
 | 
						|
  VarToFragments SeenFragments;
 | 
						|
 | 
						|
  // Blocks which are artificial, i.e. blocks which exclusively contain
 | 
						|
  // instructions without locations, or with line 0 locations.
 | 
						|
  SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
 | 
						|
 | 
						|
  DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
 | 
						|
  DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
 | 
						|
  std::priority_queue<unsigned int, std::vector<unsigned int>,
 | 
						|
                      std::greater<unsigned int>>
 | 
						|
      Worklist;
 | 
						|
  std::priority_queue<unsigned int, std::vector<unsigned int>,
 | 
						|
                      std::greater<unsigned int>>
 | 
						|
      Pending;
 | 
						|
 | 
						|
  enum : bool { dontTransferChanges = false, transferChanges = true };
 | 
						|
 | 
						|
  // Besides parameter's modification, check whether a DBG_VALUE is inlined
 | 
						|
  // in order to deduce whether the variable that it tracks comes from
 | 
						|
  // a different function. If that is the case we can't track its entry value.
 | 
						|
  auto IsUnmodifiedFuncParam = [&](const MachineInstr &MI) {
 | 
						|
    auto *DIVar = MI.getDebugVariable();
 | 
						|
    return DIVar->isParameter() && DIVar->isNotModified() &&
 | 
						|
           !MI.getDebugLoc()->getInlinedAt();
 | 
						|
  };
 | 
						|
 | 
						|
  const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
 | 
						|
  unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
 | 
						|
  unsigned FP = TRI->getFrameRegister(MF);
 | 
						|
  auto IsRegOtherThanSPAndFP = [&](const MachineOperand &Op) -> bool {
 | 
						|
    return Op.isReg() && Op.getReg() != SP && Op.getReg() != FP;
 | 
						|
  };
 | 
						|
 | 
						|
  // Working set of currently collected debug variables mapped to DBG_VALUEs
 | 
						|
  // representing candidates for production of debug entry values.
 | 
						|
  DebugParamMap DebugEntryVals;
 | 
						|
 | 
						|
  MachineBasicBlock &First_MBB = *(MF.begin());
 | 
						|
  // Only in the case of entry MBB collect DBG_VALUEs representing
 | 
						|
  // function parameters in order to generate debug entry values for them.
 | 
						|
  // Currently, we generate debug entry values only for parameters that are
 | 
						|
  // unmodified throughout the function and located in a register.
 | 
						|
  // TODO: Add support for parameters that are described as fragments.
 | 
						|
  // TODO: Add support for modified arguments that can be expressed
 | 
						|
  // by using its entry value.
 | 
						|
  // TODO: Add support for local variables that are expressed in terms of
 | 
						|
  // parameters entry values.
 | 
						|
  for (auto &MI : First_MBB)
 | 
						|
    if (MI.isDebugValue() && IsUnmodifiedFuncParam(MI) &&
 | 
						|
        !MI.isIndirectDebugValue() && IsRegOtherThanSPAndFP(MI.getOperand(0)) &&
 | 
						|
        !DebugEntryVals.count(MI.getDebugVariable()) &&
 | 
						|
        !MI.getDebugExpression()->isFragment())
 | 
						|
      DebugEntryVals[MI.getDebugVariable()] = &MI;
 | 
						|
 | 
						|
  // Initialize every mbb with OutLocs.
 | 
						|
  // We are not looking at any spill instructions during the initial pass
 | 
						|
  // over the BBs. The LiveDebugVariables pass has already created DBG_VALUE
 | 
						|
  // instructions for spills of registers that are known to be user variables
 | 
						|
  // within the BB in which the spill occurs.
 | 
						|
  for (auto &MBB : MF) {
 | 
						|
    for (auto &MI : MBB) {
 | 
						|
      process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers, DebugEntryVals,
 | 
						|
              dontTransferChanges, OverlapFragments, SeenFragments);
 | 
						|
    }
 | 
						|
    // Add any entry DBG_VALUE instructions necessitated by parameter
 | 
						|
    // clobbering.
 | 
						|
    for (auto &TR : Transfers) {
 | 
						|
      MBB.insertAfter(MachineBasicBlock::iterator(*TR.TransferInst),
 | 
						|
                     TR.DebugInst);
 | 
						|
    }
 | 
						|
    Transfers.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
 | 
						|
    if (const DebugLoc &DL = MI.getDebugLoc())
 | 
						|
      return DL.getLine() != 0;
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
  for (auto &MBB : MF)
 | 
						|
    if (none_of(MBB.instrs(), hasNonArtificialLocation))
 | 
						|
      ArtificialBlocks.insert(&MBB);
 | 
						|
 | 
						|
  LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
 | 
						|
                              "OutLocs after initialization", dbgs()));
 | 
						|
 | 
						|
  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
 | 
						|
  unsigned int RPONumber = 0;
 | 
						|
  for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
 | 
						|
    OrderToBB[RPONumber] = *RI;
 | 
						|
    BBToOrder[*RI] = RPONumber;
 | 
						|
    Worklist.push(RPONumber);
 | 
						|
    ++RPONumber;
 | 
						|
  }
 | 
						|
  // This is a standard "union of predecessor outs" dataflow problem.
 | 
						|
  // To solve it, we perform join() and process() using the two worklist method
 | 
						|
  // until the ranges converge.
 | 
						|
  // Ranges have converged when both worklists are empty.
 | 
						|
  SmallPtrSet<const MachineBasicBlock *, 16> Visited;
 | 
						|
  while (!Worklist.empty() || !Pending.empty()) {
 | 
						|
    // We track what is on the pending worklist to avoid inserting the same
 | 
						|
    // thing twice.  We could avoid this with a custom priority queue, but this
 | 
						|
    // is probably not worth it.
 | 
						|
    SmallPtrSet<MachineBasicBlock *, 16> OnPending;
 | 
						|
    LLVM_DEBUG(dbgs() << "Processing Worklist\n");
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
 | 
						|
      Worklist.pop();
 | 
						|
      MBBJoined =
 | 
						|
          join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, ArtificialBlocks);
 | 
						|
      Visited.insert(MBB);
 | 
						|
      if (MBBJoined) {
 | 
						|
        MBBJoined = false;
 | 
						|
        Changed = true;
 | 
						|
        // Now that we have started to extend ranges across BBs we need to
 | 
						|
        // examine spill instructions to see whether they spill registers that
 | 
						|
        // correspond to user variables.
 | 
						|
        for (auto &MI : *MBB)
 | 
						|
          OLChanged |=
 | 
						|
              process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
 | 
						|
                      DebugEntryVals, transferChanges, OverlapFragments,
 | 
						|
                      SeenFragments);
 | 
						|
 | 
						|
        // Add any DBG_VALUE instructions necessitated by spills.
 | 
						|
        for (auto &TR : Transfers)
 | 
						|
          MBB->insertAfter(MachineBasicBlock::iterator(*TR.TransferInst),
 | 
						|
                           TR.DebugInst);
 | 
						|
        Transfers.clear();
 | 
						|
 | 
						|
        LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
 | 
						|
                                    "OutLocs after propagating", dbgs()));
 | 
						|
        LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
 | 
						|
                                    "InLocs after propagating", dbgs()));
 | 
						|
 | 
						|
        if (OLChanged) {
 | 
						|
          OLChanged = false;
 | 
						|
          for (auto s : MBB->successors())
 | 
						|
            if (OnPending.insert(s).second) {
 | 
						|
              Pending.push(BBToOrder[s]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Worklist.swap(Pending);
 | 
						|
    // At this point, pending must be empty, since it was just the empty
 | 
						|
    // worklist
 | 
						|
    assert(Pending.empty() && "Pending should be empty");
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
 | 
						|
  LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  if (!MF.getFunction().getSubprogram())
 | 
						|
    // LiveDebugValues will already have removed all DBG_VALUEs.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Skip functions from NoDebug compilation units.
 | 
						|
  if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
 | 
						|
      DICompileUnit::NoDebug)
 | 
						|
    return false;
 | 
						|
 | 
						|
  TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
  TII = MF.getSubtarget().getInstrInfo();
 | 
						|
  TFI = MF.getSubtarget().getFrameLowering();
 | 
						|
  TFI->determineCalleeSaves(MF, CalleeSavedRegs,
 | 
						|
                            make_unique<RegScavenger>().get());
 | 
						|
  LS.initialize(MF);
 | 
						|
 | 
						|
  bool Changed = ExtendRanges(MF);
 | 
						|
  return Changed;
 | 
						|
}
 |