2179 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2179 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Methods common to all machine instructions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/Hashing.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBundle.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/ModuleSlotTracker.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/MC/MCInstrDesc.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/MC/MCSymbol.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/LowLevelTypeImpl.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetIntrinsicInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <cstring>
 | 
						|
#include <iterator>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
 | 
						|
  if (const MachineBasicBlock *MBB = MI.getParent())
 | 
						|
    if (const MachineFunction *MF = MBB->getParent())
 | 
						|
      return MF;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Try to crawl up to the machine function and get TRI and IntrinsicInfo from
 | 
						|
// it.
 | 
						|
static void tryToGetTargetInfo(const MachineInstr &MI,
 | 
						|
                               const TargetRegisterInfo *&TRI,
 | 
						|
                               const MachineRegisterInfo *&MRI,
 | 
						|
                               const TargetIntrinsicInfo *&IntrinsicInfo,
 | 
						|
                               const TargetInstrInfo *&TII) {
 | 
						|
 | 
						|
  if (const MachineFunction *MF = getMFIfAvailable(MI)) {
 | 
						|
    TRI = MF->getSubtarget().getRegisterInfo();
 | 
						|
    MRI = &MF->getRegInfo();
 | 
						|
    IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
 | 
						|
    TII = MF->getSubtarget().getInstrInfo();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
 | 
						|
  if (MCID->ImplicitDefs)
 | 
						|
    for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
 | 
						|
           ++ImpDefs)
 | 
						|
      addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
 | 
						|
  if (MCID->ImplicitUses)
 | 
						|
    for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
 | 
						|
           ++ImpUses)
 | 
						|
      addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
 | 
						|
}
 | 
						|
 | 
						|
/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
 | 
						|
/// implicit operands. It reserves space for the number of operands specified by
 | 
						|
/// the MCInstrDesc.
 | 
						|
MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
 | 
						|
                           DebugLoc dl, bool NoImp)
 | 
						|
    : MCID(&tid), debugLoc(std::move(dl)) {
 | 
						|
  assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
 | 
						|
 | 
						|
  // Reserve space for the expected number of operands.
 | 
						|
  if (unsigned NumOps = MCID->getNumOperands() +
 | 
						|
    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
 | 
						|
    CapOperands = OperandCapacity::get(NumOps);
 | 
						|
    Operands = MF.allocateOperandArray(CapOperands);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!NoImp)
 | 
						|
    addImplicitDefUseOperands(MF);
 | 
						|
}
 | 
						|
 | 
						|
/// MachineInstr ctor - Copies MachineInstr arg exactly
 | 
						|
///
 | 
						|
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
 | 
						|
    : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
 | 
						|
  assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
 | 
						|
 | 
						|
  CapOperands = OperandCapacity::get(MI.getNumOperands());
 | 
						|
  Operands = MF.allocateOperandArray(CapOperands);
 | 
						|
 | 
						|
  // Copy operands.
 | 
						|
  for (const MachineOperand &MO : MI.operands())
 | 
						|
    addOperand(MF, MO);
 | 
						|
 | 
						|
  // Copy all the sensible flags.
 | 
						|
  setFlags(MI.Flags);
 | 
						|
}
 | 
						|
 | 
						|
/// getRegInfo - If this instruction is embedded into a MachineFunction,
 | 
						|
/// return the MachineRegisterInfo object for the current function, otherwise
 | 
						|
/// return null.
 | 
						|
MachineRegisterInfo *MachineInstr::getRegInfo() {
 | 
						|
  if (MachineBasicBlock *MBB = getParent())
 | 
						|
    return &MBB->getParent()->getRegInfo();
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
 | 
						|
/// this instruction from their respective use lists.  This requires that the
 | 
						|
/// operands already be on their use lists.
 | 
						|
void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
 | 
						|
  for (MachineOperand &MO : operands())
 | 
						|
    if (MO.isReg())
 | 
						|
      MRI.removeRegOperandFromUseList(&MO);
 | 
						|
}
 | 
						|
 | 
						|
/// AddRegOperandsToUseLists - Add all of the register operands in
 | 
						|
/// this instruction from their respective use lists.  This requires that the
 | 
						|
/// operands not be on their use lists yet.
 | 
						|
void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
 | 
						|
  for (MachineOperand &MO : operands())
 | 
						|
    if (MO.isReg())
 | 
						|
      MRI.addRegOperandToUseList(&MO);
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::addOperand(const MachineOperand &Op) {
 | 
						|
  MachineBasicBlock *MBB = getParent();
 | 
						|
  assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
 | 
						|
  addOperand(*MF, Op);
 | 
						|
}
 | 
						|
 | 
						|
/// Move NumOps MachineOperands from Src to Dst, with support for overlapping
 | 
						|
/// ranges. If MRI is non-null also update use-def chains.
 | 
						|
static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
 | 
						|
                         unsigned NumOps, MachineRegisterInfo *MRI) {
 | 
						|
  if (MRI)
 | 
						|
    return MRI->moveOperands(Dst, Src, NumOps);
 | 
						|
 | 
						|
  // MachineOperand is a trivially copyable type so we can just use memmove.
 | 
						|
  std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
 | 
						|
}
 | 
						|
 | 
						|
/// addOperand - Add the specified operand to the instruction.  If it is an
 | 
						|
/// implicit operand, it is added to the end of the operand list.  If it is
 | 
						|
/// an explicit operand it is added at the end of the explicit operand list
 | 
						|
/// (before the first implicit operand).
 | 
						|
void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
 | 
						|
  assert(MCID && "Cannot add operands before providing an instr descriptor");
 | 
						|
 | 
						|
  // Check if we're adding one of our existing operands.
 | 
						|
  if (&Op >= Operands && &Op < Operands + NumOperands) {
 | 
						|
    // This is unusual: MI->addOperand(MI->getOperand(i)).
 | 
						|
    // If adding Op requires reallocating or moving existing operands around,
 | 
						|
    // the Op reference could go stale. Support it by copying Op.
 | 
						|
    MachineOperand CopyOp(Op);
 | 
						|
    return addOperand(MF, CopyOp);
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the insert location for the new operand.  Implicit registers go at
 | 
						|
  // the end, everything else goes before the implicit regs.
 | 
						|
  //
 | 
						|
  // FIXME: Allow mixed explicit and implicit operands on inline asm.
 | 
						|
  // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
 | 
						|
  // implicit-defs, but they must not be moved around.  See the FIXME in
 | 
						|
  // InstrEmitter.cpp.
 | 
						|
  unsigned OpNo = getNumOperands();
 | 
						|
  bool isImpReg = Op.isReg() && Op.isImplicit();
 | 
						|
  if (!isImpReg && !isInlineAsm()) {
 | 
						|
    while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
 | 
						|
      --OpNo;
 | 
						|
      assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
 | 
						|
                   Op.getType() == MachineOperand::MO_MCSymbol;
 | 
						|
  // OpNo now points as the desired insertion point.  Unless this is a variadic
 | 
						|
  // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
 | 
						|
  // RegMask operands go between the explicit and implicit operands.
 | 
						|
  assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
 | 
						|
          OpNo < MCID->getNumOperands() || isDebugOp) &&
 | 
						|
         "Trying to add an operand to a machine instr that is already done!");
 | 
						|
#endif
 | 
						|
 | 
						|
  MachineRegisterInfo *MRI = getRegInfo();
 | 
						|
 | 
						|
  // Determine if the Operands array needs to be reallocated.
 | 
						|
  // Save the old capacity and operand array.
 | 
						|
  OperandCapacity OldCap = CapOperands;
 | 
						|
  MachineOperand *OldOperands = Operands;
 | 
						|
  if (!OldOperands || OldCap.getSize() == getNumOperands()) {
 | 
						|
    CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
 | 
						|
    Operands = MF.allocateOperandArray(CapOperands);
 | 
						|
    // Move the operands before the insertion point.
 | 
						|
    if (OpNo)
 | 
						|
      moveOperands(Operands, OldOperands, OpNo, MRI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Move the operands following the insertion point.
 | 
						|
  if (OpNo != NumOperands)
 | 
						|
    moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
 | 
						|
                 MRI);
 | 
						|
  ++NumOperands;
 | 
						|
 | 
						|
  // Deallocate the old operand array.
 | 
						|
  if (OldOperands != Operands && OldOperands)
 | 
						|
    MF.deallocateOperandArray(OldCap, OldOperands);
 | 
						|
 | 
						|
  // Copy Op into place. It still needs to be inserted into the MRI use lists.
 | 
						|
  MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
 | 
						|
  NewMO->ParentMI = this;
 | 
						|
 | 
						|
  // When adding a register operand, tell MRI about it.
 | 
						|
  if (NewMO->isReg()) {
 | 
						|
    // Ensure isOnRegUseList() returns false, regardless of Op's status.
 | 
						|
    NewMO->Contents.Reg.Prev = nullptr;
 | 
						|
    // Ignore existing ties. This is not a property that can be copied.
 | 
						|
    NewMO->TiedTo = 0;
 | 
						|
    // Add the new operand to MRI, but only for instructions in an MBB.
 | 
						|
    if (MRI)
 | 
						|
      MRI->addRegOperandToUseList(NewMO);
 | 
						|
    // The MCID operand information isn't accurate until we start adding
 | 
						|
    // explicit operands. The implicit operands are added first, then the
 | 
						|
    // explicits are inserted before them.
 | 
						|
    if (!isImpReg) {
 | 
						|
      // Tie uses to defs as indicated in MCInstrDesc.
 | 
						|
      if (NewMO->isUse()) {
 | 
						|
        int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
 | 
						|
        if (DefIdx != -1)
 | 
						|
          tieOperands(DefIdx, OpNo);
 | 
						|
      }
 | 
						|
      // If the register operand is flagged as early, mark the operand as such.
 | 
						|
      if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
 | 
						|
        NewMO->setIsEarlyClobber(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
 | 
						|
/// fewer operand than it started with.
 | 
						|
///
 | 
						|
void MachineInstr::RemoveOperand(unsigned OpNo) {
 | 
						|
  assert(OpNo < getNumOperands() && "Invalid operand number");
 | 
						|
  untieRegOperand(OpNo);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Moving tied operands would break the ties.
 | 
						|
  for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
 | 
						|
    if (Operands[i].isReg())
 | 
						|
      assert(!Operands[i].isTied() && "Cannot move tied operands");
 | 
						|
#endif
 | 
						|
 | 
						|
  MachineRegisterInfo *MRI = getRegInfo();
 | 
						|
  if (MRI && Operands[OpNo].isReg())
 | 
						|
    MRI->removeRegOperandFromUseList(Operands + OpNo);
 | 
						|
 | 
						|
  // Don't call the MachineOperand destructor. A lot of this code depends on
 | 
						|
  // MachineOperand having a trivial destructor anyway, and adding a call here
 | 
						|
  // wouldn't make it 'destructor-correct'.
 | 
						|
 | 
						|
  if (unsigned N = NumOperands - 1 - OpNo)
 | 
						|
    moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
 | 
						|
  --NumOperands;
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::dropMemRefs(MachineFunction &MF) {
 | 
						|
  if (memoperands_empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // See if we can just drop all of our extra info.
 | 
						|
  if (!getPreInstrSymbol() && !getPostInstrSymbol()) {
 | 
						|
    Info.clear();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!getPostInstrSymbol()) {
 | 
						|
    Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!getPreInstrSymbol()) {
 | 
						|
    Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise allocate a fresh extra info with just these symbols.
 | 
						|
  Info.set<EIIK_OutOfLine>(
 | 
						|
      MF.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol()));
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::setMemRefs(MachineFunction &MF,
 | 
						|
                              ArrayRef<MachineMemOperand *> MMOs) {
 | 
						|
  if (MMOs.empty()) {
 | 
						|
    dropMemRefs(MF);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to store a single MMO inline.
 | 
						|
  if (MMOs.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) {
 | 
						|
    Info.set<EIIK_MMO>(MMOs[0]);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise create an extra info struct with all of our info.
 | 
						|
  Info.set<EIIK_OutOfLine>(
 | 
						|
      MF.createMIExtraInfo(MMOs, getPreInstrSymbol(), getPostInstrSymbol()));
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::addMemOperand(MachineFunction &MF,
 | 
						|
                                 MachineMemOperand *MO) {
 | 
						|
  SmallVector<MachineMemOperand *, 2> MMOs;
 | 
						|
  MMOs.append(memoperands_begin(), memoperands_end());
 | 
						|
  MMOs.push_back(MO);
 | 
						|
  setMemRefs(MF, MMOs);
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
 | 
						|
  if (this == &MI)
 | 
						|
    // Nothing to do for a self-clone!
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(&MF == MI.getMF() &&
 | 
						|
         "Invalid machine functions when cloning memory refrences!");
 | 
						|
  // See if we can just steal the extra info already allocated for the
 | 
						|
  // instruction. We can do this whenever the pre- and post-instruction symbols
 | 
						|
  // are the same (including null).
 | 
						|
  if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
 | 
						|
      getPostInstrSymbol() == MI.getPostInstrSymbol()) {
 | 
						|
    Info = MI.Info;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, fall back on a copy-based clone.
 | 
						|
  setMemRefs(MF, MI.memoperands());
 | 
						|
}
 | 
						|
 | 
						|
/// Check to see if the MMOs pointed to by the two MemRefs arrays are
 | 
						|
/// identical.
 | 
						|
static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
 | 
						|
                             ArrayRef<MachineMemOperand *> RHS) {
 | 
						|
  if (LHS.size() != RHS.size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto LHSPointees = make_pointee_range(LHS);
 | 
						|
  auto RHSPointees = make_pointee_range(RHS);
 | 
						|
  return std::equal(LHSPointees.begin(), LHSPointees.end(),
 | 
						|
                    RHSPointees.begin());
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
 | 
						|
                                      ArrayRef<const MachineInstr *> MIs) {
 | 
						|
  // Try handling easy numbers of MIs with simpler mechanisms.
 | 
						|
  if (MIs.empty()) {
 | 
						|
    dropMemRefs(MF);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (MIs.size() == 1) {
 | 
						|
    cloneMemRefs(MF, *MIs[0]);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Because an empty memoperands list provides *no* information and must be
 | 
						|
  // handled conservatively (assuming the instruction can do anything), the only
 | 
						|
  // way to merge with it is to drop all other memoperands.
 | 
						|
  if (MIs[0]->memoperands_empty()) {
 | 
						|
    dropMemRefs(MF);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle the general case.
 | 
						|
  SmallVector<MachineMemOperand *, 2> MergedMMOs;
 | 
						|
  // Start with the first instruction.
 | 
						|
  assert(&MF == MIs[0]->getMF() &&
 | 
						|
         "Invalid machine functions when cloning memory references!");
 | 
						|
  MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
 | 
						|
  // Now walk all the other instructions and accumulate any different MMOs.
 | 
						|
  for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
 | 
						|
    assert(&MF == MI.getMF() &&
 | 
						|
           "Invalid machine functions when cloning memory references!");
 | 
						|
 | 
						|
    // Skip MIs with identical operands to the first. This is a somewhat
 | 
						|
    // arbitrary hack but will catch common cases without being quadratic.
 | 
						|
    // TODO: We could fully implement merge semantics here if needed.
 | 
						|
    if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Because an empty memoperands list provides *no* information and must be
 | 
						|
    // handled conservatively (assuming the instruction can do anything), the
 | 
						|
    // only way to merge with it is to drop all other memoperands.
 | 
						|
    if (MI.memoperands_empty()) {
 | 
						|
      dropMemRefs(MF);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise accumulate these into our temporary buffer of the merged state.
 | 
						|
    MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
 | 
						|
  }
 | 
						|
 | 
						|
  setMemRefs(MF, MergedMMOs);
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
 | 
						|
  MCSymbol *OldSymbol = getPreInstrSymbol();
 | 
						|
  if (OldSymbol == Symbol)
 | 
						|
    return;
 | 
						|
  if (OldSymbol && !Symbol) {
 | 
						|
    // We're removing a symbol rather than adding one. Try to clean up any
 | 
						|
    // extra info carried around.
 | 
						|
    if (Info.is<EIIK_PreInstrSymbol>()) {
 | 
						|
      Info.clear();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (memoperands_empty()) {
 | 
						|
      assert(getPostInstrSymbol() &&
 | 
						|
             "Should never have only a single symbol allocated out-of-line!");
 | 
						|
      Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise fallback on the generic update.
 | 
						|
  } else if (!Info || Info.is<EIIK_PreInstrSymbol>()) {
 | 
						|
    // If we don't have any other extra info, we can store this inline.
 | 
						|
    Info.set<EIIK_PreInstrSymbol>(Symbol);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, allocate a full new set of extra info.
 | 
						|
  // FIXME: Maybe we should make the symbols in the extra info mutable?
 | 
						|
  Info.set<EIIK_OutOfLine>(
 | 
						|
      MF.createMIExtraInfo(memoperands(), Symbol, getPostInstrSymbol()));
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
 | 
						|
  MCSymbol *OldSymbol = getPostInstrSymbol();
 | 
						|
  if (OldSymbol == Symbol)
 | 
						|
    return;
 | 
						|
  if (OldSymbol && !Symbol) {
 | 
						|
    // We're removing a symbol rather than adding one. Try to clean up any
 | 
						|
    // extra info carried around.
 | 
						|
    if (Info.is<EIIK_PostInstrSymbol>()) {
 | 
						|
      Info.clear();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (memoperands_empty()) {
 | 
						|
      assert(getPreInstrSymbol() &&
 | 
						|
             "Should never have only a single symbol allocated out-of-line!");
 | 
						|
      Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise fallback on the generic update.
 | 
						|
  } else if (!Info || Info.is<EIIK_PostInstrSymbol>()) {
 | 
						|
    // If we don't have any other extra info, we can store this inline.
 | 
						|
    Info.set<EIIK_PostInstrSymbol>(Symbol);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, allocate a full new set of extra info.
 | 
						|
  // FIXME: Maybe we should make the symbols in the extra info mutable?
 | 
						|
  Info.set<EIIK_OutOfLine>(
 | 
						|
      MF.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol));
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
 | 
						|
                                     const MachineInstr &MI) {
 | 
						|
  if (this == &MI)
 | 
						|
    // Nothing to do for a self-clone!
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(&MF == MI.getMF() &&
 | 
						|
         "Invalid machine functions when cloning instruction symbols!");
 | 
						|
 | 
						|
  setPreInstrSymbol(MF, MI.getPreInstrSymbol());
 | 
						|
  setPostInstrSymbol(MF, MI.getPostInstrSymbol());
 | 
						|
}
 | 
						|
 | 
						|
uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
 | 
						|
  // For now, the just return the union of the flags. If the flags get more
 | 
						|
  // complicated over time, we might need more logic here.
 | 
						|
  return getFlags() | Other.getFlags();
 | 
						|
}
 | 
						|
 | 
						|
uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
 | 
						|
  uint16_t MIFlags = 0;
 | 
						|
  // Copy the wrapping flags.
 | 
						|
  if (const OverflowingBinaryOperator *OB =
 | 
						|
          dyn_cast<OverflowingBinaryOperator>(&I)) {
 | 
						|
    if (OB->hasNoSignedWrap())
 | 
						|
      MIFlags |= MachineInstr::MIFlag::NoSWrap;
 | 
						|
    if (OB->hasNoUnsignedWrap())
 | 
						|
      MIFlags |= MachineInstr::MIFlag::NoUWrap;
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy the exact flag.
 | 
						|
  if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
 | 
						|
    if (PE->isExact())
 | 
						|
      MIFlags |= MachineInstr::MIFlag::IsExact;
 | 
						|
 | 
						|
  // Copy the fast-math flags.
 | 
						|
  if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
 | 
						|
    const FastMathFlags Flags = FP->getFastMathFlags();
 | 
						|
    if (Flags.noNaNs())
 | 
						|
      MIFlags |= MachineInstr::MIFlag::FmNoNans;
 | 
						|
    if (Flags.noInfs())
 | 
						|
      MIFlags |= MachineInstr::MIFlag::FmNoInfs;
 | 
						|
    if (Flags.noSignedZeros())
 | 
						|
      MIFlags |= MachineInstr::MIFlag::FmNsz;
 | 
						|
    if (Flags.allowReciprocal())
 | 
						|
      MIFlags |= MachineInstr::MIFlag::FmArcp;
 | 
						|
    if (Flags.allowContract())
 | 
						|
      MIFlags |= MachineInstr::MIFlag::FmContract;
 | 
						|
    if (Flags.approxFunc())
 | 
						|
      MIFlags |= MachineInstr::MIFlag::FmAfn;
 | 
						|
    if (Flags.allowReassoc())
 | 
						|
      MIFlags |= MachineInstr::MIFlag::FmReassoc;
 | 
						|
  }
 | 
						|
 | 
						|
  return MIFlags;
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::copyIRFlags(const Instruction &I) {
 | 
						|
  Flags = copyFlagsFromInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
 | 
						|
  assert(!isBundledWithPred() && "Must be called on bundle header");
 | 
						|
  for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
 | 
						|
    if (MII->getDesc().getFlags() & Mask) {
 | 
						|
      if (Type == AnyInBundle)
 | 
						|
        return true;
 | 
						|
    } else {
 | 
						|
      if (Type == AllInBundle && !MII->isBundle())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    // This was the last instruction in the bundle.
 | 
						|
    if (!MII->isBundledWithSucc())
 | 
						|
      return Type == AllInBundle;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
 | 
						|
                                 MICheckType Check) const {
 | 
						|
  // If opcodes or number of operands are not the same then the two
 | 
						|
  // instructions are obviously not identical.
 | 
						|
  if (Other.getOpcode() != getOpcode() ||
 | 
						|
      Other.getNumOperands() != getNumOperands())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isBundle()) {
 | 
						|
    // We have passed the test above that both instructions have the same
 | 
						|
    // opcode, so we know that both instructions are bundles here. Let's compare
 | 
						|
    // MIs inside the bundle.
 | 
						|
    assert(Other.isBundle() && "Expected that both instructions are bundles.");
 | 
						|
    MachineBasicBlock::const_instr_iterator I1 = getIterator();
 | 
						|
    MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
 | 
						|
    // Loop until we analysed the last intruction inside at least one of the
 | 
						|
    // bundles.
 | 
						|
    while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
 | 
						|
      ++I1;
 | 
						|
      ++I2;
 | 
						|
      if (!I1->isIdenticalTo(*I2, Check))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    // If we've reached the end of just one of the two bundles, but not both,
 | 
						|
    // the instructions are not identical.
 | 
						|
    if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check operands to make sure they match.
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = getOperand(i);
 | 
						|
    const MachineOperand &OMO = Other.getOperand(i);
 | 
						|
    if (!MO.isReg()) {
 | 
						|
      if (!MO.isIdenticalTo(OMO))
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Clients may or may not want to ignore defs when testing for equality.
 | 
						|
    // For example, machine CSE pass only cares about finding common
 | 
						|
    // subexpressions, so it's safe to ignore virtual register defs.
 | 
						|
    if (MO.isDef()) {
 | 
						|
      if (Check == IgnoreDefs)
 | 
						|
        continue;
 | 
						|
      else if (Check == IgnoreVRegDefs) {
 | 
						|
        if (!Register::isVirtualRegister(MO.getReg()) ||
 | 
						|
            !Register::isVirtualRegister(OMO.getReg()))
 | 
						|
          if (!MO.isIdenticalTo(OMO))
 | 
						|
            return false;
 | 
						|
      } else {
 | 
						|
        if (!MO.isIdenticalTo(OMO))
 | 
						|
          return false;
 | 
						|
        if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (!MO.isIdenticalTo(OMO))
 | 
						|
        return false;
 | 
						|
      if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If DebugLoc does not match then two debug instructions are not identical.
 | 
						|
  if (isDebugInstr())
 | 
						|
    if (getDebugLoc() && Other.getDebugLoc() &&
 | 
						|
        getDebugLoc() != Other.getDebugLoc())
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
const MachineFunction *MachineInstr::getMF() const {
 | 
						|
  return getParent()->getParent();
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *MachineInstr::removeFromParent() {
 | 
						|
  assert(getParent() && "Not embedded in a basic block!");
 | 
						|
  return getParent()->remove(this);
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *MachineInstr::removeFromBundle() {
 | 
						|
  assert(getParent() && "Not embedded in a basic block!");
 | 
						|
  return getParent()->remove_instr(this);
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::eraseFromParent() {
 | 
						|
  assert(getParent() && "Not embedded in a basic block!");
 | 
						|
  getParent()->erase(this);
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
 | 
						|
  assert(getParent() && "Not embedded in a basic block!");
 | 
						|
  MachineBasicBlock *MBB = getParent();
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  assert(MF && "Not embedded in a function!");
 | 
						|
 | 
						|
  MachineInstr *MI = (MachineInstr *)this;
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
 | 
						|
  for (const MachineOperand &MO : MI->operands()) {
 | 
						|
    if (!MO.isReg() || !MO.isDef())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (!Register::isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
    MRI.markUsesInDebugValueAsUndef(Reg);
 | 
						|
  }
 | 
						|
  MI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::eraseFromBundle() {
 | 
						|
  assert(getParent() && "Not embedded in a basic block!");
 | 
						|
  getParent()->erase_instr(this);
 | 
						|
}
 | 
						|
 | 
						|
unsigned MachineInstr::getNumExplicitOperands() const {
 | 
						|
  unsigned NumOperands = MCID->getNumOperands();
 | 
						|
  if (!MCID->isVariadic())
 | 
						|
    return NumOperands;
 | 
						|
 | 
						|
  for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
 | 
						|
    const MachineOperand &MO = getOperand(I);
 | 
						|
    // The operands must always be in the following order:
 | 
						|
    // - explicit reg defs,
 | 
						|
    // - other explicit operands (reg uses, immediates, etc.),
 | 
						|
    // - implicit reg defs
 | 
						|
    // - implicit reg uses
 | 
						|
    if (MO.isReg() && MO.isImplicit())
 | 
						|
      break;
 | 
						|
    ++NumOperands;
 | 
						|
  }
 | 
						|
  return NumOperands;
 | 
						|
}
 | 
						|
 | 
						|
unsigned MachineInstr::getNumExplicitDefs() const {
 | 
						|
  unsigned NumDefs = MCID->getNumDefs();
 | 
						|
  if (!MCID->isVariadic())
 | 
						|
    return NumDefs;
 | 
						|
 | 
						|
  for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
 | 
						|
    const MachineOperand &MO = getOperand(I);
 | 
						|
    if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
 | 
						|
      break;
 | 
						|
    ++NumDefs;
 | 
						|
  }
 | 
						|
  return NumDefs;
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::bundleWithPred() {
 | 
						|
  assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
 | 
						|
  setFlag(BundledPred);
 | 
						|
  MachineBasicBlock::instr_iterator Pred = getIterator();
 | 
						|
  --Pred;
 | 
						|
  assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
 | 
						|
  Pred->setFlag(BundledSucc);
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::bundleWithSucc() {
 | 
						|
  assert(!isBundledWithSucc() && "MI is already bundled with its successor");
 | 
						|
  setFlag(BundledSucc);
 | 
						|
  MachineBasicBlock::instr_iterator Succ = getIterator();
 | 
						|
  ++Succ;
 | 
						|
  assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
 | 
						|
  Succ->setFlag(BundledPred);
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::unbundleFromPred() {
 | 
						|
  assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
 | 
						|
  clearFlag(BundledPred);
 | 
						|
  MachineBasicBlock::instr_iterator Pred = getIterator();
 | 
						|
  --Pred;
 | 
						|
  assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
 | 
						|
  Pred->clearFlag(BundledSucc);
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::unbundleFromSucc() {
 | 
						|
  assert(isBundledWithSucc() && "MI isn't bundled with its successor");
 | 
						|
  clearFlag(BundledSucc);
 | 
						|
  MachineBasicBlock::instr_iterator Succ = getIterator();
 | 
						|
  ++Succ;
 | 
						|
  assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
 | 
						|
  Succ->clearFlag(BundledPred);
 | 
						|
}
 | 
						|
 | 
						|
bool MachineInstr::isStackAligningInlineAsm() const {
 | 
						|
  if (isInlineAsm()) {
 | 
						|
    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
 | 
						|
    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
 | 
						|
  assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
 | 
						|
  unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
 | 
						|
  return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
 | 
						|
}
 | 
						|
 | 
						|
int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
 | 
						|
                                       unsigned *GroupNo) const {
 | 
						|
  assert(isInlineAsm() && "Expected an inline asm instruction");
 | 
						|
  assert(OpIdx < getNumOperands() && "OpIdx out of range");
 | 
						|
 | 
						|
  // Ignore queries about the initial operands.
 | 
						|
  if (OpIdx < InlineAsm::MIOp_FirstOperand)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  unsigned Group = 0;
 | 
						|
  unsigned NumOps;
 | 
						|
  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
 | 
						|
       i += NumOps) {
 | 
						|
    const MachineOperand &FlagMO = getOperand(i);
 | 
						|
    // If we reach the implicit register operands, stop looking.
 | 
						|
    if (!FlagMO.isImm())
 | 
						|
      return -1;
 | 
						|
    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
 | 
						|
    if (i + NumOps > OpIdx) {
 | 
						|
      if (GroupNo)
 | 
						|
        *GroupNo = Group;
 | 
						|
      return i;
 | 
						|
    }
 | 
						|
    ++Group;
 | 
						|
  }
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
const DILabel *MachineInstr::getDebugLabel() const {
 | 
						|
  assert(isDebugLabel() && "not a DBG_LABEL");
 | 
						|
  return cast<DILabel>(getOperand(0).getMetadata());
 | 
						|
}
 | 
						|
 | 
						|
const DILocalVariable *MachineInstr::getDebugVariable() const {
 | 
						|
  assert(isDebugValue() && "not a DBG_VALUE");
 | 
						|
  return cast<DILocalVariable>(getOperand(2).getMetadata());
 | 
						|
}
 | 
						|
 | 
						|
const DIExpression *MachineInstr::getDebugExpression() const {
 | 
						|
  assert(isDebugValue() && "not a DBG_VALUE");
 | 
						|
  return cast<DIExpression>(getOperand(3).getMetadata());
 | 
						|
}
 | 
						|
 | 
						|
const TargetRegisterClass*
 | 
						|
MachineInstr::getRegClassConstraint(unsigned OpIdx,
 | 
						|
                                    const TargetInstrInfo *TII,
 | 
						|
                                    const TargetRegisterInfo *TRI) const {
 | 
						|
  assert(getParent() && "Can't have an MBB reference here!");
 | 
						|
  assert(getMF() && "Can't have an MF reference here!");
 | 
						|
  const MachineFunction &MF = *getMF();
 | 
						|
 | 
						|
  // Most opcodes have fixed constraints in their MCInstrDesc.
 | 
						|
  if (!isInlineAsm())
 | 
						|
    return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
 | 
						|
 | 
						|
  if (!getOperand(OpIdx).isReg())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // For tied uses on inline asm, get the constraint from the def.
 | 
						|
  unsigned DefIdx;
 | 
						|
  if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
 | 
						|
    OpIdx = DefIdx;
 | 
						|
 | 
						|
  // Inline asm stores register class constraints in the flag word.
 | 
						|
  int FlagIdx = findInlineAsmFlagIdx(OpIdx);
 | 
						|
  if (FlagIdx < 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  unsigned Flag = getOperand(FlagIdx).getImm();
 | 
						|
  unsigned RCID;
 | 
						|
  if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
 | 
						|
       InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
 | 
						|
       InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
 | 
						|
      InlineAsm::hasRegClassConstraint(Flag, RCID))
 | 
						|
    return TRI->getRegClass(RCID);
 | 
						|
 | 
						|
  // Assume that all registers in a memory operand are pointers.
 | 
						|
  if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
 | 
						|
    return TRI->getPointerRegClass(MF);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
 | 
						|
    unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
 | 
						|
    const TargetRegisterInfo *TRI, bool ExploreBundle) const {
 | 
						|
  // Check every operands inside the bundle if we have
 | 
						|
  // been asked to.
 | 
						|
  if (ExploreBundle)
 | 
						|
    for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
 | 
						|
         ++OpndIt)
 | 
						|
      CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
 | 
						|
          OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
 | 
						|
  else
 | 
						|
    // Otherwise, just check the current operands.
 | 
						|
    for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
 | 
						|
      CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
 | 
						|
  return CurRC;
 | 
						|
}
 | 
						|
 | 
						|
const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
 | 
						|
    unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
 | 
						|
    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
 | 
						|
  assert(CurRC && "Invalid initial register class");
 | 
						|
  // Check if Reg is constrained by some of its use/def from MI.
 | 
						|
  const MachineOperand &MO = getOperand(OpIdx);
 | 
						|
  if (!MO.isReg() || MO.getReg() != Reg)
 | 
						|
    return CurRC;
 | 
						|
  // If yes, accumulate the constraints through the operand.
 | 
						|
  return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
 | 
						|
}
 | 
						|
 | 
						|
const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
 | 
						|
    unsigned OpIdx, const TargetRegisterClass *CurRC,
 | 
						|
    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
 | 
						|
  const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
 | 
						|
  const MachineOperand &MO = getOperand(OpIdx);
 | 
						|
  assert(MO.isReg() &&
 | 
						|
         "Cannot get register constraints for non-register operand");
 | 
						|
  assert(CurRC && "Invalid initial register class");
 | 
						|
  if (unsigned SubIdx = MO.getSubReg()) {
 | 
						|
    if (OpRC)
 | 
						|
      CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
 | 
						|
    else
 | 
						|
      CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
 | 
						|
  } else if (OpRC)
 | 
						|
    CurRC = TRI->getCommonSubClass(CurRC, OpRC);
 | 
						|
  return CurRC;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the number of instructions inside the MI bundle, not counting the
 | 
						|
/// header instruction.
 | 
						|
unsigned MachineInstr::getBundleSize() const {
 | 
						|
  MachineBasicBlock::const_instr_iterator I = getIterator();
 | 
						|
  unsigned Size = 0;
 | 
						|
  while (I->isBundledWithSucc()) {
 | 
						|
    ++Size;
 | 
						|
    ++I;
 | 
						|
  }
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the MachineInstr has an implicit-use operand of exactly
 | 
						|
/// the given register (not considering sub/super-registers).
 | 
						|
bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = getOperand(i);
 | 
						|
    if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
 | 
						|
/// the specific register or -1 if it is not found. It further tightens
 | 
						|
/// the search criteria to a use that kills the register if isKill is true.
 | 
						|
int MachineInstr::findRegisterUseOperandIdx(
 | 
						|
    unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.isUse())
 | 
						|
      continue;
 | 
						|
    unsigned MOReg = MO.getReg();
 | 
						|
    if (!MOReg)
 | 
						|
      continue;
 | 
						|
    if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
 | 
						|
      if (!isKill || MO.isKill())
 | 
						|
        return i;
 | 
						|
  }
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
 | 
						|
/// indicating if this instruction reads or writes Reg. This also considers
 | 
						|
/// partial defines.
 | 
						|
std::pair<bool,bool>
 | 
						|
MachineInstr::readsWritesVirtualRegister(unsigned Reg,
 | 
						|
                                         SmallVectorImpl<unsigned> *Ops) const {
 | 
						|
  bool PartDef = false; // Partial redefine.
 | 
						|
  bool FullDef = false; // Full define.
 | 
						|
  bool Use = false;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = getOperand(i);
 | 
						|
    if (!MO.isReg() || MO.getReg() != Reg)
 | 
						|
      continue;
 | 
						|
    if (Ops)
 | 
						|
      Ops->push_back(i);
 | 
						|
    if (MO.isUse())
 | 
						|
      Use |= !MO.isUndef();
 | 
						|
    else if (MO.getSubReg() && !MO.isUndef())
 | 
						|
      // A partial def undef doesn't count as reading the register.
 | 
						|
      PartDef = true;
 | 
						|
    else
 | 
						|
      FullDef = true;
 | 
						|
  }
 | 
						|
  // A partial redefine uses Reg unless there is also a full define.
 | 
						|
  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
 | 
						|
}
 | 
						|
 | 
						|
/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
 | 
						|
/// the specified register or -1 if it is not found. If isDead is true, defs
 | 
						|
/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
 | 
						|
/// also checks if there is a def of a super-register.
 | 
						|
int
 | 
						|
MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
 | 
						|
                                        const TargetRegisterInfo *TRI) const {
 | 
						|
  bool isPhys = Register::isPhysicalRegister(Reg);
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = getOperand(i);
 | 
						|
    // Accept regmask operands when Overlap is set.
 | 
						|
    // Ignore them when looking for a specific def operand (Overlap == false).
 | 
						|
    if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
 | 
						|
      return i;
 | 
						|
    if (!MO.isReg() || !MO.isDef())
 | 
						|
      continue;
 | 
						|
    unsigned MOReg = MO.getReg();
 | 
						|
    bool Found = (MOReg == Reg);
 | 
						|
    if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
 | 
						|
      if (Overlap)
 | 
						|
        Found = TRI->regsOverlap(MOReg, Reg);
 | 
						|
      else
 | 
						|
        Found = TRI->isSubRegister(MOReg, Reg);
 | 
						|
    }
 | 
						|
    if (Found && (!isDead || MO.isDead()))
 | 
						|
      return i;
 | 
						|
  }
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
/// findFirstPredOperandIdx() - Find the index of the first operand in the
 | 
						|
/// operand list that is used to represent the predicate. It returns -1 if
 | 
						|
/// none is found.
 | 
						|
int MachineInstr::findFirstPredOperandIdx() const {
 | 
						|
  // Don't call MCID.findFirstPredOperandIdx() because this variant
 | 
						|
  // is sometimes called on an instruction that's not yet complete, and
 | 
						|
  // so the number of operands is less than the MCID indicates. In
 | 
						|
  // particular, the PTX target does this.
 | 
						|
  const MCInstrDesc &MCID = getDesc();
 | 
						|
  if (MCID.isPredicable()) {
 | 
						|
    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
      if (MCID.OpInfo[i].isPredicate())
 | 
						|
        return i;
 | 
						|
  }
 | 
						|
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
// MachineOperand::TiedTo is 4 bits wide.
 | 
						|
const unsigned TiedMax = 15;
 | 
						|
 | 
						|
/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
 | 
						|
///
 | 
						|
/// Use and def operands can be tied together, indicated by a non-zero TiedTo
 | 
						|
/// field. TiedTo can have these values:
 | 
						|
///
 | 
						|
/// 0:              Operand is not tied to anything.
 | 
						|
/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
 | 
						|
/// TiedMax:        Tied to an operand >= TiedMax-1.
 | 
						|
///
 | 
						|
/// The tied def must be one of the first TiedMax operands on a normal
 | 
						|
/// instruction. INLINEASM instructions allow more tied defs.
 | 
						|
///
 | 
						|
void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
 | 
						|
  MachineOperand &DefMO = getOperand(DefIdx);
 | 
						|
  MachineOperand &UseMO = getOperand(UseIdx);
 | 
						|
  assert(DefMO.isDef() && "DefIdx must be a def operand");
 | 
						|
  assert(UseMO.isUse() && "UseIdx must be a use operand");
 | 
						|
  assert(!DefMO.isTied() && "Def is already tied to another use");
 | 
						|
  assert(!UseMO.isTied() && "Use is already tied to another def");
 | 
						|
 | 
						|
  if (DefIdx < TiedMax)
 | 
						|
    UseMO.TiedTo = DefIdx + 1;
 | 
						|
  else {
 | 
						|
    // Inline asm can use the group descriptors to find tied operands, but on
 | 
						|
    // normal instruction, the tied def must be within the first TiedMax
 | 
						|
    // operands.
 | 
						|
    assert(isInlineAsm() && "DefIdx out of range");
 | 
						|
    UseMO.TiedTo = TiedMax;
 | 
						|
  }
 | 
						|
 | 
						|
  // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
 | 
						|
  DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
 | 
						|
}
 | 
						|
 | 
						|
/// Given the index of a tied register operand, find the operand it is tied to.
 | 
						|
/// Defs are tied to uses and vice versa. Returns the index of the tied operand
 | 
						|
/// which must exist.
 | 
						|
unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
 | 
						|
  const MachineOperand &MO = getOperand(OpIdx);
 | 
						|
  assert(MO.isTied() && "Operand isn't tied");
 | 
						|
 | 
						|
  // Normally TiedTo is in range.
 | 
						|
  if (MO.TiedTo < TiedMax)
 | 
						|
    return MO.TiedTo - 1;
 | 
						|
 | 
						|
  // Uses on normal instructions can be out of range.
 | 
						|
  if (!isInlineAsm()) {
 | 
						|
    // Normal tied defs must be in the 0..TiedMax-1 range.
 | 
						|
    if (MO.isUse())
 | 
						|
      return TiedMax - 1;
 | 
						|
    // MO is a def. Search for the tied use.
 | 
						|
    for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &UseMO = getOperand(i);
 | 
						|
      if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
 | 
						|
        return i;
 | 
						|
    }
 | 
						|
    llvm_unreachable("Can't find tied use");
 | 
						|
  }
 | 
						|
 | 
						|
  // Now deal with inline asm by parsing the operand group descriptor flags.
 | 
						|
  // Find the beginning of each operand group.
 | 
						|
  SmallVector<unsigned, 8> GroupIdx;
 | 
						|
  unsigned OpIdxGroup = ~0u;
 | 
						|
  unsigned NumOps;
 | 
						|
  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
 | 
						|
       i += NumOps) {
 | 
						|
    const MachineOperand &FlagMO = getOperand(i);
 | 
						|
    assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
 | 
						|
    unsigned CurGroup = GroupIdx.size();
 | 
						|
    GroupIdx.push_back(i);
 | 
						|
    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
 | 
						|
    // OpIdx belongs to this operand group.
 | 
						|
    if (OpIdx > i && OpIdx < i + NumOps)
 | 
						|
      OpIdxGroup = CurGroup;
 | 
						|
    unsigned TiedGroup;
 | 
						|
    if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
 | 
						|
      continue;
 | 
						|
    // Operands in this group are tied to operands in TiedGroup which must be
 | 
						|
    // earlier. Find the number of operands between the two groups.
 | 
						|
    unsigned Delta = i - GroupIdx[TiedGroup];
 | 
						|
 | 
						|
    // OpIdx is a use tied to TiedGroup.
 | 
						|
    if (OpIdxGroup == CurGroup)
 | 
						|
      return OpIdx - Delta;
 | 
						|
 | 
						|
    // OpIdx is a def tied to this use group.
 | 
						|
    if (OpIdxGroup == TiedGroup)
 | 
						|
      return OpIdx + Delta;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid tied operand on inline asm");
 | 
						|
}
 | 
						|
 | 
						|
/// clearKillInfo - Clears kill flags on all operands.
 | 
						|
///
 | 
						|
void MachineInstr::clearKillInfo() {
 | 
						|
  for (MachineOperand &MO : operands()) {
 | 
						|
    if (MO.isReg() && MO.isUse())
 | 
						|
      MO.setIsKill(false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg,
 | 
						|
                                      unsigned SubIdx,
 | 
						|
                                      const TargetRegisterInfo &RegInfo) {
 | 
						|
  if (Register::isPhysicalRegister(ToReg)) {
 | 
						|
    if (SubIdx)
 | 
						|
      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
 | 
						|
    for (MachineOperand &MO : operands()) {
 | 
						|
      if (!MO.isReg() || MO.getReg() != FromReg)
 | 
						|
        continue;
 | 
						|
      MO.substPhysReg(ToReg, RegInfo);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    for (MachineOperand &MO : operands()) {
 | 
						|
      if (!MO.isReg() || MO.getReg() != FromReg)
 | 
						|
        continue;
 | 
						|
      MO.substVirtReg(ToReg, SubIdx, RegInfo);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeToMove - Return true if it is safe to move this instruction. If
 | 
						|
/// SawStore is set to true, it means that there is a store (or call) between
 | 
						|
/// the instruction's location and its intended destination.
 | 
						|
bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
 | 
						|
  // Ignore stuff that we obviously can't move.
 | 
						|
  //
 | 
						|
  // Treat volatile loads as stores. This is not strictly necessary for
 | 
						|
  // volatiles, but it is required for atomic loads. It is not allowed to move
 | 
						|
  // a load across an atomic load with Ordering > Monotonic.
 | 
						|
  if (mayStore() || isCall() || isPHI() ||
 | 
						|
      (mayLoad() && hasOrderedMemoryRef())) {
 | 
						|
    SawStore = true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isPosition() || isDebugInstr() || isTerminator() ||
 | 
						|
      mayRaiseFPException() || hasUnmodeledSideEffects())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // See if this instruction does a load.  If so, we have to guarantee that the
 | 
						|
  // loaded value doesn't change between the load and the its intended
 | 
						|
  // destination. The check for isInvariantLoad gives the targe the chance to
 | 
						|
  // classify the load as always returning a constant, e.g. a constant pool
 | 
						|
  // load.
 | 
						|
  if (mayLoad() && !isDereferenceableInvariantLoad(AA))
 | 
						|
    // Otherwise, this is a real load.  If there is a store between the load and
 | 
						|
    // end of block, we can't move it.
 | 
						|
    return !SawStore;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool MachineInstr::mayAlias(AliasAnalysis *AA, const MachineInstr &Other,
 | 
						|
                            bool UseTBAA) const {
 | 
						|
  const MachineFunction *MF = getMF();
 | 
						|
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | 
						|
  const MachineFrameInfo &MFI = MF->getFrameInfo();
 | 
						|
 | 
						|
  // If neither instruction stores to memory, they can't alias in any
 | 
						|
  // meaningful way, even if they read from the same address.
 | 
						|
  if (!mayStore() && !Other.mayStore())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Let the target decide if memory accesses cannot possibly overlap.
 | 
						|
  if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: Need to handle multiple memory operands to support all targets.
 | 
						|
  if (!hasOneMemOperand() || !Other.hasOneMemOperand())
 | 
						|
    return true;
 | 
						|
 | 
						|
  MachineMemOperand *MMOa = *memoperands_begin();
 | 
						|
  MachineMemOperand *MMOb = *Other.memoperands_begin();
 | 
						|
 | 
						|
  // The following interface to AA is fashioned after DAGCombiner::isAlias
 | 
						|
  // and operates with MachineMemOperand offset with some important
 | 
						|
  // assumptions:
 | 
						|
  //   - LLVM fundamentally assumes flat address spaces.
 | 
						|
  //   - MachineOperand offset can *only* result from legalization and
 | 
						|
  //     cannot affect queries other than the trivial case of overlap
 | 
						|
  //     checking.
 | 
						|
  //   - These offsets never wrap and never step outside
 | 
						|
  //     of allocated objects.
 | 
						|
  //   - There should never be any negative offsets here.
 | 
						|
  //
 | 
						|
  // FIXME: Modify API to hide this math from "user"
 | 
						|
  // Even before we go to AA we can reason locally about some
 | 
						|
  // memory objects. It can save compile time, and possibly catch some
 | 
						|
  // corner cases not currently covered.
 | 
						|
 | 
						|
  int64_t OffsetA = MMOa->getOffset();
 | 
						|
  int64_t OffsetB = MMOb->getOffset();
 | 
						|
  int64_t MinOffset = std::min(OffsetA, OffsetB);
 | 
						|
 | 
						|
  uint64_t WidthA = MMOa->getSize();
 | 
						|
  uint64_t WidthB = MMOb->getSize();
 | 
						|
  bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
 | 
						|
  bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
 | 
						|
 | 
						|
  const Value *ValA = MMOa->getValue();
 | 
						|
  const Value *ValB = MMOb->getValue();
 | 
						|
  bool SameVal = (ValA && ValB && (ValA == ValB));
 | 
						|
  if (!SameVal) {
 | 
						|
    const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
 | 
						|
    const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
 | 
						|
    if (PSVa && ValB && !PSVa->mayAlias(&MFI))
 | 
						|
      return false;
 | 
						|
    if (PSVb && ValA && !PSVb->mayAlias(&MFI))
 | 
						|
      return false;
 | 
						|
    if (PSVa && PSVb && (PSVa == PSVb))
 | 
						|
      SameVal = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SameVal) {
 | 
						|
    if (!KnownWidthA || !KnownWidthB)
 | 
						|
      return true;
 | 
						|
    int64_t MaxOffset = std::max(OffsetA, OffsetB);
 | 
						|
    int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
 | 
						|
    return (MinOffset + LowWidth > MaxOffset);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AA)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!ValA || !ValB)
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
 | 
						|
  assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
 | 
						|
 | 
						|
  int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
 | 
						|
                                 : MemoryLocation::UnknownSize;
 | 
						|
  int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
 | 
						|
                                 : MemoryLocation::UnknownSize;
 | 
						|
 | 
						|
  AliasResult AAResult = AA->alias(
 | 
						|
      MemoryLocation(ValA, OverlapA,
 | 
						|
                     UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
 | 
						|
      MemoryLocation(ValB, OverlapB,
 | 
						|
                     UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
 | 
						|
 | 
						|
  return (AAResult != NoAlias);
 | 
						|
}
 | 
						|
 | 
						|
/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
 | 
						|
/// or volatile memory reference, or if the information describing the memory
 | 
						|
/// reference is not available. Return false if it is known to have no ordered
 | 
						|
/// memory references.
 | 
						|
bool MachineInstr::hasOrderedMemoryRef() const {
 | 
						|
  // An instruction known never to access memory won't have a volatile access.
 | 
						|
  if (!mayStore() &&
 | 
						|
      !mayLoad() &&
 | 
						|
      !isCall() &&
 | 
						|
      !hasUnmodeledSideEffects())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, if the instruction has no memory reference information,
 | 
						|
  // conservatively assume it wasn't preserved.
 | 
						|
  if (memoperands_empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check if any of our memory operands are ordered.
 | 
						|
  return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
 | 
						|
    return !MMO->isUnordered();
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
/// isDereferenceableInvariantLoad - Return true if this instruction will never
 | 
						|
/// trap and is loading from a location whose value is invariant across a run of
 | 
						|
/// this function.
 | 
						|
bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
 | 
						|
  // If the instruction doesn't load at all, it isn't an invariant load.
 | 
						|
  if (!mayLoad())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the instruction has lost its memoperands, conservatively assume that
 | 
						|
  // it may not be an invariant load.
 | 
						|
  if (memoperands_empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
 | 
						|
 | 
						|
  for (MachineMemOperand *MMO : memoperands()) {
 | 
						|
    if (!MMO->isUnordered())
 | 
						|
      // If the memory operand has ordering side effects, we can't move the
 | 
						|
      // instruction.  Such an instruction is technically an invariant load,
 | 
						|
      // but the caller code would need updated to expect that.
 | 
						|
      return false;
 | 
						|
    if (MMO->isStore()) return false;
 | 
						|
    if (MMO->isInvariant() && MMO->isDereferenceable())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // A load from a constant PseudoSourceValue is invariant.
 | 
						|
    if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
 | 
						|
      if (PSV->isConstant(&MFI))
 | 
						|
        continue;
 | 
						|
 | 
						|
    if (const Value *V = MMO->getValue()) {
 | 
						|
      // If we have an AliasAnalysis, ask it whether the memory is constant.
 | 
						|
      if (AA &&
 | 
						|
          AA->pointsToConstantMemory(
 | 
						|
              MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise assume conservatively.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Everything checks out.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isConstantValuePHI - If the specified instruction is a PHI that always
 | 
						|
/// merges together the same virtual register, return the register, otherwise
 | 
						|
/// return 0.
 | 
						|
unsigned MachineInstr::isConstantValuePHI() const {
 | 
						|
  if (!isPHI())
 | 
						|
    return 0;
 | 
						|
  assert(getNumOperands() >= 3 &&
 | 
						|
         "It's illegal to have a PHI without source operands");
 | 
						|
 | 
						|
  unsigned Reg = getOperand(1).getReg();
 | 
						|
  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
 | 
						|
    if (getOperand(i).getReg() != Reg)
 | 
						|
      return 0;
 | 
						|
  return Reg;
 | 
						|
}
 | 
						|
 | 
						|
bool MachineInstr::hasUnmodeledSideEffects() const {
 | 
						|
  if (hasProperty(MCID::UnmodeledSideEffects))
 | 
						|
    return true;
 | 
						|
  if (isInlineAsm()) {
 | 
						|
    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
 | 
						|
    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MachineInstr::isLoadFoldBarrier() const {
 | 
						|
  return mayStore() || isCall() || hasUnmodeledSideEffects();
 | 
						|
}
 | 
						|
 | 
						|
/// allDefsAreDead - Return true if all the defs of this instruction are dead.
 | 
						|
///
 | 
						|
bool MachineInstr::allDefsAreDead() const {
 | 
						|
  for (const MachineOperand &MO : operands()) {
 | 
						|
    if (!MO.isReg() || MO.isUse())
 | 
						|
      continue;
 | 
						|
    if (!MO.isDead())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// copyImplicitOps - Copy implicit register operands from specified
 | 
						|
/// instruction to this instruction.
 | 
						|
void MachineInstr::copyImplicitOps(MachineFunction &MF,
 | 
						|
                                   const MachineInstr &MI) {
 | 
						|
  for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
 | 
						|
       i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI.getOperand(i);
 | 
						|
    if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
 | 
						|
      addOperand(MF, MO);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool MachineInstr::hasComplexRegisterTies() const {
 | 
						|
  const MCInstrDesc &MCID = getDesc();
 | 
						|
  for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
 | 
						|
    const auto &Operand = getOperand(I);
 | 
						|
    if (!Operand.isReg() || Operand.isDef())
 | 
						|
      // Ignore the defined registers as MCID marks only the uses as tied.
 | 
						|
      continue;
 | 
						|
    int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
 | 
						|
    int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
 | 
						|
    if (ExpectedTiedIdx != TiedIdx)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
 | 
						|
                                 const MachineRegisterInfo &MRI) const {
 | 
						|
  const MachineOperand &Op = getOperand(OpIdx);
 | 
						|
  if (!Op.isReg())
 | 
						|
    return LLT{};
 | 
						|
 | 
						|
  if (isVariadic() || OpIdx >= getNumExplicitOperands())
 | 
						|
    return MRI.getType(Op.getReg());
 | 
						|
 | 
						|
  auto &OpInfo = getDesc().OpInfo[OpIdx];
 | 
						|
  if (!OpInfo.isGenericType())
 | 
						|
    return MRI.getType(Op.getReg());
 | 
						|
 | 
						|
  if (PrintedTypes[OpInfo.getGenericTypeIndex()])
 | 
						|
    return LLT{};
 | 
						|
 | 
						|
  LLT TypeToPrint = MRI.getType(Op.getReg());
 | 
						|
  // Don't mark the type index printed if it wasn't actually printed: maybe
 | 
						|
  // another operand with the same type index has an actual type attached:
 | 
						|
  if (TypeToPrint.isValid())
 | 
						|
    PrintedTypes.set(OpInfo.getGenericTypeIndex());
 | 
						|
  return TypeToPrint;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD void MachineInstr::dump() const {
 | 
						|
  dbgs() << "  ";
 | 
						|
  print(dbgs());
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
 | 
						|
                         bool SkipDebugLoc, bool AddNewLine,
 | 
						|
                         const TargetInstrInfo *TII) const {
 | 
						|
  const Module *M = nullptr;
 | 
						|
  const Function *F = nullptr;
 | 
						|
  if (const MachineFunction *MF = getMFIfAvailable(*this)) {
 | 
						|
    F = &MF->getFunction();
 | 
						|
    M = F->getParent();
 | 
						|
    if (!TII)
 | 
						|
      TII = MF->getSubtarget().getInstrInfo();
 | 
						|
  }
 | 
						|
 | 
						|
  ModuleSlotTracker MST(M);
 | 
						|
  if (F)
 | 
						|
    MST.incorporateFunction(*F);
 | 
						|
  print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
 | 
						|
                         bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
 | 
						|
                         bool AddNewLine, const TargetInstrInfo *TII) const {
 | 
						|
  // We can be a bit tidier if we know the MachineFunction.
 | 
						|
  const MachineFunction *MF = nullptr;
 | 
						|
  const TargetRegisterInfo *TRI = nullptr;
 | 
						|
  const MachineRegisterInfo *MRI = nullptr;
 | 
						|
  const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
 | 
						|
  tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
 | 
						|
 | 
						|
  if (isCFIInstruction())
 | 
						|
    assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
 | 
						|
 | 
						|
  SmallBitVector PrintedTypes(8);
 | 
						|
  bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
 | 
						|
  auto getTiedOperandIdx = [&](unsigned OpIdx) {
 | 
						|
    if (!ShouldPrintRegisterTies)
 | 
						|
      return 0U;
 | 
						|
    const MachineOperand &MO = getOperand(OpIdx);
 | 
						|
    if (MO.isReg() && MO.isTied() && !MO.isDef())
 | 
						|
      return findTiedOperandIdx(OpIdx);
 | 
						|
    return 0U;
 | 
						|
  };
 | 
						|
  unsigned StartOp = 0;
 | 
						|
  unsigned e = getNumOperands();
 | 
						|
 | 
						|
  // Print explicitly defined operands on the left of an assignment syntax.
 | 
						|
  while (StartOp < e) {
 | 
						|
    const MachineOperand &MO = getOperand(StartOp);
 | 
						|
    if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
 | 
						|
      break;
 | 
						|
 | 
						|
    if (StartOp != 0)
 | 
						|
      OS << ", ";
 | 
						|
 | 
						|
    LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
 | 
						|
    unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
 | 
						|
    MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
 | 
						|
             ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
 | 
						|
    ++StartOp;
 | 
						|
  }
 | 
						|
 | 
						|
  if (StartOp != 0)
 | 
						|
    OS << " = ";
 | 
						|
 | 
						|
  if (getFlag(MachineInstr::FrameSetup))
 | 
						|
    OS << "frame-setup ";
 | 
						|
  if (getFlag(MachineInstr::FrameDestroy))
 | 
						|
    OS << "frame-destroy ";
 | 
						|
  if (getFlag(MachineInstr::FmNoNans))
 | 
						|
    OS << "nnan ";
 | 
						|
  if (getFlag(MachineInstr::FmNoInfs))
 | 
						|
    OS << "ninf ";
 | 
						|
  if (getFlag(MachineInstr::FmNsz))
 | 
						|
    OS << "nsz ";
 | 
						|
  if (getFlag(MachineInstr::FmArcp))
 | 
						|
    OS << "arcp ";
 | 
						|
  if (getFlag(MachineInstr::FmContract))
 | 
						|
    OS << "contract ";
 | 
						|
  if (getFlag(MachineInstr::FmAfn))
 | 
						|
    OS << "afn ";
 | 
						|
  if (getFlag(MachineInstr::FmReassoc))
 | 
						|
    OS << "reassoc ";
 | 
						|
  if (getFlag(MachineInstr::NoUWrap))
 | 
						|
    OS << "nuw ";
 | 
						|
  if (getFlag(MachineInstr::NoSWrap))
 | 
						|
    OS << "nsw ";
 | 
						|
  if (getFlag(MachineInstr::IsExact))
 | 
						|
    OS << "exact ";
 | 
						|
  if (getFlag(MachineInstr::FPExcept))
 | 
						|
    OS << "fpexcept ";
 | 
						|
 | 
						|
  // Print the opcode name.
 | 
						|
  if (TII)
 | 
						|
    OS << TII->getName(getOpcode());
 | 
						|
  else
 | 
						|
    OS << "UNKNOWN";
 | 
						|
 | 
						|
  if (SkipOpers)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Print the rest of the operands.
 | 
						|
  bool FirstOp = true;
 | 
						|
  unsigned AsmDescOp = ~0u;
 | 
						|
  unsigned AsmOpCount = 0;
 | 
						|
 | 
						|
  if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
 | 
						|
    // Print asm string.
 | 
						|
    OS << " ";
 | 
						|
    const unsigned OpIdx = InlineAsm::MIOp_AsmString;
 | 
						|
    LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
 | 
						|
    unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
 | 
						|
    getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
 | 
						|
                            ShouldPrintRegisterTies, TiedOperandIdx, TRI,
 | 
						|
                            IntrinsicInfo);
 | 
						|
 | 
						|
    // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
 | 
						|
    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
 | 
						|
    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
 | 
						|
      OS << " [sideeffect]";
 | 
						|
    if (ExtraInfo & InlineAsm::Extra_MayLoad)
 | 
						|
      OS << " [mayload]";
 | 
						|
    if (ExtraInfo & InlineAsm::Extra_MayStore)
 | 
						|
      OS << " [maystore]";
 | 
						|
    if (ExtraInfo & InlineAsm::Extra_IsConvergent)
 | 
						|
      OS << " [isconvergent]";
 | 
						|
    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
 | 
						|
      OS << " [alignstack]";
 | 
						|
    if (getInlineAsmDialect() == InlineAsm::AD_ATT)
 | 
						|
      OS << " [attdialect]";
 | 
						|
    if (getInlineAsmDialect() == InlineAsm::AD_Intel)
 | 
						|
      OS << " [inteldialect]";
 | 
						|
 | 
						|
    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
 | 
						|
    FirstOp = false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = getOperand(i);
 | 
						|
 | 
						|
    if (FirstOp) FirstOp = false; else OS << ",";
 | 
						|
    OS << " ";
 | 
						|
 | 
						|
    if (isDebugValue() && MO.isMetadata()) {
 | 
						|
      // Pretty print DBG_VALUE instructions.
 | 
						|
      auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
 | 
						|
      if (DIV && !DIV->getName().empty())
 | 
						|
        OS << "!\"" << DIV->getName() << '\"';
 | 
						|
      else {
 | 
						|
        LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
 | 
						|
        unsigned TiedOperandIdx = getTiedOperandIdx(i);
 | 
						|
        MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
 | 
						|
                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
 | 
						|
      }
 | 
						|
    } else if (isDebugLabel() && MO.isMetadata()) {
 | 
						|
      // Pretty print DBG_LABEL instructions.
 | 
						|
      auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
 | 
						|
      if (DIL && !DIL->getName().empty())
 | 
						|
        OS << "\"" << DIL->getName() << '\"';
 | 
						|
      else {
 | 
						|
        LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
 | 
						|
        unsigned TiedOperandIdx = getTiedOperandIdx(i);
 | 
						|
        MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
 | 
						|
                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
 | 
						|
      }
 | 
						|
    } else if (i == AsmDescOp && MO.isImm()) {
 | 
						|
      // Pretty print the inline asm operand descriptor.
 | 
						|
      OS << '$' << AsmOpCount++;
 | 
						|
      unsigned Flag = MO.getImm();
 | 
						|
      switch (InlineAsm::getKind(Flag)) {
 | 
						|
      case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
 | 
						|
      case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
 | 
						|
      case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
 | 
						|
      case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
 | 
						|
      case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
 | 
						|
      case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
 | 
						|
      default: OS << ":[??" << InlineAsm::getKind(Flag); break;
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned RCID = 0;
 | 
						|
      if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
 | 
						|
          InlineAsm::hasRegClassConstraint(Flag, RCID)) {
 | 
						|
        if (TRI) {
 | 
						|
          OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
 | 
						|
        } else
 | 
						|
          OS << ":RC" << RCID;
 | 
						|
      }
 | 
						|
 | 
						|
      if (InlineAsm::isMemKind(Flag)) {
 | 
						|
        unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
 | 
						|
        switch (MCID) {
 | 
						|
        case InlineAsm::Constraint_es: OS << ":es"; break;
 | 
						|
        case InlineAsm::Constraint_i:  OS << ":i"; break;
 | 
						|
        case InlineAsm::Constraint_m:  OS << ":m"; break;
 | 
						|
        case InlineAsm::Constraint_o:  OS << ":o"; break;
 | 
						|
        case InlineAsm::Constraint_v:  OS << ":v"; break;
 | 
						|
        case InlineAsm::Constraint_Q:  OS << ":Q"; break;
 | 
						|
        case InlineAsm::Constraint_R:  OS << ":R"; break;
 | 
						|
        case InlineAsm::Constraint_S:  OS << ":S"; break;
 | 
						|
        case InlineAsm::Constraint_T:  OS << ":T"; break;
 | 
						|
        case InlineAsm::Constraint_Um: OS << ":Um"; break;
 | 
						|
        case InlineAsm::Constraint_Un: OS << ":Un"; break;
 | 
						|
        case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
 | 
						|
        case InlineAsm::Constraint_Us: OS << ":Us"; break;
 | 
						|
        case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
 | 
						|
        case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
 | 
						|
        case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
 | 
						|
        case InlineAsm::Constraint_X:  OS << ":X"; break;
 | 
						|
        case InlineAsm::Constraint_Z:  OS << ":Z"; break;
 | 
						|
        case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
 | 
						|
        case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
 | 
						|
        default: OS << ":?"; break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned TiedTo = 0;
 | 
						|
      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
 | 
						|
        OS << " tiedto:$" << TiedTo;
 | 
						|
 | 
						|
      OS << ']';
 | 
						|
 | 
						|
      // Compute the index of the next operand descriptor.
 | 
						|
      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
 | 
						|
    } else {
 | 
						|
      LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
 | 
						|
      unsigned TiedOperandIdx = getTiedOperandIdx(i);
 | 
						|
      if (MO.isImm() && isOperandSubregIdx(i))
 | 
						|
        MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
 | 
						|
      else
 | 
						|
        MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
 | 
						|
                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Print any optional symbols attached to this instruction as-if they were
 | 
						|
  // operands.
 | 
						|
  if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
 | 
						|
    if (!FirstOp) {
 | 
						|
      FirstOp = false;
 | 
						|
      OS << ',';
 | 
						|
    }
 | 
						|
    OS << " pre-instr-symbol ";
 | 
						|
    MachineOperand::printSymbol(OS, *PreInstrSymbol);
 | 
						|
  }
 | 
						|
  if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
 | 
						|
    if (!FirstOp) {
 | 
						|
      FirstOp = false;
 | 
						|
      OS << ',';
 | 
						|
    }
 | 
						|
    OS << " post-instr-symbol ";
 | 
						|
    MachineOperand::printSymbol(OS, *PostInstrSymbol);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!SkipDebugLoc) {
 | 
						|
    if (const DebugLoc &DL = getDebugLoc()) {
 | 
						|
      if (!FirstOp)
 | 
						|
        OS << ',';
 | 
						|
      OS << " debug-location ";
 | 
						|
      DL->printAsOperand(OS, MST);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!memoperands_empty()) {
 | 
						|
    SmallVector<StringRef, 0> SSNs;
 | 
						|
    const LLVMContext *Context = nullptr;
 | 
						|
    std::unique_ptr<LLVMContext> CtxPtr;
 | 
						|
    const MachineFrameInfo *MFI = nullptr;
 | 
						|
    if (const MachineFunction *MF = getMFIfAvailable(*this)) {
 | 
						|
      MFI = &MF->getFrameInfo();
 | 
						|
      Context = &MF->getFunction().getContext();
 | 
						|
    } else {
 | 
						|
      CtxPtr = llvm::make_unique<LLVMContext>();
 | 
						|
      Context = CtxPtr.get();
 | 
						|
    }
 | 
						|
 | 
						|
    OS << " :: ";
 | 
						|
    bool NeedComma = false;
 | 
						|
    for (const MachineMemOperand *Op : memoperands()) {
 | 
						|
      if (NeedComma)
 | 
						|
        OS << ", ";
 | 
						|
      Op->print(OS, MST, SSNs, *Context, MFI, TII);
 | 
						|
      NeedComma = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SkipDebugLoc)
 | 
						|
    return;
 | 
						|
 | 
						|
  bool HaveSemi = false;
 | 
						|
 | 
						|
  // Print debug location information.
 | 
						|
  if (const DebugLoc &DL = getDebugLoc()) {
 | 
						|
    if (!HaveSemi) {
 | 
						|
      OS << ';';
 | 
						|
      HaveSemi = true;
 | 
						|
    }
 | 
						|
    OS << ' ';
 | 
						|
    DL.print(OS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Print extra comments for DEBUG_VALUE.
 | 
						|
  if (isDebugValue() && getOperand(e - 2).isMetadata()) {
 | 
						|
    if (!HaveSemi) {
 | 
						|
      OS << ";";
 | 
						|
      HaveSemi = true;
 | 
						|
    }
 | 
						|
    auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
 | 
						|
    OS << " line no:" <<  DV->getLine();
 | 
						|
    if (auto *InlinedAt = debugLoc->getInlinedAt()) {
 | 
						|
      DebugLoc InlinedAtDL(InlinedAt);
 | 
						|
      if (InlinedAtDL && MF) {
 | 
						|
        OS << " inlined @[ ";
 | 
						|
        InlinedAtDL.print(OS);
 | 
						|
        OS << " ]";
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (isIndirectDebugValue())
 | 
						|
      OS << " indirect";
 | 
						|
  }
 | 
						|
  // TODO: DBG_LABEL
 | 
						|
 | 
						|
  if (AddNewLine)
 | 
						|
    OS << '\n';
 | 
						|
}
 | 
						|
 | 
						|
bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
 | 
						|
                                     const TargetRegisterInfo *RegInfo,
 | 
						|
                                     bool AddIfNotFound) {
 | 
						|
  bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
 | 
						|
  bool hasAliases = isPhysReg &&
 | 
						|
    MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
 | 
						|
  bool Found = false;
 | 
						|
  SmallVector<unsigned,4> DeadOps;
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // DEBUG_VALUE nodes do not contribute to code generation and should
 | 
						|
    // always be ignored. Failure to do so may result in trying to modify
 | 
						|
    // KILL flags on DEBUG_VALUE nodes.
 | 
						|
    if (MO.isDebug())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (!Reg)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Reg == IncomingReg) {
 | 
						|
      if (!Found) {
 | 
						|
        if (MO.isKill())
 | 
						|
          // The register is already marked kill.
 | 
						|
          return true;
 | 
						|
        if (isPhysReg && isRegTiedToDefOperand(i))
 | 
						|
          // Two-address uses of physregs must not be marked kill.
 | 
						|
          return true;
 | 
						|
        MO.setIsKill();
 | 
						|
        Found = true;
 | 
						|
      }
 | 
						|
    } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
 | 
						|
      // A super-register kill already exists.
 | 
						|
      if (RegInfo->isSuperRegister(IncomingReg, Reg))
 | 
						|
        return true;
 | 
						|
      if (RegInfo->isSubRegister(IncomingReg, Reg))
 | 
						|
        DeadOps.push_back(i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Trim unneeded kill operands.
 | 
						|
  while (!DeadOps.empty()) {
 | 
						|
    unsigned OpIdx = DeadOps.back();
 | 
						|
    if (getOperand(OpIdx).isImplicit() &&
 | 
						|
        (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
 | 
						|
      RemoveOperand(OpIdx);
 | 
						|
    else
 | 
						|
      getOperand(OpIdx).setIsKill(false);
 | 
						|
    DeadOps.pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
  // If not found, this means an alias of one of the operands is killed. Add a
 | 
						|
  // new implicit operand if required.
 | 
						|
  if (!Found && AddIfNotFound) {
 | 
						|
    addOperand(MachineOperand::CreateReg(IncomingReg,
 | 
						|
                                         false /*IsDef*/,
 | 
						|
                                         true  /*IsImp*/,
 | 
						|
                                         true  /*IsKill*/));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return Found;
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::clearRegisterKills(unsigned Reg,
 | 
						|
                                      const TargetRegisterInfo *RegInfo) {
 | 
						|
  if (!Register::isPhysicalRegister(Reg))
 | 
						|
    RegInfo = nullptr;
 | 
						|
  for (MachineOperand &MO : operands()) {
 | 
						|
    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
 | 
						|
      continue;
 | 
						|
    unsigned OpReg = MO.getReg();
 | 
						|
    if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
 | 
						|
      MO.setIsKill(false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool MachineInstr::addRegisterDead(unsigned Reg,
 | 
						|
                                   const TargetRegisterInfo *RegInfo,
 | 
						|
                                   bool AddIfNotFound) {
 | 
						|
  bool isPhysReg = Register::isPhysicalRegister(Reg);
 | 
						|
  bool hasAliases = isPhysReg &&
 | 
						|
    MCRegAliasIterator(Reg, RegInfo, false).isValid();
 | 
						|
  bool Found = false;
 | 
						|
  SmallVector<unsigned,4> DeadOps;
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.isDef())
 | 
						|
      continue;
 | 
						|
    unsigned MOReg = MO.getReg();
 | 
						|
    if (!MOReg)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (MOReg == Reg) {
 | 
						|
      MO.setIsDead();
 | 
						|
      Found = true;
 | 
						|
    } else if (hasAliases && MO.isDead() &&
 | 
						|
               Register::isPhysicalRegister(MOReg)) {
 | 
						|
      // There exists a super-register that's marked dead.
 | 
						|
      if (RegInfo->isSuperRegister(Reg, MOReg))
 | 
						|
        return true;
 | 
						|
      if (RegInfo->isSubRegister(Reg, MOReg))
 | 
						|
        DeadOps.push_back(i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Trim unneeded dead operands.
 | 
						|
  while (!DeadOps.empty()) {
 | 
						|
    unsigned OpIdx = DeadOps.back();
 | 
						|
    if (getOperand(OpIdx).isImplicit() &&
 | 
						|
        (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
 | 
						|
      RemoveOperand(OpIdx);
 | 
						|
    else
 | 
						|
      getOperand(OpIdx).setIsDead(false);
 | 
						|
    DeadOps.pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
  // If not found, this means an alias of one of the operands is dead. Add a
 | 
						|
  // new implicit operand if required.
 | 
						|
  if (Found || !AddIfNotFound)
 | 
						|
    return Found;
 | 
						|
 | 
						|
  addOperand(MachineOperand::CreateReg(Reg,
 | 
						|
                                       true  /*IsDef*/,
 | 
						|
                                       true  /*IsImp*/,
 | 
						|
                                       false /*IsKill*/,
 | 
						|
                                       true  /*IsDead*/));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::clearRegisterDeads(unsigned Reg) {
 | 
						|
  for (MachineOperand &MO : operands()) {
 | 
						|
    if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
 | 
						|
      continue;
 | 
						|
    MO.setIsDead(false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
 | 
						|
  for (MachineOperand &MO : operands()) {
 | 
						|
    if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
 | 
						|
      continue;
 | 
						|
    MO.setIsUndef(IsUndef);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::addRegisterDefined(unsigned Reg,
 | 
						|
                                      const TargetRegisterInfo *RegInfo) {
 | 
						|
  if (Register::isPhysicalRegister(Reg)) {
 | 
						|
    MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
 | 
						|
    if (MO)
 | 
						|
      return;
 | 
						|
  } else {
 | 
						|
    for (const MachineOperand &MO : operands()) {
 | 
						|
      if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
 | 
						|
          MO.getSubReg() == 0)
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  addOperand(MachineOperand::CreateReg(Reg,
 | 
						|
                                       true  /*IsDef*/,
 | 
						|
                                       true  /*IsImp*/));
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
 | 
						|
                                         const TargetRegisterInfo &TRI) {
 | 
						|
  bool HasRegMask = false;
 | 
						|
  for (MachineOperand &MO : operands()) {
 | 
						|
    if (MO.isRegMask()) {
 | 
						|
      HasRegMask = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (!MO.isReg() || !MO.isDef()) continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (!Register::isPhysicalRegister(Reg))
 | 
						|
      continue;
 | 
						|
    // If there are no uses, including partial uses, the def is dead.
 | 
						|
    if (llvm::none_of(UsedRegs,
 | 
						|
                      [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
 | 
						|
      MO.setIsDead();
 | 
						|
  }
 | 
						|
 | 
						|
  // This is a call with a register mask operand.
 | 
						|
  // Mask clobbers are always dead, so add defs for the non-dead defines.
 | 
						|
  if (HasRegMask)
 | 
						|
    for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
 | 
						|
         I != E; ++I)
 | 
						|
      addRegisterDefined(*I, &TRI);
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
 | 
						|
  // Build up a buffer of hash code components.
 | 
						|
  SmallVector<size_t, 8> HashComponents;
 | 
						|
  HashComponents.reserve(MI->getNumOperands() + 1);
 | 
						|
  HashComponents.push_back(MI->getOpcode());
 | 
						|
  for (const MachineOperand &MO : MI->operands()) {
 | 
						|
    if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
 | 
						|
      continue;  // Skip virtual register defs.
 | 
						|
 | 
						|
    HashComponents.push_back(hash_value(MO));
 | 
						|
  }
 | 
						|
  return hash_combine_range(HashComponents.begin(), HashComponents.end());
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::emitError(StringRef Msg) const {
 | 
						|
  // Find the source location cookie.
 | 
						|
  unsigned LocCookie = 0;
 | 
						|
  const MDNode *LocMD = nullptr;
 | 
						|
  for (unsigned i = getNumOperands(); i != 0; --i) {
 | 
						|
    if (getOperand(i-1).isMetadata() &&
 | 
						|
        (LocMD = getOperand(i-1).getMetadata()) &&
 | 
						|
        LocMD->getNumOperands() != 0) {
 | 
						|
      if (const ConstantInt *CI =
 | 
						|
              mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
 | 
						|
        LocCookie = CI->getZExtValue();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const MachineBasicBlock *MBB = getParent())
 | 
						|
    if (const MachineFunction *MF = MBB->getParent())
 | 
						|
      return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
 | 
						|
  report_fatal_error(Msg);
 | 
						|
}
 | 
						|
 | 
						|
MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
 | 
						|
                                  const MCInstrDesc &MCID, bool IsIndirect,
 | 
						|
                                  unsigned Reg, const MDNode *Variable,
 | 
						|
                                  const MDNode *Expr) {
 | 
						|
  assert(isa<DILocalVariable>(Variable) && "not a variable");
 | 
						|
  assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
 | 
						|
  assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
 | 
						|
         "Expected inlined-at fields to agree");
 | 
						|
  auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
 | 
						|
  if (IsIndirect)
 | 
						|
    MIB.addImm(0U);
 | 
						|
  else
 | 
						|
    MIB.addReg(0U, RegState::Debug);
 | 
						|
  return MIB.addMetadata(Variable).addMetadata(Expr);
 | 
						|
}
 | 
						|
 | 
						|
MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
 | 
						|
                                  const MCInstrDesc &MCID, bool IsIndirect,
 | 
						|
                                  MachineOperand &MO, const MDNode *Variable,
 | 
						|
                                  const MDNode *Expr) {
 | 
						|
  assert(isa<DILocalVariable>(Variable) && "not a variable");
 | 
						|
  assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
 | 
						|
  assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
 | 
						|
         "Expected inlined-at fields to agree");
 | 
						|
  if (MO.isReg())
 | 
						|
    return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
 | 
						|
 | 
						|
  auto MIB = BuildMI(MF, DL, MCID).add(MO);
 | 
						|
  if (IsIndirect)
 | 
						|
    MIB.addImm(0U);
 | 
						|
  else
 | 
						|
    MIB.addReg(0U, RegState::Debug);
 | 
						|
  return MIB.addMetadata(Variable).addMetadata(Expr);
 | 
						|
 }
 | 
						|
 | 
						|
MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
 | 
						|
                                  MachineBasicBlock::iterator I,
 | 
						|
                                  const DebugLoc &DL, const MCInstrDesc &MCID,
 | 
						|
                                  bool IsIndirect, unsigned Reg,
 | 
						|
                                  const MDNode *Variable, const MDNode *Expr) {
 | 
						|
  MachineFunction &MF = *BB.getParent();
 | 
						|
  MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
 | 
						|
  BB.insert(I, MI);
 | 
						|
  return MachineInstrBuilder(MF, MI);
 | 
						|
}
 | 
						|
 | 
						|
MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
 | 
						|
                                  MachineBasicBlock::iterator I,
 | 
						|
                                  const DebugLoc &DL, const MCInstrDesc &MCID,
 | 
						|
                                  bool IsIndirect, MachineOperand &MO,
 | 
						|
                                  const MDNode *Variable, const MDNode *Expr) {
 | 
						|
  MachineFunction &MF = *BB.getParent();
 | 
						|
  MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
 | 
						|
  BB.insert(I, MI);
 | 
						|
  return MachineInstrBuilder(MF, *MI);
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
 | 
						|
/// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
 | 
						|
static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
 | 
						|
  assert(MI.getOperand(0).isReg() && "can't spill non-register");
 | 
						|
  assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
 | 
						|
         "Expected inlined-at fields to agree");
 | 
						|
 | 
						|
  const DIExpression *Expr = MI.getDebugExpression();
 | 
						|
  if (MI.isIndirectDebugValue()) {
 | 
						|
    assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
 | 
						|
    Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
 | 
						|
  }
 | 
						|
  return Expr;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
 | 
						|
                                          MachineBasicBlock::iterator I,
 | 
						|
                                          const MachineInstr &Orig,
 | 
						|
                                          int FrameIndex) {
 | 
						|
  const DIExpression *Expr = computeExprForSpill(Orig);
 | 
						|
  return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
 | 
						|
      .addFrameIndex(FrameIndex)
 | 
						|
      .addImm(0U)
 | 
						|
      .addMetadata(Orig.getDebugVariable())
 | 
						|
      .addMetadata(Expr);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
 | 
						|
  const DIExpression *Expr = computeExprForSpill(Orig);
 | 
						|
  Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
 | 
						|
  Orig.getOperand(1).ChangeToImmediate(0U);
 | 
						|
  Orig.getOperand(3).setMetadata(Expr);
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::collectDebugValues(
 | 
						|
                                SmallVectorImpl<MachineInstr *> &DbgValues) {
 | 
						|
  MachineInstr &MI = *this;
 | 
						|
  if (!MI.getOperand(0).isReg())
 | 
						|
    return;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator DI = MI; ++DI;
 | 
						|
  for (MachineBasicBlock::iterator DE = MI.getParent()->end();
 | 
						|
       DI != DE; ++DI) {
 | 
						|
    if (!DI->isDebugValue())
 | 
						|
      return;
 | 
						|
    if (DI->getOperand(0).isReg() &&
 | 
						|
        DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
 | 
						|
      DbgValues.push_back(&*DI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineInstr::changeDebugValuesDefReg(unsigned Reg) {
 | 
						|
  // Collect matching debug values.
 | 
						|
  SmallVector<MachineInstr *, 2> DbgValues;
 | 
						|
  collectDebugValues(DbgValues);
 | 
						|
 | 
						|
  // Propagate Reg to debug value instructions.
 | 
						|
  for (auto *DBI : DbgValues)
 | 
						|
    DBI->getOperand(0).setReg(Reg);
 | 
						|
}
 | 
						|
 | 
						|
using MMOList = SmallVector<const MachineMemOperand *, 2>;
 | 
						|
 | 
						|
static unsigned getSpillSlotSize(MMOList &Accesses,
 | 
						|
                                 const MachineFrameInfo &MFI) {
 | 
						|
  unsigned Size = 0;
 | 
						|
  for (auto A : Accesses)
 | 
						|
    if (MFI.isSpillSlotObjectIndex(
 | 
						|
            cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
 | 
						|
                ->getFrameIndex()))
 | 
						|
      Size += A->getSize();
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
Optional<unsigned>
 | 
						|
MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
 | 
						|
  int FI;
 | 
						|
  if (TII->isStoreToStackSlotPostFE(*this, FI)) {
 | 
						|
    const MachineFrameInfo &MFI = getMF()->getFrameInfo();
 | 
						|
    if (MFI.isSpillSlotObjectIndex(FI))
 | 
						|
      return (*memoperands_begin())->getSize();
 | 
						|
  }
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
Optional<unsigned>
 | 
						|
MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
 | 
						|
  MMOList Accesses;
 | 
						|
  if (TII->hasStoreToStackSlot(*this, Accesses))
 | 
						|
    return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
Optional<unsigned>
 | 
						|
MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
 | 
						|
  int FI;
 | 
						|
  if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
 | 
						|
    const MachineFrameInfo &MFI = getMF()->getFrameInfo();
 | 
						|
    if (MFI.isSpillSlotObjectIndex(FI))
 | 
						|
      return (*memoperands_begin())->getSize();
 | 
						|
  }
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
Optional<unsigned>
 | 
						|
MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
 | 
						|
  MMOList Accesses;
 | 
						|
  if (TII->hasLoadFromStackSlot(*this, Accesses))
 | 
						|
    return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
 | 
						|
  return None;
 | 
						|
}
 |