10106 lines
		
	
	
		
			391 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			10106 lines
		
	
	
		
			391 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for declarations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Sema/Initialization.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/CXXFieldCollector.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "TypeLocBuilder.h"
 | 
						|
#include "clang/AST/ASTConsumer.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/EvaluatedExprVisitor.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/StmtCXX.h"
 | 
						|
#include "clang/AST/CharUnits.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "clang/Sema/ParsedTemplate.h"
 | 
						|
#include "clang/Parse/ParseDiagnostic.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "clang/Sema/DelayedDiagnostic.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Lex/HeaderSearch.h"
 | 
						|
#include "clang/Lex/ModuleLoader.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cstring>
 | 
						|
#include <functional>
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
 | 
						|
  if (OwnedType) {
 | 
						|
    Decl *Group[2] = { OwnedType, Ptr };
 | 
						|
    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
 | 
						|
  }
 | 
						|
 | 
						|
  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class TypeNameValidatorCCC : public CorrectionCandidateCallback {
 | 
						|
 public:
 | 
						|
  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
 | 
						|
    WantExpressionKeywords = false;
 | 
						|
    WantCXXNamedCasts = false;
 | 
						|
    WantRemainingKeywords = false;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
 | 
						|
    if (NamedDecl *ND = candidate.getCorrectionDecl())
 | 
						|
      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
 | 
						|
          (AllowInvalidDecl || !ND->isInvalidDecl());
 | 
						|
    else
 | 
						|
      return candidate.isKeyword();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  bool AllowInvalidDecl;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If the identifier refers to a type name within this scope,
 | 
						|
/// return the declaration of that type.
 | 
						|
///
 | 
						|
/// This routine performs ordinary name lookup of the identifier II
 | 
						|
/// within the given scope, with optional C++ scope specifier SS, to
 | 
						|
/// determine whether the name refers to a type. If so, returns an
 | 
						|
/// opaque pointer (actually a QualType) corresponding to that
 | 
						|
/// type. Otherwise, returns NULL.
 | 
						|
///
 | 
						|
/// If name lookup results in an ambiguity, this routine will complain
 | 
						|
/// and then return NULL.
 | 
						|
ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
 | 
						|
                             Scope *S, CXXScopeSpec *SS,
 | 
						|
                             bool isClassName, bool HasTrailingDot,
 | 
						|
                             ParsedType ObjectTypePtr,
 | 
						|
                             bool IsCtorOrDtorName,
 | 
						|
                             bool WantNontrivialTypeSourceInfo,
 | 
						|
                             IdentifierInfo **CorrectedII) {
 | 
						|
  // Determine where we will perform name lookup.
 | 
						|
  DeclContext *LookupCtx = 0;
 | 
						|
  if (ObjectTypePtr) {
 | 
						|
    QualType ObjectType = ObjectTypePtr.get();
 | 
						|
    if (ObjectType->isRecordType())
 | 
						|
      LookupCtx = computeDeclContext(ObjectType);
 | 
						|
  } else if (SS && SS->isNotEmpty()) {
 | 
						|
    LookupCtx = computeDeclContext(*SS, false);
 | 
						|
 | 
						|
    if (!LookupCtx) {
 | 
						|
      if (isDependentScopeSpecifier(*SS)) {
 | 
						|
        // C++ [temp.res]p3:
 | 
						|
        //   A qualified-id that refers to a type and in which the
 | 
						|
        //   nested-name-specifier depends on a template-parameter (14.6.2)
 | 
						|
        //   shall be prefixed by the keyword typename to indicate that the
 | 
						|
        //   qualified-id denotes a type, forming an
 | 
						|
        //   elaborated-type-specifier (7.1.5.3).
 | 
						|
        //
 | 
						|
        // We therefore do not perform any name lookup if the result would
 | 
						|
        // refer to a member of an unknown specialization.
 | 
						|
        if (!isClassName)
 | 
						|
          return ParsedType();
 | 
						|
        
 | 
						|
        // We know from the grammar that this name refers to a type,
 | 
						|
        // so build a dependent node to describe the type.
 | 
						|
        if (WantNontrivialTypeSourceInfo)
 | 
						|
          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
 | 
						|
        
 | 
						|
        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
 | 
						|
        QualType T =
 | 
						|
          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
 | 
						|
                            II, NameLoc);
 | 
						|
        
 | 
						|
          return ParsedType::make(T);
 | 
						|
      }
 | 
						|
      
 | 
						|
      return ParsedType();
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!LookupCtx->isDependentContext() &&
 | 
						|
        RequireCompleteDeclContext(*SS, LookupCtx))
 | 
						|
      return ParsedType();
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
 | 
						|
  // lookup for class-names.
 | 
						|
  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
 | 
						|
                                      LookupOrdinaryName;
 | 
						|
  LookupResult Result(*this, &II, NameLoc, Kind);
 | 
						|
  if (LookupCtx) {
 | 
						|
    // Perform "qualified" name lookup into the declaration context we
 | 
						|
    // computed, which is either the type of the base of a member access
 | 
						|
    // expression or the declaration context associated with a prior
 | 
						|
    // nested-name-specifier.
 | 
						|
    LookupQualifiedName(Result, LookupCtx);
 | 
						|
 | 
						|
    if (ObjectTypePtr && Result.empty()) {
 | 
						|
      // C++ [basic.lookup.classref]p3:
 | 
						|
      //   If the unqualified-id is ~type-name, the type-name is looked up
 | 
						|
      //   in the context of the entire postfix-expression. If the type T of 
 | 
						|
      //   the object expression is of a class type C, the type-name is also
 | 
						|
      //   looked up in the scope of class C. At least one of the lookups shall
 | 
						|
      //   find a name that refers to (possibly cv-qualified) T.
 | 
						|
      LookupName(Result, S);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Perform unqualified name lookup.
 | 
						|
    LookupName(Result, S);
 | 
						|
  }
 | 
						|
  
 | 
						|
  NamedDecl *IIDecl = 0;
 | 
						|
  switch (Result.getResultKind()) {
 | 
						|
  case LookupResult::NotFound:
 | 
						|
  case LookupResult::NotFoundInCurrentInstantiation:
 | 
						|
    if (CorrectedII) {
 | 
						|
      TypeNameValidatorCCC Validator(true);
 | 
						|
      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
 | 
						|
                                              Kind, S, SS, Validator);
 | 
						|
      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
 | 
						|
      TemplateTy Template;
 | 
						|
      bool MemberOfUnknownSpecialization;
 | 
						|
      UnqualifiedId TemplateName;
 | 
						|
      TemplateName.setIdentifier(NewII, NameLoc);
 | 
						|
      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
 | 
						|
      CXXScopeSpec NewSS, *NewSSPtr = SS;
 | 
						|
      if (SS && NNS) {
 | 
						|
        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
 | 
						|
        NewSSPtr = &NewSS;
 | 
						|
      }
 | 
						|
      if (Correction && (NNS || NewII != &II) &&
 | 
						|
          // Ignore a correction to a template type as the to-be-corrected
 | 
						|
          // identifier is not a template (typo correction for template names
 | 
						|
          // is handled elsewhere).
 | 
						|
          !(getLangOptions().CPlusPlus && NewSSPtr &&
 | 
						|
            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
 | 
						|
                           false, Template, MemberOfUnknownSpecialization))) {
 | 
						|
        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
 | 
						|
                                    isClassName, HasTrailingDot, ObjectTypePtr,
 | 
						|
                                    IsCtorOrDtorName,
 | 
						|
                                    WantNontrivialTypeSourceInfo);
 | 
						|
        if (Ty) {
 | 
						|
          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
 | 
						|
          std::string CorrectedQuotedStr(
 | 
						|
              Correction.getQuoted(getLangOptions()));
 | 
						|
          Diag(NameLoc, diag::err_unknown_typename_suggest)
 | 
						|
              << Result.getLookupName() << CorrectedQuotedStr
 | 
						|
              << FixItHint::CreateReplacement(SourceRange(NameLoc),
 | 
						|
                                              CorrectedStr);
 | 
						|
          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
 | 
						|
            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
 | 
						|
              << CorrectedQuotedStr;
 | 
						|
 | 
						|
          if (SS && NNS)
 | 
						|
            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
 | 
						|
          *CorrectedII = NewII;
 | 
						|
          return Ty;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If typo correction failed or was not performed, fall through
 | 
						|
  case LookupResult::FoundOverloaded:
 | 
						|
  case LookupResult::FoundUnresolvedValue:
 | 
						|
    Result.suppressDiagnostics();
 | 
						|
    return ParsedType();
 | 
						|
 | 
						|
  case LookupResult::Ambiguous:
 | 
						|
    // Recover from type-hiding ambiguities by hiding the type.  We'll
 | 
						|
    // do the lookup again when looking for an object, and we can
 | 
						|
    // diagnose the error then.  If we don't do this, then the error
 | 
						|
    // about hiding the type will be immediately followed by an error
 | 
						|
    // that only makes sense if the identifier was treated like a type.
 | 
						|
    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
 | 
						|
      Result.suppressDiagnostics();
 | 
						|
      return ParsedType();
 | 
						|
    }
 | 
						|
 | 
						|
    // Look to see if we have a type anywhere in the list of results.
 | 
						|
    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
 | 
						|
         Res != ResEnd; ++Res) {
 | 
						|
      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
 | 
						|
        if (!IIDecl ||
 | 
						|
            (*Res)->getLocation().getRawEncoding() <
 | 
						|
              IIDecl->getLocation().getRawEncoding())
 | 
						|
          IIDecl = *Res;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!IIDecl) {
 | 
						|
      // None of the entities we found is a type, so there is no way
 | 
						|
      // to even assume that the result is a type. In this case, don't
 | 
						|
      // complain about the ambiguity. The parser will either try to
 | 
						|
      // perform this lookup again (e.g., as an object name), which
 | 
						|
      // will produce the ambiguity, or will complain that it expected
 | 
						|
      // a type name.
 | 
						|
      Result.suppressDiagnostics();
 | 
						|
      return ParsedType();
 | 
						|
    }
 | 
						|
 | 
						|
    // We found a type within the ambiguous lookup; diagnose the
 | 
						|
    // ambiguity and then return that type. This might be the right
 | 
						|
    // answer, or it might not be, but it suppresses any attempt to
 | 
						|
    // perform the name lookup again.
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::Found:
 | 
						|
    IIDecl = Result.getFoundDecl();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(IIDecl && "Didn't find decl");
 | 
						|
 | 
						|
  QualType T;
 | 
						|
  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
 | 
						|
    DiagnoseUseOfDecl(IIDecl, NameLoc);
 | 
						|
 | 
						|
    if (T.isNull())
 | 
						|
      T = Context.getTypeDeclType(TD);
 | 
						|
 | 
						|
    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
 | 
						|
    // constructor or destructor name (in such a case, the scope specifier
 | 
						|
    // will be attached to the enclosing Expr or Decl node).
 | 
						|
    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
 | 
						|
      if (WantNontrivialTypeSourceInfo) {
 | 
						|
        // Construct a type with type-source information.
 | 
						|
        TypeLocBuilder Builder;
 | 
						|
        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
 | 
						|
        
 | 
						|
        T = getElaboratedType(ETK_None, *SS, T);
 | 
						|
        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
 | 
						|
        ElabTL.setElaboratedKeywordLoc(SourceLocation());
 | 
						|
        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
 | 
						|
        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
 | 
						|
      } else {
 | 
						|
        T = getElaboratedType(ETK_None, *SS, T);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
 | 
						|
    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
 | 
						|
    if (!HasTrailingDot)
 | 
						|
      T = Context.getObjCInterfaceType(IDecl);
 | 
						|
  }
 | 
						|
 | 
						|
  if (T.isNull()) {
 | 
						|
    // If it's not plausibly a type, suppress diagnostics.
 | 
						|
    Result.suppressDiagnostics();
 | 
						|
    return ParsedType();
 | 
						|
  }
 | 
						|
  return ParsedType::make(T);
 | 
						|
}
 | 
						|
 | 
						|
/// isTagName() - This method is called *for error recovery purposes only*
 | 
						|
/// to determine if the specified name is a valid tag name ("struct foo").  If
 | 
						|
/// so, this returns the TST for the tag corresponding to it (TST_enum,
 | 
						|
/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
 | 
						|
/// where the user forgot to specify the tag.
 | 
						|
DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
 | 
						|
  // Do a tag name lookup in this scope.
 | 
						|
  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
 | 
						|
  LookupName(R, S, false);
 | 
						|
  R.suppressDiagnostics();
 | 
						|
  if (R.getResultKind() == LookupResult::Found)
 | 
						|
    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
 | 
						|
      switch (TD->getTagKind()) {
 | 
						|
      case TTK_Struct: return DeclSpec::TST_struct;
 | 
						|
      case TTK_Union:  return DeclSpec::TST_union;
 | 
						|
      case TTK_Class:  return DeclSpec::TST_class;
 | 
						|
      case TTK_Enum:   return DeclSpec::TST_enum;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return DeclSpec::TST_unspecified;
 | 
						|
}
 | 
						|
 | 
						|
/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
 | 
						|
/// if a CXXScopeSpec's type is equal to the type of one of the base classes
 | 
						|
/// then downgrade the missing typename error to a warning.
 | 
						|
/// This is needed for MSVC compatibility; Example:
 | 
						|
/// @code
 | 
						|
/// template<class T> class A {
 | 
						|
/// public:
 | 
						|
///   typedef int TYPE;
 | 
						|
/// };
 | 
						|
/// template<class T> class B : public A<T> {
 | 
						|
/// public:
 | 
						|
///   A<T>::TYPE a; // no typename required because A<T> is a base class.
 | 
						|
/// };
 | 
						|
/// @endcode
 | 
						|
bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
 | 
						|
  if (CurContext->isRecord()) {
 | 
						|
    const Type *Ty = SS->getScopeRep()->getAsType();
 | 
						|
 | 
						|
    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
 | 
						|
    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
 | 
						|
          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
 | 
						|
      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
 | 
						|
        return true;
 | 
						|
    return S->isFunctionPrototypeScope();
 | 
						|
  } 
 | 
						|
  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II, 
 | 
						|
                                   SourceLocation IILoc,
 | 
						|
                                   Scope *S,
 | 
						|
                                   CXXScopeSpec *SS,
 | 
						|
                                   ParsedType &SuggestedType) {
 | 
						|
  // We don't have anything to suggest (yet).
 | 
						|
  SuggestedType = ParsedType();
 | 
						|
  
 | 
						|
  // There may have been a typo in the name of the type. Look up typo
 | 
						|
  // results, in case we have something that we can suggest.
 | 
						|
  TypeNameValidatorCCC Validator(false);
 | 
						|
  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
 | 
						|
                                             LookupOrdinaryName, S, SS,
 | 
						|
                                             Validator)) {
 | 
						|
    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
 | 
						|
    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
 | 
						|
 | 
						|
    if (Corrected.isKeyword()) {
 | 
						|
      // We corrected to a keyword.
 | 
						|
      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
 | 
						|
      Diag(IILoc, diag::err_unknown_typename_suggest)
 | 
						|
        << &II << CorrectedQuotedStr;
 | 
						|
    } else {
 | 
						|
      NamedDecl *Result = Corrected.getCorrectionDecl();
 | 
						|
      // We found a similarly-named type or interface; suggest that.
 | 
						|
      if (!SS || !SS->isSet())
 | 
						|
        Diag(IILoc, diag::err_unknown_typename_suggest)
 | 
						|
          << &II << CorrectedQuotedStr
 | 
						|
          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
 | 
						|
      else if (DeclContext *DC = computeDeclContext(*SS, false))
 | 
						|
        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
 | 
						|
          << &II << DC << CorrectedQuotedStr << SS->getRange()
 | 
						|
          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
 | 
						|
      else
 | 
						|
        llvm_unreachable("could not have corrected a typo here");
 | 
						|
 | 
						|
      Diag(Result->getLocation(), diag::note_previous_decl)
 | 
						|
        << CorrectedQuotedStr;
 | 
						|
 | 
						|
      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
 | 
						|
                                  false, false, ParsedType(),
 | 
						|
                                  /*IsCtorOrDtorName=*/false,
 | 
						|
                                  /*NonTrivialTypeSourceInfo=*/true);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // See if II is a class template that the user forgot to pass arguments to.
 | 
						|
    UnqualifiedId Name;
 | 
						|
    Name.setIdentifier(&II, IILoc);
 | 
						|
    CXXScopeSpec EmptySS;
 | 
						|
    TemplateTy TemplateResult;
 | 
						|
    bool MemberOfUnknownSpecialization;
 | 
						|
    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
 | 
						|
                       Name, ParsedType(), true, TemplateResult,
 | 
						|
                       MemberOfUnknownSpecialization) == TNK_Type_template) {
 | 
						|
      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
 | 
						|
      Diag(IILoc, diag::err_template_missing_args) << TplName;
 | 
						|
      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
 | 
						|
        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
 | 
						|
          << TplDecl->getTemplateParameters()->getSourceRange();
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Should we move the logic that tries to recover from a missing tag
 | 
						|
  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
 | 
						|
  
 | 
						|
  if (!SS || (!SS->isSet() && !SS->isInvalid()))
 | 
						|
    Diag(IILoc, diag::err_unknown_typename) << &II;
 | 
						|
  else if (DeclContext *DC = computeDeclContext(*SS, false))
 | 
						|
    Diag(IILoc, diag::err_typename_nested_not_found) 
 | 
						|
      << &II << DC << SS->getRange();
 | 
						|
  else if (isDependentScopeSpecifier(*SS)) {
 | 
						|
    unsigned DiagID = diag::err_typename_missing;
 | 
						|
    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
 | 
						|
      DiagID = diag::warn_typename_missing;
 | 
						|
 | 
						|
    Diag(SS->getRange().getBegin(), DiagID)
 | 
						|
      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
 | 
						|
      << SourceRange(SS->getRange().getBegin(), IILoc)
 | 
						|
      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
 | 
						|
    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
 | 
						|
                                                                         .get();
 | 
						|
  } else {
 | 
						|
    assert(SS && SS->isInvalid() && 
 | 
						|
           "Invalid scope specifier has already been diagnosed");
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given result set contains either a type name
 | 
						|
/// or 
 | 
						|
static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
 | 
						|
  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
 | 
						|
                       NextToken.is(tok::less);
 | 
						|
  
 | 
						|
  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
 | 
						|
    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    if (CheckTemplate && isa<TemplateDecl>(*I))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Sema::NameClassification Sema::ClassifyName(Scope *S,
 | 
						|
                                            CXXScopeSpec &SS,
 | 
						|
                                            IdentifierInfo *&Name,
 | 
						|
                                            SourceLocation NameLoc,
 | 
						|
                                            const Token &NextToken) {
 | 
						|
  DeclarationNameInfo NameInfo(Name, NameLoc);
 | 
						|
  ObjCMethodDecl *CurMethod = getCurMethodDecl();
 | 
						|
  
 | 
						|
  if (NextToken.is(tok::coloncolon)) {
 | 
						|
    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
 | 
						|
                                QualType(), false, SS, 0, false);
 | 
						|
    
 | 
						|
  }
 | 
						|
      
 | 
						|
  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
 | 
						|
  LookupParsedName(Result, S, &SS, !CurMethod);
 | 
						|
  
 | 
						|
  // Perform lookup for Objective-C instance variables (including automatically 
 | 
						|
  // synthesized instance variables), if we're in an Objective-C method.
 | 
						|
  // FIXME: This lookup really, really needs to be folded in to the normal
 | 
						|
  // unqualified lookup mechanism.
 | 
						|
  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
 | 
						|
    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
 | 
						|
    if (E.get() || E.isInvalid())
 | 
						|
      return E;
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool SecondTry = false;
 | 
						|
  bool IsFilteredTemplateName = false;
 | 
						|
  
 | 
						|
Corrected:
 | 
						|
  switch (Result.getResultKind()) {
 | 
						|
  case LookupResult::NotFound:
 | 
						|
    // If an unqualified-id is followed by a '(', then we have a function
 | 
						|
    // call.
 | 
						|
    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
 | 
						|
      // In C++, this is an ADL-only call.
 | 
						|
      // FIXME: Reference?
 | 
						|
      if (getLangOptions().CPlusPlus)
 | 
						|
        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
 | 
						|
      
 | 
						|
      // C90 6.3.2.2:
 | 
						|
      //   If the expression that precedes the parenthesized argument list in a 
 | 
						|
      //   function call consists solely of an identifier, and if no 
 | 
						|
      //   declaration is visible for this identifier, the identifier is 
 | 
						|
      //   implicitly declared exactly as if, in the innermost block containing
 | 
						|
      //   the function call, the declaration
 | 
						|
      //
 | 
						|
      //     extern int identifier (); 
 | 
						|
      //
 | 
						|
      //   appeared. 
 | 
						|
      // 
 | 
						|
      // We also allow this in C99 as an extension.
 | 
						|
      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
 | 
						|
        Result.addDecl(D);
 | 
						|
        Result.resolveKind();
 | 
						|
        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // In C, we first see whether there is a tag type by the same name, in 
 | 
						|
    // which case it's likely that the user just forget to write "enum", 
 | 
						|
    // "struct", or "union".
 | 
						|
    if (!getLangOptions().CPlusPlus && !SecondTry) {
 | 
						|
      Result.clear(LookupTagName);
 | 
						|
      LookupParsedName(Result, S, &SS);
 | 
						|
      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
 | 
						|
        const char *TagName = 0;
 | 
						|
        const char *FixItTagName = 0;
 | 
						|
        switch (Tag->getTagKind()) {
 | 
						|
          case TTK_Class:
 | 
						|
            TagName = "class";
 | 
						|
            FixItTagName = "class ";
 | 
						|
            break;
 | 
						|
 | 
						|
          case TTK_Enum:
 | 
						|
            TagName = "enum";
 | 
						|
            FixItTagName = "enum ";
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case TTK_Struct:
 | 
						|
            TagName = "struct";
 | 
						|
            FixItTagName = "struct ";
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case TTK_Union:
 | 
						|
            TagName = "union";
 | 
						|
            FixItTagName = "union ";
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
 | 
						|
          << Name << TagName << getLangOptions().CPlusPlus
 | 
						|
          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      Result.clear(LookupOrdinaryName);
 | 
						|
    }
 | 
						|
 | 
						|
    // Perform typo correction to determine if there is another name that is
 | 
						|
    // close to this name.
 | 
						|
    if (!SecondTry) {
 | 
						|
      SecondTry = true;
 | 
						|
      CorrectionCandidateCallback DefaultValidator;
 | 
						|
      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
 | 
						|
                                                 Result.getLookupKind(), S, 
 | 
						|
                                                 &SS, DefaultValidator)) {
 | 
						|
        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
 | 
						|
        unsigned QualifiedDiag = diag::err_no_member_suggest;
 | 
						|
        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
 | 
						|
        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
 | 
						|
        
 | 
						|
        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
 | 
						|
        NamedDecl *UnderlyingFirstDecl
 | 
						|
          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
 | 
						|
        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
 | 
						|
            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
 | 
						|
          UnqualifiedDiag = diag::err_no_template_suggest;
 | 
						|
          QualifiedDiag = diag::err_no_member_template_suggest;
 | 
						|
        } else if (UnderlyingFirstDecl && 
 | 
						|
                   (isa<TypeDecl>(UnderlyingFirstDecl) || 
 | 
						|
                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
 | 
						|
                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
 | 
						|
           UnqualifiedDiag = diag::err_unknown_typename_suggest;
 | 
						|
           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
 | 
						|
         }
 | 
						|
 | 
						|
        if (SS.isEmpty())
 | 
						|
          Diag(NameLoc, UnqualifiedDiag)
 | 
						|
            << Name << CorrectedQuotedStr
 | 
						|
            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
 | 
						|
        else
 | 
						|
          Diag(NameLoc, QualifiedDiag)
 | 
						|
            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
 | 
						|
            << SS.getRange()
 | 
						|
            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
 | 
						|
 | 
						|
        // Update the name, so that the caller has the new name.
 | 
						|
        Name = Corrected.getCorrectionAsIdentifierInfo();
 | 
						|
        
 | 
						|
        // Typo correction corrected to a keyword.
 | 
						|
        if (Corrected.isKeyword())
 | 
						|
          return Corrected.getCorrectionAsIdentifierInfo();
 | 
						|
 | 
						|
        // Also update the LookupResult...
 | 
						|
        // FIXME: This should probably go away at some point
 | 
						|
        Result.clear();
 | 
						|
        Result.setLookupName(Corrected.getCorrection());
 | 
						|
        if (FirstDecl) {
 | 
						|
          Result.addDecl(FirstDecl);
 | 
						|
          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
 | 
						|
            << CorrectedQuotedStr;
 | 
						|
        }
 | 
						|
 | 
						|
        // If we found an Objective-C instance variable, let
 | 
						|
        // LookupInObjCMethod build the appropriate expression to
 | 
						|
        // reference the ivar.
 | 
						|
        // FIXME: This is a gross hack.
 | 
						|
        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
 | 
						|
          Result.clear();
 | 
						|
          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
 | 
						|
          return move(E);
 | 
						|
        }
 | 
						|
        
 | 
						|
        goto Corrected;
 | 
						|
      }
 | 
						|
    }
 | 
						|
      
 | 
						|
    // We failed to correct; just fall through and let the parser deal with it.
 | 
						|
    Result.suppressDiagnostics();
 | 
						|
    return NameClassification::Unknown();
 | 
						|
      
 | 
						|
  case LookupResult::NotFoundInCurrentInstantiation: {
 | 
						|
    // We performed name lookup into the current instantiation, and there were 
 | 
						|
    // dependent bases, so we treat this result the same way as any other
 | 
						|
    // dependent nested-name-specifier.
 | 
						|
      
 | 
						|
    // C++ [temp.res]p2:
 | 
						|
    //   A name used in a template declaration or definition and that is 
 | 
						|
    //   dependent on a template-parameter is assumed not to name a type 
 | 
						|
    //   unless the applicable name lookup finds a type name or the name is 
 | 
						|
    //   qualified by the keyword typename.
 | 
						|
    //
 | 
						|
    // FIXME: If the next token is '<', we might want to ask the parser to
 | 
						|
    // perform some heroics to see if we actually have a 
 | 
						|
    // template-argument-list, which would indicate a missing 'template'
 | 
						|
    // keyword here.
 | 
						|
    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
 | 
						|
                                     NameInfo, /*TemplateArgs=*/0);
 | 
						|
  }
 | 
						|
 | 
						|
  case LookupResult::Found:
 | 
						|
  case LookupResult::FoundOverloaded:
 | 
						|
  case LookupResult::FoundUnresolvedValue:
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case LookupResult::Ambiguous:
 | 
						|
    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
 | 
						|
        hasAnyAcceptableTemplateNames(Result)) {
 | 
						|
      // C++ [temp.local]p3:
 | 
						|
      //   A lookup that finds an injected-class-name (10.2) can result in an
 | 
						|
      //   ambiguity in certain cases (for example, if it is found in more than
 | 
						|
      //   one base class). If all of the injected-class-names that are found
 | 
						|
      //   refer to specializations of the same class template, and if the name
 | 
						|
      //   is followed by a template-argument-list, the reference refers to the
 | 
						|
      //   class template itself and not a specialization thereof, and is not
 | 
						|
      //   ambiguous.
 | 
						|
      //
 | 
						|
      // This filtering can make an ambiguous result into an unambiguous one,
 | 
						|
      // so try again after filtering out template names.
 | 
						|
      FilterAcceptableTemplateNames(Result);
 | 
						|
      if (!Result.isAmbiguous()) {
 | 
						|
        IsFilteredTemplateName = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
      
 | 
						|
    // Diagnose the ambiguity and return an error.
 | 
						|
    return NameClassification::Error();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
 | 
						|
      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
 | 
						|
    // C++ [temp.names]p3:
 | 
						|
    //   After name lookup (3.4) finds that a name is a template-name or that
 | 
						|
    //   an operator-function-id or a literal- operator-id refers to a set of
 | 
						|
    //   overloaded functions any member of which is a function template if 
 | 
						|
    //   this is followed by a <, the < is always taken as the delimiter of a
 | 
						|
    //   template-argument-list and never as the less-than operator.
 | 
						|
    if (!IsFilteredTemplateName)
 | 
						|
      FilterAcceptableTemplateNames(Result);
 | 
						|
    
 | 
						|
    if (!Result.empty()) {
 | 
						|
      bool IsFunctionTemplate;
 | 
						|
      TemplateName Template;
 | 
						|
      if (Result.end() - Result.begin() > 1) {
 | 
						|
        IsFunctionTemplate = true;
 | 
						|
        Template = Context.getOverloadedTemplateName(Result.begin(), 
 | 
						|
                                                     Result.end());
 | 
						|
      } else {
 | 
						|
        TemplateDecl *TD
 | 
						|
          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
 | 
						|
        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
 | 
						|
        
 | 
						|
        if (SS.isSet() && !SS.isInvalid())
 | 
						|
          Template = Context.getQualifiedTemplateName(SS.getScopeRep(), 
 | 
						|
                                                    /*TemplateKeyword=*/false,
 | 
						|
                                                      TD);
 | 
						|
        else
 | 
						|
          Template = TemplateName(TD);
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (IsFunctionTemplate) {
 | 
						|
        // Function templates always go through overload resolution, at which
 | 
						|
        // point we'll perform the various checks (e.g., accessibility) we need
 | 
						|
        // to based on which function we selected.
 | 
						|
        Result.suppressDiagnostics();
 | 
						|
        
 | 
						|
        return NameClassification::FunctionTemplate(Template);
 | 
						|
      }
 | 
						|
      
 | 
						|
      return NameClassification::TypeTemplate(Template);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
 | 
						|
  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
 | 
						|
    DiagnoseUseOfDecl(Type, NameLoc);
 | 
						|
    QualType T = Context.getTypeDeclType(Type);
 | 
						|
    return ParsedType::make(T);    
 | 
						|
  }
 | 
						|
  
 | 
						|
  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
 | 
						|
  if (!Class) {
 | 
						|
    // FIXME: It's unfortunate that we don't have a Type node for handling this.
 | 
						|
    if (ObjCCompatibleAliasDecl *Alias 
 | 
						|
                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
 | 
						|
      Class = Alias->getClassInterface();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Class) {
 | 
						|
    DiagnoseUseOfDecl(Class, NameLoc);
 | 
						|
    
 | 
						|
    if (NextToken.is(tok::period)) {
 | 
						|
      // Interface. <something> is parsed as a property reference expression.
 | 
						|
      // Just return "unknown" as a fall-through for now.
 | 
						|
      Result.suppressDiagnostics();
 | 
						|
      return NameClassification::Unknown();
 | 
						|
    }
 | 
						|
    
 | 
						|
    QualType T = Context.getObjCInterfaceType(Class);
 | 
						|
    return ParsedType::make(T);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
 | 
						|
    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
 | 
						|
 | 
						|
  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
 | 
						|
  return BuildDeclarationNameExpr(SS, Result, ADL);
 | 
						|
}
 | 
						|
 | 
						|
// Determines the context to return to after temporarily entering a
 | 
						|
// context.  This depends in an unnecessarily complicated way on the
 | 
						|
// exact ordering of callbacks from the parser.
 | 
						|
DeclContext *Sema::getContainingDC(DeclContext *DC) {
 | 
						|
 | 
						|
  // Functions defined inline within classes aren't parsed until we've
 | 
						|
  // finished parsing the top-level class, so the top-level class is
 | 
						|
  // the context we'll need to return to.
 | 
						|
  if (isa<FunctionDecl>(DC)) {
 | 
						|
    DC = DC->getLexicalParent();
 | 
						|
 | 
						|
    // A function not defined within a class will always return to its
 | 
						|
    // lexical context.
 | 
						|
    if (!isa<CXXRecordDecl>(DC))
 | 
						|
      return DC;
 | 
						|
 | 
						|
    // A C++ inline method/friend is parsed *after* the topmost class
 | 
						|
    // it was declared in is fully parsed ("complete");  the topmost
 | 
						|
    // class is the context we need to return to.
 | 
						|
    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
 | 
						|
      DC = RD;
 | 
						|
 | 
						|
    // Return the declaration context of the topmost class the inline method is
 | 
						|
    // declared in.
 | 
						|
    return DC;
 | 
						|
  }
 | 
						|
 | 
						|
  return DC->getLexicalParent();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
 | 
						|
  assert(getContainingDC(DC) == CurContext &&
 | 
						|
      "The next DeclContext should be lexically contained in the current one.");
 | 
						|
  CurContext = DC;
 | 
						|
  S->setEntity(DC);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::PopDeclContext() {
 | 
						|
  assert(CurContext && "DeclContext imbalance!");
 | 
						|
 | 
						|
  CurContext = getContainingDC(CurContext);
 | 
						|
  assert(CurContext && "Popped translation unit!");
 | 
						|
}
 | 
						|
 | 
						|
/// EnterDeclaratorContext - Used when we must lookup names in the context
 | 
						|
/// of a declarator's nested name specifier.
 | 
						|
///
 | 
						|
void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
 | 
						|
  // C++0x [basic.lookup.unqual]p13:
 | 
						|
  //   A name used in the definition of a static data member of class
 | 
						|
  //   X (after the qualified-id of the static member) is looked up as
 | 
						|
  //   if the name was used in a member function of X.
 | 
						|
  // C++0x [basic.lookup.unqual]p14:
 | 
						|
  //   If a variable member of a namespace is defined outside of the
 | 
						|
  //   scope of its namespace then any name used in the definition of
 | 
						|
  //   the variable member (after the declarator-id) is looked up as
 | 
						|
  //   if the definition of the variable member occurred in its
 | 
						|
  //   namespace.
 | 
						|
  // Both of these imply that we should push a scope whose context
 | 
						|
  // is the semantic context of the declaration.  We can't use
 | 
						|
  // PushDeclContext here because that context is not necessarily
 | 
						|
  // lexically contained in the current context.  Fortunately,
 | 
						|
  // the containing scope should have the appropriate information.
 | 
						|
 | 
						|
  assert(!S->getEntity() && "scope already has entity");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  Scope *Ancestor = S->getParent();
 | 
						|
  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
 | 
						|
  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
 | 
						|
#endif
 | 
						|
 | 
						|
  CurContext = DC;
 | 
						|
  S->setEntity(DC);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ExitDeclaratorContext(Scope *S) {
 | 
						|
  assert(S->getEntity() == CurContext && "Context imbalance!");
 | 
						|
 | 
						|
  // Switch back to the lexical context.  The safety of this is
 | 
						|
  // enforced by an assert in EnterDeclaratorContext.
 | 
						|
  Scope *Ancestor = S->getParent();
 | 
						|
  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
 | 
						|
  CurContext = (DeclContext*) Ancestor->getEntity();
 | 
						|
 | 
						|
  // We don't need to do anything with the scope, which is going to
 | 
						|
  // disappear.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
 | 
						|
  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
 | 
						|
  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
 | 
						|
    // We assume that the caller has already called
 | 
						|
    // ActOnReenterTemplateScope
 | 
						|
    FD = TFD->getTemplatedDecl();
 | 
						|
  }
 | 
						|
  if (!FD)
 | 
						|
    return;
 | 
						|
 | 
						|
  PushDeclContext(S, FD);
 | 
						|
  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
 | 
						|
    ParmVarDecl *Param = FD->getParamDecl(P);
 | 
						|
    // If the parameter has an identifier, then add it to the scope
 | 
						|
    if (Param->getIdentifier()) {
 | 
						|
      S->AddDecl(Param);
 | 
						|
      IdResolver.AddDecl(Param);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Determine whether we allow overloading of the function
 | 
						|
/// PrevDecl with another declaration.
 | 
						|
///
 | 
						|
/// This routine determines whether overloading is possible, not
 | 
						|
/// whether some new function is actually an overload. It will return
 | 
						|
/// true in C++ (where we can always provide overloads) or, as an
 | 
						|
/// extension, in C when the previous function is already an
 | 
						|
/// overloaded function declaration or has the "overloadable"
 | 
						|
/// attribute.
 | 
						|
static bool AllowOverloadingOfFunction(LookupResult &Previous,
 | 
						|
                                       ASTContext &Context) {
 | 
						|
  if (Context.getLangOptions().CPlusPlus)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return (Previous.getResultKind() == LookupResult::Found
 | 
						|
          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
 | 
						|
}
 | 
						|
 | 
						|
/// Add this decl to the scope shadowed decl chains.
 | 
						|
void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
 | 
						|
  // Move up the scope chain until we find the nearest enclosing
 | 
						|
  // non-transparent context. The declaration will be introduced into this
 | 
						|
  // scope.
 | 
						|
  while (S->getEntity() &&
 | 
						|
         ((DeclContext *)S->getEntity())->isTransparentContext())
 | 
						|
    S = S->getParent();
 | 
						|
 | 
						|
  // Add scoped declarations into their context, so that they can be
 | 
						|
  // found later. Declarations without a context won't be inserted
 | 
						|
  // into any context.
 | 
						|
  if (AddToContext)
 | 
						|
    CurContext->addDecl(D);
 | 
						|
 | 
						|
  // Out-of-line definitions shouldn't be pushed into scope in C++.
 | 
						|
  // Out-of-line variable and function definitions shouldn't even in C.
 | 
						|
  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
 | 
						|
      D->isOutOfLine() &&
 | 
						|
      !D->getDeclContext()->getRedeclContext()->Equals(
 | 
						|
        D->getLexicalDeclContext()->getRedeclContext()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Template instantiations should also not be pushed into scope.
 | 
						|
  if (isa<FunctionDecl>(D) &&
 | 
						|
      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this replaces anything in the current scope, 
 | 
						|
  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
 | 
						|
                               IEnd = IdResolver.end();
 | 
						|
  for (; I != IEnd; ++I) {
 | 
						|
    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
 | 
						|
      S->RemoveDecl(*I);
 | 
						|
      IdResolver.RemoveDecl(*I);
 | 
						|
 | 
						|
      // Should only need to replace one decl.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  S->AddDecl(D);
 | 
						|
  
 | 
						|
  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
 | 
						|
    // Implicitly-generated labels may end up getting generated in an order that
 | 
						|
    // isn't strictly lexical, which breaks name lookup. Be careful to insert
 | 
						|
    // the label at the appropriate place in the identifier chain.
 | 
						|
    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
 | 
						|
      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
 | 
						|
      if (IDC == CurContext) {
 | 
						|
        if (!S->isDeclScope(*I))
 | 
						|
          continue;
 | 
						|
      } else if (IDC->Encloses(CurContext))
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    IdResolver.InsertDeclAfter(I, D);
 | 
						|
  } else {
 | 
						|
    IdResolver.AddDecl(D);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
 | 
						|
  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
 | 
						|
    TUScope->AddDecl(D);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
 | 
						|
                         bool ExplicitInstantiationOrSpecialization) {
 | 
						|
  return IdResolver.isDeclInScope(D, Ctx, Context, S,
 | 
						|
                                  ExplicitInstantiationOrSpecialization);
 | 
						|
}
 | 
						|
 | 
						|
Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
 | 
						|
  DeclContext *TargetDC = DC->getPrimaryContext();
 | 
						|
  do {
 | 
						|
    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
 | 
						|
      if (ScopeDC->getPrimaryContext() == TargetDC)
 | 
						|
        return S;
 | 
						|
  } while ((S = S->getParent()));
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool isOutOfScopePreviousDeclaration(NamedDecl *,
 | 
						|
                                            DeclContext*,
 | 
						|
                                            ASTContext&);
 | 
						|
 | 
						|
/// Filters out lookup results that don't fall within the given scope
 | 
						|
/// as determined by isDeclInScope.
 | 
						|
void Sema::FilterLookupForScope(LookupResult &R,
 | 
						|
                                DeclContext *Ctx, Scope *S,
 | 
						|
                                bool ConsiderLinkage,
 | 
						|
                                bool ExplicitInstantiationOrSpecialization) {
 | 
						|
  LookupResult::Filter F = R.makeFilter();
 | 
						|
  while (F.hasNext()) {
 | 
						|
    NamedDecl *D = F.next();
 | 
						|
 | 
						|
    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (ConsiderLinkage &&
 | 
						|
        isOutOfScopePreviousDeclaration(D, Ctx, Context))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    F.erase();
 | 
						|
  }
 | 
						|
 | 
						|
  F.done();
 | 
						|
}
 | 
						|
 | 
						|
static bool isUsingDecl(NamedDecl *D) {
 | 
						|
  return isa<UsingShadowDecl>(D) ||
 | 
						|
         isa<UnresolvedUsingTypenameDecl>(D) ||
 | 
						|
         isa<UnresolvedUsingValueDecl>(D);
 | 
						|
}
 | 
						|
 | 
						|
/// Removes using shadow declarations from the lookup results.
 | 
						|
static void RemoveUsingDecls(LookupResult &R) {
 | 
						|
  LookupResult::Filter F = R.makeFilter();
 | 
						|
  while (F.hasNext())
 | 
						|
    if (isUsingDecl(F.next()))
 | 
						|
      F.erase();
 | 
						|
 | 
						|
  F.done();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check for this common pattern:
 | 
						|
/// @code
 | 
						|
/// class S {
 | 
						|
///   S(const S&); // DO NOT IMPLEMENT
 | 
						|
///   void operator=(const S&); // DO NOT IMPLEMENT
 | 
						|
/// };
 | 
						|
/// @endcode
 | 
						|
static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
 | 
						|
  // FIXME: Should check for private access too but access is set after we get
 | 
						|
  // the decl here.
 | 
						|
  if (D->doesThisDeclarationHaveABody())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
 | 
						|
    return CD->isCopyConstructor();
 | 
						|
  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
 | 
						|
    return Method->isCopyAssignmentOperator();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
 | 
						|
  assert(D);
 | 
						|
 | 
						|
  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ignore class templates.
 | 
						|
  if (D->getDeclContext()->isDependentContext() ||
 | 
						|
      D->getLexicalDeclContext()->isDependentContext())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | 
						|
      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      // 'static inline' functions are used in headers; don't warn.
 | 
						|
      if (FD->getStorageClass() == SC_Static &&
 | 
						|
          FD->isInlineSpecified())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FD->doesThisDeclarationHaveABody() &&
 | 
						|
        Context.DeclMustBeEmitted(FD))
 | 
						|
      return false;
 | 
						|
  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    if (!VD->isFileVarDecl() ||
 | 
						|
        VD->getType().isConstant(Context) ||
 | 
						|
        Context.DeclMustBeEmitted(VD))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (VD->isStaticDataMember() &&
 | 
						|
        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | 
						|
      return false;
 | 
						|
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Only warn for unused decls internal to the translation unit.
 | 
						|
  if (D->getLinkage() == ExternalLinkage)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
 | 
						|
  if (!D)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    const FunctionDecl *First = FD->getFirstDeclaration();
 | 
						|
    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
 | 
						|
      return; // First should already be in the vector.
 | 
						|
  }
 | 
						|
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    const VarDecl *First = VD->getFirstDeclaration();
 | 
						|
    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
 | 
						|
      return; // First should already be in the vector.
 | 
						|
  }
 | 
						|
 | 
						|
   if (ShouldWarnIfUnusedFileScopedDecl(D))
 | 
						|
     UnusedFileScopedDecls.push_back(D);
 | 
						|
 }
 | 
						|
 | 
						|
static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
 | 
						|
  if (D->isInvalidDecl())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isa<LabelDecl>(D))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // White-list anything that isn't a local variable.
 | 
						|
  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
 | 
						|
      !D->getDeclContext()->isFunctionOrMethod())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Types of valid local variables should be complete, so this should succeed.
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
 | 
						|
    // White-list anything with an __attribute__((unused)) type.
 | 
						|
    QualType Ty = VD->getType();
 | 
						|
 | 
						|
    // Only look at the outermost level of typedef.
 | 
						|
    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
 | 
						|
      if (TT->getDecl()->hasAttr<UnusedAttr>())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we failed to complete the type for some reason, or if the type is
 | 
						|
    // dependent, don't diagnose the variable. 
 | 
						|
    if (Ty->isIncompleteType() || Ty->isDependentType())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (const TagType *TT = Ty->getAs<TagType>()) {
 | 
						|
      const TagDecl *Tag = TT->getDecl();
 | 
						|
      if (Tag->hasAttr<UnusedAttr>())
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
 | 
						|
        if (!RD->hasTrivialDestructor())
 | 
						|
          return false;
 | 
						|
 | 
						|
        if (const Expr *Init = VD->getInit()) {
 | 
						|
          const CXXConstructExpr *Construct =
 | 
						|
            dyn_cast<CXXConstructExpr>(Init);
 | 
						|
          if (Construct && !Construct->isElidable()) {
 | 
						|
            CXXConstructorDecl *CD = Construct->getConstructor();
 | 
						|
            if (!CD->isTrivial())
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: __attribute__((unused)) templates?
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
 | 
						|
                                     FixItHint &Hint) {
 | 
						|
  if (isa<LabelDecl>(D)) {
 | 
						|
    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
 | 
						|
                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
 | 
						|
    if (AfterColon.isInvalid())
 | 
						|
      return;
 | 
						|
    Hint = FixItHint::CreateRemoval(CharSourceRange::
 | 
						|
                                    getCharRange(D->getLocStart(), AfterColon));
 | 
						|
  }
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
 | 
						|
/// unless they are marked attr(unused).
 | 
						|
void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
 | 
						|
  FixItHint Hint;
 | 
						|
  if (!ShouldDiagnoseUnusedDecl(D))
 | 
						|
    return;
 | 
						|
  
 | 
						|
  GenerateFixForUnusedDecl(D, Context, Hint);
 | 
						|
 | 
						|
  unsigned DiagID;
 | 
						|
  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
 | 
						|
    DiagID = diag::warn_unused_exception_param;
 | 
						|
  else if (isa<LabelDecl>(D))
 | 
						|
    DiagID = diag::warn_unused_label;
 | 
						|
  else
 | 
						|
    DiagID = diag::warn_unused_variable;
 | 
						|
 | 
						|
  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
 | 
						|
}
 | 
						|
 | 
						|
static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
 | 
						|
  // Verify that we have no forward references left.  If so, there was a goto
 | 
						|
  // or address of a label taken, but no definition of it.  Label fwd
 | 
						|
  // definitions are indicated with a null substmt.
 | 
						|
  if (L->getStmt() == 0)
 | 
						|
    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
 | 
						|
  if (S->decl_empty()) return;
 | 
						|
  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
 | 
						|
         "Scope shouldn't contain decls!");
 | 
						|
 | 
						|
  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    Decl *TmpD = (*I);
 | 
						|
    assert(TmpD && "This decl didn't get pushed??");
 | 
						|
 | 
						|
    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
 | 
						|
    NamedDecl *D = cast<NamedDecl>(TmpD);
 | 
						|
 | 
						|
    if (!D->getDeclName()) continue;
 | 
						|
 | 
						|
    // Diagnose unused variables in this scope.
 | 
						|
    if (!S->hasErrorOccurred())
 | 
						|
      DiagnoseUnusedDecl(D);
 | 
						|
    
 | 
						|
    // If this was a forward reference to a label, verify it was defined.
 | 
						|
    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
 | 
						|
      CheckPoppedLabel(LD, *this);
 | 
						|
    
 | 
						|
    // Remove this name from our lexical scope.
 | 
						|
    IdResolver.RemoveDecl(D);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look for an Objective-C class in the translation unit.
 | 
						|
///
 | 
						|
/// \param Id The name of the Objective-C class we're looking for. If
 | 
						|
/// typo-correction fixes this name, the Id will be updated
 | 
						|
/// to the fixed name.
 | 
						|
///
 | 
						|
/// \param IdLoc The location of the name in the translation unit.
 | 
						|
///
 | 
						|
/// \param TypoCorrection If true, this routine will attempt typo correction
 | 
						|
/// if there is no class with the given name.
 | 
						|
///
 | 
						|
/// \returns The declaration of the named Objective-C class, or NULL if the
 | 
						|
/// class could not be found.
 | 
						|
ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
 | 
						|
                                              SourceLocation IdLoc,
 | 
						|
                                              bool DoTypoCorrection) {
 | 
						|
  // The third "scope" argument is 0 since we aren't enabling lazy built-in
 | 
						|
  // creation from this context.
 | 
						|
  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
 | 
						|
 | 
						|
  if (!IDecl && DoTypoCorrection) {
 | 
						|
    // Perform typo correction at the given location, but only if we
 | 
						|
    // find an Objective-C class name.
 | 
						|
    DeclFilterCCC<ObjCInterfaceDecl> Validator;
 | 
						|
    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
 | 
						|
                                       LookupOrdinaryName, TUScope, NULL,
 | 
						|
                                       Validator)) {
 | 
						|
      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
 | 
						|
      Diag(IdLoc, diag::err_undef_interface_suggest)
 | 
						|
        << Id << IDecl->getDeclName() 
 | 
						|
        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
 | 
						|
      Diag(IDecl->getLocation(), diag::note_previous_decl)
 | 
						|
        << IDecl->getDeclName();
 | 
						|
      
 | 
						|
      Id = IDecl->getIdentifier();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
 | 
						|
  // This routine must always return a class definition, if any.
 | 
						|
  if (Def && Def->getDefinition())
 | 
						|
      Def = Def->getDefinition();
 | 
						|
  return Def;
 | 
						|
}
 | 
						|
 | 
						|
/// getNonFieldDeclScope - Retrieves the innermost scope, starting
 | 
						|
/// from S, where a non-field would be declared. This routine copes
 | 
						|
/// with the difference between C and C++ scoping rules in structs and
 | 
						|
/// unions. For example, the following code is well-formed in C but
 | 
						|
/// ill-formed in C++:
 | 
						|
/// @code
 | 
						|
/// struct S6 {
 | 
						|
///   enum { BAR } e;
 | 
						|
/// };
 | 
						|
///
 | 
						|
/// void test_S6() {
 | 
						|
///   struct S6 a;
 | 
						|
///   a.e = BAR;
 | 
						|
/// }
 | 
						|
/// @endcode
 | 
						|
/// For the declaration of BAR, this routine will return a different
 | 
						|
/// scope. The scope S will be the scope of the unnamed enumeration
 | 
						|
/// within S6. In C++, this routine will return the scope associated
 | 
						|
/// with S6, because the enumeration's scope is a transparent
 | 
						|
/// context but structures can contain non-field names. In C, this
 | 
						|
/// routine will return the translation unit scope, since the
 | 
						|
/// enumeration's scope is a transparent context and structures cannot
 | 
						|
/// contain non-field names.
 | 
						|
Scope *Sema::getNonFieldDeclScope(Scope *S) {
 | 
						|
  while (((S->getFlags() & Scope::DeclScope) == 0) ||
 | 
						|
         (S->getEntity() &&
 | 
						|
          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
 | 
						|
         (S->isClassScope() && !getLangOptions().CPlusPlus))
 | 
						|
    S = S->getParent();
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
 | 
						|
/// file scope.  lazily create a decl for it. ForRedeclaration is true
 | 
						|
/// if we're creating this built-in in anticipation of redeclaring the
 | 
						|
/// built-in.
 | 
						|
NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
 | 
						|
                                     Scope *S, bool ForRedeclaration,
 | 
						|
                                     SourceLocation Loc) {
 | 
						|
  Builtin::ID BID = (Builtin::ID)bid;
 | 
						|
 | 
						|
  ASTContext::GetBuiltinTypeError Error;
 | 
						|
  QualType R = Context.GetBuiltinType(BID, Error);
 | 
						|
  switch (Error) {
 | 
						|
  case ASTContext::GE_None:
 | 
						|
    // Okay
 | 
						|
    break;
 | 
						|
 | 
						|
  case ASTContext::GE_Missing_stdio:
 | 
						|
    if (ForRedeclaration)
 | 
						|
      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
 | 
						|
        << Context.BuiltinInfo.GetName(BID);
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case ASTContext::GE_Missing_setjmp:
 | 
						|
    if (ForRedeclaration)
 | 
						|
      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
 | 
						|
        << Context.BuiltinInfo.GetName(BID);
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case ASTContext::GE_Missing_ucontext:
 | 
						|
    if (ForRedeclaration)
 | 
						|
      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
 | 
						|
        << Context.BuiltinInfo.GetName(BID);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
 | 
						|
    Diag(Loc, diag::ext_implicit_lib_function_decl)
 | 
						|
      << Context.BuiltinInfo.GetName(BID)
 | 
						|
      << R;
 | 
						|
    if (Context.BuiltinInfo.getHeaderName(BID) &&
 | 
						|
        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
 | 
						|
          != DiagnosticsEngine::Ignored)
 | 
						|
      Diag(Loc, diag::note_please_include_header)
 | 
						|
        << Context.BuiltinInfo.getHeaderName(BID)
 | 
						|
        << Context.BuiltinInfo.GetName(BID);
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *New = FunctionDecl::Create(Context,
 | 
						|
                                           Context.getTranslationUnitDecl(),
 | 
						|
                                           Loc, Loc, II, R, /*TInfo=*/0,
 | 
						|
                                           SC_Extern,
 | 
						|
                                           SC_None, false,
 | 
						|
                                           /*hasPrototype=*/true);
 | 
						|
  New->setImplicit();
 | 
						|
 | 
						|
  // Create Decl objects for each parameter, adding them to the
 | 
						|
  // FunctionDecl.
 | 
						|
  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
 | 
						|
    SmallVector<ParmVarDecl*, 16> Params;
 | 
						|
    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
 | 
						|
      ParmVarDecl *parm =
 | 
						|
        ParmVarDecl::Create(Context, New, SourceLocation(),
 | 
						|
                            SourceLocation(), 0,
 | 
						|
                            FT->getArgType(i), /*TInfo=*/0,
 | 
						|
                            SC_None, SC_None, 0);
 | 
						|
      parm->setScopeInfo(0, i);
 | 
						|
      Params.push_back(parm);
 | 
						|
    }
 | 
						|
    New->setParams(Params);
 | 
						|
  }
 | 
						|
 | 
						|
  AddKnownFunctionAttributes(New);
 | 
						|
 | 
						|
  // TUScope is the translation-unit scope to insert this function into.
 | 
						|
  // FIXME: This is hideous. We need to teach PushOnScopeChains to
 | 
						|
  // relate Scopes to DeclContexts, and probably eliminate CurContext
 | 
						|
  // entirely, but we're not there yet.
 | 
						|
  DeclContext *SavedContext = CurContext;
 | 
						|
  CurContext = Context.getTranslationUnitDecl();
 | 
						|
  PushOnScopeChains(New, TUScope);
 | 
						|
  CurContext = SavedContext;
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
 | 
						|
  QualType OldType;
 | 
						|
  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
 | 
						|
    OldType = OldTypedef->getUnderlyingType();
 | 
						|
  else
 | 
						|
    OldType = Context.getTypeDeclType(Old);
 | 
						|
  QualType NewType = New->getUnderlyingType();
 | 
						|
 | 
						|
  if (NewType->isVariablyModifiedType()) {
 | 
						|
    // Must not redefine a typedef with a variably-modified type.
 | 
						|
    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
 | 
						|
      << Kind << NewType;
 | 
						|
    if (Old->getLocation().isValid())
 | 
						|
      Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
    New->setInvalidDecl();
 | 
						|
    return true;    
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (OldType != NewType &&
 | 
						|
      !OldType->isDependentType() &&
 | 
						|
      !NewType->isDependentType() &&
 | 
						|
      !Context.hasSameType(OldType, NewType)) { 
 | 
						|
    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
 | 
						|
      << Kind << NewType << OldType;
 | 
						|
    if (Old->getLocation().isValid())
 | 
						|
      Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
    New->setInvalidDecl();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
 | 
						|
/// same name and scope as a previous declaration 'Old'.  Figure out
 | 
						|
/// how to resolve this situation, merging decls or emitting
 | 
						|
/// diagnostics as appropriate. If there was an error, set New to be invalid.
 | 
						|
///
 | 
						|
void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
 | 
						|
  // If the new decl is known invalid already, don't bother doing any
 | 
						|
  // merging checks.
 | 
						|
  if (New->isInvalidDecl()) return;
 | 
						|
 | 
						|
  // Allow multiple definitions for ObjC built-in typedefs.
 | 
						|
  // FIXME: Verify the underlying types are equivalent!
 | 
						|
  if (getLangOptions().ObjC1) {
 | 
						|
    const IdentifierInfo *TypeID = New->getIdentifier();
 | 
						|
    switch (TypeID->getLength()) {
 | 
						|
    default: break;
 | 
						|
    case 2:
 | 
						|
      if (!TypeID->isStr("id"))
 | 
						|
        break;
 | 
						|
      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
 | 
						|
      // Install the built-in type for 'id', ignoring the current definition.
 | 
						|
      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
 | 
						|
      return;
 | 
						|
    case 5:
 | 
						|
      if (!TypeID->isStr("Class"))
 | 
						|
        break;
 | 
						|
      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
 | 
						|
      // Install the built-in type for 'Class', ignoring the current definition.
 | 
						|
      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
 | 
						|
      return;
 | 
						|
    case 3:
 | 
						|
      if (!TypeID->isStr("SEL"))
 | 
						|
        break;
 | 
						|
      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
 | 
						|
      // Install the built-in type for 'SEL', ignoring the current definition.
 | 
						|
      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // Fall through - the typedef name was not a builtin type.
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify the old decl was also a type.
 | 
						|
  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
 | 
						|
  if (!Old) {
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | 
						|
      << New->getDeclName();
 | 
						|
 | 
						|
    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
 | 
						|
    if (OldD->getLocation().isValid())
 | 
						|
      Diag(OldD->getLocation(), diag::note_previous_definition);
 | 
						|
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the old declaration is invalid, just give up here.
 | 
						|
  if (Old->isInvalidDecl())
 | 
						|
    return New->setInvalidDecl();
 | 
						|
 | 
						|
  // If the typedef types are not identical, reject them in all languages and
 | 
						|
  // with any extensions enabled.
 | 
						|
  if (isIncompatibleTypedef(Old, New))
 | 
						|
    return;
 | 
						|
 | 
						|
  // The types match.  Link up the redeclaration chain if the old
 | 
						|
  // declaration was a typedef.
 | 
						|
  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
 | 
						|
    New->setPreviousDeclaration(Typedef);
 | 
						|
 | 
						|
  if (getLangOptions().MicrosoftExt)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // C++ [dcl.typedef]p2:
 | 
						|
    //   In a given non-class scope, a typedef specifier can be used to
 | 
						|
    //   redefine the name of any type declared in that scope to refer
 | 
						|
    //   to the type to which it already refers.
 | 
						|
    if (!isa<CXXRecordDecl>(CurContext))
 | 
						|
      return;
 | 
						|
 | 
						|
    // C++0x [dcl.typedef]p4:
 | 
						|
    //   In a given class scope, a typedef specifier can be used to redefine 
 | 
						|
    //   any class-name declared in that scope that is not also a typedef-name
 | 
						|
    //   to refer to the type to which it already refers.
 | 
						|
    //
 | 
						|
    // This wording came in via DR424, which was a correction to the
 | 
						|
    // wording in DR56, which accidentally banned code like:
 | 
						|
    //
 | 
						|
    //   struct S {
 | 
						|
    //     typedef struct A { } A;
 | 
						|
    //   };
 | 
						|
    //
 | 
						|
    // in the C++03 standard. We implement the C++0x semantics, which
 | 
						|
    // allow the above but disallow
 | 
						|
    //
 | 
						|
    //   struct S {
 | 
						|
    //     typedef int I;
 | 
						|
    //     typedef int I;
 | 
						|
    //   };
 | 
						|
    //
 | 
						|
    // since that was the intent of DR56.
 | 
						|
    if (!isa<TypedefNameDecl>(Old))
 | 
						|
      return;
 | 
						|
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition)
 | 
						|
      << New->getDeclName();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // Modules always permit redefinition of typedefs, as does C11.
 | 
						|
  if (getLangOptions().Modules || getLangOptions().C11)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // If we have a redefinition of a typedef in C, emit a warning.  This warning
 | 
						|
  // is normally mapped to an error, but can be controlled with
 | 
						|
  // -Wtypedef-redefinition.  If either the original or the redefinition is
 | 
						|
  // in a system header, don't emit this for compatibility with GCC.
 | 
						|
  if (getDiagnostics().getSuppressSystemWarnings() &&
 | 
						|
      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
 | 
						|
       Context.getSourceManager().isInSystemHeader(New->getLocation())))
 | 
						|
    return;
 | 
						|
 | 
						|
  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
 | 
						|
    << New->getDeclName();
 | 
						|
  Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/// DeclhasAttr - returns true if decl Declaration already has the target
 | 
						|
/// attribute.
 | 
						|
static bool
 | 
						|
DeclHasAttr(const Decl *D, const Attr *A) {
 | 
						|
  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
 | 
						|
  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
 | 
						|
  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
 | 
						|
    if ((*i)->getKind() == A->getKind()) {
 | 
						|
      if (Ann) {
 | 
						|
        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
 | 
						|
          return true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // FIXME: Don't hardcode this check
 | 
						|
      if (OA && isa<OwnershipAttr>(*i))
 | 
						|
        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
 | 
						|
void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
 | 
						|
                               bool MergeDeprecation) {
 | 
						|
  if (!Old->hasAttrs())
 | 
						|
    return;
 | 
						|
 | 
						|
  bool foundAny = New->hasAttrs();
 | 
						|
 | 
						|
  // Ensure that any moving of objects within the allocated map is done before
 | 
						|
  // we process them.
 | 
						|
  if (!foundAny) New->setAttrs(AttrVec());
 | 
						|
 | 
						|
  for (specific_attr_iterator<InheritableAttr>
 | 
						|
         i = Old->specific_attr_begin<InheritableAttr>(),
 | 
						|
         e = Old->specific_attr_end<InheritableAttr>(); 
 | 
						|
       i != e; ++i) {
 | 
						|
    // Ignore deprecated/unavailable/availability attributes if requested.
 | 
						|
    if (!MergeDeprecation &&
 | 
						|
        (isa<DeprecatedAttr>(*i) || 
 | 
						|
         isa<UnavailableAttr>(*i) ||
 | 
						|
         isa<AvailabilityAttr>(*i)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!DeclHasAttr(New, *i)) {
 | 
						|
      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
 | 
						|
      newAttr->setInherited(true);
 | 
						|
      New->addAttr(newAttr);
 | 
						|
      foundAny = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!foundAny) New->dropAttrs();
 | 
						|
}
 | 
						|
 | 
						|
/// mergeParamDeclAttributes - Copy attributes from the old parameter
 | 
						|
/// to the new one.
 | 
						|
static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
 | 
						|
                                     const ParmVarDecl *oldDecl,
 | 
						|
                                     ASTContext &C) {
 | 
						|
  if (!oldDecl->hasAttrs())
 | 
						|
    return;
 | 
						|
 | 
						|
  bool foundAny = newDecl->hasAttrs();
 | 
						|
 | 
						|
  // Ensure that any moving of objects within the allocated map is
 | 
						|
  // done before we process them.
 | 
						|
  if (!foundAny) newDecl->setAttrs(AttrVec());
 | 
						|
 | 
						|
  for (specific_attr_iterator<InheritableParamAttr>
 | 
						|
       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
 | 
						|
       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
 | 
						|
    if (!DeclHasAttr(newDecl, *i)) {
 | 
						|
      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
 | 
						|
      newAttr->setInherited(true);
 | 
						|
      newDecl->addAttr(newAttr);
 | 
						|
      foundAny = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!foundAny) newDecl->dropAttrs();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Used in MergeFunctionDecl to keep track of function parameters in
 | 
						|
/// C.
 | 
						|
struct GNUCompatibleParamWarning {
 | 
						|
  ParmVarDecl *OldParm;
 | 
						|
  ParmVarDecl *NewParm;
 | 
						|
  QualType PromotedType;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// getSpecialMember - get the special member enum for a method.
 | 
						|
Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
 | 
						|
  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
 | 
						|
    if (Ctor->isDefaultConstructor())
 | 
						|
      return Sema::CXXDefaultConstructor;
 | 
						|
 | 
						|
    if (Ctor->isCopyConstructor())
 | 
						|
      return Sema::CXXCopyConstructor;
 | 
						|
 | 
						|
    if (Ctor->isMoveConstructor())
 | 
						|
      return Sema::CXXMoveConstructor;
 | 
						|
  } else if (isa<CXXDestructorDecl>(MD)) {
 | 
						|
    return Sema::CXXDestructor;
 | 
						|
  } else if (MD->isCopyAssignmentOperator()) {
 | 
						|
    return Sema::CXXCopyAssignment;
 | 
						|
  } else if (MD->isMoveAssignmentOperator()) {
 | 
						|
    return Sema::CXXMoveAssignment;
 | 
						|
  }
 | 
						|
 | 
						|
  return Sema::CXXInvalid;
 | 
						|
}
 | 
						|
 | 
						|
/// canRedefineFunction - checks if a function can be redefined. Currently,
 | 
						|
/// only extern inline functions can be redefined, and even then only in
 | 
						|
/// GNU89 mode.
 | 
						|
static bool canRedefineFunction(const FunctionDecl *FD,
 | 
						|
                                const LangOptions& LangOpts) {
 | 
						|
  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
 | 
						|
          !LangOpts.CPlusPlus &&
 | 
						|
          FD->isInlineSpecified() &&
 | 
						|
          FD->getStorageClass() == SC_Extern);
 | 
						|
}
 | 
						|
 | 
						|
/// MergeFunctionDecl - We just parsed a function 'New' from
 | 
						|
/// declarator D which has the same name and scope as a previous
 | 
						|
/// declaration 'Old'.  Figure out how to resolve this situation,
 | 
						|
/// merging decls or emitting diagnostics as appropriate.
 | 
						|
///
 | 
						|
/// In C++, New and Old must be declarations that are not
 | 
						|
/// overloaded. Use IsOverload to determine whether New and Old are
 | 
						|
/// overloaded, and to select the Old declaration that New should be
 | 
						|
/// merged with.
 | 
						|
///
 | 
						|
/// Returns true if there was an error, false otherwise.
 | 
						|
bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
 | 
						|
  // Verify the old decl was also a function.
 | 
						|
  FunctionDecl *Old = 0;
 | 
						|
  if (FunctionTemplateDecl *OldFunctionTemplate
 | 
						|
        = dyn_cast<FunctionTemplateDecl>(OldD))
 | 
						|
    Old = OldFunctionTemplate->getTemplatedDecl();
 | 
						|
  else
 | 
						|
    Old = dyn_cast<FunctionDecl>(OldD);
 | 
						|
  if (!Old) {
 | 
						|
    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
 | 
						|
      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
 | 
						|
      Diag(Shadow->getTargetDecl()->getLocation(),
 | 
						|
           diag::note_using_decl_target);
 | 
						|
      Diag(Shadow->getUsingDecl()->getLocation(),
 | 
						|
           diag::note_using_decl) << 0;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | 
						|
      << New->getDeclName();
 | 
						|
    Diag(OldD->getLocation(), diag::note_previous_definition);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine whether the previous declaration was a definition,
 | 
						|
  // implicit declaration, or a declaration.
 | 
						|
  diag::kind PrevDiag;
 | 
						|
  if (Old->isThisDeclarationADefinition())
 | 
						|
    PrevDiag = diag::note_previous_definition;
 | 
						|
  else if (Old->isImplicit())
 | 
						|
    PrevDiag = diag::note_previous_implicit_declaration;
 | 
						|
  else
 | 
						|
    PrevDiag = diag::note_previous_declaration;
 | 
						|
 | 
						|
  QualType OldQType = Context.getCanonicalType(Old->getType());
 | 
						|
  QualType NewQType = Context.getCanonicalType(New->getType());
 | 
						|
 | 
						|
  // Don't complain about this if we're in GNU89 mode and the old function
 | 
						|
  // is an extern inline function.
 | 
						|
  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
 | 
						|
      New->getStorageClass() == SC_Static &&
 | 
						|
      Old->getStorageClass() != SC_Static &&
 | 
						|
      !canRedefineFunction(Old, getLangOptions())) {
 | 
						|
    if (getLangOptions().MicrosoftExt) {
 | 
						|
      Diag(New->getLocation(), diag::warn_static_non_static) << New;
 | 
						|
      Diag(Old->getLocation(), PrevDiag);
 | 
						|
    } else {
 | 
						|
      Diag(New->getLocation(), diag::err_static_non_static) << New;
 | 
						|
      Diag(Old->getLocation(), PrevDiag);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If a function is first declared with a calling convention, but is
 | 
						|
  // later declared or defined without one, the second decl assumes the
 | 
						|
  // calling convention of the first.
 | 
						|
  //
 | 
						|
  // For the new decl, we have to look at the NON-canonical type to tell the
 | 
						|
  // difference between a function that really doesn't have a calling
 | 
						|
  // convention and one that is declared cdecl. That's because in
 | 
						|
  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
 | 
						|
  // because it is the default calling convention.
 | 
						|
  //
 | 
						|
  // Note also that we DO NOT return at this point, because we still have
 | 
						|
  // other tests to run.
 | 
						|
  const FunctionType *OldType = cast<FunctionType>(OldQType);
 | 
						|
  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
 | 
						|
  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
 | 
						|
  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
 | 
						|
  bool RequiresAdjustment = false;
 | 
						|
  if (OldTypeInfo.getCC() != CC_Default &&
 | 
						|
      NewTypeInfo.getCC() == CC_Default) {
 | 
						|
    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
 | 
						|
    RequiresAdjustment = true;
 | 
						|
  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
 | 
						|
                                     NewTypeInfo.getCC())) {
 | 
						|
    // Calling conventions really aren't compatible, so complain.
 | 
						|
    Diag(New->getLocation(), diag::err_cconv_change)
 | 
						|
      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
 | 
						|
      << (OldTypeInfo.getCC() == CC_Default)
 | 
						|
      << (OldTypeInfo.getCC() == CC_Default ? "" :
 | 
						|
          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_declaration);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: diagnose the other way around?
 | 
						|
  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
 | 
						|
    NewTypeInfo = NewTypeInfo.withNoReturn(true);
 | 
						|
    RequiresAdjustment = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge regparm attribute.
 | 
						|
  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
 | 
						|
      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
 | 
						|
    if (NewTypeInfo.getHasRegParm()) {
 | 
						|
      Diag(New->getLocation(), diag::err_regparm_mismatch)
 | 
						|
        << NewType->getRegParmType()
 | 
						|
        << OldType->getRegParmType();
 | 
						|
      Diag(Old->getLocation(), diag::note_previous_declaration);      
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
 | 
						|
    RequiresAdjustment = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge ns_returns_retained attribute.
 | 
						|
  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
 | 
						|
    if (NewTypeInfo.getProducesResult()) {
 | 
						|
      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
 | 
						|
      Diag(Old->getLocation(), diag::note_previous_declaration);      
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    NewTypeInfo = NewTypeInfo.withProducesResult(true);
 | 
						|
    RequiresAdjustment = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (RequiresAdjustment) {
 | 
						|
    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
 | 
						|
    New->setType(QualType(NewType, 0));
 | 
						|
    NewQType = Context.getCanonicalType(New->getType());
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // (C++98 13.1p2):
 | 
						|
    //   Certain function declarations cannot be overloaded:
 | 
						|
    //     -- Function declarations that differ only in the return type
 | 
						|
    //        cannot be overloaded.
 | 
						|
    QualType OldReturnType = OldType->getResultType();
 | 
						|
    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
 | 
						|
    QualType ResQT;
 | 
						|
    if (OldReturnType != NewReturnType) {
 | 
						|
      if (NewReturnType->isObjCObjectPointerType()
 | 
						|
          && OldReturnType->isObjCObjectPointerType())
 | 
						|
        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
 | 
						|
      if (ResQT.isNull()) {
 | 
						|
        if (New->isCXXClassMember() && New->isOutOfLine())
 | 
						|
          Diag(New->getLocation(),
 | 
						|
               diag::err_member_def_does_not_match_ret_type) << New;
 | 
						|
        else
 | 
						|
          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
 | 
						|
        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        NewQType = ResQT;
 | 
						|
    }
 | 
						|
 | 
						|
    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
 | 
						|
    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
 | 
						|
    if (OldMethod && NewMethod) {
 | 
						|
      // Preserve triviality.
 | 
						|
      NewMethod->setTrivial(OldMethod->isTrivial());
 | 
						|
 | 
						|
      // MSVC allows explicit template specialization at class scope:
 | 
						|
      // 2 CXMethodDecls referring to the same function will be injected.
 | 
						|
      // We don't want a redeclartion error.
 | 
						|
      bool IsClassScopeExplicitSpecialization =
 | 
						|
                              OldMethod->isFunctionTemplateSpecialization() &&
 | 
						|
                              NewMethod->isFunctionTemplateSpecialization();
 | 
						|
      bool isFriend = NewMethod->getFriendObjectKind();
 | 
						|
 | 
						|
      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
 | 
						|
          !IsClassScopeExplicitSpecialization) {
 | 
						|
        //    -- Member function declarations with the same name and the
 | 
						|
        //       same parameter types cannot be overloaded if any of them
 | 
						|
        //       is a static member function declaration.
 | 
						|
        if (OldMethod->isStatic() || NewMethod->isStatic()) {
 | 
						|
          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
 | 
						|
          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      
 | 
						|
        // C++ [class.mem]p1:
 | 
						|
        //   [...] A member shall not be declared twice in the
 | 
						|
        //   member-specification, except that a nested class or member
 | 
						|
        //   class template can be declared and then later defined.
 | 
						|
        unsigned NewDiag;
 | 
						|
        if (isa<CXXConstructorDecl>(OldMethod))
 | 
						|
          NewDiag = diag::err_constructor_redeclared;
 | 
						|
        else if (isa<CXXDestructorDecl>(NewMethod))
 | 
						|
          NewDiag = diag::err_destructor_redeclared;
 | 
						|
        else if (isa<CXXConversionDecl>(NewMethod))
 | 
						|
          NewDiag = diag::err_conv_function_redeclared;
 | 
						|
        else
 | 
						|
          NewDiag = diag::err_member_redeclared;
 | 
						|
 | 
						|
        Diag(New->getLocation(), NewDiag);
 | 
						|
        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | 
						|
 | 
						|
      // Complain if this is an explicit declaration of a special
 | 
						|
      // member that was initially declared implicitly.
 | 
						|
      //
 | 
						|
      // As an exception, it's okay to befriend such methods in order
 | 
						|
      // to permit the implicit constructor/destructor/operator calls.
 | 
						|
      } else if (OldMethod->isImplicit()) {
 | 
						|
        if (isFriend) {
 | 
						|
          NewMethod->setImplicit();
 | 
						|
        } else {
 | 
						|
          Diag(NewMethod->getLocation(),
 | 
						|
               diag::err_definition_of_implicitly_declared_member) 
 | 
						|
            << New << getSpecialMember(OldMethod);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      } else if (OldMethod->isExplicitlyDefaulted()) {
 | 
						|
        Diag(NewMethod->getLocation(),
 | 
						|
             diag::err_definition_of_explicitly_defaulted_member)
 | 
						|
          << getSpecialMember(OldMethod);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // (C++98 8.3.5p3):
 | 
						|
    //   All declarations for a function shall agree exactly in both the
 | 
						|
    //   return type and the parameter-type-list.
 | 
						|
    // We also want to respect all the extended bits except noreturn.
 | 
						|
 | 
						|
    // noreturn should now match unless the old type info didn't have it.
 | 
						|
    QualType OldQTypeForComparison = OldQType;
 | 
						|
    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
 | 
						|
      assert(OldQType == QualType(OldType, 0));
 | 
						|
      const FunctionType *OldTypeForComparison
 | 
						|
        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
 | 
						|
      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
 | 
						|
      assert(OldQTypeForComparison.isCanonical());
 | 
						|
    }
 | 
						|
 | 
						|
    if (OldQTypeForComparison == NewQType)
 | 
						|
      return MergeCompatibleFunctionDecls(New, Old);
 | 
						|
 | 
						|
    // Fall through for conflicting redeclarations and redefinitions.
 | 
						|
  }
 | 
						|
 | 
						|
  // C: Function types need to be compatible, not identical. This handles
 | 
						|
  // duplicate function decls like "void f(int); void f(enum X);" properly.
 | 
						|
  if (!getLangOptions().CPlusPlus &&
 | 
						|
      Context.typesAreCompatible(OldQType, NewQType)) {
 | 
						|
    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
 | 
						|
    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
 | 
						|
    const FunctionProtoType *OldProto = 0;
 | 
						|
    if (isa<FunctionNoProtoType>(NewFuncType) &&
 | 
						|
        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
 | 
						|
      // The old declaration provided a function prototype, but the
 | 
						|
      // new declaration does not. Merge in the prototype.
 | 
						|
      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
 | 
						|
      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
 | 
						|
                                                 OldProto->arg_type_end());
 | 
						|
      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
 | 
						|
                                         ParamTypes.data(), ParamTypes.size(),
 | 
						|
                                         OldProto->getExtProtoInfo());
 | 
						|
      New->setType(NewQType);
 | 
						|
      New->setHasInheritedPrototype();
 | 
						|
 | 
						|
      // Synthesize a parameter for each argument type.
 | 
						|
      SmallVector<ParmVarDecl*, 16> Params;
 | 
						|
      for (FunctionProtoType::arg_type_iterator
 | 
						|
             ParamType = OldProto->arg_type_begin(),
 | 
						|
             ParamEnd = OldProto->arg_type_end();
 | 
						|
           ParamType != ParamEnd; ++ParamType) {
 | 
						|
        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
 | 
						|
                                                 SourceLocation(),
 | 
						|
                                                 SourceLocation(), 0,
 | 
						|
                                                 *ParamType, /*TInfo=*/0,
 | 
						|
                                                 SC_None, SC_None,
 | 
						|
                                                 0);
 | 
						|
        Param->setScopeInfo(0, Params.size());
 | 
						|
        Param->setImplicit();
 | 
						|
        Params.push_back(Param);
 | 
						|
      }
 | 
						|
 | 
						|
      New->setParams(Params);
 | 
						|
    }
 | 
						|
 | 
						|
    return MergeCompatibleFunctionDecls(New, Old);
 | 
						|
  }
 | 
						|
 | 
						|
  // GNU C permits a K&R definition to follow a prototype declaration
 | 
						|
  // if the declared types of the parameters in the K&R definition
 | 
						|
  // match the types in the prototype declaration, even when the
 | 
						|
  // promoted types of the parameters from the K&R definition differ
 | 
						|
  // from the types in the prototype. GCC then keeps the types from
 | 
						|
  // the prototype.
 | 
						|
  //
 | 
						|
  // If a variadic prototype is followed by a non-variadic K&R definition,
 | 
						|
  // the K&R definition becomes variadic.  This is sort of an edge case, but
 | 
						|
  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
 | 
						|
  // C99 6.9.1p8.
 | 
						|
  if (!getLangOptions().CPlusPlus &&
 | 
						|
      Old->hasPrototype() && !New->hasPrototype() &&
 | 
						|
      New->getType()->getAs<FunctionProtoType>() &&
 | 
						|
      Old->getNumParams() == New->getNumParams()) {
 | 
						|
    SmallVector<QualType, 16> ArgTypes;
 | 
						|
    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
 | 
						|
    const FunctionProtoType *OldProto
 | 
						|
      = Old->getType()->getAs<FunctionProtoType>();
 | 
						|
    const FunctionProtoType *NewProto
 | 
						|
      = New->getType()->getAs<FunctionProtoType>();
 | 
						|
 | 
						|
    // Determine whether this is the GNU C extension.
 | 
						|
    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
 | 
						|
                                               NewProto->getResultType());
 | 
						|
    bool LooseCompatible = !MergedReturn.isNull();
 | 
						|
    for (unsigned Idx = 0, End = Old->getNumParams();
 | 
						|
         LooseCompatible && Idx != End; ++Idx) {
 | 
						|
      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
 | 
						|
      ParmVarDecl *NewParm = New->getParamDecl(Idx);
 | 
						|
      if (Context.typesAreCompatible(OldParm->getType(),
 | 
						|
                                     NewProto->getArgType(Idx))) {
 | 
						|
        ArgTypes.push_back(NewParm->getType());
 | 
						|
      } else if (Context.typesAreCompatible(OldParm->getType(),
 | 
						|
                                            NewParm->getType(),
 | 
						|
                                            /*CompareUnqualified=*/true)) {
 | 
						|
        GNUCompatibleParamWarning Warn
 | 
						|
          = { OldParm, NewParm, NewProto->getArgType(Idx) };
 | 
						|
        Warnings.push_back(Warn);
 | 
						|
        ArgTypes.push_back(NewParm->getType());
 | 
						|
      } else
 | 
						|
        LooseCompatible = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (LooseCompatible) {
 | 
						|
      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
 | 
						|
        Diag(Warnings[Warn].NewParm->getLocation(),
 | 
						|
             diag::ext_param_promoted_not_compatible_with_prototype)
 | 
						|
          << Warnings[Warn].PromotedType
 | 
						|
          << Warnings[Warn].OldParm->getType();
 | 
						|
        if (Warnings[Warn].OldParm->getLocation().isValid())
 | 
						|
          Diag(Warnings[Warn].OldParm->getLocation(),
 | 
						|
               diag::note_previous_declaration);
 | 
						|
      }
 | 
						|
 | 
						|
      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
 | 
						|
                                           ArgTypes.size(),
 | 
						|
                                           OldProto->getExtProtoInfo()));
 | 
						|
      return MergeCompatibleFunctionDecls(New, Old);
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through to diagnose conflicting types.
 | 
						|
  }
 | 
						|
 | 
						|
  // A function that has already been declared has been redeclared or defined
 | 
						|
  // with a different type- show appropriate diagnostic
 | 
						|
  if (unsigned BuiltinID = Old->getBuiltinID()) {
 | 
						|
    // The user has declared a builtin function with an incompatible
 | 
						|
    // signature.
 | 
						|
    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
 | 
						|
      // The function the user is redeclaring is a library-defined
 | 
						|
      // function like 'malloc' or 'printf'. Warn about the
 | 
						|
      // redeclaration, then pretend that we don't know about this
 | 
						|
      // library built-in.
 | 
						|
      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
 | 
						|
      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
 | 
						|
        << Old << Old->getType();
 | 
						|
      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
 | 
						|
      Old->setInvalidDecl();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    PrevDiag = diag::note_previous_builtin_declaration;
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
 | 
						|
  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Completes the merge of two function declarations that are
 | 
						|
/// known to be compatible.
 | 
						|
///
 | 
						|
/// This routine handles the merging of attributes and other
 | 
						|
/// properties of function declarations form the old declaration to
 | 
						|
/// the new declaration, once we know that New is in fact a
 | 
						|
/// redeclaration of Old.
 | 
						|
///
 | 
						|
/// \returns false
 | 
						|
bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
 | 
						|
  // Merge the attributes
 | 
						|
  mergeDeclAttributes(New, Old);
 | 
						|
 | 
						|
  // Merge the storage class.
 | 
						|
  if (Old->getStorageClass() != SC_Extern &&
 | 
						|
      Old->getStorageClass() != SC_None)
 | 
						|
    New->setStorageClass(Old->getStorageClass());
 | 
						|
 | 
						|
  // Merge "pure" flag.
 | 
						|
  if (Old->isPure())
 | 
						|
    New->setPure();
 | 
						|
 | 
						|
  // Merge attributes from the parameters.  These can mismatch with K&R
 | 
						|
  // declarations.
 | 
						|
  if (New->getNumParams() == Old->getNumParams())
 | 
						|
    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
 | 
						|
      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
 | 
						|
                               Context);
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus)
 | 
						|
    return MergeCXXFunctionDecl(New, Old);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
 | 
						|
                                ObjCMethodDecl *oldMethod) {
 | 
						|
  // We don't want to merge unavailable and deprecated attributes
 | 
						|
  // except from interface to implementation.
 | 
						|
  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
 | 
						|
 | 
						|
  // Merge the attributes.
 | 
						|
  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
 | 
						|
 | 
						|
  // Merge attributes from the parameters.
 | 
						|
  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
 | 
						|
  for (ObjCMethodDecl::param_iterator
 | 
						|
         ni = newMethod->param_begin(), ne = newMethod->param_end();
 | 
						|
       ni != ne; ++ni, ++oi)
 | 
						|
    mergeParamDeclAttributes(*ni, *oi, Context);
 | 
						|
 | 
						|
  CheckObjCMethodOverride(newMethod, oldMethod, true);
 | 
						|
}
 | 
						|
 | 
						|
/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
 | 
						|
/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
 | 
						|
/// emitting diagnostics as appropriate.
 | 
						|
///
 | 
						|
/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
 | 
						|
/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
 | 
						|
/// check them before the initializer is attached.
 | 
						|
///
 | 
						|
void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
 | 
						|
  if (New->isInvalidDecl() || Old->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  QualType MergedT;
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    AutoType *AT = New->getType()->getContainedAutoType();
 | 
						|
    if (AT && !AT->isDeduced()) {
 | 
						|
      // We don't know what the new type is until the initializer is attached.
 | 
						|
      return;
 | 
						|
    } else if (Context.hasSameType(New->getType(), Old->getType())) {
 | 
						|
      // These could still be something that needs exception specs checked.
 | 
						|
      return MergeVarDeclExceptionSpecs(New, Old);
 | 
						|
    }
 | 
						|
    // C++ [basic.link]p10:
 | 
						|
    //   [...] the types specified by all declarations referring to a given
 | 
						|
    //   object or function shall be identical, except that declarations for an
 | 
						|
    //   array object can specify array types that differ by the presence or
 | 
						|
    //   absence of a major array bound (8.3.4).
 | 
						|
    else if (Old->getType()->isIncompleteArrayType() &&
 | 
						|
             New->getType()->isArrayType()) {
 | 
						|
      CanQual<ArrayType> OldArray
 | 
						|
        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
 | 
						|
      CanQual<ArrayType> NewArray
 | 
						|
        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
 | 
						|
      if (OldArray->getElementType() == NewArray->getElementType())
 | 
						|
        MergedT = New->getType();
 | 
						|
    } else if (Old->getType()->isArrayType() &&
 | 
						|
             New->getType()->isIncompleteArrayType()) {
 | 
						|
      CanQual<ArrayType> OldArray
 | 
						|
        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
 | 
						|
      CanQual<ArrayType> NewArray
 | 
						|
        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
 | 
						|
      if (OldArray->getElementType() == NewArray->getElementType())
 | 
						|
        MergedT = Old->getType();
 | 
						|
    } else if (New->getType()->isObjCObjectPointerType()
 | 
						|
               && Old->getType()->isObjCObjectPointerType()) {
 | 
						|
        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
 | 
						|
                                                        Old->getType());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    MergedT = Context.mergeTypes(New->getType(), Old->getType());
 | 
						|
  }
 | 
						|
  if (MergedT.isNull()) {
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition_different_type)
 | 
						|
      << New->getDeclName();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
  New->setType(MergedT);
 | 
						|
}
 | 
						|
 | 
						|
/// MergeVarDecl - We just parsed a variable 'New' which has the same name
 | 
						|
/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
 | 
						|
/// situation, merging decls or emitting diagnostics as appropriate.
 | 
						|
///
 | 
						|
/// Tentative definition rules (C99 6.9.2p2) are checked by
 | 
						|
/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
 | 
						|
/// definitions here, since the initializer hasn't been attached.
 | 
						|
///
 | 
						|
void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
 | 
						|
  // If the new decl is already invalid, don't do any other checking.
 | 
						|
  if (New->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Verify the old decl was also a variable.
 | 
						|
  VarDecl *Old = 0;
 | 
						|
  if (!Previous.isSingleResult() ||
 | 
						|
      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | 
						|
      << New->getDeclName();
 | 
						|
    Diag(Previous.getRepresentativeDecl()->getLocation(),
 | 
						|
         diag::note_previous_definition);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [class.mem]p1:
 | 
						|
  //   A member shall not be declared twice in the member-specification [...]
 | 
						|
  // 
 | 
						|
  // Here, we need only consider static data members.
 | 
						|
  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
 | 
						|
    Diag(New->getLocation(), diag::err_duplicate_member) 
 | 
						|
      << New->getIdentifier();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_declaration);
 | 
						|
    New->setInvalidDecl();
 | 
						|
  }
 | 
						|
  
 | 
						|
  mergeDeclAttributes(New, Old);
 | 
						|
  // Warn if an already-declared variable is made a weak_import in a subsequent 
 | 
						|
  // declaration
 | 
						|
  if (New->getAttr<WeakImportAttr>() &&
 | 
						|
      Old->getStorageClass() == SC_None &&
 | 
						|
      !Old->getAttr<WeakImportAttr>()) {
 | 
						|
    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
    // Remove weak_import attribute on new declaration.
 | 
						|
    New->dropAttr<WeakImportAttr>();
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge the types.
 | 
						|
  MergeVarDeclTypes(New, Old);
 | 
						|
  if (New->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
 | 
						|
  if (New->getStorageClass() == SC_Static &&
 | 
						|
      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
 | 
						|
    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
  // C99 6.2.2p4:
 | 
						|
  //   For an identifier declared with the storage-class specifier
 | 
						|
  //   extern in a scope in which a prior declaration of that
 | 
						|
  //   identifier is visible,23) if the prior declaration specifies
 | 
						|
  //   internal or external linkage, the linkage of the identifier at
 | 
						|
  //   the later declaration is the same as the linkage specified at
 | 
						|
  //   the prior declaration. If no prior declaration is visible, or
 | 
						|
  //   if the prior declaration specifies no linkage, then the
 | 
						|
  //   identifier has external linkage.
 | 
						|
  if (New->hasExternalStorage() && Old->hasLinkage())
 | 
						|
    /* Okay */;
 | 
						|
  else if (New->getStorageClass() != SC_Static &&
 | 
						|
           Old->getStorageClass() == SC_Static) {
 | 
						|
    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if extern is followed by non-extern and vice-versa.
 | 
						|
  if (New->hasExternalStorage() &&
 | 
						|
      !Old->hasLinkage() && Old->isLocalVarDecl()) {
 | 
						|
    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
  if (Old->hasExternalStorage() &&
 | 
						|
      !New->hasLinkage() && New->isLocalVarDecl()) {
 | 
						|
    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
 | 
						|
 | 
						|
  // FIXME: The test for external storage here seems wrong? We still
 | 
						|
  // need to check for mismatches.
 | 
						|
  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
 | 
						|
      // Don't complain about out-of-line definitions of static members.
 | 
						|
      !(Old->getLexicalDeclContext()->isRecord() &&
 | 
						|
        !New->getLexicalDeclContext()->isRecord())) {
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
 | 
						|
    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
 | 
						|
    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ doesn't have tentative definitions, so go right ahead and check here.
 | 
						|
  const VarDecl *Def;
 | 
						|
  if (getLangOptions().CPlusPlus &&
 | 
						|
      New->isThisDeclarationADefinition() == VarDecl::Definition &&
 | 
						|
      (Def = Old->getDefinition())) {
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition)
 | 
						|
      << New->getDeclName();
 | 
						|
    Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
    New->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // c99 6.2.2 P4.
 | 
						|
  // For an identifier declared with the storage-class specifier extern in a
 | 
						|
  // scope in which a prior declaration of that identifier is visible, if 
 | 
						|
  // the prior declaration specifies internal or external linkage, the linkage 
 | 
						|
  // of the identifier at the later declaration is the same as the linkage 
 | 
						|
  // specified at the prior declaration.
 | 
						|
  // FIXME. revisit this code.
 | 
						|
  if (New->hasExternalStorage() &&
 | 
						|
      Old->getLinkage() == InternalLinkage &&
 | 
						|
      New->getDeclContext() == Old->getDeclContext())
 | 
						|
    New->setStorageClass(Old->getStorageClass());
 | 
						|
 | 
						|
  // Keep a chain of previous declarations.
 | 
						|
  New->setPreviousDeclaration(Old);
 | 
						|
 | 
						|
  // Inherit access appropriately.
 | 
						|
  New->setAccess(Old->getAccess());
 | 
						|
}
 | 
						|
 | 
						|
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
 | 
						|
/// no declarator (e.g. "struct foo;") is parsed.
 | 
						|
Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
 | 
						|
                                       DeclSpec &DS) {
 | 
						|
  return ParsedFreeStandingDeclSpec(S, AS, DS,
 | 
						|
                                    MultiTemplateParamsArg(*this, 0, 0));
 | 
						|
}
 | 
						|
 | 
						|
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
 | 
						|
/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
 | 
						|
/// parameters to cope with template friend declarations.
 | 
						|
Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
 | 
						|
                                       DeclSpec &DS,
 | 
						|
                                       MultiTemplateParamsArg TemplateParams) {
 | 
						|
  Decl *TagD = 0;
 | 
						|
  TagDecl *Tag = 0;
 | 
						|
  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
 | 
						|
      DS.getTypeSpecType() == DeclSpec::TST_struct ||
 | 
						|
      DS.getTypeSpecType() == DeclSpec::TST_union ||
 | 
						|
      DS.getTypeSpecType() == DeclSpec::TST_enum) {
 | 
						|
    TagD = DS.getRepAsDecl();
 | 
						|
 | 
						|
    if (!TagD) // We probably had an error
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // Note that the above type specs guarantee that the
 | 
						|
    // type rep is a Decl, whereas in many of the others
 | 
						|
    // it's a Type.
 | 
						|
    if (isa<TagDecl>(TagD))
 | 
						|
      Tag = cast<TagDecl>(TagD);
 | 
						|
    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
 | 
						|
      Tag = CTD->getTemplatedDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Tag)
 | 
						|
    Tag->setFreeStanding();
 | 
						|
 | 
						|
  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
 | 
						|
    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
 | 
						|
    // or incomplete types shall not be restrict-qualified."
 | 
						|
    if (TypeQuals & DeclSpec::TQ_restrict)
 | 
						|
      Diag(DS.getRestrictSpecLoc(),
 | 
						|
           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
 | 
						|
           << DS.getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  if (DS.isConstexprSpecified()) {
 | 
						|
    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
 | 
						|
    // and definitions of functions and variables.
 | 
						|
    if (Tag)
 | 
						|
      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
 | 
						|
        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
 | 
						|
            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
 | 
						|
            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
 | 
						|
    else
 | 
						|
      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
 | 
						|
    // Don't emit warnings after this error.
 | 
						|
    return TagD;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DS.isFriendSpecified()) {
 | 
						|
    // If we're dealing with a decl but not a TagDecl, assume that
 | 
						|
    // whatever routines created it handled the friendship aspect.
 | 
						|
    if (TagD && !Tag)
 | 
						|
      return 0;
 | 
						|
    return ActOnFriendTypeDecl(S, DS, TemplateParams);
 | 
						|
  }
 | 
						|
 | 
						|
  // Track whether we warned about the fact that there aren't any
 | 
						|
  // declarators.
 | 
						|
  bool emittedWarning = false;
 | 
						|
         
 | 
						|
  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
 | 
						|
    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
 | 
						|
        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
 | 
						|
      if (getLangOptions().CPlusPlus ||
 | 
						|
          Record->getDeclContext()->isRecord())
 | 
						|
        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
 | 
						|
 | 
						|
      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
 | 
						|
        << DS.getSourceRange();
 | 
						|
      emittedWarning = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for Microsoft C extension: anonymous struct.
 | 
						|
  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
 | 
						|
      CurContext->isRecord() &&
 | 
						|
      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
 | 
						|
    // Handle 2 kinds of anonymous struct:
 | 
						|
    //   struct STRUCT;
 | 
						|
    // and
 | 
						|
    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
 | 
						|
    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
 | 
						|
    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
 | 
						|
        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
 | 
						|
         DS.getRepAsType().get()->isStructureType())) {
 | 
						|
      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
 | 
						|
        << DS.getSourceRange();
 | 
						|
      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (getLangOptions().CPlusPlus && 
 | 
						|
      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
 | 
						|
    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
 | 
						|
      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
 | 
						|
          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
 | 
						|
        Diag(Enum->getLocation(), diag::ext_no_declarators)
 | 
						|
          << DS.getSourceRange();
 | 
						|
        emittedWarning = true;
 | 
						|
      }
 | 
						|
 | 
						|
  // Skip all the checks below if we have a type error.
 | 
						|
  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
 | 
						|
      
 | 
						|
  if (!DS.isMissingDeclaratorOk()) {
 | 
						|
    // Warn about typedefs of enums without names, since this is an
 | 
						|
    // extension in both Microsoft and GNU.
 | 
						|
    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
 | 
						|
        Tag && isa<EnumDecl>(Tag)) {
 | 
						|
      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
 | 
						|
        << DS.getSourceRange();
 | 
						|
      return Tag;
 | 
						|
    }
 | 
						|
 | 
						|
    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
 | 
						|
      << DS.getSourceRange();
 | 
						|
    emittedWarning = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We're going to complain about a bunch of spurious specifiers;
 | 
						|
  // only do this if we're declaring a tag, because otherwise we
 | 
						|
  // should be getting diag::ext_no_declarators.
 | 
						|
  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
 | 
						|
    return TagD;
 | 
						|
 | 
						|
  // Note that a linkage-specification sets a storage class, but
 | 
						|
  // 'extern "C" struct foo;' is actually valid and not theoretically
 | 
						|
  // useless.
 | 
						|
  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
 | 
						|
    if (!DS.isExternInLinkageSpec())
 | 
						|
      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
 | 
						|
        << DeclSpec::getSpecifierName(scs);
 | 
						|
 | 
						|
  if (DS.isThreadSpecified())
 | 
						|
    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
 | 
						|
  if (DS.getTypeQualifiers()) {
 | 
						|
    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
 | 
						|
      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
 | 
						|
    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
 | 
						|
      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
 | 
						|
    // Restrict is covered above.
 | 
						|
  }
 | 
						|
  if (DS.isInlineSpecified())
 | 
						|
    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
 | 
						|
  if (DS.isVirtualSpecified())
 | 
						|
    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
 | 
						|
  if (DS.isExplicitSpecified())
 | 
						|
    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
 | 
						|
 | 
						|
  if (DS.isModulePrivateSpecified() && 
 | 
						|
      Tag && Tag->getDeclContext()->isFunctionOrMethod())
 | 
						|
    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
 | 
						|
      << Tag->getTagKind()
 | 
						|
      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
 | 
						|
 | 
						|
  // Warn about ignored type attributes, for example:
 | 
						|
  // __attribute__((aligned)) struct A;
 | 
						|
  // Attributes should be placed after tag to apply to type declaration.
 | 
						|
  if (!DS.getAttributes().empty()) {
 | 
						|
    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
 | 
						|
    if (TypeSpecType == DeclSpec::TST_class ||
 | 
						|
        TypeSpecType == DeclSpec::TST_struct ||
 | 
						|
        TypeSpecType == DeclSpec::TST_union ||
 | 
						|
        TypeSpecType == DeclSpec::TST_enum) {
 | 
						|
      AttributeList* attrs = DS.getAttributes().getList();
 | 
						|
      while (attrs) {
 | 
						|
        Diag(attrs->getScopeLoc(),
 | 
						|
             diag::warn_declspec_attribute_ignored)
 | 
						|
        << attrs->getName()
 | 
						|
        << (TypeSpecType == DeclSpec::TST_class ? 0 :
 | 
						|
            TypeSpecType == DeclSpec::TST_struct ? 1 :
 | 
						|
            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
 | 
						|
        attrs = attrs->getNext();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return TagD;
 | 
						|
}
 | 
						|
 | 
						|
/// We are trying to inject an anonymous member into the given scope;
 | 
						|
/// check if there's an existing declaration that can't be overloaded.
 | 
						|
///
 | 
						|
/// \return true if this is a forbidden redeclaration
 | 
						|
static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
 | 
						|
                                         Scope *S,
 | 
						|
                                         DeclContext *Owner,
 | 
						|
                                         DeclarationName Name,
 | 
						|
                                         SourceLocation NameLoc,
 | 
						|
                                         unsigned diagnostic) {
 | 
						|
  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
 | 
						|
                 Sema::ForRedeclaration);
 | 
						|
  if (!SemaRef.LookupName(R, S)) return false;
 | 
						|
 | 
						|
  if (R.getAsSingle<TagDecl>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Pick a representative declaration.
 | 
						|
  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
 | 
						|
  assert(PrevDecl && "Expected a non-null Decl");
 | 
						|
 | 
						|
  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SemaRef.Diag(NameLoc, diagnostic) << Name;
 | 
						|
  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// InjectAnonymousStructOrUnionMembers - Inject the members of the
 | 
						|
/// anonymous struct or union AnonRecord into the owning context Owner
 | 
						|
/// and scope S. This routine will be invoked just after we realize
 | 
						|
/// that an unnamed union or struct is actually an anonymous union or
 | 
						|
/// struct, e.g.,
 | 
						|
///
 | 
						|
/// @code
 | 
						|
/// union {
 | 
						|
///   int i;
 | 
						|
///   float f;
 | 
						|
/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
 | 
						|
///    // f into the surrounding scope.x
 | 
						|
/// @endcode
 | 
						|
///
 | 
						|
/// This routine is recursive, injecting the names of nested anonymous
 | 
						|
/// structs/unions into the owning context and scope as well.
 | 
						|
static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
 | 
						|
                                                DeclContext *Owner,
 | 
						|
                                                RecordDecl *AnonRecord,
 | 
						|
                                                AccessSpecifier AS,
 | 
						|
                              SmallVector<NamedDecl*, 2> &Chaining,
 | 
						|
                                                      bool MSAnonStruct) {
 | 
						|
  unsigned diagKind
 | 
						|
    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
 | 
						|
                            : diag::err_anonymous_struct_member_redecl;
 | 
						|
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // Look every FieldDecl and IndirectFieldDecl with a name.
 | 
						|
  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
 | 
						|
                               DEnd = AnonRecord->decls_end();
 | 
						|
       D != DEnd; ++D) {
 | 
						|
    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
 | 
						|
        cast<NamedDecl>(*D)->getDeclName()) {
 | 
						|
      ValueDecl *VD = cast<ValueDecl>(*D);
 | 
						|
      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
 | 
						|
                                       VD->getLocation(), diagKind)) {
 | 
						|
        // C++ [class.union]p2:
 | 
						|
        //   The names of the members of an anonymous union shall be
 | 
						|
        //   distinct from the names of any other entity in the
 | 
						|
        //   scope in which the anonymous union is declared.
 | 
						|
        Invalid = true;
 | 
						|
      } else {
 | 
						|
        // C++ [class.union]p2:
 | 
						|
        //   For the purpose of name lookup, after the anonymous union
 | 
						|
        //   definition, the members of the anonymous union are
 | 
						|
        //   considered to have been defined in the scope in which the
 | 
						|
        //   anonymous union is declared.
 | 
						|
        unsigned OldChainingSize = Chaining.size();
 | 
						|
        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
 | 
						|
          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
 | 
						|
               PE = IF->chain_end(); PI != PE; ++PI)
 | 
						|
            Chaining.push_back(*PI);
 | 
						|
        else
 | 
						|
          Chaining.push_back(VD);
 | 
						|
 | 
						|
        assert(Chaining.size() >= 2);
 | 
						|
        NamedDecl **NamedChain =
 | 
						|
          new (SemaRef.Context)NamedDecl*[Chaining.size()];
 | 
						|
        for (unsigned i = 0; i < Chaining.size(); i++)
 | 
						|
          NamedChain[i] = Chaining[i];
 | 
						|
 | 
						|
        IndirectFieldDecl* IndirectField =
 | 
						|
          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
 | 
						|
                                    VD->getIdentifier(), VD->getType(),
 | 
						|
                                    NamedChain, Chaining.size());
 | 
						|
 | 
						|
        IndirectField->setAccess(AS);
 | 
						|
        IndirectField->setImplicit();
 | 
						|
        SemaRef.PushOnScopeChains(IndirectField, S);
 | 
						|
 | 
						|
        // That includes picking up the appropriate access specifier.
 | 
						|
        if (AS != AS_none) IndirectField->setAccess(AS);
 | 
						|
 | 
						|
        Chaining.resize(OldChainingSize);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Invalid;
 | 
						|
}
 | 
						|
 | 
						|
/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
 | 
						|
/// a VarDecl::StorageClass. Any error reporting is up to the caller:
 | 
						|
/// illegal input values are mapped to SC_None.
 | 
						|
static StorageClass
 | 
						|
StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
 | 
						|
  switch (StorageClassSpec) {
 | 
						|
  case DeclSpec::SCS_unspecified:    return SC_None;
 | 
						|
  case DeclSpec::SCS_extern:         return SC_Extern;
 | 
						|
  case DeclSpec::SCS_static:         return SC_Static;
 | 
						|
  case DeclSpec::SCS_auto:           return SC_Auto;
 | 
						|
  case DeclSpec::SCS_register:       return SC_Register;
 | 
						|
  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
 | 
						|
    // Illegal SCSs map to None: error reporting is up to the caller.
 | 
						|
  case DeclSpec::SCS_mutable:        // Fall through.
 | 
						|
  case DeclSpec::SCS_typedef:        return SC_None;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unknown storage class specifier");
 | 
						|
}
 | 
						|
 | 
						|
/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
 | 
						|
/// a StorageClass. Any error reporting is up to the caller:
 | 
						|
/// illegal input values are mapped to SC_None.
 | 
						|
static StorageClass
 | 
						|
StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
 | 
						|
  switch (StorageClassSpec) {
 | 
						|
  case DeclSpec::SCS_unspecified:    return SC_None;
 | 
						|
  case DeclSpec::SCS_extern:         return SC_Extern;
 | 
						|
  case DeclSpec::SCS_static:         return SC_Static;
 | 
						|
  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
 | 
						|
    // Illegal SCSs map to None: error reporting is up to the caller.
 | 
						|
  case DeclSpec::SCS_auto:           // Fall through.
 | 
						|
  case DeclSpec::SCS_mutable:        // Fall through.
 | 
						|
  case DeclSpec::SCS_register:       // Fall through.
 | 
						|
  case DeclSpec::SCS_typedef:        return SC_None;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unknown storage class specifier");
 | 
						|
}
 | 
						|
 | 
						|
/// BuildAnonymousStructOrUnion - Handle the declaration of an
 | 
						|
/// anonymous structure or union. Anonymous unions are a C++ feature
 | 
						|
/// (C++ [class.union]) and a C11 feature; anonymous structures
 | 
						|
/// are a C11 feature and GNU C++ extension.
 | 
						|
Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
 | 
						|
                                             AccessSpecifier AS,
 | 
						|
                                             RecordDecl *Record) {
 | 
						|
  DeclContext *Owner = Record->getDeclContext();
 | 
						|
 | 
						|
  // Diagnose whether this anonymous struct/union is an extension.
 | 
						|
  if (Record->isUnion() && !getLangOptions().CPlusPlus && !getLangOptions().C11)
 | 
						|
    Diag(Record->getLocation(), diag::ext_anonymous_union);
 | 
						|
  else if (!Record->isUnion() && getLangOptions().CPlusPlus)
 | 
						|
    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
 | 
						|
  else if (!Record->isUnion() && !getLangOptions().C11)
 | 
						|
    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
 | 
						|
 | 
						|
  // C and C++ require different kinds of checks for anonymous
 | 
						|
  // structs/unions.
 | 
						|
  bool Invalid = false;
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    const char* PrevSpec = 0;
 | 
						|
    unsigned DiagID;
 | 
						|
    if (Record->isUnion()) {
 | 
						|
      // C++ [class.union]p6:
 | 
						|
      //   Anonymous unions declared in a named namespace or in the
 | 
						|
      //   global namespace shall be declared static.
 | 
						|
      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
 | 
						|
          (isa<TranslationUnitDecl>(Owner) ||
 | 
						|
           (isa<NamespaceDecl>(Owner) &&
 | 
						|
            cast<NamespaceDecl>(Owner)->getDeclName()))) {
 | 
						|
        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
 | 
						|
          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
 | 
						|
  
 | 
						|
        // Recover by adding 'static'.
 | 
						|
        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
 | 
						|
                               PrevSpec, DiagID);
 | 
						|
      }
 | 
						|
      // C++ [class.union]p6:
 | 
						|
      //   A storage class is not allowed in a declaration of an
 | 
						|
      //   anonymous union in a class scope.
 | 
						|
      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
 | 
						|
               isa<RecordDecl>(Owner)) {
 | 
						|
        Diag(DS.getStorageClassSpecLoc(),
 | 
						|
             diag::err_anonymous_union_with_storage_spec)
 | 
						|
          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
 | 
						|
  
 | 
						|
        // Recover by removing the storage specifier.
 | 
						|
        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, 
 | 
						|
                               SourceLocation(),
 | 
						|
                               PrevSpec, DiagID);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Ignore const/volatile/restrict qualifiers.
 | 
						|
    if (DS.getTypeQualifiers()) {
 | 
						|
      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
 | 
						|
        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
 | 
						|
          << Record->isUnion() << 0 
 | 
						|
          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
 | 
						|
      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
 | 
						|
        Diag(DS.getVolatileSpecLoc(), 
 | 
						|
             diag::ext_anonymous_struct_union_qualified)
 | 
						|
          << Record->isUnion() << 1
 | 
						|
          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
 | 
						|
      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
 | 
						|
        Diag(DS.getRestrictSpecLoc(), 
 | 
						|
             diag::ext_anonymous_struct_union_qualified)
 | 
						|
          << Record->isUnion() << 2 
 | 
						|
          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
 | 
						|
 | 
						|
      DS.ClearTypeQualifiers();
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [class.union]p2:
 | 
						|
    //   The member-specification of an anonymous union shall only
 | 
						|
    //   define non-static data members. [Note: nested types and
 | 
						|
    //   functions cannot be declared within an anonymous union. ]
 | 
						|
    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
 | 
						|
                                 MemEnd = Record->decls_end();
 | 
						|
         Mem != MemEnd; ++Mem) {
 | 
						|
      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
 | 
						|
        // C++ [class.union]p3:
 | 
						|
        //   An anonymous union shall not have private or protected
 | 
						|
        //   members (clause 11).
 | 
						|
        assert(FD->getAccess() != AS_none);
 | 
						|
        if (FD->getAccess() != AS_public) {
 | 
						|
          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
 | 
						|
            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
 | 
						|
          Invalid = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // C++ [class.union]p1
 | 
						|
        //   An object of a class with a non-trivial constructor, a non-trivial
 | 
						|
        //   copy constructor, a non-trivial destructor, or a non-trivial copy
 | 
						|
        //   assignment operator cannot be a member of a union, nor can an
 | 
						|
        //   array of such objects.
 | 
						|
        if (CheckNontrivialField(FD))
 | 
						|
          Invalid = true;
 | 
						|
      } else if ((*Mem)->isImplicit()) {
 | 
						|
        // Any implicit members are fine.
 | 
						|
      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
 | 
						|
        // This is a type that showed up in an
 | 
						|
        // elaborated-type-specifier inside the anonymous struct or
 | 
						|
        // union, but which actually declares a type outside of the
 | 
						|
        // anonymous struct or union. It's okay.
 | 
						|
      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
 | 
						|
        if (!MemRecord->isAnonymousStructOrUnion() &&
 | 
						|
            MemRecord->getDeclName()) {
 | 
						|
          // Visual C++ allows type definition in anonymous struct or union.
 | 
						|
          if (getLangOptions().MicrosoftExt)
 | 
						|
            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
 | 
						|
              << (int)Record->isUnion();
 | 
						|
          else {
 | 
						|
            // This is a nested type declaration.
 | 
						|
            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
 | 
						|
              << (int)Record->isUnion();
 | 
						|
            Invalid = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (isa<AccessSpecDecl>(*Mem)) {
 | 
						|
        // Any access specifier is fine.
 | 
						|
      } else {
 | 
						|
        // We have something that isn't a non-static data
 | 
						|
        // member. Complain about it.
 | 
						|
        unsigned DK = diag::err_anonymous_record_bad_member;
 | 
						|
        if (isa<TypeDecl>(*Mem))
 | 
						|
          DK = diag::err_anonymous_record_with_type;
 | 
						|
        else if (isa<FunctionDecl>(*Mem))
 | 
						|
          DK = diag::err_anonymous_record_with_function;
 | 
						|
        else if (isa<VarDecl>(*Mem))
 | 
						|
          DK = diag::err_anonymous_record_with_static;
 | 
						|
        
 | 
						|
        // Visual C++ allows type definition in anonymous struct or union.
 | 
						|
        if (getLangOptions().MicrosoftExt &&
 | 
						|
            DK == diag::err_anonymous_record_with_type)
 | 
						|
          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
 | 
						|
            << (int)Record->isUnion();
 | 
						|
        else {
 | 
						|
          Diag((*Mem)->getLocation(), DK)
 | 
						|
              << (int)Record->isUnion();
 | 
						|
          Invalid = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Record->isUnion() && !Owner->isRecord()) {
 | 
						|
    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
 | 
						|
      << (int)getLangOptions().CPlusPlus;
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Mock up a declarator.
 | 
						|
  Declarator Dc(DS, Declarator::MemberContext);
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
 | 
						|
  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
 | 
						|
 | 
						|
  // Create a declaration for this anonymous struct/union.
 | 
						|
  NamedDecl *Anon = 0;
 | 
						|
  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
 | 
						|
    Anon = FieldDecl::Create(Context, OwningClass,
 | 
						|
                             DS.getSourceRange().getBegin(),
 | 
						|
                             Record->getLocation(),
 | 
						|
                             /*IdentifierInfo=*/0,
 | 
						|
                             Context.getTypeDeclType(Record),
 | 
						|
                             TInfo,
 | 
						|
                             /*BitWidth=*/0, /*Mutable=*/false,
 | 
						|
                             /*HasInit=*/false);
 | 
						|
    Anon->setAccess(AS);
 | 
						|
    if (getLangOptions().CPlusPlus)
 | 
						|
      FieldCollector->Add(cast<FieldDecl>(Anon));
 | 
						|
  } else {
 | 
						|
    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
 | 
						|
    assert(SCSpec != DeclSpec::SCS_typedef &&
 | 
						|
           "Parser allowed 'typedef' as storage class VarDecl.");
 | 
						|
    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
 | 
						|
    if (SCSpec == DeclSpec::SCS_mutable) {
 | 
						|
      // mutable can only appear on non-static class members, so it's always
 | 
						|
      // an error here
 | 
						|
      Diag(Record->getLocation(), diag::err_mutable_nonmember);
 | 
						|
      Invalid = true;
 | 
						|
      SC = SC_None;
 | 
						|
    }
 | 
						|
    SCSpec = DS.getStorageClassSpecAsWritten();
 | 
						|
    VarDecl::StorageClass SCAsWritten
 | 
						|
      = StorageClassSpecToVarDeclStorageClass(SCSpec);
 | 
						|
 | 
						|
    Anon = VarDecl::Create(Context, Owner,
 | 
						|
                           DS.getSourceRange().getBegin(),
 | 
						|
                           Record->getLocation(), /*IdentifierInfo=*/0,
 | 
						|
                           Context.getTypeDeclType(Record),
 | 
						|
                           TInfo, SC, SCAsWritten);
 | 
						|
 | 
						|
    // Default-initialize the implicit variable. This initialization will be
 | 
						|
    // trivial in almost all cases, except if a union member has an in-class
 | 
						|
    // initializer:
 | 
						|
    //   union { int n = 0; };
 | 
						|
    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
 | 
						|
  }
 | 
						|
  Anon->setImplicit();
 | 
						|
 | 
						|
  // Add the anonymous struct/union object to the current
 | 
						|
  // context. We'll be referencing this object when we refer to one of
 | 
						|
  // its members.
 | 
						|
  Owner->addDecl(Anon);
 | 
						|
  
 | 
						|
  // Inject the members of the anonymous struct/union into the owning
 | 
						|
  // context and into the identifier resolver chain for name lookup
 | 
						|
  // purposes.
 | 
						|
  SmallVector<NamedDecl*, 2> Chain;
 | 
						|
  Chain.push_back(Anon);
 | 
						|
 | 
						|
  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
 | 
						|
                                          Chain, false))
 | 
						|
    Invalid = true;
 | 
						|
 | 
						|
  // Mark this as an anonymous struct/union type. Note that we do not
 | 
						|
  // do this until after we have already checked and injected the
 | 
						|
  // members of this anonymous struct/union type, because otherwise
 | 
						|
  // the members could be injected twice: once by DeclContext when it
 | 
						|
  // builds its lookup table, and once by
 | 
						|
  // InjectAnonymousStructOrUnionMembers.
 | 
						|
  Record->setAnonymousStructOrUnion(true);
 | 
						|
 | 
						|
  if (Invalid)
 | 
						|
    Anon->setInvalidDecl();
 | 
						|
 | 
						|
  return Anon;
 | 
						|
}
 | 
						|
 | 
						|
/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
 | 
						|
/// Microsoft C anonymous structure.
 | 
						|
/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
 | 
						|
/// Example:
 | 
						|
///
 | 
						|
/// struct A { int a; };
 | 
						|
/// struct B { struct A; int b; };
 | 
						|
///
 | 
						|
/// void foo() {
 | 
						|
///   B var;
 | 
						|
///   var.a = 3; 
 | 
						|
/// }
 | 
						|
///
 | 
						|
Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
 | 
						|
                                           RecordDecl *Record) {
 | 
						|
  
 | 
						|
  // If there is no Record, get the record via the typedef.
 | 
						|
  if (!Record)
 | 
						|
    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
 | 
						|
 | 
						|
  // Mock up a declarator.
 | 
						|
  Declarator Dc(DS, Declarator::TypeNameContext);
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
 | 
						|
  assert(TInfo && "couldn't build declarator info for anonymous struct");
 | 
						|
 | 
						|
  // Create a declaration for this anonymous struct.
 | 
						|
  NamedDecl* Anon = FieldDecl::Create(Context,
 | 
						|
                             cast<RecordDecl>(CurContext),
 | 
						|
                             DS.getSourceRange().getBegin(),
 | 
						|
                             DS.getSourceRange().getBegin(),
 | 
						|
                             /*IdentifierInfo=*/0,
 | 
						|
                             Context.getTypeDeclType(Record),
 | 
						|
                             TInfo,
 | 
						|
                             /*BitWidth=*/0, /*Mutable=*/false,
 | 
						|
                             /*HasInit=*/false);
 | 
						|
  Anon->setImplicit();
 | 
						|
 | 
						|
  // Add the anonymous struct object to the current context.
 | 
						|
  CurContext->addDecl(Anon);
 | 
						|
 | 
						|
  // Inject the members of the anonymous struct into the current
 | 
						|
  // context and into the identifier resolver chain for name lookup
 | 
						|
  // purposes.
 | 
						|
  SmallVector<NamedDecl*, 2> Chain;
 | 
						|
  Chain.push_back(Anon);
 | 
						|
 | 
						|
  RecordDecl *RecordDef = Record->getDefinition();
 | 
						|
  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
 | 
						|
                                                        RecordDef, AS_none,
 | 
						|
                                                        Chain, true))
 | 
						|
    Anon->setInvalidDecl();
 | 
						|
 | 
						|
  return Anon;
 | 
						|
}
 | 
						|
 | 
						|
/// GetNameForDeclarator - Determine the full declaration name for the
 | 
						|
/// given Declarator.
 | 
						|
DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
 | 
						|
  return GetNameFromUnqualifiedId(D.getName());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieves the declaration name from a parsed unqualified-id.
 | 
						|
DeclarationNameInfo
 | 
						|
Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
 | 
						|
  DeclarationNameInfo NameInfo;
 | 
						|
  NameInfo.setLoc(Name.StartLocation);
 | 
						|
 | 
						|
  switch (Name.getKind()) {
 | 
						|
 | 
						|
  case UnqualifiedId::IK_ImplicitSelfParam:
 | 
						|
  case UnqualifiedId::IK_Identifier:
 | 
						|
    NameInfo.setName(Name.Identifier);
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    return NameInfo;
 | 
						|
 | 
						|
  case UnqualifiedId::IK_OperatorFunctionId:
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
 | 
						|
                                           Name.OperatorFunctionId.Operator));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
 | 
						|
      = Name.OperatorFunctionId.SymbolLocations[0];
 | 
						|
    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
 | 
						|
      = Name.EndLocation.getRawEncoding();
 | 
						|
    return NameInfo;
 | 
						|
 | 
						|
  case UnqualifiedId::IK_LiteralOperatorId:
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
 | 
						|
                                                           Name.Identifier));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
 | 
						|
    return NameInfo;
 | 
						|
 | 
						|
  case UnqualifiedId::IK_ConversionFunctionId: {
 | 
						|
    TypeSourceInfo *TInfo;
 | 
						|
    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
 | 
						|
    if (Ty.isNull())
 | 
						|
      return DeclarationNameInfo();
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
 | 
						|
                                               Context.getCanonicalType(Ty)));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    NameInfo.setNamedTypeInfo(TInfo);
 | 
						|
    return NameInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  case UnqualifiedId::IK_ConstructorName: {
 | 
						|
    TypeSourceInfo *TInfo;
 | 
						|
    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
 | 
						|
    if (Ty.isNull())
 | 
						|
      return DeclarationNameInfo();
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
 | 
						|
                                              Context.getCanonicalType(Ty)));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    NameInfo.setNamedTypeInfo(TInfo);
 | 
						|
    return NameInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  case UnqualifiedId::IK_ConstructorTemplateId: {
 | 
						|
    // In well-formed code, we can only have a constructor
 | 
						|
    // template-id that refers to the current context, so go there
 | 
						|
    // to find the actual type being constructed.
 | 
						|
    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
 | 
						|
    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
 | 
						|
      return DeclarationNameInfo();
 | 
						|
 | 
						|
    // Determine the type of the class being constructed.
 | 
						|
    QualType CurClassType = Context.getTypeDeclType(CurClass);
 | 
						|
 | 
						|
    // FIXME: Check two things: that the template-id names the same type as
 | 
						|
    // CurClassType, and that the template-id does not occur when the name
 | 
						|
    // was qualified.
 | 
						|
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
 | 
						|
                                    Context.getCanonicalType(CurClassType)));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    // FIXME: should we retrieve TypeSourceInfo?
 | 
						|
    NameInfo.setNamedTypeInfo(0);
 | 
						|
    return NameInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  case UnqualifiedId::IK_DestructorName: {
 | 
						|
    TypeSourceInfo *TInfo;
 | 
						|
    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
 | 
						|
    if (Ty.isNull())
 | 
						|
      return DeclarationNameInfo();
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
 | 
						|
                                              Context.getCanonicalType(Ty)));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    NameInfo.setNamedTypeInfo(TInfo);
 | 
						|
    return NameInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  case UnqualifiedId::IK_TemplateId: {
 | 
						|
    TemplateName TName = Name.TemplateId->Template.get();
 | 
						|
    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
 | 
						|
    return Context.getNameForTemplate(TName, TNameLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  } // switch (Name.getKind())
 | 
						|
 | 
						|
  llvm_unreachable("Unknown name kind");
 | 
						|
}
 | 
						|
 | 
						|
static QualType getCoreType(QualType Ty) {
 | 
						|
  do {
 | 
						|
    if (Ty->isPointerType() || Ty->isReferenceType())
 | 
						|
      Ty = Ty->getPointeeType();
 | 
						|
    else if (Ty->isArrayType())
 | 
						|
      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
 | 
						|
    else
 | 
						|
      return Ty.withoutLocalFastQualifiers();
 | 
						|
  } while (true);
 | 
						|
}
 | 
						|
 | 
						|
/// hasSimilarParameters - Determine whether the C++ functions Declaration
 | 
						|
/// and Definition have "nearly" matching parameters. This heuristic is
 | 
						|
/// used to improve diagnostics in the case where an out-of-line function
 | 
						|
/// definition doesn't match any declaration within the class or namespace.
 | 
						|
/// Also sets Params to the list of indices to the parameters that differ
 | 
						|
/// between the declaration and the definition. If hasSimilarParameters
 | 
						|
/// returns true and Params is empty, then all of the parameters match.
 | 
						|
static bool hasSimilarParameters(ASTContext &Context,
 | 
						|
                                     FunctionDecl *Declaration,
 | 
						|
                                     FunctionDecl *Definition,
 | 
						|
                                     llvm::SmallVectorImpl<unsigned> &Params) {
 | 
						|
  Params.clear();
 | 
						|
  if (Declaration->param_size() != Definition->param_size())
 | 
						|
    return false;
 | 
						|
  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
 | 
						|
    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
 | 
						|
    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
 | 
						|
 | 
						|
    // The parameter types are identical
 | 
						|
    if (Context.hasSameType(DefParamTy, DeclParamTy))
 | 
						|
      continue;
 | 
						|
 | 
						|
    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
 | 
						|
    QualType DefParamBaseTy = getCoreType(DefParamTy);
 | 
						|
    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
 | 
						|
    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
 | 
						|
 | 
						|
    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
 | 
						|
        (DeclTyName && DeclTyName == DefTyName))
 | 
						|
      Params.push_back(Idx);
 | 
						|
    else  // The two parameters aren't even close
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
 | 
						|
/// declarator needs to be rebuilt in the current instantiation.
 | 
						|
/// Any bits of declarator which appear before the name are valid for
 | 
						|
/// consideration here.  That's specifically the type in the decl spec
 | 
						|
/// and the base type in any member-pointer chunks.
 | 
						|
static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
 | 
						|
                                                    DeclarationName Name) {
 | 
						|
  // The types we specifically need to rebuild are:
 | 
						|
  //   - typenames, typeofs, and decltypes
 | 
						|
  //   - types which will become injected class names
 | 
						|
  // Of course, we also need to rebuild any type referencing such a
 | 
						|
  // type.  It's safest to just say "dependent", but we call out a
 | 
						|
  // few cases here.
 | 
						|
 | 
						|
  DeclSpec &DS = D.getMutableDeclSpec();
 | 
						|
  switch (DS.getTypeSpecType()) {
 | 
						|
  case DeclSpec::TST_typename:
 | 
						|
  case DeclSpec::TST_typeofType:
 | 
						|
  case DeclSpec::TST_decltype:
 | 
						|
  case DeclSpec::TST_underlyingType:
 | 
						|
  case DeclSpec::TST_atomic: {
 | 
						|
    // Grab the type from the parser.
 | 
						|
    TypeSourceInfo *TSI = 0;
 | 
						|
    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
 | 
						|
    if (T.isNull() || !T->isDependentType()) break;
 | 
						|
 | 
						|
    // Make sure there's a type source info.  This isn't really much
 | 
						|
    // of a waste; most dependent types should have type source info
 | 
						|
    // attached already.
 | 
						|
    if (!TSI)
 | 
						|
      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
 | 
						|
 | 
						|
    // Rebuild the type in the current instantiation.
 | 
						|
    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
 | 
						|
    if (!TSI) return true;
 | 
						|
 | 
						|
    // Store the new type back in the decl spec.
 | 
						|
    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
 | 
						|
    DS.UpdateTypeRep(LocType);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case DeclSpec::TST_typeofExpr: {
 | 
						|
    Expr *E = DS.getRepAsExpr();
 | 
						|
    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
 | 
						|
    if (Result.isInvalid()) return true;
 | 
						|
    DS.UpdateExprRep(Result.get());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    // Nothing to do for these decl specs.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // It doesn't matter what order we do this in.
 | 
						|
  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
 | 
						|
    DeclaratorChunk &Chunk = D.getTypeObject(I);
 | 
						|
 | 
						|
    // The only type information in the declarator which can come
 | 
						|
    // before the declaration name is the base type of a member
 | 
						|
    // pointer.
 | 
						|
    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Rebuild the scope specifier in-place.
 | 
						|
    CXXScopeSpec &SS = Chunk.Mem.Scope();
 | 
						|
    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
 | 
						|
  D.setFunctionDefinitionKind(FDK_Declaration);
 | 
						|
  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
 | 
						|
 | 
						|
  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
 | 
						|
      Dcl->getDeclContext()->isFileContext())
 | 
						|
    Dcl->setTopLevelDeclInObjCContainer();
 | 
						|
 | 
						|
  return Dcl;
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
 | 
						|
///   If T is the name of a class, then each of the following shall have a 
 | 
						|
///   name different from T:
 | 
						|
///     - every static data member of class T;
 | 
						|
///     - every member function of class T
 | 
						|
///     - every member of class T that is itself a type;
 | 
						|
/// \returns true if the declaration name violates these rules.
 | 
						|
bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
 | 
						|
                                   DeclarationNameInfo NameInfo) {
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
 | 
						|
  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 
 | 
						|
    if (Record->getIdentifier() && Record->getDeclName() == Name) {
 | 
						|
      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
  
 | 
						|
Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
 | 
						|
                             MultiTemplateParamsArg TemplateParamLists) {
 | 
						|
  // TODO: consider using NameInfo for diagnostic.
 | 
						|
  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
 | 
						|
  // All of these full declarators require an identifier.  If it doesn't have
 | 
						|
  // one, the ParsedFreeStandingDeclSpec action should be used.
 | 
						|
  if (!Name) {
 | 
						|
    if (!D.isInvalidType())  // Reject this if we think it is valid.
 | 
						|
      Diag(D.getDeclSpec().getSourceRange().getBegin(),
 | 
						|
           diag::err_declarator_need_ident)
 | 
						|
        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
 | 
						|
    return 0;
 | 
						|
  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | 
						|
  // we find one that is.
 | 
						|
  while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | 
						|
         (S->getFlags() & Scope::TemplateParamScope) != 0)
 | 
						|
    S = S->getParent();
 | 
						|
 | 
						|
  DeclContext *DC = CurContext;
 | 
						|
  if (D.getCXXScopeSpec().isInvalid())
 | 
						|
    D.setInvalidType();
 | 
						|
  else if (D.getCXXScopeSpec().isSet()) {
 | 
						|
    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), 
 | 
						|
                                        UPPC_DeclarationQualifier))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
 | 
						|
    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
 | 
						|
    if (!DC) {
 | 
						|
      // If we could not compute the declaration context, it's because the
 | 
						|
      // declaration context is dependent but does not refer to a class,
 | 
						|
      // class template, or class template partial specialization. Complain
 | 
						|
      // and return early, to avoid the coming semantic disaster.
 | 
						|
      Diag(D.getIdentifierLoc(),
 | 
						|
           diag::err_template_qualified_declarator_no_match)
 | 
						|
        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
 | 
						|
        << D.getCXXScopeSpec().getRange();
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    bool IsDependentContext = DC->isDependentContext();
 | 
						|
 | 
						|
    if (!IsDependentContext && 
 | 
						|
        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    if (isa<CXXRecordDecl>(DC)) {
 | 
						|
      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
 | 
						|
        Diag(D.getIdentifierLoc(),
 | 
						|
             diag::err_member_def_undefined_record)
 | 
						|
          << Name << DC << D.getCXXScopeSpec().getRange();
 | 
						|
        D.setInvalidType();
 | 
						|
      } else if (isa<CXXRecordDecl>(CurContext) && 
 | 
						|
                 !D.getDeclSpec().isFriendSpecified()) {
 | 
						|
        // The user provided a superfluous scope specifier inside a class
 | 
						|
        // definition:
 | 
						|
        //
 | 
						|
        // class X {
 | 
						|
        //   void X::f();
 | 
						|
        // };
 | 
						|
        if (CurContext->Equals(DC)) {
 | 
						|
          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
 | 
						|
            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
 | 
						|
        } else {
 | 
						|
          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
 | 
						|
            << Name << D.getCXXScopeSpec().getRange();
 | 
						|
          
 | 
						|
          // C++ constructors and destructors with incorrect scopes can break
 | 
						|
          // our AST invariants by having the wrong underlying types. If
 | 
						|
          // that's the case, then drop this declaration entirely.
 | 
						|
          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
 | 
						|
               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
 | 
						|
              !Context.hasSameType(Name.getCXXNameType(),
 | 
						|
                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        // Pretend that this qualifier was not here.
 | 
						|
        D.getCXXScopeSpec().clear();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Check whether we need to rebuild the type of the given
 | 
						|
    // declaration in the current instantiation.
 | 
						|
    if (EnteringContext && IsDependentContext &&
 | 
						|
        TemplateParamLists.size() != 0) {
 | 
						|
      ContextRAII SavedContext(*this, DC);
 | 
						|
      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
 | 
						|
        D.setInvalidType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (DiagnoseClassNameShadow(DC, NameInfo))
 | 
						|
    // If this is a typedef, we'll end up spewing multiple diagnostics.
 | 
						|
    // Just return early; it's safer.
 | 
						|
    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
 | 
						|
      return 0;
 | 
						|
  
 | 
						|
  NamedDecl *New;
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
  QualType R = TInfo->getType();
 | 
						|
 | 
						|
  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
 | 
						|
                                      UPPC_DeclarationType))
 | 
						|
    D.setInvalidType();
 | 
						|
 | 
						|
  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
 | 
						|
                        ForRedeclaration);
 | 
						|
 | 
						|
  // See if this is a redefinition of a variable in the same scope.
 | 
						|
  if (!D.getCXXScopeSpec().isSet()) {
 | 
						|
    bool IsLinkageLookup = false;
 | 
						|
 | 
						|
    // If the declaration we're planning to build will be a function
 | 
						|
    // or object with linkage, then look for another declaration with
 | 
						|
    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
 | 
						|
    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
 | 
						|
      /* Do nothing*/;
 | 
						|
    else if (R->isFunctionType()) {
 | 
						|
      if (CurContext->isFunctionOrMethod() ||
 | 
						|
          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
 | 
						|
        IsLinkageLookup = true;
 | 
						|
    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
 | 
						|
      IsLinkageLookup = true;
 | 
						|
    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
 | 
						|
             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
 | 
						|
      IsLinkageLookup = true;
 | 
						|
 | 
						|
    if (IsLinkageLookup)
 | 
						|
      Previous.clear(LookupRedeclarationWithLinkage);
 | 
						|
 | 
						|
    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
 | 
						|
  } else { // Something like "int foo::x;"
 | 
						|
    LookupQualifiedName(Previous, DC);
 | 
						|
 | 
						|
    // Don't consider using declarations as previous declarations for
 | 
						|
    // out-of-line members.
 | 
						|
    RemoveUsingDecls(Previous);
 | 
						|
 | 
						|
    // C++ 7.3.1.2p2:
 | 
						|
    // Members (including explicit specializations of templates) of a named
 | 
						|
    // namespace can also be defined outside that namespace by explicit
 | 
						|
    // qualification of the name being defined, provided that the entity being
 | 
						|
    // defined was already declared in the namespace and the definition appears
 | 
						|
    // after the point of declaration in a namespace that encloses the
 | 
						|
    // declarations namespace.
 | 
						|
    //
 | 
						|
    // Note that we only check the context at this point. We don't yet
 | 
						|
    // have enough information to make sure that PrevDecl is actually
 | 
						|
    // the declaration we want to match. For example, given:
 | 
						|
    //
 | 
						|
    //   class X {
 | 
						|
    //     void f();
 | 
						|
    //     void f(float);
 | 
						|
    //   };
 | 
						|
    //
 | 
						|
    //   void X::f(int) { } // ill-formed
 | 
						|
    //
 | 
						|
    // In this case, PrevDecl will point to the overload set
 | 
						|
    // containing the two f's declared in X, but neither of them
 | 
						|
    // matches.
 | 
						|
 | 
						|
    // First check whether we named the global scope.
 | 
						|
    if (isa<TranslationUnitDecl>(DC)) {
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
 | 
						|
        << Name << D.getCXXScopeSpec().getRange();
 | 
						|
    } else {
 | 
						|
      DeclContext *Cur = CurContext;
 | 
						|
      while (isa<LinkageSpecDecl>(Cur))
 | 
						|
        Cur = Cur->getParent();
 | 
						|
      if (!Cur->Encloses(DC)) {
 | 
						|
        // The qualifying scope doesn't enclose the original declaration.
 | 
						|
        // Emit diagnostic based on current scope.
 | 
						|
        SourceLocation L = D.getIdentifierLoc();
 | 
						|
        SourceRange R = D.getCXXScopeSpec().getRange();
 | 
						|
        if (isa<FunctionDecl>(Cur))
 | 
						|
          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
 | 
						|
        else
 | 
						|
          Diag(L, diag::err_invalid_declarator_scope)
 | 
						|
            << Name << cast<NamedDecl>(DC) << R;
 | 
						|
        D.setInvalidType();
 | 
						|
      }
 | 
						|
 | 
						|
      // C++11 8.3p1:
 | 
						|
      // ... "The nested-name-specifier of the qualified declarator-id shall
 | 
						|
      // not begin with a decltype-specifer"
 | 
						|
      NestedNameSpecifierLoc SpecLoc = 
 | 
						|
            D.getCXXScopeSpec().getWithLocInContext(Context);
 | 
						|
      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
 | 
						|
                        "NestedNameSpecifierLoc");
 | 
						|
      while (SpecLoc.getPrefix())
 | 
						|
        SpecLoc = SpecLoc.getPrefix();
 | 
						|
      if (dyn_cast_or_null<DecltypeType>(
 | 
						|
            SpecLoc.getNestedNameSpecifier()->getAsType()))
 | 
						|
        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
 | 
						|
          << SpecLoc.getTypeLoc().getSourceRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Previous.isSingleResult() &&
 | 
						|
      Previous.getFoundDecl()->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    if (!D.isInvalidType())
 | 
						|
      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
 | 
						|
                                      Previous.getFoundDecl());
 | 
						|
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    Previous.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // In C++, the previous declaration we find might be a tag type
 | 
						|
  // (class or enum). In this case, the new declaration will hide the
 | 
						|
  // tag type. Note that this does does not apply if we're declaring a
 | 
						|
  // typedef (C++ [dcl.typedef]p4).
 | 
						|
  if (Previous.isSingleTagDecl() &&
 | 
						|
      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
 | 
						|
    Previous.clear();
 | 
						|
 | 
						|
  bool AddToScope = true;
 | 
						|
  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
 | 
						|
    if (TemplateParamLists.size()) {
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
 | 
						|
  } else if (R->isFunctionType()) {
 | 
						|
    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
 | 
						|
                                  move(TemplateParamLists),
 | 
						|
                                  AddToScope);
 | 
						|
  } else {
 | 
						|
    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
 | 
						|
                                  move(TemplateParamLists));
 | 
						|
  }
 | 
						|
 | 
						|
  if (New == 0)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // If this has an identifier and is not an invalid redeclaration or 
 | 
						|
  // function template specialization, add it to the scope stack.
 | 
						|
  if (New->getDeclName() && AddToScope &&
 | 
						|
       !(D.isRedeclaration() && New->isInvalidDecl()))
 | 
						|
    PushOnScopeChains(New, S);
 | 
						|
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
 | 
						|
/// types into constant array types in certain situations which would otherwise
 | 
						|
/// be errors (for GCC compatibility).
 | 
						|
static QualType TryToFixInvalidVariablyModifiedType(QualType T,
 | 
						|
                                                    ASTContext &Context,
 | 
						|
                                                    bool &SizeIsNegative,
 | 
						|
                                                    llvm::APSInt &Oversized) {
 | 
						|
  // This method tries to turn a variable array into a constant
 | 
						|
  // array even when the size isn't an ICE.  This is necessary
 | 
						|
  // for compatibility with code that depends on gcc's buggy
 | 
						|
  // constant expression folding, like struct {char x[(int)(char*)2];}
 | 
						|
  SizeIsNegative = false;
 | 
						|
  Oversized = 0;
 | 
						|
  
 | 
						|
  if (T->isDependentType())
 | 
						|
    return QualType();
 | 
						|
  
 | 
						|
  QualifierCollector Qs;
 | 
						|
  const Type *Ty = Qs.strip(T);
 | 
						|
 | 
						|
  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
 | 
						|
    QualType Pointee = PTy->getPointeeType();
 | 
						|
    QualType FixedType =
 | 
						|
        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
 | 
						|
                                            Oversized);
 | 
						|
    if (FixedType.isNull()) return FixedType;
 | 
						|
    FixedType = Context.getPointerType(FixedType);
 | 
						|
    return Qs.apply(Context, FixedType);
 | 
						|
  }
 | 
						|
  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
 | 
						|
    QualType Inner = PTy->getInnerType();
 | 
						|
    QualType FixedType =
 | 
						|
        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
 | 
						|
                                            Oversized);
 | 
						|
    if (FixedType.isNull()) return FixedType;
 | 
						|
    FixedType = Context.getParenType(FixedType);
 | 
						|
    return Qs.apply(Context, FixedType);
 | 
						|
  }
 | 
						|
 | 
						|
  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
 | 
						|
  if (!VLATy)
 | 
						|
    return QualType();
 | 
						|
  // FIXME: We should probably handle this case
 | 
						|
  if (VLATy->getElementType()->isVariablyModifiedType())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  llvm::APSInt Res;
 | 
						|
  if (!VLATy->getSizeExpr() ||
 | 
						|
      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // Check whether the array size is negative.
 | 
						|
  if (Res.isSigned() && Res.isNegative()) {
 | 
						|
    SizeIsNegative = true;
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether the array is too large to be addressed.
 | 
						|
  unsigned ActiveSizeBits
 | 
						|
    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
 | 
						|
                                              Res);
 | 
						|
  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
 | 
						|
    Oversized = Res;
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Context.getConstantArrayType(VLATy->getElementType(),
 | 
						|
                                      Res, ArrayType::Normal, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Register the given locally-scoped external C declaration so
 | 
						|
/// that it can be found later for redeclarations
 | 
						|
void
 | 
						|
Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
 | 
						|
                                       const LookupResult &Previous,
 | 
						|
                                       Scope *S) {
 | 
						|
  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
 | 
						|
         "Decl is not a locally-scoped decl!");
 | 
						|
  // Note that we have a locally-scoped external with this name.
 | 
						|
  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
 | 
						|
 | 
						|
  if (!Previous.isSingleResult())
 | 
						|
    return;
 | 
						|
 | 
						|
  NamedDecl *PrevDecl = Previous.getFoundDecl();
 | 
						|
 | 
						|
  // If there was a previous declaration of this variable, it may be
 | 
						|
  // in our identifier chain. Update the identifier chain with the new
 | 
						|
  // declaration.
 | 
						|
  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
 | 
						|
    // The previous declaration was found on the identifer resolver
 | 
						|
    // chain, so remove it from its scope.
 | 
						|
 | 
						|
    if (S->isDeclScope(PrevDecl)) {
 | 
						|
      // Special case for redeclarations in the SAME scope.
 | 
						|
      // Because this declaration is going to be added to the identifier chain
 | 
						|
      // later, we should temporarily take it OFF the chain.
 | 
						|
      IdResolver.RemoveDecl(ND);
 | 
						|
 | 
						|
    } else {
 | 
						|
      // Find the scope for the original declaration.
 | 
						|
      while (S && !S->isDeclScope(PrevDecl))
 | 
						|
        S = S->getParent();
 | 
						|
    }
 | 
						|
 | 
						|
    if (S)
 | 
						|
      S->RemoveDecl(PrevDecl);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
 | 
						|
Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
 | 
						|
  if (ExternalSource) {
 | 
						|
    // Load locally-scoped external decls from the external source.
 | 
						|
    SmallVector<NamedDecl *, 4> Decls;
 | 
						|
    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
 | 
						|
    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
 | 
						|
      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
 | 
						|
        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
 | 
						|
      if (Pos == LocallyScopedExternalDecls.end())
 | 
						|
        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return LocallyScopedExternalDecls.find(Name);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose function specifiers on a declaration of an identifier that
 | 
						|
/// does not identify a function.
 | 
						|
void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
 | 
						|
  // FIXME: We should probably indicate the identifier in question to avoid
 | 
						|
  // confusion for constructs like "inline int a(), b;"
 | 
						|
  if (D.getDeclSpec().isInlineSpecified())
 | 
						|
    Diag(D.getDeclSpec().getInlineSpecLoc(),
 | 
						|
         diag::err_inline_non_function);
 | 
						|
 | 
						|
  if (D.getDeclSpec().isVirtualSpecified())
 | 
						|
    Diag(D.getDeclSpec().getVirtualSpecLoc(),
 | 
						|
         diag::err_virtual_non_function);
 | 
						|
 | 
						|
  if (D.getDeclSpec().isExplicitSpecified())
 | 
						|
    Diag(D.getDeclSpec().getExplicitSpecLoc(),
 | 
						|
         diag::err_explicit_non_function);
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl*
 | 
						|
Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
 | 
						|
                             TypeSourceInfo *TInfo, LookupResult &Previous) {
 | 
						|
  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
 | 
						|
  if (D.getCXXScopeSpec().isSet()) {
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
 | 
						|
      << D.getCXXScopeSpec().getRange();
 | 
						|
    D.setInvalidType();
 | 
						|
    // Pretend we didn't see the scope specifier.
 | 
						|
    DC = CurContext;
 | 
						|
    Previous.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // Check that there are no default arguments (C++ only).
 | 
						|
    CheckExtraCXXDefaultArguments(D);
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnoseFunctionSpecifiers(D);
 | 
						|
 | 
						|
  if (D.getDeclSpec().isThreadSpecified())
 | 
						|
    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
 | 
						|
  if (D.getDeclSpec().isConstexprSpecified())
 | 
						|
    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
 | 
						|
      << 1;
 | 
						|
 | 
						|
  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
 | 
						|
    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
 | 
						|
      << D.getName().getSourceRange();
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
 | 
						|
  if (!NewTD) return 0;
 | 
						|
 | 
						|
  // Handle attributes prior to checking for duplicates in MergeVarDecl
 | 
						|
  ProcessDeclAttributes(S, NewTD, D);
 | 
						|
 | 
						|
  CheckTypedefForVariablyModifiedType(S, NewTD);
 | 
						|
 | 
						|
  bool Redeclaration = D.isRedeclaration();
 | 
						|
  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
 | 
						|
  D.setRedeclaration(Redeclaration);
 | 
						|
  return ND;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
 | 
						|
  // C99 6.7.7p2: If a typedef name specifies a variably modified type
 | 
						|
  // then it shall have block scope.
 | 
						|
  // Note that variably modified types must be fixed before merging the decl so
 | 
						|
  // that redeclarations will match.
 | 
						|
  QualType T = NewTD->getUnderlyingType();
 | 
						|
  if (T->isVariablyModifiedType()) {
 | 
						|
    getCurFunction()->setHasBranchProtectedScope();
 | 
						|
 | 
						|
    if (S->getFnParent() == 0) {
 | 
						|
      bool SizeIsNegative;
 | 
						|
      llvm::APSInt Oversized;
 | 
						|
      QualType FixedTy =
 | 
						|
          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
 | 
						|
                                              Oversized);
 | 
						|
      if (!FixedTy.isNull()) {
 | 
						|
        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
 | 
						|
        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
 | 
						|
      } else {
 | 
						|
        if (SizeIsNegative)
 | 
						|
          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
 | 
						|
        else if (T->isVariableArrayType())
 | 
						|
          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
 | 
						|
        else if (Oversized.getBoolValue())
 | 
						|
          Diag(NewTD->getLocation(), diag::err_array_too_large) 
 | 
						|
            << Oversized.toString(10);
 | 
						|
        else
 | 
						|
          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
 | 
						|
        NewTD->setInvalidDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
 | 
						|
/// declares a typedef-name, either using the 'typedef' type specifier or via
 | 
						|
/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
 | 
						|
NamedDecl*
 | 
						|
Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
 | 
						|
                           LookupResult &Previous, bool &Redeclaration) {
 | 
						|
  // Merge the decl with the existing one if appropriate. If the decl is
 | 
						|
  // in an outer scope, it isn't the same thing.
 | 
						|
  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
 | 
						|
                       /*ExplicitInstantiationOrSpecialization=*/false);
 | 
						|
  if (!Previous.empty()) {
 | 
						|
    Redeclaration = true;
 | 
						|
    MergeTypedefNameDecl(NewTD, Previous);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is the C FILE type, notify the AST context.
 | 
						|
  if (IdentifierInfo *II = NewTD->getIdentifier())
 | 
						|
    if (!NewTD->isInvalidDecl() &&
 | 
						|
        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
 | 
						|
      if (II->isStr("FILE"))
 | 
						|
        Context.setFILEDecl(NewTD);
 | 
						|
      else if (II->isStr("jmp_buf"))
 | 
						|
        Context.setjmp_bufDecl(NewTD);
 | 
						|
      else if (II->isStr("sigjmp_buf"))
 | 
						|
        Context.setsigjmp_bufDecl(NewTD);
 | 
						|
      else if (II->isStr("ucontext_t"))
 | 
						|
        Context.setucontext_tDecl(NewTD);
 | 
						|
      else if (II->isStr("__builtin_va_list"))
 | 
						|
        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
 | 
						|
    }
 | 
						|
 | 
						|
  return NewTD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determines whether the given declaration is an out-of-scope
 | 
						|
/// previous declaration.
 | 
						|
///
 | 
						|
/// This routine should be invoked when name lookup has found a
 | 
						|
/// previous declaration (PrevDecl) that is not in the scope where a
 | 
						|
/// new declaration by the same name is being introduced. If the new
 | 
						|
/// declaration occurs in a local scope, previous declarations with
 | 
						|
/// linkage may still be considered previous declarations (C99
 | 
						|
/// 6.2.2p4-5, C++ [basic.link]p6).
 | 
						|
///
 | 
						|
/// \param PrevDecl the previous declaration found by name
 | 
						|
/// lookup
 | 
						|
///
 | 
						|
/// \param DC the context in which the new declaration is being
 | 
						|
/// declared.
 | 
						|
///
 | 
						|
/// \returns true if PrevDecl is an out-of-scope previous declaration
 | 
						|
/// for a new delcaration with the same name.
 | 
						|
static bool
 | 
						|
isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
 | 
						|
                                ASTContext &Context) {
 | 
						|
  if (!PrevDecl)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!PrevDecl->hasLinkage())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Context.getLangOptions().CPlusPlus) {
 | 
						|
    // C++ [basic.link]p6:
 | 
						|
    //   If there is a visible declaration of an entity with linkage
 | 
						|
    //   having the same name and type, ignoring entities declared
 | 
						|
    //   outside the innermost enclosing namespace scope, the block
 | 
						|
    //   scope declaration declares that same entity and receives the
 | 
						|
    //   linkage of the previous declaration.
 | 
						|
    DeclContext *OuterContext = DC->getRedeclContext();
 | 
						|
    if (!OuterContext->isFunctionOrMethod())
 | 
						|
      // This rule only applies to block-scope declarations.
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
 | 
						|
    if (PrevOuterContext->isRecord())
 | 
						|
      // We found a member function: ignore it.
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    // Find the innermost enclosing namespace for the new and
 | 
						|
    // previous declarations.
 | 
						|
    OuterContext = OuterContext->getEnclosingNamespaceContext();
 | 
						|
    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
 | 
						|
 | 
						|
    // The previous declaration is in a different namespace, so it
 | 
						|
    // isn't the same function.
 | 
						|
    if (!OuterContext->Equals(PrevOuterContext))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
 | 
						|
  CXXScopeSpec &SS = D.getCXXScopeSpec();
 | 
						|
  if (!SS.isSet()) return;
 | 
						|
  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
 | 
						|
  QualType type = decl->getType();
 | 
						|
  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
 | 
						|
  if (lifetime == Qualifiers::OCL_Autoreleasing) {
 | 
						|
    // Various kinds of declaration aren't allowed to be __autoreleasing.
 | 
						|
    unsigned kind = -1U;
 | 
						|
    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
 | 
						|
      if (var->hasAttr<BlocksAttr>())
 | 
						|
        kind = 0; // __block
 | 
						|
      else if (!var->hasLocalStorage())
 | 
						|
        kind = 1; // global
 | 
						|
    } else if (isa<ObjCIvarDecl>(decl)) {
 | 
						|
      kind = 3; // ivar
 | 
						|
    } else if (isa<FieldDecl>(decl)) {
 | 
						|
      kind = 2; // field
 | 
						|
    }
 | 
						|
 | 
						|
    if (kind != -1U) {
 | 
						|
      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
 | 
						|
        << kind;
 | 
						|
    }
 | 
						|
  } else if (lifetime == Qualifiers::OCL_None) {
 | 
						|
    // Try to infer lifetime.
 | 
						|
    if (!type->isObjCLifetimeType())
 | 
						|
      return false;
 | 
						|
 | 
						|
    lifetime = type->getObjCARCImplicitLifetime();
 | 
						|
    type = Context.getLifetimeQualifiedType(type, lifetime);
 | 
						|
    decl->setType(type);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
 | 
						|
    // Thread-local variables cannot have lifetime.
 | 
						|
    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
 | 
						|
        var->isThreadSpecified()) {
 | 
						|
      Diag(var->getLocation(), diag::err_arc_thread_ownership)
 | 
						|
        << var->getType();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl*
 | 
						|
Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
 | 
						|
                              TypeSourceInfo *TInfo, LookupResult &Previous,
 | 
						|
                              MultiTemplateParamsArg TemplateParamLists) {
 | 
						|
  QualType R = TInfo->getType();
 | 
						|
  DeclarationName Name = GetNameForDeclarator(D).getName();
 | 
						|
 | 
						|
  // Check that there are no default arguments (C++ only).
 | 
						|
  if (getLangOptions().CPlusPlus)
 | 
						|
    CheckExtraCXXDefaultArguments(D);
 | 
						|
 | 
						|
  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
 | 
						|
  assert(SCSpec != DeclSpec::SCS_typedef &&
 | 
						|
         "Parser allowed 'typedef' as storage class VarDecl.");
 | 
						|
  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
 | 
						|
  if (SCSpec == DeclSpec::SCS_mutable) {
 | 
						|
    // mutable can only appear on non-static class members, so it's always
 | 
						|
    // an error here
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
 | 
						|
    D.setInvalidType();
 | 
						|
    SC = SC_None;
 | 
						|
  }
 | 
						|
  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
 | 
						|
  VarDecl::StorageClass SCAsWritten
 | 
						|
    = StorageClassSpecToVarDeclStorageClass(SCSpec);
 | 
						|
 | 
						|
  IdentifierInfo *II = Name.getAsIdentifierInfo();
 | 
						|
  if (!II) {
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
 | 
						|
      << Name;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnoseFunctionSpecifiers(D);
 | 
						|
 | 
						|
  if (!DC->isRecord() && S->getFnParent() == 0) {
 | 
						|
    // C99 6.9p2: The storage-class specifiers auto and register shall not
 | 
						|
    // appear in the declaration specifiers in an external declaration.
 | 
						|
    if (SC == SC_Auto || SC == SC_Register) {
 | 
						|
 | 
						|
      // If this is a register variable with an asm label specified, then this
 | 
						|
      // is a GNU extension.
 | 
						|
      if (SC == SC_Register && D.getAsmLabel())
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
 | 
						|
      else
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
 | 
						|
      D.setInvalidType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (getLangOptions().OpenCL) {
 | 
						|
    // Set up the special work-group-local storage class for variables in the
 | 
						|
    // OpenCL __local address space.
 | 
						|
    if (R.getAddressSpace() == LangAS::opencl_local)
 | 
						|
      SC = SC_OpenCLWorkGroupLocal;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isExplicitSpecialization = false;
 | 
						|
  VarDecl *NewVD;
 | 
						|
  if (!getLangOptions().CPlusPlus) {
 | 
						|
    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
 | 
						|
                            D.getIdentifierLoc(), II,
 | 
						|
                            R, TInfo, SC, SCAsWritten);
 | 
						|
  
 | 
						|
    if (D.isInvalidType())
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
  } else {
 | 
						|
    if (DC->isRecord() && !CurContext->isRecord()) {
 | 
						|
      // This is an out-of-line definition of a static data member.
 | 
						|
      if (SC == SC_Static) {
 | 
						|
        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | 
						|
             diag::err_static_out_of_line)
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
      } else if (SC == SC_None)
 | 
						|
        SC = SC_Static;
 | 
						|
    }
 | 
						|
    if (SC == SC_Static) {
 | 
						|
      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
 | 
						|
        if (RD->isLocalClass())
 | 
						|
          Diag(D.getIdentifierLoc(),
 | 
						|
               diag::err_static_data_member_not_allowed_in_local_class)
 | 
						|
            << Name << RD->getDeclName();
 | 
						|
 | 
						|
        // C++ [class.union]p1: If a union contains a static data member,
 | 
						|
        // the program is ill-formed.
 | 
						|
        //
 | 
						|
        // We also disallow static data members in anonymous structs.
 | 
						|
        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
 | 
						|
          Diag(D.getIdentifierLoc(),
 | 
						|
               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
 | 
						|
            << Name << RD->isUnion();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Match up the template parameter lists with the scope specifier, then
 | 
						|
    // determine whether we have a template or a template specialization.
 | 
						|
    isExplicitSpecialization = false;
 | 
						|
    bool Invalid = false;
 | 
						|
    if (TemplateParameterList *TemplateParams
 | 
						|
        = MatchTemplateParametersToScopeSpecifier(
 | 
						|
                                  D.getDeclSpec().getSourceRange().getBegin(),
 | 
						|
                                                  D.getIdentifierLoc(),
 | 
						|
                                                  D.getCXXScopeSpec(),
 | 
						|
                                                  TemplateParamLists.get(),
 | 
						|
                                                  TemplateParamLists.size(),
 | 
						|
                                                  /*never a friend*/ false,
 | 
						|
                                                  isExplicitSpecialization,
 | 
						|
                                                  Invalid)) {
 | 
						|
      if (TemplateParams->size() > 0) {
 | 
						|
        // There is no such thing as a variable template.
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_template_variable)
 | 
						|
          << II
 | 
						|
          << SourceRange(TemplateParams->getTemplateLoc(),
 | 
						|
                         TemplateParams->getRAngleLoc());
 | 
						|
        return 0;
 | 
						|
      } else {
 | 
						|
        // There is an extraneous 'template<>' for this variable. Complain
 | 
						|
        // about it, but allow the declaration of the variable.
 | 
						|
        Diag(TemplateParams->getTemplateLoc(),
 | 
						|
             diag::err_template_variable_noparams)
 | 
						|
          << II
 | 
						|
          << SourceRange(TemplateParams->getTemplateLoc(),
 | 
						|
                         TemplateParams->getRAngleLoc());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
 | 
						|
                            D.getIdentifierLoc(), II,
 | 
						|
                            R, TInfo, SC, SCAsWritten);
 | 
						|
 | 
						|
    // If this decl has an auto type in need of deduction, make a note of the
 | 
						|
    // Decl so we can diagnose uses of it in its own initializer.
 | 
						|
    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
 | 
						|
        R->getContainedAutoType())
 | 
						|
      ParsingInitForAutoVars.insert(NewVD);
 | 
						|
 | 
						|
    if (D.isInvalidType() || Invalid)
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
 | 
						|
    SetNestedNameSpecifier(NewVD, D);
 | 
						|
 | 
						|
    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
 | 
						|
      NewVD->setTemplateParameterListsInfo(Context,
 | 
						|
                                           TemplateParamLists.size(),
 | 
						|
                                           TemplateParamLists.release());
 | 
						|
    }
 | 
						|
 | 
						|
    if (D.getDeclSpec().isConstexprSpecified())
 | 
						|
      NewVD->setConstexpr(true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the lexical context. If the declarator has a C++ scope specifier, the
 | 
						|
  // lexical context will be different from the semantic context.
 | 
						|
  NewVD->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  if (D.getDeclSpec().isThreadSpecified()) {
 | 
						|
    if (NewVD->hasLocalStorage())
 | 
						|
      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
 | 
						|
    else if (!Context.getTargetInfo().isTLSSupported())
 | 
						|
      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
 | 
						|
    else
 | 
						|
      NewVD->setThreadSpecified(true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.getDeclSpec().isModulePrivateSpecified()) {
 | 
						|
    if (isExplicitSpecialization)
 | 
						|
      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
 | 
						|
        << 2
 | 
						|
        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | 
						|
    else if (NewVD->hasLocalStorage())
 | 
						|
      Diag(NewVD->getLocation(), diag::err_module_private_local)
 | 
						|
        << 0 << NewVD->getDeclName()
 | 
						|
        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
 | 
						|
        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | 
						|
    else
 | 
						|
      NewVD->setModulePrivate();
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle attributes prior to checking for duplicates in MergeVarDecl
 | 
						|
  ProcessDeclAttributes(S, NewVD, D);
 | 
						|
 | 
						|
  // In auto-retain/release, infer strong retension for variables of
 | 
						|
  // retainable type.
 | 
						|
  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
 | 
						|
  // Handle GNU asm-label extension (encoded as an attribute).
 | 
						|
  if (Expr *E = (Expr*)D.getAsmLabel()) {
 | 
						|
    // The parser guarantees this is a string.
 | 
						|
    StringLiteral *SE = cast<StringLiteral>(E);
 | 
						|
    StringRef Label = SE->getString();
 | 
						|
    if (S->getFnParent() != 0) {
 | 
						|
      switch (SC) {
 | 
						|
      case SC_None:
 | 
						|
      case SC_Auto:
 | 
						|
        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
 | 
						|
        break;
 | 
						|
      case SC_Register:
 | 
						|
        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
 | 
						|
          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
 | 
						|
        break;
 | 
						|
      case SC_Static:
 | 
						|
      case SC_Extern:
 | 
						|
      case SC_PrivateExtern:
 | 
						|
      case SC_OpenCLWorkGroupLocal:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
 | 
						|
                                                Context, Label));
 | 
						|
  }
 | 
						|
 | 
						|
  // Diagnose shadowed variables before filtering for scope.
 | 
						|
  if (!D.getCXXScopeSpec().isSet())
 | 
						|
    CheckShadow(S, NewVD, Previous);
 | 
						|
 | 
						|
  // Don't consider existing declarations that are in a different
 | 
						|
  // scope and are out-of-semantic-context declarations (if the new
 | 
						|
  // declaration has linkage).
 | 
						|
  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
 | 
						|
                       isExplicitSpecialization);
 | 
						|
  
 | 
						|
  if (!getLangOptions().CPlusPlus) {
 | 
						|
    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
 | 
						|
  } else {
 | 
						|
    // Merge the decl with the existing one if appropriate.
 | 
						|
    if (!Previous.empty()) {
 | 
						|
      if (Previous.isSingleResult() &&
 | 
						|
          isa<FieldDecl>(Previous.getFoundDecl()) &&
 | 
						|
          D.getCXXScopeSpec().isSet()) {
 | 
						|
        // The user tried to define a non-static data member
 | 
						|
        // out-of-line (C++ [dcl.meaning]p1).
 | 
						|
        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
 | 
						|
          << D.getCXXScopeSpec().getRange();
 | 
						|
        Previous.clear();
 | 
						|
        NewVD->setInvalidDecl();
 | 
						|
      }
 | 
						|
    } else if (D.getCXXScopeSpec().isSet()) {
 | 
						|
      // No previous declaration in the qualifying scope.
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_no_member)
 | 
						|
        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
 | 
						|
        << D.getCXXScopeSpec().getRange();
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
    }
 | 
						|
 | 
						|
    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
 | 
						|
 | 
						|
    // This is an explicit specialization of a static data member. Check it.
 | 
						|
    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
 | 
						|
        CheckMemberSpecialization(NewVD, Previous))
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // attributes declared post-definition are currently ignored
 | 
						|
  // FIXME: This should be handled in attribute merging, not
 | 
						|
  // here.
 | 
						|
  if (Previous.isSingleResult()) {
 | 
						|
    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
 | 
						|
    if (Def && (Def = Def->getDefinition()) &&
 | 
						|
        Def != NewVD && D.hasAttributes()) {
 | 
						|
      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
 | 
						|
      Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a locally-scoped extern C variable, update the map of
 | 
						|
  // such variables.
 | 
						|
  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
 | 
						|
      !NewVD->isInvalidDecl())
 | 
						|
    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
 | 
						|
 | 
						|
  // If there's a #pragma GCC visibility in scope, and this isn't a class
 | 
						|
  // member, set the visibility of this variable.
 | 
						|
  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
 | 
						|
    AddPushedVisibilityAttribute(NewVD);
 | 
						|
  
 | 
						|
  MarkUnusedFileScopedDecl(NewVD);
 | 
						|
 | 
						|
  return NewVD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose variable or built-in function shadowing.  Implements
 | 
						|
/// -Wshadow.
 | 
						|
///
 | 
						|
/// This method is called whenever a VarDecl is added to a "useful"
 | 
						|
/// scope.
 | 
						|
///
 | 
						|
/// \param S the scope in which the shadowing name is being declared
 | 
						|
/// \param R the lookup of the name
 | 
						|
///
 | 
						|
void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
 | 
						|
  // Return if warning is ignored.
 | 
						|
  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
 | 
						|
        DiagnosticsEngine::Ignored)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Don't diagnose declarations at file scope.
 | 
						|
  if (D->hasGlobalStorage())
 | 
						|
    return;
 | 
						|
 | 
						|
  DeclContext *NewDC = D->getDeclContext();
 | 
						|
 | 
						|
  // Only diagnose if we're shadowing an unambiguous field or variable.
 | 
						|
  if (R.getResultKind() != LookupResult::Found)
 | 
						|
    return;
 | 
						|
 | 
						|
  NamedDecl* ShadowedDecl = R.getFoundDecl();
 | 
						|
  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Fields are not shadowed by variables in C++ static methods.
 | 
						|
  if (isa<FieldDecl>(ShadowedDecl))
 | 
						|
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
 | 
						|
      if (MD->isStatic())
 | 
						|
        return;
 | 
						|
 | 
						|
  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
 | 
						|
    if (shadowedVar->isExternC()) {
 | 
						|
      // For shadowing external vars, make sure that we point to the global
 | 
						|
      // declaration, not a locally scoped extern declaration.
 | 
						|
      for (VarDecl::redecl_iterator
 | 
						|
             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
 | 
						|
           I != E; ++I)
 | 
						|
        if (I->isFileVarDecl()) {
 | 
						|
          ShadowedDecl = *I;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  DeclContext *OldDC = ShadowedDecl->getDeclContext();
 | 
						|
 | 
						|
  // Only warn about certain kinds of shadowing for class members.
 | 
						|
  if (NewDC && NewDC->isRecord()) {
 | 
						|
    // In particular, don't warn about shadowing non-class members.
 | 
						|
    if (!OldDC->isRecord())
 | 
						|
      return;
 | 
						|
 | 
						|
    // TODO: should we warn about static data members shadowing
 | 
						|
    // static data members from base classes?
 | 
						|
    
 | 
						|
    // TODO: don't diagnose for inaccessible shadowed members.
 | 
						|
    // This is hard to do perfectly because we might friend the
 | 
						|
    // shadowing context, but that's just a false negative.
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine what kind of declaration we're shadowing.
 | 
						|
  unsigned Kind;
 | 
						|
  if (isa<RecordDecl>(OldDC)) {
 | 
						|
    if (isa<FieldDecl>(ShadowedDecl))
 | 
						|
      Kind = 3; // field
 | 
						|
    else
 | 
						|
      Kind = 2; // static data member
 | 
						|
  } else if (OldDC->isFileContext())
 | 
						|
    Kind = 1; // global
 | 
						|
  else
 | 
						|
    Kind = 0; // local
 | 
						|
 | 
						|
  DeclarationName Name = R.getLookupName();
 | 
						|
 | 
						|
  // Emit warning and note.
 | 
						|
  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
 | 
						|
  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check -Wshadow without the advantage of a previous lookup.
 | 
						|
void Sema::CheckShadow(Scope *S, VarDecl *D) {
 | 
						|
  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
 | 
						|
        DiagnosticsEngine::Ignored)
 | 
						|
    return;
 | 
						|
 | 
						|
  LookupResult R(*this, D->getDeclName(), D->getLocation(),
 | 
						|
                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
 | 
						|
  LookupName(R, S);
 | 
						|
  CheckShadow(S, D, R);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic checking on a newly-created variable
 | 
						|
/// declaration.
 | 
						|
///
 | 
						|
/// This routine performs all of the type-checking required for a
 | 
						|
/// variable declaration once it has been built. It is used both to
 | 
						|
/// check variables after they have been parsed and their declarators
 | 
						|
/// have been translated into a declaration, and to check variables
 | 
						|
/// that have been instantiated from a template.
 | 
						|
///
 | 
						|
/// Sets NewVD->isInvalidDecl() if an error was encountered.
 | 
						|
///
 | 
						|
/// Returns true if the variable declaration is a redeclaration.
 | 
						|
bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
 | 
						|
                                    LookupResult &Previous) {
 | 
						|
  // If the decl is already known invalid, don't check it.
 | 
						|
  if (NewVD->isInvalidDecl())
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType T = NewVD->getType();
 | 
						|
 | 
						|
  if (T->isObjCObjectType()) {
 | 
						|
    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
 | 
						|
      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
 | 
						|
    T = Context.getObjCObjectPointerType(T);
 | 
						|
    NewVD->setType(T);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit an error if an address space was applied to decl with local storage.
 | 
						|
  // This includes arrays of objects with address space qualifiers, but not
 | 
						|
  // automatic variables that point to other address spaces.
 | 
						|
  // ISO/IEC TR 18037 S5.1.2
 | 
						|
  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
 | 
						|
    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
 | 
						|
      && !NewVD->hasAttr<BlocksAttr>()) {
 | 
						|
    if (getLangOptions().getGC() != LangOptions::NonGC)
 | 
						|
      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
 | 
						|
    else
 | 
						|
      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool isVM = T->isVariablyModifiedType();
 | 
						|
  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
 | 
						|
      NewVD->hasAttr<BlocksAttr>())
 | 
						|
    getCurFunction()->setHasBranchProtectedScope();
 | 
						|
 | 
						|
  if ((isVM && NewVD->hasLinkage()) ||
 | 
						|
      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
 | 
						|
    bool SizeIsNegative;
 | 
						|
    llvm::APSInt Oversized;
 | 
						|
    QualType FixedTy =
 | 
						|
        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
 | 
						|
                                            Oversized);
 | 
						|
 | 
						|
    if (FixedTy.isNull() && T->isVariableArrayType()) {
 | 
						|
      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
 | 
						|
      // FIXME: This won't give the correct result for
 | 
						|
      // int a[10][n];
 | 
						|
      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
 | 
						|
 | 
						|
      if (NewVD->isFileVarDecl())
 | 
						|
        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
 | 
						|
        << SizeRange;
 | 
						|
      else if (NewVD->getStorageClass() == SC_Static)
 | 
						|
        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
 | 
						|
        << SizeRange;
 | 
						|
      else
 | 
						|
        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
 | 
						|
        << SizeRange;
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FixedTy.isNull()) {
 | 
						|
      if (NewVD->isFileVarDecl())
 | 
						|
        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
 | 
						|
      else
 | 
						|
        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
 | 
						|
    NewVD->setType(FixedTy);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Previous.empty() && NewVD->isExternC()) {
 | 
						|
    // Since we did not find anything by this name and we're declaring
 | 
						|
    // an extern "C" variable, look for a non-visible extern "C"
 | 
						|
    // declaration with the same name.
 | 
						|
    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
 | 
						|
      = findLocallyScopedExternalDecl(NewVD->getDeclName());
 | 
						|
    if (Pos != LocallyScopedExternalDecls.end())
 | 
						|
      Previous.addDecl(Pos->second);
 | 
						|
  }
 | 
						|
 | 
						|
  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
 | 
						|
    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
 | 
						|
      << T;
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
 | 
						|
    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
 | 
						|
    Diag(NewVD->getLocation(), diag::err_block_on_vm);
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Function pointers and references cannot have qualified function type, only
 | 
						|
  // function pointer-to-members can do that.
 | 
						|
  QualType Pointee;
 | 
						|
  unsigned PtrOrRef = 0;
 | 
						|
  if (const PointerType *Ptr = T->getAs<PointerType>())
 | 
						|
    Pointee = Ptr->getPointeeType();
 | 
						|
  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
 | 
						|
    Pointee = Ref->getPointeeType();
 | 
						|
    PtrOrRef = 1;
 | 
						|
  }
 | 
						|
  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
 | 
						|
      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
 | 
						|
    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
 | 
						|
        << PtrOrRef;
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Previous.empty()) {
 | 
						|
    MergeVarDecl(NewVD, Previous);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Data used with FindOverriddenMethod
 | 
						|
struct FindOverriddenMethodData {
 | 
						|
  Sema *S;
 | 
						|
  CXXMethodDecl *Method;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Member lookup function that determines whether a given C++
 | 
						|
/// method overrides a method in a base class, to be used with
 | 
						|
/// CXXRecordDecl::lookupInBases().
 | 
						|
static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
 | 
						|
                                 CXXBasePath &Path,
 | 
						|
                                 void *UserData) {
 | 
						|
  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
 | 
						|
 | 
						|
  FindOverriddenMethodData *Data 
 | 
						|
    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
 | 
						|
  
 | 
						|
  DeclarationName Name = Data->Method->getDeclName();
 | 
						|
  
 | 
						|
  // FIXME: Do we care about other names here too?
 | 
						|
  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | 
						|
    // We really want to find the base class destructor here.
 | 
						|
    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
 | 
						|
    CanQualType CT = Data->S->Context.getCanonicalType(T);
 | 
						|
    
 | 
						|
    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
 | 
						|
  }    
 | 
						|
  
 | 
						|
  for (Path.Decls = BaseRecord->lookup(Name);
 | 
						|
       Path.Decls.first != Path.Decls.second;
 | 
						|
       ++Path.Decls.first) {
 | 
						|
    NamedDecl *D = *Path.Decls.first;
 | 
						|
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// AddOverriddenMethods - See if a method overrides any in the base classes,
 | 
						|
/// and if so, check that it's a valid override and remember it.
 | 
						|
bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
 | 
						|
  // Look for virtual methods in base classes that this method might override.
 | 
						|
  CXXBasePaths Paths;
 | 
						|
  FindOverriddenMethodData Data;
 | 
						|
  Data.Method = MD;
 | 
						|
  Data.S = this;
 | 
						|
  bool AddedAny = false;
 | 
						|
  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
 | 
						|
    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
 | 
						|
         E = Paths.found_decls_end(); I != E; ++I) {
 | 
						|
      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
 | 
						|
        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
 | 
						|
        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
 | 
						|
            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
 | 
						|
            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
 | 
						|
          AddedAny = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return AddedAny;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // Struct for holding all of the extra arguments needed by
 | 
						|
  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
 | 
						|
  struct ActOnFDArgs {
 | 
						|
    Scope *S;
 | 
						|
    Declarator &D;
 | 
						|
    MultiTemplateParamsArg TemplateParamLists;
 | 
						|
    bool AddToScope;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Callback to only accept typo corrections that have a non-zero edit distance.
 | 
						|
class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
 | 
						|
 public:
 | 
						|
  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
 | 
						|
    return candidate.getEditDistance() > 0;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Generate diagnostics for an invalid function redeclaration.
 | 
						|
///
 | 
						|
/// This routine handles generating the diagnostic messages for an invalid
 | 
						|
/// function redeclaration, including finding possible similar declarations
 | 
						|
/// or performing typo correction if there are no previous declarations with
 | 
						|
/// the same name.
 | 
						|
///
 | 
						|
/// Returns a NamedDecl iff typo correction was performed and substituting in
 | 
						|
/// the new declaration name does not cause new errors.
 | 
						|
static NamedDecl* DiagnoseInvalidRedeclaration(
 | 
						|
    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
 | 
						|
    ActOnFDArgs &ExtraArgs) {
 | 
						|
  NamedDecl *Result = NULL;
 | 
						|
  DeclarationName Name = NewFD->getDeclName();
 | 
						|
  DeclContext *NewDC = NewFD->getDeclContext();
 | 
						|
  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
 | 
						|
                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
 | 
						|
  llvm::SmallVector<unsigned, 1> MismatchedParams;
 | 
						|
  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
 | 
						|
  TypoCorrection Correction;
 | 
						|
  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
 | 
						|
                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
 | 
						|
  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
 | 
						|
                                  : diag::err_member_def_does_not_match;
 | 
						|
 | 
						|
  NewFD->setInvalidDecl();
 | 
						|
  SemaRef.LookupQualifiedName(Prev, NewDC);
 | 
						|
  assert(!Prev.isAmbiguous() &&
 | 
						|
         "Cannot have an ambiguity in previous-declaration lookup");
 | 
						|
  DifferentNameValidatorCCC Validator;
 | 
						|
  if (!Prev.empty()) {
 | 
						|
    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
 | 
						|
         Func != FuncEnd; ++Func) {
 | 
						|
      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
 | 
						|
      if (FD &&
 | 
						|
          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
 | 
						|
        // Add 1 to the index so that 0 can mean the mismatch didn't
 | 
						|
        // involve a parameter
 | 
						|
        unsigned ParamNum =
 | 
						|
            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
 | 
						|
        NearMatches.push_back(std::make_pair(FD, ParamNum));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  // If the qualified name lookup yielded nothing, try typo correction
 | 
						|
  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
 | 
						|
                                         Prev.getLookupKind(), 0, 0,
 | 
						|
                                         Validator, NewDC))) {
 | 
						|
    // Trap errors.
 | 
						|
    Sema::SFINAETrap Trap(SemaRef);
 | 
						|
 | 
						|
    // Set up everything for the call to ActOnFunctionDeclarator
 | 
						|
    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
 | 
						|
                              ExtraArgs.D.getIdentifierLoc());
 | 
						|
    Previous.clear();
 | 
						|
    Previous.setLookupName(Correction.getCorrection());
 | 
						|
    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
 | 
						|
                                    CDeclEnd = Correction.end();
 | 
						|
         CDecl != CDeclEnd; ++CDecl) {
 | 
						|
      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
 | 
						|
      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
 | 
						|
                                     MismatchedParams)) {
 | 
						|
        Previous.addDecl(FD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
 | 
						|
    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
 | 
						|
    // pieces need to verify the typo-corrected C++ declaraction and hopefully
 | 
						|
    // eliminate the need for the parameter pack ExtraArgs.
 | 
						|
    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
 | 
						|
                                             NewFD->getDeclContext(),
 | 
						|
                                             NewFD->getTypeSourceInfo(),
 | 
						|
                                             Previous,
 | 
						|
                                             ExtraArgs.TemplateParamLists,
 | 
						|
                                             ExtraArgs.AddToScope);
 | 
						|
    if (Trap.hasErrorOccurred()) {
 | 
						|
      // Pretend the typo correction never occurred
 | 
						|
      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
 | 
						|
                                ExtraArgs.D.getIdentifierLoc());
 | 
						|
      ExtraArgs.D.setRedeclaration(wasRedeclaration);
 | 
						|
      Previous.clear();
 | 
						|
      Previous.setLookupName(Name);
 | 
						|
      Result = NULL;
 | 
						|
    } else {
 | 
						|
      for (LookupResult::iterator Func = Previous.begin(),
 | 
						|
                               FuncEnd = Previous.end();
 | 
						|
           Func != FuncEnd; ++Func) {
 | 
						|
        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
 | 
						|
          NearMatches.push_back(std::make_pair(FD, 0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (NearMatches.empty()) {
 | 
						|
      // Ignore the correction if it didn't yield any close FunctionDecl matches
 | 
						|
      Correction = TypoCorrection();
 | 
						|
    } else {
 | 
						|
      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
 | 
						|
                             : diag::err_member_def_does_not_match_suggest;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Correction)
 | 
						|
    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
 | 
						|
        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
 | 
						|
        << FixItHint::CreateReplacement(
 | 
						|
            NewFD->getLocation(),
 | 
						|
            Correction.getAsString(SemaRef.getLangOptions()));
 | 
						|
  else
 | 
						|
    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
 | 
						|
        << Name << NewDC << NewFD->getLocation();
 | 
						|
 | 
						|
  bool NewFDisConst = false;
 | 
						|
  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
 | 
						|
    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
 | 
						|
 | 
						|
  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
 | 
						|
       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
 | 
						|
       NearMatch != NearMatchEnd; ++NearMatch) {
 | 
						|
    FunctionDecl *FD = NearMatch->first;
 | 
						|
    bool FDisConst = false;
 | 
						|
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
 | 
						|
      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
 | 
						|
 | 
						|
    if (unsigned Idx = NearMatch->second) {
 | 
						|
      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
 | 
						|
      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
 | 
						|
             diag::note_member_def_close_param_match)
 | 
						|
          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
 | 
						|
    } else if (Correction) {
 | 
						|
      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
 | 
						|
          << Correction.getQuoted(SemaRef.getLangOptions());
 | 
						|
    } else if (FDisConst != NewFDisConst) {
 | 
						|
      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
 | 
						|
          << NewFDisConst << FD->getSourceRange().getEnd();
 | 
						|
    } else
 | 
						|
      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef, 
 | 
						|
                                                          Declarator &D) {
 | 
						|
  switch (D.getDeclSpec().getStorageClassSpec()) {
 | 
						|
  default: llvm_unreachable("Unknown storage class!");
 | 
						|
  case DeclSpec::SCS_auto:
 | 
						|
  case DeclSpec::SCS_register:
 | 
						|
  case DeclSpec::SCS_mutable:
 | 
						|
    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | 
						|
                 diag::err_typecheck_sclass_func);
 | 
						|
    D.setInvalidType();
 | 
						|
    break;
 | 
						|
  case DeclSpec::SCS_unspecified: break;
 | 
						|
  case DeclSpec::SCS_extern: return SC_Extern;
 | 
						|
  case DeclSpec::SCS_static: {
 | 
						|
    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
 | 
						|
      // C99 6.7.1p5:
 | 
						|
      //   The declaration of an identifier for a function that has
 | 
						|
      //   block scope shall have no explicit storage-class specifier
 | 
						|
      //   other than extern
 | 
						|
      // See also (C++ [dcl.stc]p4).
 | 
						|
      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | 
						|
                   diag::err_static_block_func);
 | 
						|
      break;
 | 
						|
    } else
 | 
						|
      return SC_Static;
 | 
						|
  }
 | 
						|
  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
 | 
						|
  }
 | 
						|
 | 
						|
  // No explicit storage class has already been returned
 | 
						|
  return SC_None;
 | 
						|
}
 | 
						|
 | 
						|
static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
 | 
						|
                                           DeclContext *DC, QualType &R,
 | 
						|
                                           TypeSourceInfo *TInfo,
 | 
						|
                                           FunctionDecl::StorageClass SC,
 | 
						|
                                           bool &IsVirtualOkay) {
 | 
						|
  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
 | 
						|
  FunctionDecl *NewFD = 0;
 | 
						|
  bool isInline = D.getDeclSpec().isInlineSpecified();
 | 
						|
  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
 | 
						|
  FunctionDecl::StorageClass SCAsWritten
 | 
						|
    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
 | 
						|
 | 
						|
  if (!SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
    // Determine whether the function was written with a
 | 
						|
    // prototype. This true when:
 | 
						|
    //   - there is a prototype in the declarator, or
 | 
						|
    //   - the type R of the function is some kind of typedef or other reference
 | 
						|
    //     to a type name (which eventually refers to a function type).
 | 
						|
    bool HasPrototype =
 | 
						|
      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
 | 
						|
      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
 | 
						|
 | 
						|
    NewFD = FunctionDecl::Create(SemaRef.Context, DC, 
 | 
						|
                                 D.getSourceRange().getBegin(), NameInfo, R, 
 | 
						|
                                 TInfo, SC, SCAsWritten, isInline, 
 | 
						|
                                 HasPrototype);
 | 
						|
    if (D.isInvalidType())
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
 | 
						|
    // Set the lexical context.
 | 
						|
    NewFD->setLexicalDeclContext(SemaRef.CurContext);
 | 
						|
 | 
						|
    return NewFD;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
 | 
						|
  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
 | 
						|
 | 
						|
  // Check that the return type is not an abstract class type.
 | 
						|
  // For record types, this is done by the AbstractClassUsageDiagnoser once
 | 
						|
  // the class has been completely parsed.
 | 
						|
  if (!DC->isRecord() &&
 | 
						|
      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
 | 
						|
                                     R->getAs<FunctionType>()->getResultType(),
 | 
						|
                                     diag::err_abstract_type_in_decl,
 | 
						|
                                     SemaRef.AbstractReturnType))
 | 
						|
    D.setInvalidType();
 | 
						|
 | 
						|
  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
 | 
						|
    // This is a C++ constructor declaration.
 | 
						|
    assert(DC->isRecord() &&
 | 
						|
           "Constructors can only be declared in a member context");
 | 
						|
 | 
						|
    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
 | 
						|
    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
 | 
						|
                                      D.getSourceRange().getBegin(), NameInfo,
 | 
						|
                                      R, TInfo, isExplicit, isInline,
 | 
						|
                                      /*isImplicitlyDeclared=*/false,
 | 
						|
                                      isConstexpr);
 | 
						|
 | 
						|
  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | 
						|
    // This is a C++ destructor declaration.
 | 
						|
    if (DC->isRecord()) {
 | 
						|
      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
 | 
						|
      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
 | 
						|
      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
 | 
						|
                                        SemaRef.Context, Record,
 | 
						|
                                        D.getSourceRange().getBegin(),
 | 
						|
                                        NameInfo, R, TInfo, isInline,
 | 
						|
                                        /*isImplicitlyDeclared=*/false);
 | 
						|
 | 
						|
      // If the class is complete, then we now create the implicit exception
 | 
						|
      // specification. If the class is incomplete or dependent, we can't do
 | 
						|
      // it yet.
 | 
						|
      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
 | 
						|
          Record->getDefinition() && !Record->isBeingDefined() &&
 | 
						|
          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
 | 
						|
        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
 | 
						|
      }
 | 
						|
 | 
						|
      IsVirtualOkay = true;
 | 
						|
      return NewDD;
 | 
						|
 | 
						|
    } else {
 | 
						|
      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
 | 
						|
      D.setInvalidType();
 | 
						|
 | 
						|
      // Create a FunctionDecl to satisfy the function definition parsing
 | 
						|
      // code path.
 | 
						|
      return FunctionDecl::Create(SemaRef.Context, DC,
 | 
						|
                                  D.getSourceRange().getBegin(),
 | 
						|
                                  D.getIdentifierLoc(), Name, R, TInfo,
 | 
						|
                                  SC, SCAsWritten, isInline,
 | 
						|
                                  /*hasPrototype=*/true, isConstexpr);
 | 
						|
    }
 | 
						|
 | 
						|
  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
 | 
						|
    if (!DC->isRecord()) {
 | 
						|
      SemaRef.Diag(D.getIdentifierLoc(),
 | 
						|
           diag::err_conv_function_not_member);
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    SemaRef.CheckConversionDeclarator(D, R, SC);
 | 
						|
    IsVirtualOkay = true;
 | 
						|
    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
 | 
						|
                                     D.getSourceRange().getBegin(), NameInfo,
 | 
						|
                                     R, TInfo, isInline, isExplicit,
 | 
						|
                                     isConstexpr, SourceLocation());
 | 
						|
 | 
						|
  } else if (DC->isRecord()) {
 | 
						|
    // If the name of the function is the same as the name of the record,
 | 
						|
    // then this must be an invalid constructor that has a return type.
 | 
						|
    // (The parser checks for a return type and makes the declarator a
 | 
						|
    // constructor if it has no return type).
 | 
						|
    if (Name.getAsIdentifierInfo() &&
 | 
						|
        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
 | 
						|
      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
 | 
						|
        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
 | 
						|
        << SourceRange(D.getIdentifierLoc());
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    bool isStatic = SC == SC_Static;
 | 
						|
 | 
						|
    // [class.free]p1:
 | 
						|
    // Any allocation function for a class T is a static member
 | 
						|
    // (even if not explicitly declared static).
 | 
						|
    if (Name.getCXXOverloadedOperator() == OO_New ||
 | 
						|
        Name.getCXXOverloadedOperator() == OO_Array_New)
 | 
						|
      isStatic = true;
 | 
						|
 | 
						|
    // [class.free]p6 Any deallocation function for a class X is a static member
 | 
						|
    // (even if not explicitly declared static).
 | 
						|
    if (Name.getCXXOverloadedOperator() == OO_Delete ||
 | 
						|
        Name.getCXXOverloadedOperator() == OO_Array_Delete)
 | 
						|
      isStatic = true;
 | 
						|
 | 
						|
    IsVirtualOkay = !isStatic;
 | 
						|
 | 
						|
    // This is a C++ method declaration.
 | 
						|
    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
 | 
						|
                                 D.getSourceRange().getBegin(), NameInfo, R,
 | 
						|
                                 TInfo, isStatic, SCAsWritten, isInline,
 | 
						|
                                 isConstexpr, SourceLocation());
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Determine whether the function was written with a
 | 
						|
    // prototype. This true when:
 | 
						|
    //   - we're in C++ (where every function has a prototype),
 | 
						|
    return FunctionDecl::Create(SemaRef.Context, DC,
 | 
						|
                                D.getSourceRange().getBegin(),
 | 
						|
                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
 | 
						|
                                true/*HasPrototype*/, isConstexpr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl*
 | 
						|
Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
 | 
						|
                              TypeSourceInfo *TInfo, LookupResult &Previous,
 | 
						|
                              MultiTemplateParamsArg TemplateParamLists,
 | 
						|
                              bool &AddToScope) {
 | 
						|
  QualType R = TInfo->getType();
 | 
						|
 | 
						|
  assert(R.getTypePtr()->isFunctionType());
 | 
						|
 | 
						|
  // TODO: consider using NameInfo for diagnostic.
 | 
						|
  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
 | 
						|
 | 
						|
  if (D.getDeclSpec().isThreadSpecified())
 | 
						|
    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
 | 
						|
 | 
						|
  // Do not allow returning a objc interface by-value.
 | 
						|
  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
 | 
						|
    Diag(D.getIdentifierLoc(),
 | 
						|
         diag::err_object_cannot_be_passed_returned_by_value) << 0
 | 
						|
    << R->getAs<FunctionType>()->getResultType()
 | 
						|
    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
 | 
						|
 | 
						|
    QualType T = R->getAs<FunctionType>()->getResultType();
 | 
						|
    T = Context.getObjCObjectPointerType(T);
 | 
						|
    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
 | 
						|
      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | 
						|
      R = Context.getFunctionType(T, FPT->arg_type_begin(),
 | 
						|
                                  FPT->getNumArgs(), EPI);
 | 
						|
    }
 | 
						|
    else if (isa<FunctionNoProtoType>(R))
 | 
						|
      R = Context.getFunctionNoProtoType(T);
 | 
						|
  }
 | 
						|
 | 
						|
  bool isFriend = false;
 | 
						|
  FunctionTemplateDecl *FunctionTemplate = 0;
 | 
						|
  bool isExplicitSpecialization = false;
 | 
						|
  bool isFunctionTemplateSpecialization = false;
 | 
						|
  bool isDependentClassScopeExplicitSpecialization = false;
 | 
						|
  bool isVirtualOkay = false;
 | 
						|
 | 
						|
  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
 | 
						|
                                              isVirtualOkay);
 | 
						|
  if (!NewFD) return 0;
 | 
						|
 | 
						|
  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
 | 
						|
    NewFD->setTopLevelDeclInObjCContainer();
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    bool isInline = D.getDeclSpec().isInlineSpecified();
 | 
						|
    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
 | 
						|
    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
 | 
						|
    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
 | 
						|
    isFriend = D.getDeclSpec().isFriendSpecified();
 | 
						|
    if (isFriend && !isInline && D.isFunctionDefinition()) {
 | 
						|
      // C++ [class.friend]p5
 | 
						|
      //   A function can be defined in a friend declaration of a
 | 
						|
      //   class . . . . Such a function is implicitly inline.
 | 
						|
      NewFD->setImplicitlyInline();
 | 
						|
    }
 | 
						|
 | 
						|
    SetNestedNameSpecifier(NewFD, D);
 | 
						|
    isExplicitSpecialization = false;
 | 
						|
    isFunctionTemplateSpecialization = false;
 | 
						|
    if (D.isInvalidType())
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
    
 | 
						|
    // Set the lexical context. If the declarator has a C++
 | 
						|
    // scope specifier, or is the object of a friend declaration, the
 | 
						|
    // lexical context will be different from the semantic context.
 | 
						|
    NewFD->setLexicalDeclContext(CurContext);
 | 
						|
        
 | 
						|
    // Match up the template parameter lists with the scope specifier, then
 | 
						|
    // determine whether we have a template or a template specialization.
 | 
						|
    bool Invalid = false;
 | 
						|
    if (TemplateParameterList *TemplateParams
 | 
						|
          = MatchTemplateParametersToScopeSpecifier(
 | 
						|
                                  D.getDeclSpec().getSourceRange().getBegin(),
 | 
						|
                                  D.getIdentifierLoc(),
 | 
						|
                                  D.getCXXScopeSpec(),
 | 
						|
                                  TemplateParamLists.get(),
 | 
						|
                                  TemplateParamLists.size(),
 | 
						|
                                  isFriend,
 | 
						|
                                  isExplicitSpecialization,
 | 
						|
                                  Invalid)) {
 | 
						|
      if (TemplateParams->size() > 0) {
 | 
						|
        // This is a function template
 | 
						|
 | 
						|
        // Check that we can declare a template here.
 | 
						|
        if (CheckTemplateDeclScope(S, TemplateParams))
 | 
						|
          return 0;
 | 
						|
 | 
						|
        // A destructor cannot be a template.
 | 
						|
        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | 
						|
          Diag(NewFD->getLocation(), diag::err_destructor_template);
 | 
						|
          return 0;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If we're adding a template to a dependent context, we may need to 
 | 
						|
        // rebuilding some of the types used within the template parameter list,
 | 
						|
        // now that we know what the current instantiation is.
 | 
						|
        if (DC->isDependentContext()) {
 | 
						|
          ContextRAII SavedContext(*this, DC);
 | 
						|
          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
 | 
						|
            Invalid = true;
 | 
						|
        }
 | 
						|
        
 | 
						|
 | 
						|
        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
 | 
						|
                                                        NewFD->getLocation(),
 | 
						|
                                                        Name, TemplateParams,
 | 
						|
                                                        NewFD);
 | 
						|
        FunctionTemplate->setLexicalDeclContext(CurContext);
 | 
						|
        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
 | 
						|
 | 
						|
        // For source fidelity, store the other template param lists.
 | 
						|
        if (TemplateParamLists.size() > 1) {
 | 
						|
          NewFD->setTemplateParameterListsInfo(Context,
 | 
						|
                                               TemplateParamLists.size() - 1,
 | 
						|
                                               TemplateParamLists.release());
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // This is a function template specialization.
 | 
						|
        isFunctionTemplateSpecialization = true;
 | 
						|
        // For source fidelity, store all the template param lists.
 | 
						|
        NewFD->setTemplateParameterListsInfo(Context,
 | 
						|
                                             TemplateParamLists.size(),
 | 
						|
                                             TemplateParamLists.release());
 | 
						|
 | 
						|
        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
 | 
						|
        if (isFriend) {
 | 
						|
          // We want to remove the "template<>", found here.
 | 
						|
          SourceRange RemoveRange = TemplateParams->getSourceRange();
 | 
						|
 | 
						|
          // If we remove the template<> and the name is not a
 | 
						|
          // template-id, we're actually silently creating a problem:
 | 
						|
          // the friend declaration will refer to an untemplated decl,
 | 
						|
          // and clearly the user wants a template specialization.  So
 | 
						|
          // we need to insert '<>' after the name.
 | 
						|
          SourceLocation InsertLoc;
 | 
						|
          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
 | 
						|
            InsertLoc = D.getName().getSourceRange().getEnd();
 | 
						|
            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
 | 
						|
          }
 | 
						|
 | 
						|
          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
 | 
						|
            << Name << RemoveRange
 | 
						|
            << FixItHint::CreateRemoval(RemoveRange)
 | 
						|
            << FixItHint::CreateInsertion(InsertLoc, "<>");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // All template param lists were matched against the scope specifier:
 | 
						|
      // this is NOT (an explicit specialization of) a template.
 | 
						|
      if (TemplateParamLists.size() > 0)
 | 
						|
        // For source fidelity, store all the template param lists.
 | 
						|
        NewFD->setTemplateParameterListsInfo(Context,
 | 
						|
                                             TemplateParamLists.size(),
 | 
						|
                                             TemplateParamLists.release());
 | 
						|
    }
 | 
						|
 | 
						|
    if (Invalid) {
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      if (FunctionTemplate)
 | 
						|
        FunctionTemplate->setInvalidDecl();
 | 
						|
    }
 | 
						|
 | 
						|
    // If we see "T var();" at block scope, where T is a class type, it is
 | 
						|
    // probably an attempt to initialize a variable, not a function declaration.
 | 
						|
    // We don't catch this case earlier, since there is no ambiguity here.
 | 
						|
    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
 | 
						|
        CurContext->isFunctionOrMethod() &&
 | 
						|
        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
 | 
						|
        D.getDeclSpec().getStorageClassSpecAsWritten()
 | 
						|
          == DeclSpec::SCS_unspecified) {
 | 
						|
      QualType T = R->getAs<FunctionType>()->getResultType();
 | 
						|
      DeclaratorChunk &C = D.getTypeObject(0);
 | 
						|
      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
 | 
						|
          !C.Fun.TrailingReturnType &&
 | 
						|
          C.Fun.getExceptionSpecType() == EST_None) {
 | 
						|
        SourceRange ParenRange(C.Loc, C.EndLoc);
 | 
						|
        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
 | 
						|
 | 
						|
        // If the declaration looks like:
 | 
						|
        //   T var1,
 | 
						|
        //   f();
 | 
						|
        // and name lookup finds a function named 'f', then the ',' was
 | 
						|
        // probably intended to be a ';'.
 | 
						|
        if (!D.isFirstDeclarator() && D.getIdentifier()) {
 | 
						|
          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
 | 
						|
          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
 | 
						|
          if (Comma.getFileID() != Name.getFileID() ||
 | 
						|
              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
 | 
						|
            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
 | 
						|
                                LookupOrdinaryName);
 | 
						|
            if (LookupName(Result, S))
 | 
						|
              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
 | 
						|
                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
 | 
						|
        // Empty parens mean value-initialization, and no parens mean default
 | 
						|
        // initialization. These are equivalent if the default constructor is
 | 
						|
        // user-provided, or if zero-initialization is a no-op.
 | 
						|
        if (RD && RD->hasDefinition() &&
 | 
						|
            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
 | 
						|
          Diag(C.Loc, diag::note_empty_parens_default_ctor)
 | 
						|
            << FixItHint::CreateRemoval(ParenRange);
 | 
						|
        else if (const char *Init = getFixItZeroInitializerForType(T))
 | 
						|
          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
 | 
						|
            << FixItHint::CreateReplacement(ParenRange, Init);
 | 
						|
        else if (LangOpts.CPlusPlus0x)
 | 
						|
          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
 | 
						|
            << FixItHint::CreateReplacement(ParenRange, "{}");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [dcl.fct.spec]p5:
 | 
						|
    //   The virtual specifier shall only be used in declarations of
 | 
						|
    //   nonstatic class member functions that appear within a
 | 
						|
    //   member-specification of a class declaration; see 10.3.
 | 
						|
    //
 | 
						|
    if (isVirtual && !NewFD->isInvalidDecl()) {
 | 
						|
      if (!isVirtualOkay) {
 | 
						|
        Diag(D.getDeclSpec().getVirtualSpecLoc(),
 | 
						|
             diag::err_virtual_non_function);
 | 
						|
      } else if (!CurContext->isRecord()) {
 | 
						|
        // 'virtual' was specified outside of the class.
 | 
						|
        Diag(D.getDeclSpec().getVirtualSpecLoc(), 
 | 
						|
             diag::err_virtual_out_of_class)
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
 | 
						|
      } else if (NewFD->getDescribedFunctionTemplate()) {
 | 
						|
        // C++ [temp.mem]p3:
 | 
						|
        //  A member function template shall not be virtual.
 | 
						|
        Diag(D.getDeclSpec().getVirtualSpecLoc(),
 | 
						|
             diag::err_virtual_member_function_template)
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
 | 
						|
      } else {
 | 
						|
        // Okay: Add virtual to the method.
 | 
						|
        NewFD->setVirtualAsWritten(true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [dcl.fct.spec]p3:
 | 
						|
    //  The inline specifier shall not appear on a block scope function 
 | 
						|
    //  declaration.
 | 
						|
    if (isInline && !NewFD->isInvalidDecl()) {
 | 
						|
      if (CurContext->isFunctionOrMethod()) {
 | 
						|
        // 'inline' is not allowed on block scope function declaration.
 | 
						|
        Diag(D.getDeclSpec().getInlineSpecLoc(), 
 | 
						|
             diag::err_inline_declaration_block_scope) << Name
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [dcl.fct.spec]p6:
 | 
						|
    //  The explicit specifier shall be used only in the declaration of a
 | 
						|
    //  constructor or conversion function within its class definition; 
 | 
						|
    //  see 12.3.1 and 12.3.2.
 | 
						|
    if (isExplicit && !NewFD->isInvalidDecl()) {
 | 
						|
      if (!CurContext->isRecord()) {
 | 
						|
        // 'explicit' was specified outside of the class.
 | 
						|
        Diag(D.getDeclSpec().getExplicitSpecLoc(), 
 | 
						|
             diag::err_explicit_out_of_class)
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
 | 
						|
      } else if (!isa<CXXConstructorDecl>(NewFD) && 
 | 
						|
                 !isa<CXXConversionDecl>(NewFD)) {
 | 
						|
        // 'explicit' was specified on a function that wasn't a constructor
 | 
						|
        // or conversion function.
 | 
						|
        Diag(D.getDeclSpec().getExplicitSpecLoc(),
 | 
						|
             diag::err_explicit_non_ctor_or_conv_function)
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
 | 
						|
      }      
 | 
						|
    }
 | 
						|
 | 
						|
    if (isConstexpr) {
 | 
						|
      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
 | 
						|
      // are implicitly inline.
 | 
						|
      NewFD->setImplicitlyInline();
 | 
						|
 | 
						|
      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
 | 
						|
      // be either constructors or to return a literal type. Therefore,
 | 
						|
      // destructors cannot be declared constexpr.
 | 
						|
      if (isa<CXXDestructorDecl>(NewFD))
 | 
						|
        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
 | 
						|
    }
 | 
						|
 | 
						|
    // If __module_private__ was specified, mark the function accordingly.
 | 
						|
    if (D.getDeclSpec().isModulePrivateSpecified()) {
 | 
						|
      if (isFunctionTemplateSpecialization) {
 | 
						|
        SourceLocation ModulePrivateLoc
 | 
						|
          = D.getDeclSpec().getModulePrivateSpecLoc();
 | 
						|
        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
 | 
						|
          << 0
 | 
						|
          << FixItHint::CreateRemoval(ModulePrivateLoc);
 | 
						|
      } else {
 | 
						|
        NewFD->setModulePrivate();
 | 
						|
        if (FunctionTemplate)
 | 
						|
          FunctionTemplate->setModulePrivate();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isFriend) {
 | 
						|
      // For now, claim that the objects have no previous declaration.
 | 
						|
      if (FunctionTemplate) {
 | 
						|
        FunctionTemplate->setObjectOfFriendDecl(false);
 | 
						|
        FunctionTemplate->setAccess(AS_public);
 | 
						|
      }
 | 
						|
      NewFD->setObjectOfFriendDecl(false);
 | 
						|
      NewFD->setAccess(AS_public);
 | 
						|
    }
 | 
						|
 | 
						|
    // If a function is defined as defaulted or deleted, mark it as such now.
 | 
						|
    switch (D.getFunctionDefinitionKind()) {
 | 
						|
      case FDK_Declaration:
 | 
						|
      case FDK_Definition:
 | 
						|
        break;
 | 
						|
        
 | 
						|
      case FDK_Defaulted:
 | 
						|
        NewFD->setDefaulted();
 | 
						|
        break;
 | 
						|
        
 | 
						|
      case FDK_Deleted:
 | 
						|
        NewFD->setDeletedAsWritten();
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
 | 
						|
        D.isFunctionDefinition()) {
 | 
						|
      // C++ [class.mfct]p2:
 | 
						|
      //   A member function may be defined (8.4) in its class definition, in 
 | 
						|
      //   which case it is an inline member function (7.1.2)
 | 
						|
      NewFD->setImplicitlyInline();
 | 
						|
    }
 | 
						|
 | 
						|
    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
 | 
						|
        !CurContext->isRecord()) {
 | 
						|
      // C++ [class.static]p1:
 | 
						|
      //   A data or function member of a class may be declared static
 | 
						|
      //   in a class definition, in which case it is a static member of
 | 
						|
      //   the class.
 | 
						|
 | 
						|
      // Complain about the 'static' specifier if it's on an out-of-line
 | 
						|
      // member function definition.
 | 
						|
      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | 
						|
           diag::err_static_out_of_line)
 | 
						|
        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Filter out previous declarations that don't match the scope.
 | 
						|
  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
 | 
						|
                       isExplicitSpecialization ||
 | 
						|
                       isFunctionTemplateSpecialization);
 | 
						|
  
 | 
						|
  // Handle GNU asm-label extension (encoded as an attribute).
 | 
						|
  if (Expr *E = (Expr*) D.getAsmLabel()) {
 | 
						|
    // The parser guarantees this is a string.
 | 
						|
    StringLiteral *SE = cast<StringLiteral>(E);
 | 
						|
    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
 | 
						|
                                                SE->getString()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy the parameter declarations from the declarator D to the function
 | 
						|
  // declaration NewFD, if they are available.  First scavenge them into Params.
 | 
						|
  SmallVector<ParmVarDecl*, 16> Params;
 | 
						|
  if (D.isFunctionDeclarator()) {
 | 
						|
    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | 
						|
 | 
						|
    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
 | 
						|
    // function that takes no arguments, not a function that takes a
 | 
						|
    // single void argument.
 | 
						|
    // We let through "const void" here because Sema::GetTypeForDeclarator
 | 
						|
    // already checks for that case.
 | 
						|
    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
 | 
						|
        FTI.ArgInfo[0].Param &&
 | 
						|
        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
 | 
						|
      // Empty arg list, don't push any params.
 | 
						|
      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
 | 
						|
 | 
						|
      // In C++, the empty parameter-type-list must be spelled "void"; a
 | 
						|
      // typedef of void is not permitted.
 | 
						|
      if (getLangOptions().CPlusPlus &&
 | 
						|
          Param->getType().getUnqualifiedType() != Context.VoidTy) {
 | 
						|
        bool IsTypeAlias = false;
 | 
						|
        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
 | 
						|
          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
 | 
						|
        else if (const TemplateSpecializationType *TST =
 | 
						|
                   Param->getType()->getAs<TemplateSpecializationType>())
 | 
						|
          IsTypeAlias = TST->isTypeAlias();
 | 
						|
        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
 | 
						|
          << IsTypeAlias;
 | 
						|
      }
 | 
						|
    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
 | 
						|
      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
 | 
						|
        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
 | 
						|
        assert(Param->getDeclContext() != NewFD && "Was set before ?");
 | 
						|
        Param->setDeclContext(NewFD);
 | 
						|
        Params.push_back(Param);
 | 
						|
 | 
						|
        if (Param->isInvalidDecl())
 | 
						|
          NewFD->setInvalidDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
 | 
						|
    // When we're declaring a function with a typedef, typeof, etc as in the
 | 
						|
    // following example, we'll need to synthesize (unnamed)
 | 
						|
    // parameters for use in the declaration.
 | 
						|
    //
 | 
						|
    // @code
 | 
						|
    // typedef void fn(int);
 | 
						|
    // fn f;
 | 
						|
    // @endcode
 | 
						|
 | 
						|
    // Synthesize a parameter for each argument type.
 | 
						|
    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
 | 
						|
         AE = FT->arg_type_end(); AI != AE; ++AI) {
 | 
						|
      ParmVarDecl *Param =
 | 
						|
        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
 | 
						|
      Param->setScopeInfo(0, Params.size());
 | 
						|
      Params.push_back(Param);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
 | 
						|
           "Should not need args for typedef of non-prototype fn");
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, we know we have the right number of parameters, install them.
 | 
						|
  NewFD->setParams(Params);
 | 
						|
 | 
						|
  // Process the non-inheritable attributes on this declaration.
 | 
						|
  ProcessDeclAttributes(S, NewFD, D,
 | 
						|
                        /*NonInheritable=*/true, /*Inheritable=*/false);
 | 
						|
 | 
						|
  if (!getLangOptions().CPlusPlus) {
 | 
						|
    // Perform semantic checking on the function declaration.
 | 
						|
    bool isExplicitSpecialization=false;
 | 
						|
    if (!NewFD->isInvalidDecl()) {
 | 
						|
      if (NewFD->getResultType()->isVariablyModifiedType()) {
 | 
						|
        // Functions returning a variably modified type violate C99 6.7.5.2p2
 | 
						|
        // because all functions have linkage.
 | 
						|
        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
 | 
						|
        NewFD->setInvalidDecl();
 | 
						|
      } else {
 | 
						|
        if (NewFD->isMain()) 
 | 
						|
          CheckMain(NewFD, D.getDeclSpec());
 | 
						|
        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
 | 
						|
                                                    isExplicitSpecialization));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
 | 
						|
            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
 | 
						|
           "previous declaration set still overloaded");
 | 
						|
  } else {
 | 
						|
    // If the declarator is a template-id, translate the parser's template 
 | 
						|
    // argument list into our AST format.
 | 
						|
    bool HasExplicitTemplateArgs = false;
 | 
						|
    TemplateArgumentListInfo TemplateArgs;
 | 
						|
    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
 | 
						|
      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
 | 
						|
      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
 | 
						|
      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
 | 
						|
      ASTTemplateArgsPtr TemplateArgsPtr(*this,
 | 
						|
                                         TemplateId->getTemplateArgs(),
 | 
						|
                                         TemplateId->NumArgs);
 | 
						|
      translateTemplateArguments(TemplateArgsPtr,
 | 
						|
                                 TemplateArgs);
 | 
						|
      TemplateArgsPtr.release();
 | 
						|
    
 | 
						|
      HasExplicitTemplateArgs = true;
 | 
						|
    
 | 
						|
      if (NewFD->isInvalidDecl()) {
 | 
						|
        HasExplicitTemplateArgs = false;
 | 
						|
      } else if (FunctionTemplate) {
 | 
						|
        // Function template with explicit template arguments.
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
 | 
						|
          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
 | 
						|
 | 
						|
        HasExplicitTemplateArgs = false;
 | 
						|
      } else if (!isFunctionTemplateSpecialization && 
 | 
						|
                 !D.getDeclSpec().isFriendSpecified()) {
 | 
						|
        // We have encountered something that the user meant to be a 
 | 
						|
        // specialization (because it has explicitly-specified template
 | 
						|
        // arguments) but that was not introduced with a "template<>" (or had
 | 
						|
        // too few of them).
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
 | 
						|
          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
 | 
						|
          << FixItHint::CreateInsertion(
 | 
						|
                                    D.getDeclSpec().getSourceRange().getBegin(),
 | 
						|
                                        "template<> ");
 | 
						|
        isFunctionTemplateSpecialization = true;
 | 
						|
      } else {
 | 
						|
        // "friend void foo<>(int);" is an implicit specialization decl.
 | 
						|
        isFunctionTemplateSpecialization = true;
 | 
						|
      }
 | 
						|
    } else if (isFriend && isFunctionTemplateSpecialization) {
 | 
						|
      // This combination is only possible in a recovery case;  the user
 | 
						|
      // wrote something like:
 | 
						|
      //   template <> friend void foo(int);
 | 
						|
      // which we're recovering from as if the user had written:
 | 
						|
      //   friend void foo<>(int);
 | 
						|
      // Go ahead and fake up a template id.
 | 
						|
      HasExplicitTemplateArgs = true;
 | 
						|
        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
 | 
						|
      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // If it's a friend (and only if it's a friend), it's possible
 | 
						|
    // that either the specialized function type or the specialized
 | 
						|
    // template is dependent, and therefore matching will fail.  In
 | 
						|
    // this case, don't check the specialization yet.
 | 
						|
    bool InstantiationDependent = false;
 | 
						|
    if (isFunctionTemplateSpecialization && isFriend &&
 | 
						|
        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
 | 
						|
         TemplateSpecializationType::anyDependentTemplateArguments(
 | 
						|
            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
 | 
						|
            InstantiationDependent))) {
 | 
						|
      assert(HasExplicitTemplateArgs &&
 | 
						|
             "friend function specialization without template args");
 | 
						|
      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
 | 
						|
                                                       Previous))
 | 
						|
        NewFD->setInvalidDecl();
 | 
						|
    } else if (isFunctionTemplateSpecialization) {
 | 
						|
      if (CurContext->isDependentContext() && CurContext->isRecord() 
 | 
						|
          && !isFriend) {
 | 
						|
        isDependentClassScopeExplicitSpecialization = true;
 | 
						|
        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ? 
 | 
						|
          diag::ext_function_specialization_in_class :
 | 
						|
          diag::err_function_specialization_in_class)
 | 
						|
          << NewFD->getDeclName();
 | 
						|
      } else if (CheckFunctionTemplateSpecialization(NewFD,
 | 
						|
                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
 | 
						|
                                                     Previous))
 | 
						|
        NewFD->setInvalidDecl();
 | 
						|
      
 | 
						|
      // C++ [dcl.stc]p1:
 | 
						|
      //   A storage-class-specifier shall not be specified in an explicit
 | 
						|
      //   specialization (14.7.3)
 | 
						|
      if (SC != SC_None) {
 | 
						|
        if (SC != NewFD->getStorageClass())
 | 
						|
          Diag(NewFD->getLocation(),
 | 
						|
               diag::err_explicit_specialization_inconsistent_storage_class)
 | 
						|
            << SC
 | 
						|
            << FixItHint::CreateRemoval(
 | 
						|
                                      D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
            
 | 
						|
        else
 | 
						|
          Diag(NewFD->getLocation(), 
 | 
						|
               diag::ext_explicit_specialization_storage_class)
 | 
						|
            << FixItHint::CreateRemoval(
 | 
						|
                                      D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
      }
 | 
						|
      
 | 
						|
    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
 | 
						|
      if (CheckMemberSpecialization(NewFD, Previous))
 | 
						|
          NewFD->setInvalidDecl();
 | 
						|
    }
 | 
						|
 | 
						|
    // Perform semantic checking on the function declaration.
 | 
						|
    if (!isDependentClassScopeExplicitSpecialization) {
 | 
						|
      if (NewFD->isInvalidDecl()) {
 | 
						|
        // If this is a class member, mark the class invalid immediately.
 | 
						|
        // This avoids some consistency errors later.
 | 
						|
        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
 | 
						|
          methodDecl->getParent()->setInvalidDecl();
 | 
						|
      } else {
 | 
						|
        if (NewFD->isMain()) 
 | 
						|
          CheckMain(NewFD, D.getDeclSpec());
 | 
						|
        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
 | 
						|
                                                    isExplicitSpecialization));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
 | 
						|
            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
 | 
						|
           "previous declaration set still overloaded");
 | 
						|
 | 
						|
    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
 | 
						|
        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
 | 
						|
    NamedDecl *PrincipalDecl = (FunctionTemplate
 | 
						|
                                ? cast<NamedDecl>(FunctionTemplate)
 | 
						|
                                : NewFD);
 | 
						|
 | 
						|
    if (isFriend && D.isRedeclaration()) {
 | 
						|
      AccessSpecifier Access = AS_public;
 | 
						|
      if (!NewFD->isInvalidDecl())
 | 
						|
        Access = NewFD->getPreviousDecl()->getAccess();
 | 
						|
 | 
						|
      NewFD->setAccess(Access);
 | 
						|
      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
 | 
						|
 | 
						|
      PrincipalDecl->setObjectOfFriendDecl(true);
 | 
						|
    }
 | 
						|
 | 
						|
    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
 | 
						|
        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
 | 
						|
      PrincipalDecl->setNonMemberOperator();
 | 
						|
 | 
						|
    // If we have a function template, check the template parameter
 | 
						|
    // list. This will check and merge default template arguments.
 | 
						|
    if (FunctionTemplate) {
 | 
						|
      FunctionTemplateDecl *PrevTemplate = 
 | 
						|
                                     FunctionTemplate->getPreviousDecl();
 | 
						|
      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
 | 
						|
                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
 | 
						|
                            D.getDeclSpec().isFriendSpecified()
 | 
						|
                              ? (D.isFunctionDefinition()
 | 
						|
                                   ? TPC_FriendFunctionTemplateDefinition
 | 
						|
                                   : TPC_FriendFunctionTemplate)
 | 
						|
                              : (D.getCXXScopeSpec().isSet() && 
 | 
						|
                                 DC && DC->isRecord() && 
 | 
						|
                                 DC->isDependentContext())
 | 
						|
                                  ? TPC_ClassTemplateMember
 | 
						|
                                  : TPC_FunctionTemplate);
 | 
						|
    }
 | 
						|
 | 
						|
    if (NewFD->isInvalidDecl()) {
 | 
						|
      // Ignore all the rest of this.
 | 
						|
    } else if (!D.isRedeclaration()) {
 | 
						|
      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
 | 
						|
                                       AddToScope };
 | 
						|
      // Fake up an access specifier if it's supposed to be a class member.
 | 
						|
      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
 | 
						|
        NewFD->setAccess(AS_public);
 | 
						|
 | 
						|
      // Qualified decls generally require a previous declaration.
 | 
						|
      if (D.getCXXScopeSpec().isSet()) {
 | 
						|
        // ...with the major exception of templated-scope or
 | 
						|
        // dependent-scope friend declarations.
 | 
						|
 | 
						|
        // TODO: we currently also suppress this check in dependent
 | 
						|
        // contexts because (1) the parameter depth will be off when
 | 
						|
        // matching friend templates and (2) we might actually be
 | 
						|
        // selecting a friend based on a dependent factor.  But there
 | 
						|
        // are situations where these conditions don't apply and we
 | 
						|
        // can actually do this check immediately.
 | 
						|
        if (isFriend &&
 | 
						|
            (TemplateParamLists.size() ||
 | 
						|
             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
 | 
						|
             CurContext->isDependentContext())) {
 | 
						|
          // ignore these
 | 
						|
        } else {
 | 
						|
          // The user tried to provide an out-of-line definition for a
 | 
						|
          // function that is a member of a class or namespace, but there
 | 
						|
          // was no such member function declared (C++ [class.mfct]p2,
 | 
						|
          // C++ [namespace.memdef]p2). For example:
 | 
						|
          //
 | 
						|
          // class X {
 | 
						|
          //   void f() const;
 | 
						|
          // };
 | 
						|
          //
 | 
						|
          // void X::f() { } // ill-formed
 | 
						|
          //
 | 
						|
          // Complain about this problem, and attempt to suggest close
 | 
						|
          // matches (e.g., those that differ only in cv-qualifiers and
 | 
						|
          // whether the parameter types are references).
 | 
						|
 | 
						|
          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
 | 
						|
                                                               NewFD,
 | 
						|
                                                               ExtraArgs)) {
 | 
						|
            AddToScope = ExtraArgs.AddToScope;
 | 
						|
            return Result;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Unqualified local friend declarations are required to resolve
 | 
						|
        // to something.
 | 
						|
      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
 | 
						|
        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
 | 
						|
                                                             NewFD,
 | 
						|
                                                             ExtraArgs)) {
 | 
						|
          AddToScope = ExtraArgs.AddToScope;
 | 
						|
          return Result;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
 | 
						|
               !isFriend && !isFunctionTemplateSpecialization &&
 | 
						|
               !isExplicitSpecialization) {
 | 
						|
      // An out-of-line member function declaration must also be a
 | 
						|
      // definition (C++ [dcl.meaning]p1).
 | 
						|
      // Note that this is not the case for explicit specializations of
 | 
						|
      // function templates or member functions of class templates, per
 | 
						|
      // C++ [temp.expl.spec]p2. We also allow these declarations as an 
 | 
						|
      // extension for compatibility with old SWIG code which likes to 
 | 
						|
      // generate them.
 | 
						|
      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
 | 
						|
        << D.getCXXScopeSpec().getRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 
 | 
						|
 
 | 
						|
  // Handle attributes. We need to have merged decls when handling attributes
 | 
						|
  // (for example to check for conflicts, etc).
 | 
						|
  // FIXME: This needs to happen before we merge declarations. Then,
 | 
						|
  // let attribute merging cope with attribute conflicts.
 | 
						|
  ProcessDeclAttributes(S, NewFD, D,
 | 
						|
                        /*NonInheritable=*/false, /*Inheritable=*/true);
 | 
						|
 | 
						|
  // attributes declared post-definition are currently ignored
 | 
						|
  // FIXME: This should happen during attribute merging
 | 
						|
  if (D.isRedeclaration() && Previous.isSingleResult()) {
 | 
						|
    const FunctionDecl *Def;
 | 
						|
    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
 | 
						|
    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
 | 
						|
      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
 | 
						|
      Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  AddKnownFunctionAttributes(NewFD);
 | 
						|
 | 
						|
  if (NewFD->hasAttr<OverloadableAttr>() && 
 | 
						|
      !NewFD->getType()->getAs<FunctionProtoType>()) {
 | 
						|
    Diag(NewFD->getLocation(),
 | 
						|
         diag::err_attribute_overloadable_no_prototype)
 | 
						|
      << NewFD;
 | 
						|
 | 
						|
    // Turn this into a variadic function with no parameters.
 | 
						|
    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
 | 
						|
    FunctionProtoType::ExtProtoInfo EPI;
 | 
						|
    EPI.Variadic = true;
 | 
						|
    EPI.ExtInfo = FT->getExtInfo();
 | 
						|
 | 
						|
    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
 | 
						|
    NewFD->setType(R);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there's a #pragma GCC visibility in scope, and this isn't a class
 | 
						|
  // member, set the visibility of this function.
 | 
						|
  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
 | 
						|
    AddPushedVisibilityAttribute(NewFD);
 | 
						|
 | 
						|
  // If there's a #pragma clang arc_cf_code_audited in scope, consider
 | 
						|
  // marking the function.
 | 
						|
  AddCFAuditedAttribute(NewFD);
 | 
						|
 | 
						|
  // If this is a locally-scoped extern C function, update the
 | 
						|
  // map of such names.
 | 
						|
  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
 | 
						|
      && !NewFD->isInvalidDecl())
 | 
						|
    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
 | 
						|
 | 
						|
  // Set this FunctionDecl's range up to the right paren.
 | 
						|
  NewFD->setRangeEnd(D.getSourceRange().getEnd());
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    if (FunctionTemplate) {
 | 
						|
      if (NewFD->isInvalidDecl())
 | 
						|
        FunctionTemplate->setInvalidDecl();
 | 
						|
      return FunctionTemplate;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MarkUnusedFileScopedDecl(NewFD);
 | 
						|
 | 
						|
  if (getLangOptions().CUDA)
 | 
						|
    if (IdentifierInfo *II = NewFD->getIdentifier())
 | 
						|
      if (!NewFD->isInvalidDecl() &&
 | 
						|
          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
 | 
						|
        if (II->isStr("cudaConfigureCall")) {
 | 
						|
          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
 | 
						|
            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
 | 
						|
 | 
						|
          Context.setcudaConfigureCallDecl(NewFD);
 | 
						|
        }
 | 
						|
      }
 | 
						|
  
 | 
						|
  // Here we have an function template explicit specialization at class scope.
 | 
						|
  // The actually specialization will be postponed to template instatiation
 | 
						|
  // time via the ClassScopeFunctionSpecializationDecl node.
 | 
						|
  if (isDependentClassScopeExplicitSpecialization) {
 | 
						|
    ClassScopeFunctionSpecializationDecl *NewSpec =
 | 
						|
                         ClassScopeFunctionSpecializationDecl::Create(
 | 
						|
                                Context, CurContext,  SourceLocation(), 
 | 
						|
                                cast<CXXMethodDecl>(NewFD));
 | 
						|
    CurContext->addDecl(NewSpec);
 | 
						|
    AddToScope = false;
 | 
						|
  }
 | 
						|
 | 
						|
  return NewFD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic checking of a new function declaration.
 | 
						|
///
 | 
						|
/// Performs semantic analysis of the new function declaration
 | 
						|
/// NewFD. This routine performs all semantic checking that does not
 | 
						|
/// require the actual declarator involved in the declaration, and is
 | 
						|
/// used both for the declaration of functions as they are parsed
 | 
						|
/// (called via ActOnDeclarator) and for the declaration of functions
 | 
						|
/// that have been instantiated via C++ template instantiation (called
 | 
						|
/// via InstantiateDecl).
 | 
						|
///
 | 
						|
/// \param IsExplicitSpecialiation whether this new function declaration is
 | 
						|
/// an explicit specialization of the previous declaration.
 | 
						|
///
 | 
						|
/// This sets NewFD->isInvalidDecl() to true if there was an error.
 | 
						|
///
 | 
						|
/// Returns true if the function declaration is a redeclaration.
 | 
						|
bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
 | 
						|
                                    LookupResult &Previous,
 | 
						|
                                    bool IsExplicitSpecialization) {
 | 
						|
  assert(!NewFD->getResultType()->isVariablyModifiedType() 
 | 
						|
         && "Variably modified return types are not handled here");
 | 
						|
 | 
						|
  // Check for a previous declaration of this name.
 | 
						|
  if (Previous.empty() && NewFD->isExternC()) {
 | 
						|
    // Since we did not find anything by this name and we're declaring
 | 
						|
    // an extern "C" function, look for a non-visible extern "C"
 | 
						|
    // declaration with the same name.
 | 
						|
    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
 | 
						|
      = findLocallyScopedExternalDecl(NewFD->getDeclName());
 | 
						|
    if (Pos != LocallyScopedExternalDecls.end())
 | 
						|
      Previous.addDecl(Pos->second);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Redeclaration = false;
 | 
						|
 | 
						|
  // Merge or overload the declaration with an existing declaration of
 | 
						|
  // the same name, if appropriate.
 | 
						|
  if (!Previous.empty()) {
 | 
						|
    // Determine whether NewFD is an overload of PrevDecl or
 | 
						|
    // a declaration that requires merging. If it's an overload,
 | 
						|
    // there's no more work to do here; we'll just add the new
 | 
						|
    // function to the scope.
 | 
						|
 | 
						|
    NamedDecl *OldDecl = 0;
 | 
						|
    if (!AllowOverloadingOfFunction(Previous, Context)) {
 | 
						|
      Redeclaration = true;
 | 
						|
      OldDecl = Previous.getFoundDecl();
 | 
						|
    } else {
 | 
						|
      switch (CheckOverload(S, NewFD, Previous, OldDecl,
 | 
						|
                            /*NewIsUsingDecl*/ false)) {
 | 
						|
      case Ovl_Match:
 | 
						|
        Redeclaration = true;
 | 
						|
        break;
 | 
						|
 | 
						|
      case Ovl_NonFunction:
 | 
						|
        Redeclaration = true;
 | 
						|
        break;
 | 
						|
 | 
						|
      case Ovl_Overload:
 | 
						|
        Redeclaration = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
 | 
						|
        // If a function name is overloadable in C, then every function
 | 
						|
        // with that name must be marked "overloadable".
 | 
						|
        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
 | 
						|
          << Redeclaration << NewFD;
 | 
						|
        NamedDecl *OverloadedDecl = 0;
 | 
						|
        if (Redeclaration)
 | 
						|
          OverloadedDecl = OldDecl;
 | 
						|
        else if (!Previous.empty())
 | 
						|
          OverloadedDecl = Previous.getRepresentativeDecl();
 | 
						|
        if (OverloadedDecl)
 | 
						|
          Diag(OverloadedDecl->getLocation(),
 | 
						|
               diag::note_attribute_overloadable_prev_overload);
 | 
						|
        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
 | 
						|
                                                        Context));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Redeclaration) {
 | 
						|
      // NewFD and OldDecl represent declarations that need to be
 | 
						|
      // merged.
 | 
						|
      if (MergeFunctionDecl(NewFD, OldDecl)) {
 | 
						|
        NewFD->setInvalidDecl();
 | 
						|
        return Redeclaration;
 | 
						|
      }
 | 
						|
 | 
						|
      Previous.clear();
 | 
						|
      Previous.addDecl(OldDecl);
 | 
						|
 | 
						|
      if (FunctionTemplateDecl *OldTemplateDecl
 | 
						|
                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
 | 
						|
        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
 | 
						|
        FunctionTemplateDecl *NewTemplateDecl
 | 
						|
          = NewFD->getDescribedFunctionTemplate();
 | 
						|
        assert(NewTemplateDecl && "Template/non-template mismatch");
 | 
						|
        if (CXXMethodDecl *Method 
 | 
						|
              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
 | 
						|
          Method->setAccess(OldTemplateDecl->getAccess());
 | 
						|
          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If this is an explicit specialization of a member that is a function
 | 
						|
        // template, mark it as a member specialization.
 | 
						|
        if (IsExplicitSpecialization && 
 | 
						|
            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
 | 
						|
          NewTemplateDecl->setMemberSpecialization();
 | 
						|
          assert(OldTemplateDecl->isMemberSpecialization());
 | 
						|
        }
 | 
						|
        
 | 
						|
      } else {
 | 
						|
        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
 | 
						|
          NewFD->setAccess(OldDecl->getAccess());
 | 
						|
        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Semantic checking for this function declaration (in isolation).
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // C++-specific checks.
 | 
						|
    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
 | 
						|
      CheckConstructor(Constructor);
 | 
						|
    } else if (CXXDestructorDecl *Destructor = 
 | 
						|
                dyn_cast<CXXDestructorDecl>(NewFD)) {
 | 
						|
      CXXRecordDecl *Record = Destructor->getParent();
 | 
						|
      QualType ClassType = Context.getTypeDeclType(Record);
 | 
						|
      
 | 
						|
      // FIXME: Shouldn't we be able to perform this check even when the class
 | 
						|
      // type is dependent? Both gcc and edg can handle that.
 | 
						|
      if (!ClassType->isDependentType()) {
 | 
						|
        DeclarationName Name
 | 
						|
          = Context.DeclarationNames.getCXXDestructorName(
 | 
						|
                                        Context.getCanonicalType(ClassType));
 | 
						|
        if (NewFD->getDeclName() != Name) {
 | 
						|
          Diag(NewFD->getLocation(), diag::err_destructor_name);
 | 
						|
          NewFD->setInvalidDecl();
 | 
						|
          return Redeclaration;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (CXXConversionDecl *Conversion
 | 
						|
               = dyn_cast<CXXConversionDecl>(NewFD)) {
 | 
						|
      ActOnConversionDeclarator(Conversion);
 | 
						|
    }
 | 
						|
 | 
						|
    // Find any virtual functions that this function overrides.
 | 
						|
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
 | 
						|
      if (!Method->isFunctionTemplateSpecialization() && 
 | 
						|
          !Method->getDescribedFunctionTemplate()) {
 | 
						|
        if (AddOverriddenMethods(Method->getParent(), Method)) {
 | 
						|
          // If the function was marked as "static", we have a problem.
 | 
						|
          if (NewFD->getStorageClass() == SC_Static) {
 | 
						|
            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
 | 
						|
              << NewFD->getDeclName();
 | 
						|
            for (CXXMethodDecl::method_iterator 
 | 
						|
                      Overridden = Method->begin_overridden_methods(),
 | 
						|
                   OverriddenEnd = Method->end_overridden_methods();
 | 
						|
                 Overridden != OverriddenEnd;
 | 
						|
                 ++Overridden) {
 | 
						|
              Diag((*Overridden)->getLocation(), 
 | 
						|
                   diag::note_overridden_virtual_function);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Extra checking for C++ overloaded operators (C++ [over.oper]).
 | 
						|
    if (NewFD->isOverloadedOperator() &&
 | 
						|
        CheckOverloadedOperatorDeclaration(NewFD)) {
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return Redeclaration;
 | 
						|
    }
 | 
						|
 | 
						|
    // Extra checking for C++0x literal operators (C++0x [over.literal]).
 | 
						|
    if (NewFD->getLiteralIdentifier() &&
 | 
						|
        CheckLiteralOperatorDeclaration(NewFD)) {
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return Redeclaration;
 | 
						|
    }
 | 
						|
 | 
						|
    // In C++, check default arguments now that we have merged decls. Unless
 | 
						|
    // the lexical context is the class, because in this case this is done
 | 
						|
    // during delayed parsing anyway.
 | 
						|
    if (!CurContext->isRecord())
 | 
						|
      CheckCXXDefaultArguments(NewFD);
 | 
						|
    
 | 
						|
    // If this function declares a builtin function, check the type of this
 | 
						|
    // declaration against the expected type for the builtin. 
 | 
						|
    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
 | 
						|
      ASTContext::GetBuiltinTypeError Error;
 | 
						|
      QualType T = Context.GetBuiltinType(BuiltinID, Error);
 | 
						|
      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
 | 
						|
        // The type of this function differs from the type of the builtin,
 | 
						|
        // so forget about the builtin entirely.
 | 
						|
        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Redeclaration;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
 | 
						|
  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
 | 
						|
  //   static or constexpr is ill-formed.
 | 
						|
  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
 | 
						|
  //   shall not appear in a declaration of main.
 | 
						|
  // static main is not an error under C99, but we should warn about it.
 | 
						|
  if (FD->getStorageClass() == SC_Static)
 | 
						|
    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus 
 | 
						|
         ? diag::err_static_main : diag::warn_static_main) 
 | 
						|
      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
 | 
						|
  if (FD->isInlineSpecified())
 | 
						|
    Diag(DS.getInlineSpecLoc(), diag::err_inline_main) 
 | 
						|
      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
 | 
						|
  if (FD->isConstexpr()) {
 | 
						|
    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
 | 
						|
      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
 | 
						|
    FD->setConstexpr(false);
 | 
						|
  }
 | 
						|
 | 
						|
  QualType T = FD->getType();
 | 
						|
  assert(T->isFunctionType() && "function decl is not of function type");
 | 
						|
  const FunctionType* FT = T->getAs<FunctionType>();
 | 
						|
 | 
						|
  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
 | 
						|
    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
 | 
						|
    FD->setInvalidDecl(true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Treat protoless main() as nullary.
 | 
						|
  if (isa<FunctionNoProtoType>(FT)) return;
 | 
						|
 | 
						|
  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
 | 
						|
  unsigned nparams = FTP->getNumArgs();
 | 
						|
  assert(FD->getNumParams() == nparams);
 | 
						|
 | 
						|
  bool HasExtraParameters = (nparams > 3);
 | 
						|
 | 
						|
  // Darwin passes an undocumented fourth argument of type char**.  If
 | 
						|
  // other platforms start sprouting these, the logic below will start
 | 
						|
  // getting shifty.
 | 
						|
  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
 | 
						|
    HasExtraParameters = false;
 | 
						|
 | 
						|
  if (HasExtraParameters) {
 | 
						|
    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
 | 
						|
    FD->setInvalidDecl(true);
 | 
						|
    nparams = 3;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: a lot of the following diagnostics would be improved
 | 
						|
  // if we had some location information about types.
 | 
						|
 | 
						|
  QualType CharPP =
 | 
						|
    Context.getPointerType(Context.getPointerType(Context.CharTy));
 | 
						|
  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
 | 
						|
 | 
						|
  for (unsigned i = 0; i < nparams; ++i) {
 | 
						|
    QualType AT = FTP->getArgType(i);
 | 
						|
 | 
						|
    bool mismatch = true;
 | 
						|
 | 
						|
    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
 | 
						|
      mismatch = false;
 | 
						|
    else if (Expected[i] == CharPP) {
 | 
						|
      // As an extension, the following forms are okay:
 | 
						|
      //   char const **
 | 
						|
      //   char const * const *
 | 
						|
      //   char * const *
 | 
						|
 | 
						|
      QualifierCollector qs;
 | 
						|
      const PointerType* PT;
 | 
						|
      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
 | 
						|
          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
 | 
						|
          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
 | 
						|
        qs.removeConst();
 | 
						|
        mismatch = !qs.empty();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (mismatch) {
 | 
						|
      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
 | 
						|
      // TODO: suggest replacing given type with expected type
 | 
						|
      FD->setInvalidDecl(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (nparams == 1 && !FD->isInvalidDecl()) {
 | 
						|
    Diag(FD->getLocation(), diag::warn_main_one_arg);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
 | 
						|
    Diag(FD->getLocation(), diag::err_main_template_decl);
 | 
						|
    FD->setInvalidDecl();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
 | 
						|
  // FIXME: Need strict checking.  In C89, we need to check for
 | 
						|
  // any assignment, increment, decrement, function-calls, or
 | 
						|
  // commas outside of a sizeof.  In C99, it's the same list,
 | 
						|
  // except that the aforementioned are allowed in unevaluated
 | 
						|
  // expressions.  Everything else falls under the
 | 
						|
  // "may accept other forms of constant expressions" exception.
 | 
						|
  // (We never end up here for C++, so the constant expression
 | 
						|
  // rules there don't matter.)
 | 
						|
  if (Init->isConstantInitializer(Context, false))
 | 
						|
    return false;
 | 
						|
  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
 | 
						|
    << Init->getSourceRange();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // Visits an initialization expression to see if OrigDecl is evaluated in
 | 
						|
  // its own initialization and throws a warning if it does.
 | 
						|
  class SelfReferenceChecker
 | 
						|
      : public EvaluatedExprVisitor<SelfReferenceChecker> {
 | 
						|
    Sema &S;
 | 
						|
    Decl *OrigDecl;
 | 
						|
    bool isRecordType;
 | 
						|
    bool isPODType;
 | 
						|
 | 
						|
  public:
 | 
						|
    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
 | 
						|
 | 
						|
    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
 | 
						|
                                                    S(S), OrigDecl(OrigDecl) {
 | 
						|
      isPODType = false;
 | 
						|
      isRecordType = false;
 | 
						|
      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
 | 
						|
        isPODType = VD->getType().isPODType(S.Context);
 | 
						|
        isRecordType = VD->getType()->isRecordType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitExpr(Expr *E) {
 | 
						|
      if (isa<ObjCMessageExpr>(*E)) return;
 | 
						|
      if (isRecordType) {
 | 
						|
        Expr *expr = E;
 | 
						|
        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
 | 
						|
          ValueDecl *VD = ME->getMemberDecl();
 | 
						|
          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
 | 
						|
          expr = ME->getBase();
 | 
						|
        }
 | 
						|
        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
 | 
						|
          HandleDeclRefExpr(DRE);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Inherited::VisitExpr(E);
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitMemberExpr(MemberExpr *E) {
 | 
						|
      if (E->getType()->canDecayToPointerType()) return;
 | 
						|
      if (isa<FieldDecl>(E->getMemberDecl()))
 | 
						|
        if (DeclRefExpr *DRE
 | 
						|
              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
 | 
						|
          HandleDeclRefExpr(DRE);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      Inherited::VisitMemberExpr(E);
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
 | 
						|
      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
 | 
						|
          (isRecordType && E->getCastKind() == CK_NoOp)) {
 | 
						|
        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
 | 
						|
        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
 | 
						|
          SubExpr = ME->getBase()->IgnoreParenImpCasts();
 | 
						|
        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
 | 
						|
          HandleDeclRefExpr(DRE);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Inherited::VisitImplicitCastExpr(E);
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitUnaryOperator(UnaryOperator *E) {
 | 
						|
      // For POD record types, addresses of its own members are well-defined.
 | 
						|
      if (isRecordType && isPODType) return;
 | 
						|
      Inherited::VisitUnaryOperator(E);
 | 
						|
    } 
 | 
						|
    
 | 
						|
    void HandleDeclRefExpr(DeclRefExpr *DRE) {
 | 
						|
      Decl* ReferenceDecl = DRE->getDecl(); 
 | 
						|
      if (OrigDecl != ReferenceDecl) return;
 | 
						|
      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
 | 
						|
                          Sema::NotForRedeclaration);
 | 
						|
      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
 | 
						|
                            S.PDiag(diag::warn_uninit_self_reference_in_init)
 | 
						|
                              << Result.getLookupName()
 | 
						|
                              << OrigDecl->getLocation()
 | 
						|
                              << DRE->getSourceRange());
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// CheckSelfReference - Warns if OrigDecl is used in expression E.
 | 
						|
void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
 | 
						|
  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
 | 
						|
}
 | 
						|
 | 
						|
/// AddInitializerToDecl - Adds the initializer Init to the
 | 
						|
/// declaration dcl. If DirectInit is true, this is C++ direct
 | 
						|
/// initialization rather than copy initialization.
 | 
						|
void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
 | 
						|
                                bool DirectInit, bool TypeMayContainAuto) {
 | 
						|
  // If there is no declaration, there was an error parsing it.  Just ignore
 | 
						|
  // the initializer.
 | 
						|
  if (RealDecl == 0 || RealDecl->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check for self-references within variable initializers.
 | 
						|
  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
 | 
						|
    // Variables declared within a function/method body are handled
 | 
						|
    // by a dataflow analysis.
 | 
						|
    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
 | 
						|
      CheckSelfReference(RealDecl, Init);    
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    CheckSelfReference(RealDecl, Init);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
 | 
						|
    // With declarators parsed the way they are, the parser cannot
 | 
						|
    // distinguish between a normal initializer and a pure-specifier.
 | 
						|
    // Thus this grotesque test.
 | 
						|
    IntegerLiteral *IL;
 | 
						|
    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
 | 
						|
        Context.getCanonicalType(IL->getType()) == Context.IntTy)
 | 
						|
      CheckPureMethod(Method, Init->getSourceRange());
 | 
						|
    else {
 | 
						|
      Diag(Method->getLocation(), diag::err_member_function_initialization)
 | 
						|
        << Method->getDeclName() << Init->getSourceRange();
 | 
						|
      Method->setInvalidDecl();
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
 | 
						|
  if (!VDecl) {
 | 
						|
    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
 | 
						|
    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
 | 
						|
    RealDecl->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
 | 
						|
  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
 | 
						|
    TypeSourceInfo *DeducedType = 0;
 | 
						|
    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
 | 
						|
            DAR_Failed)
 | 
						|
      DiagnoseAutoDeductionFailure(VDecl, Init);
 | 
						|
    if (!DeducedType) {
 | 
						|
      RealDecl->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    VDecl->setTypeSourceInfo(DeducedType);
 | 
						|
    VDecl->setType(DeducedType->getType());
 | 
						|
 | 
						|
    // In ARC, infer lifetime.
 | 
						|
    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
 | 
						|
      VDecl->setInvalidDecl();
 | 
						|
 | 
						|
    // If this is a redeclaration, check that the type we just deduced matches
 | 
						|
    // the previously declared type.
 | 
						|
    if (VarDecl *Old = VDecl->getPreviousDecl())
 | 
						|
      MergeVarDeclTypes(VDecl, Old);
 | 
						|
  }
 | 
						|
 | 
						|
  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
 | 
						|
    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
 | 
						|
    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
 | 
						|
    VDecl->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // A definition must end up with a complete type, which means it must be
 | 
						|
  // complete with the restriction that an array type might be completed by the
 | 
						|
  // initializer; note that later code assumes this restriction.
 | 
						|
  QualType BaseDeclType = VDecl->getType();
 | 
						|
  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
 | 
						|
    BaseDeclType = Array->getElementType();
 | 
						|
  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
 | 
						|
                          diag::err_typecheck_decl_incomplete_type)) {
 | 
						|
    RealDecl->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The variable can not have an abstract class type.
 | 
						|
  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
 | 
						|
                             diag::err_abstract_type_in_decl,
 | 
						|
                             AbstractVariableType))
 | 
						|
    VDecl->setInvalidDecl();
 | 
						|
 | 
						|
  const VarDecl *Def;
 | 
						|
  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
 | 
						|
    Diag(VDecl->getLocation(), diag::err_redefinition)
 | 
						|
      << VDecl->getDeclName();
 | 
						|
    Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
    VDecl->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  const VarDecl* PrevInit = 0;
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // C++ [class.static.data]p4
 | 
						|
    //   If a static data member is of const integral or const
 | 
						|
    //   enumeration type, its declaration in the class definition can
 | 
						|
    //   specify a constant-initializer which shall be an integral
 | 
						|
    //   constant expression (5.19). In that case, the member can appear
 | 
						|
    //   in integral constant expressions. The member shall still be
 | 
						|
    //   defined in a namespace scope if it is used in the program and the
 | 
						|
    //   namespace scope definition shall not contain an initializer.
 | 
						|
    //
 | 
						|
    // We already performed a redefinition check above, but for static
 | 
						|
    // data members we also need to check whether there was an in-class
 | 
						|
    // declaration with an initializer.
 | 
						|
    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
 | 
						|
      Diag(VDecl->getLocation(), diag::err_redefinition) 
 | 
						|
        << VDecl->getDeclName();
 | 
						|
      Diag(PrevInit->getLocation(), diag::note_previous_definition);
 | 
						|
      return;
 | 
						|
    }  
 | 
						|
 | 
						|
    if (VDecl->hasLocalStorage())
 | 
						|
      getCurFunction()->setHasBranchProtectedScope();
 | 
						|
 | 
						|
    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
 | 
						|
      VDecl->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
 | 
						|
  // a kernel function cannot be initialized."
 | 
						|
  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
 | 
						|
    Diag(VDecl->getLocation(), diag::err_local_cant_init);
 | 
						|
    VDecl->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the decls type and save a reference for later, since
 | 
						|
  // CheckInitializerTypes may change it.
 | 
						|
  QualType DclT = VDecl->getType(), SavT = DclT;
 | 
						|
 | 
						|
  // Perform the initialization.
 | 
						|
  if (!VDecl->isInvalidDecl()) {
 | 
						|
    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
 | 
						|
    InitializationKind Kind
 | 
						|
      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
 | 
						|
                                                      Init->getLocStart(),
 | 
						|
                                                      Init->getLocEnd())
 | 
						|
                   : InitializationKind::CreateCopy(VDecl->getLocation(),
 | 
						|
                                                    Init->getLocStart());
 | 
						|
 | 
						|
    InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
 | 
						|
    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
 | 
						|
                                              MultiExprArg(*this, &Init, 1),
 | 
						|
                                              &DclT);
 | 
						|
    if (Result.isInvalid()) {
 | 
						|
      VDecl->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Init = Result.takeAs<Expr>();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the type changed, it means we had an incomplete type that was
 | 
						|
  // completed by the initializer. For example:
 | 
						|
  //   int ary[] = { 1, 3, 5 };
 | 
						|
  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
 | 
						|
  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
 | 
						|
    VDecl->setType(DclT);
 | 
						|
    Init->setType(DclT.getNonReferenceType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Check any implicit conversions within the expression.
 | 
						|
  CheckImplicitConversions(Init, VDecl->getLocation());
 | 
						|
 | 
						|
  if (!VDecl->isInvalidDecl())
 | 
						|
    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
 | 
						|
 | 
						|
  Init = MaybeCreateExprWithCleanups(Init);
 | 
						|
  // Attach the initializer to the decl.
 | 
						|
  VDecl->setInit(Init);
 | 
						|
 | 
						|
  if (VDecl->isLocalVarDecl()) {
 | 
						|
    // C99 6.7.8p4: All the expressions in an initializer for an object that has
 | 
						|
    // static storage duration shall be constant expressions or string literals.
 | 
						|
    // C++ does not have this restriction.
 | 
						|
    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
 | 
						|
        VDecl->getStorageClass() == SC_Static)
 | 
						|
      CheckForConstantInitializer(Init, DclT);
 | 
						|
  } else if (VDecl->isStaticDataMember() &&
 | 
						|
             VDecl->getLexicalDeclContext()->isRecord()) {
 | 
						|
    // This is an in-class initialization for a static data member, e.g.,
 | 
						|
    //
 | 
						|
    // struct S {
 | 
						|
    //   static const int value = 17;
 | 
						|
    // };
 | 
						|
 | 
						|
    // C++ [class.mem]p4:
 | 
						|
    //   A member-declarator can contain a constant-initializer only
 | 
						|
    //   if it declares a static member (9.4) of const integral or
 | 
						|
    //   const enumeration type, see 9.4.2.
 | 
						|
    //
 | 
						|
    // C++11 [class.static.data]p3:
 | 
						|
    //   If a non-volatile const static data member is of integral or
 | 
						|
    //   enumeration type, its declaration in the class definition can
 | 
						|
    //   specify a brace-or-equal-initializer in which every initalizer-clause
 | 
						|
    //   that is an assignment-expression is a constant expression. A static
 | 
						|
    //   data member of literal type can be declared in the class definition
 | 
						|
    //   with the constexpr specifier; if so, its declaration shall specify a
 | 
						|
    //   brace-or-equal-initializer in which every initializer-clause that is
 | 
						|
    //   an assignment-expression is a constant expression.
 | 
						|
 | 
						|
    // Do nothing on dependent types.
 | 
						|
    if (DclT->isDependentType()) {
 | 
						|
 | 
						|
    // Allow any 'static constexpr' members, whether or not they are of literal
 | 
						|
    // type. We separately check that the initializer is a constant expression,
 | 
						|
    // which implicitly requires the member to be of literal type.
 | 
						|
    } else if (VDecl->isConstexpr()) {
 | 
						|
 | 
						|
    // Require constness.
 | 
						|
    } else if (!DclT.isConstQualified()) {
 | 
						|
      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
 | 
						|
        << Init->getSourceRange();
 | 
						|
      VDecl->setInvalidDecl();
 | 
						|
 | 
						|
    // We allow integer constant expressions in all cases.
 | 
						|
    } else if (DclT->isIntegralOrEnumerationType()) {
 | 
						|
      // Check whether the expression is a constant expression.
 | 
						|
      SourceLocation Loc;
 | 
						|
      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
 | 
						|
        // In C++11, a non-constexpr const static data member with an
 | 
						|
        // in-class initializer cannot be volatile.
 | 
						|
        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
 | 
						|
      else if (Init->isValueDependent())
 | 
						|
        ; // Nothing to check.
 | 
						|
      else if (Init->isIntegerConstantExpr(Context, &Loc))
 | 
						|
        ; // Ok, it's an ICE!
 | 
						|
      else if (Init->isEvaluatable(Context)) {
 | 
						|
        // If we can constant fold the initializer through heroics, accept it,
 | 
						|
        // but report this as a use of an extension for -pedantic.
 | 
						|
        Diag(Loc, diag::ext_in_class_initializer_non_constant)
 | 
						|
          << Init->getSourceRange();
 | 
						|
      } else {
 | 
						|
        // Otherwise, this is some crazy unknown case.  Report the issue at the
 | 
						|
        // location provided by the isIntegerConstantExpr failed check.
 | 
						|
        Diag(Loc, diag::err_in_class_initializer_non_constant)
 | 
						|
          << Init->getSourceRange();
 | 
						|
        VDecl->setInvalidDecl();
 | 
						|
      }
 | 
						|
 | 
						|
    // We allow foldable floating-point constants as an extension.
 | 
						|
    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
 | 
						|
      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
 | 
						|
        << DclT << Init->getSourceRange();
 | 
						|
      if (getLangOptions().CPlusPlus0x)
 | 
						|
        Diag(VDecl->getLocation(),
 | 
						|
             diag::note_in_class_initializer_float_type_constexpr)
 | 
						|
          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
 | 
						|
 | 
						|
      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
 | 
						|
        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
 | 
						|
          << Init->getSourceRange();
 | 
						|
        VDecl->setInvalidDecl();
 | 
						|
      }
 | 
						|
 | 
						|
    // Suggest adding 'constexpr' in C++11 for literal types.
 | 
						|
    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
 | 
						|
      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
 | 
						|
        << DclT << Init->getSourceRange()
 | 
						|
        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
 | 
						|
      VDecl->setConstexpr(true);
 | 
						|
 | 
						|
    } else {
 | 
						|
      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
 | 
						|
        << DclT << Init->getSourceRange();
 | 
						|
      VDecl->setInvalidDecl();
 | 
						|
    }
 | 
						|
  } else if (VDecl->isFileVarDecl()) {
 | 
						|
    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
 | 
						|
        (!getLangOptions().CPlusPlus ||
 | 
						|
         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
 | 
						|
      Diag(VDecl->getLocation(), diag::warn_extern_init);
 | 
						|
 | 
						|
    // C99 6.7.8p4. All file scoped initializers need to be constant.
 | 
						|
    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
 | 
						|
      CheckForConstantInitializer(Init, DclT);
 | 
						|
  }
 | 
						|
 | 
						|
  CheckCompleteVariableDeclaration(VDecl);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnInitializerError - Given that there was an error parsing an
 | 
						|
/// initializer for the given declaration, try to return to some form
 | 
						|
/// of sanity.
 | 
						|
void Sema::ActOnInitializerError(Decl *D) {
 | 
						|
  // Our main concern here is re-establishing invariants like "a
 | 
						|
  // variable's type is either dependent or complete".
 | 
						|
  if (!D || D->isInvalidDecl()) return;
 | 
						|
 | 
						|
  VarDecl *VD = dyn_cast<VarDecl>(D);
 | 
						|
  if (!VD) return;
 | 
						|
 | 
						|
  // Auto types are meaningless if we can't make sense of the initializer.
 | 
						|
  if (ParsingInitForAutoVars.count(D)) {
 | 
						|
    D->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType Ty = VD->getType();
 | 
						|
  if (Ty->isDependentType()) return;
 | 
						|
 | 
						|
  // Require a complete type.
 | 
						|
  if (RequireCompleteType(VD->getLocation(), 
 | 
						|
                          Context.getBaseElementType(Ty),
 | 
						|
                          diag::err_typecheck_decl_incomplete_type)) {
 | 
						|
    VD->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Require an abstract type.
 | 
						|
  if (RequireNonAbstractType(VD->getLocation(), Ty,
 | 
						|
                             diag::err_abstract_type_in_decl,
 | 
						|
                             AbstractVariableType)) {
 | 
						|
    VD->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't bother complaining about constructors or destructors,
 | 
						|
  // though.
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnUninitializedDecl(Decl *RealDecl,
 | 
						|
                                  bool TypeMayContainAuto) {
 | 
						|
  // If there is no declaration, there was an error parsing it. Just ignore it.
 | 
						|
  if (RealDecl == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
 | 
						|
    QualType Type = Var->getType();
 | 
						|
 | 
						|
    // C++11 [dcl.spec.auto]p3
 | 
						|
    if (TypeMayContainAuto && Type->getContainedAutoType()) {
 | 
						|
      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
 | 
						|
        << Var->getDeclName() << Type;
 | 
						|
      Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [class.static.data]p3: A static data member can be declared with
 | 
						|
    // the constexpr specifier; if so, its declaration shall specify
 | 
						|
    // a brace-or-equal-initializer.
 | 
						|
    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
 | 
						|
    // the definition of a variable [...] or the declaration of a static data
 | 
						|
    // member.
 | 
						|
    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
 | 
						|
      if (Var->isStaticDataMember())
 | 
						|
        Diag(Var->getLocation(),
 | 
						|
             diag::err_constexpr_static_mem_var_requires_init)
 | 
						|
          << Var->getDeclName();
 | 
						|
      else
 | 
						|
        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
 | 
						|
      Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Var->isThisDeclarationADefinition()) {
 | 
						|
    case VarDecl::Definition:
 | 
						|
      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
 | 
						|
        break;
 | 
						|
 | 
						|
      // We have an out-of-line definition of a static data member
 | 
						|
      // that has an in-class initializer, so we type-check this like
 | 
						|
      // a declaration. 
 | 
						|
      //
 | 
						|
      // Fall through
 | 
						|
      
 | 
						|
    case VarDecl::DeclarationOnly:
 | 
						|
      // It's only a declaration. 
 | 
						|
 | 
						|
      // Block scope. C99 6.7p7: If an identifier for an object is
 | 
						|
      // declared with no linkage (C99 6.2.2p6), the type for the
 | 
						|
      // object shall be complete.
 | 
						|
      if (!Type->isDependentType() && Var->isLocalVarDecl() && 
 | 
						|
          !Var->getLinkage() && !Var->isInvalidDecl() &&
 | 
						|
          RequireCompleteType(Var->getLocation(), Type,
 | 
						|
                              diag::err_typecheck_decl_incomplete_type))
 | 
						|
        Var->setInvalidDecl();
 | 
						|
 | 
						|
      // Make sure that the type is not abstract.
 | 
						|
      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
 | 
						|
          RequireNonAbstractType(Var->getLocation(), Type,
 | 
						|
                                 diag::err_abstract_type_in_decl,
 | 
						|
                                 AbstractVariableType))
 | 
						|
        Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
 | 
						|
    case VarDecl::TentativeDefinition:
 | 
						|
      // File scope. C99 6.9.2p2: A declaration of an identifier for an
 | 
						|
      // object that has file scope without an initializer, and without a
 | 
						|
      // storage-class specifier or with the storage-class specifier "static",
 | 
						|
      // constitutes a tentative definition. Note: A tentative definition with
 | 
						|
      // external linkage is valid (C99 6.2.2p5).
 | 
						|
      if (!Var->isInvalidDecl()) {
 | 
						|
        if (const IncompleteArrayType *ArrayT
 | 
						|
                                    = Context.getAsIncompleteArrayType(Type)) {
 | 
						|
          if (RequireCompleteType(Var->getLocation(),
 | 
						|
                                  ArrayT->getElementType(),
 | 
						|
                                  diag::err_illegal_decl_array_incomplete_type))
 | 
						|
            Var->setInvalidDecl();
 | 
						|
        } else if (Var->getStorageClass() == SC_Static) {
 | 
						|
          // C99 6.9.2p3: If the declaration of an identifier for an object is
 | 
						|
          // a tentative definition and has internal linkage (C99 6.2.2p3), the
 | 
						|
          // declared type shall not be an incomplete type.
 | 
						|
          // NOTE: code such as the following
 | 
						|
          //     static struct s;
 | 
						|
          //     struct s { int a; };
 | 
						|
          // is accepted by gcc. Hence here we issue a warning instead of
 | 
						|
          // an error and we do not invalidate the static declaration.
 | 
						|
          // NOTE: to avoid multiple warnings, only check the first declaration.
 | 
						|
          if (Var->getPreviousDecl() == 0)
 | 
						|
            RequireCompleteType(Var->getLocation(), Type,
 | 
						|
                                diag::ext_typecheck_decl_incomplete_type);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Record the tentative definition; we're done.
 | 
						|
      if (!Var->isInvalidDecl())
 | 
						|
        TentativeDefinitions.push_back(Var);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Provide a specific diagnostic for uninitialized variable
 | 
						|
    // definitions with incomplete array type.
 | 
						|
    if (Type->isIncompleteArrayType()) {
 | 
						|
      Diag(Var->getLocation(),
 | 
						|
           diag::err_typecheck_incomplete_array_needs_initializer);
 | 
						|
      Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Provide a specific diagnostic for uninitialized variable
 | 
						|
    // definitions with reference type.
 | 
						|
    if (Type->isReferenceType()) {
 | 
						|
      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
 | 
						|
        << Var->getDeclName()
 | 
						|
        << SourceRange(Var->getLocation(), Var->getLocation());
 | 
						|
      Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Do not attempt to type-check the default initializer for a
 | 
						|
    // variable with dependent type.
 | 
						|
    if (Type->isDependentType())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (Var->isInvalidDecl())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (RequireCompleteType(Var->getLocation(), 
 | 
						|
                            Context.getBaseElementType(Type),
 | 
						|
                            diag::err_typecheck_decl_incomplete_type)) {
 | 
						|
      Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // The variable can not have an abstract class type.
 | 
						|
    if (RequireNonAbstractType(Var->getLocation(), Type,
 | 
						|
                               diag::err_abstract_type_in_decl,
 | 
						|
                               AbstractVariableType)) {
 | 
						|
      Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for jumps past the implicit initializer.  C++0x
 | 
						|
    // clarifies that this applies to a "variable with automatic
 | 
						|
    // storage duration", not a "local variable".
 | 
						|
    // C++11 [stmt.dcl]p3
 | 
						|
    //   A program that jumps from a point where a variable with automatic
 | 
						|
    //   storage duration is not in scope to a point where it is in scope is
 | 
						|
    //   ill-formed unless the variable has scalar type, class type with a
 | 
						|
    //   trivial default constructor and a trivial destructor, a cv-qualified
 | 
						|
    //   version of one of these types, or an array of one of the preceding
 | 
						|
    //   types and is declared without an initializer.
 | 
						|
    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
 | 
						|
      if (const RecordType *Record
 | 
						|
            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
 | 
						|
        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
 | 
						|
        // Mark the function for further checking even if the looser rules of
 | 
						|
        // C++11 do not require such checks, so that we can diagnose
 | 
						|
        // incompatibilities with C++98.
 | 
						|
        if (!CXXRecord->isPOD())
 | 
						|
          getCurFunction()->setHasBranchProtectedScope();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // C++03 [dcl.init]p9:
 | 
						|
    //   If no initializer is specified for an object, and the
 | 
						|
    //   object is of (possibly cv-qualified) non-POD class type (or
 | 
						|
    //   array thereof), the object shall be default-initialized; if
 | 
						|
    //   the object is of const-qualified type, the underlying class
 | 
						|
    //   type shall have a user-declared default
 | 
						|
    //   constructor. Otherwise, if no initializer is specified for
 | 
						|
    //   a non- static object, the object and its subobjects, if
 | 
						|
    //   any, have an indeterminate initial value); if the object
 | 
						|
    //   or any of its subobjects are of const-qualified type, the
 | 
						|
    //   program is ill-formed.
 | 
						|
    // C++0x [dcl.init]p11:
 | 
						|
    //   If no initializer is specified for an object, the object is
 | 
						|
    //   default-initialized; [...].
 | 
						|
    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
 | 
						|
    InitializationKind Kind
 | 
						|
      = InitializationKind::CreateDefault(Var->getLocation());
 | 
						|
    
 | 
						|
    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
 | 
						|
    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
 | 
						|
                                      MultiExprArg(*this, 0, 0));
 | 
						|
    if (Init.isInvalid())
 | 
						|
      Var->setInvalidDecl();
 | 
						|
    else if (Init.get())
 | 
						|
      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
 | 
						|
 | 
						|
    CheckCompleteVariableDeclaration(Var);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnCXXForRangeDecl(Decl *D) {
 | 
						|
  VarDecl *VD = dyn_cast<VarDecl>(D);
 | 
						|
  if (!VD) {
 | 
						|
    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
 | 
						|
    D->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  VD->setCXXForRangeDecl(true);
 | 
						|
 | 
						|
  // for-range-declaration cannot be given a storage class specifier.
 | 
						|
  int Error = -1;
 | 
						|
  switch (VD->getStorageClassAsWritten()) {
 | 
						|
  case SC_None:
 | 
						|
    break;
 | 
						|
  case SC_Extern:
 | 
						|
    Error = 0;
 | 
						|
    break;
 | 
						|
  case SC_Static:
 | 
						|
    Error = 1;
 | 
						|
    break;
 | 
						|
  case SC_PrivateExtern:
 | 
						|
    Error = 2;
 | 
						|
    break;
 | 
						|
  case SC_Auto:
 | 
						|
    Error = 3;
 | 
						|
    break;
 | 
						|
  case SC_Register:
 | 
						|
    Error = 4;
 | 
						|
    break;
 | 
						|
  case SC_OpenCLWorkGroupLocal:
 | 
						|
    llvm_unreachable("Unexpected storage class");
 | 
						|
  }
 | 
						|
  if (VD->isConstexpr())
 | 
						|
    Error = 5;
 | 
						|
  if (Error != -1) {
 | 
						|
    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
 | 
						|
      << VD->getDeclName() << Error;
 | 
						|
    D->setInvalidDecl();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
 | 
						|
  if (var->isInvalidDecl()) return;
 | 
						|
 | 
						|
  // In ARC, don't allow jumps past the implicit initialization of a
 | 
						|
  // local retaining variable.
 | 
						|
  if (getLangOptions().ObjCAutoRefCount &&
 | 
						|
      var->hasLocalStorage()) {
 | 
						|
    switch (var->getType().getObjCLifetime()) {
 | 
						|
    case Qualifiers::OCL_None:
 | 
						|
    case Qualifiers::OCL_ExplicitNone:
 | 
						|
    case Qualifiers::OCL_Autoreleasing:
 | 
						|
      break;
 | 
						|
 | 
						|
    case Qualifiers::OCL_Weak:
 | 
						|
    case Qualifiers::OCL_Strong:
 | 
						|
      getCurFunction()->setHasBranchProtectedScope();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // All the following checks are C++ only.
 | 
						|
  if (!getLangOptions().CPlusPlus) return;
 | 
						|
 | 
						|
  QualType baseType = Context.getBaseElementType(var->getType());
 | 
						|
  if (baseType->isDependentType()) return;
 | 
						|
 | 
						|
  // __block variables might require us to capture a copy-initializer.
 | 
						|
  if (var->hasAttr<BlocksAttr>()) {
 | 
						|
    // It's currently invalid to ever have a __block variable with an
 | 
						|
    // array type; should we diagnose that here?
 | 
						|
 | 
						|
    // Regardless, we don't want to ignore array nesting when
 | 
						|
    // constructing this copy.
 | 
						|
    QualType type = var->getType();
 | 
						|
 | 
						|
    if (type->isStructureOrClassType()) {
 | 
						|
      SourceLocation poi = var->getLocation();
 | 
						|
      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
 | 
						|
      ExprResult result =
 | 
						|
        PerformCopyInitialization(
 | 
						|
                        InitializedEntity::InitializeBlock(poi, type, false),
 | 
						|
                                  poi, Owned(varRef));
 | 
						|
      if (!result.isInvalid()) {
 | 
						|
        result = MaybeCreateExprWithCleanups(result);
 | 
						|
        Expr *init = result.takeAs<Expr>();
 | 
						|
        Context.setBlockVarCopyInits(var, init);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *Init = var->getInit();
 | 
						|
  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
 | 
						|
 | 
						|
  if (!var->getDeclContext()->isDependentContext() && Init) {
 | 
						|
    if (IsGlobal && !var->isConstexpr() &&
 | 
						|
        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
 | 
						|
                                            var->getLocation())
 | 
						|
          != DiagnosticsEngine::Ignored &&
 | 
						|
        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
 | 
						|
      Diag(var->getLocation(), diag::warn_global_constructor)
 | 
						|
        << Init->getSourceRange();
 | 
						|
 | 
						|
    if (var->isConstexpr()) {
 | 
						|
      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
 | 
						|
      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
 | 
						|
        SourceLocation DiagLoc = var->getLocation();
 | 
						|
        // If the note doesn't add any useful information other than a source
 | 
						|
        // location, fold it into the primary diagnostic.
 | 
						|
        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
 | 
						|
              diag::note_invalid_subexpr_in_const_expr) {
 | 
						|
          DiagLoc = Notes[0].first;
 | 
						|
          Notes.clear();
 | 
						|
        }
 | 
						|
        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
 | 
						|
          << var << Init->getSourceRange();
 | 
						|
        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
 | 
						|
          Diag(Notes[I].first, Notes[I].second);
 | 
						|
      }
 | 
						|
    } else if (var->isUsableInConstantExpressions()) {
 | 
						|
      // Check whether the initializer of a const variable of integral or
 | 
						|
      // enumeration type is an ICE now, since we can't tell whether it was
 | 
						|
      // initialized by a constant expression if we check later.
 | 
						|
      var->checkInitIsICE();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Require the destructor.
 | 
						|
  if (const RecordType *recordType = baseType->getAs<RecordType>())
 | 
						|
    FinalizeVarWithDestructor(var, recordType);
 | 
						|
}
 | 
						|
 | 
						|
/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
 | 
						|
/// any semantic actions necessary after any initializer has been attached.
 | 
						|
void
 | 
						|
Sema::FinalizeDeclaration(Decl *ThisDecl) {
 | 
						|
  // Note that we are no longer parsing the initializer for this declaration.
 | 
						|
  ParsingInitForAutoVars.erase(ThisDecl);
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclGroupPtrTy
 | 
						|
Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
 | 
						|
                              Decl **Group, unsigned NumDecls) {
 | 
						|
  SmallVector<Decl*, 8> Decls;
 | 
						|
 | 
						|
  if (DS.isTypeSpecOwned())
 | 
						|
    Decls.push_back(DS.getRepAsDecl());
 | 
						|
 | 
						|
  for (unsigned i = 0; i != NumDecls; ++i)
 | 
						|
    if (Decl *D = Group[i])
 | 
						|
      Decls.push_back(D);
 | 
						|
 | 
						|
  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
 | 
						|
                              DS.getTypeSpecType() == DeclSpec::TST_auto);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildDeclaratorGroup - convert a list of declarations into a declaration
 | 
						|
/// group, performing any necessary semantic checking.
 | 
						|
Sema::DeclGroupPtrTy
 | 
						|
Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
 | 
						|
                           bool TypeMayContainAuto) {
 | 
						|
  // C++0x [dcl.spec.auto]p7:
 | 
						|
  //   If the type deduced for the template parameter U is not the same in each
 | 
						|
  //   deduction, the program is ill-formed.
 | 
						|
  // FIXME: When initializer-list support is added, a distinction is needed
 | 
						|
  // between the deduced type U and the deduced type which 'auto' stands for.
 | 
						|
  //   auto a = 0, b = { 1, 2, 3 };
 | 
						|
  // is legal because the deduced type U is 'int' in both cases.
 | 
						|
  if (TypeMayContainAuto && NumDecls > 1) {
 | 
						|
    QualType Deduced;
 | 
						|
    CanQualType DeducedCanon;
 | 
						|
    VarDecl *DeducedDecl = 0;
 | 
						|
    for (unsigned i = 0; i != NumDecls; ++i) {
 | 
						|
      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
 | 
						|
        AutoType *AT = D->getType()->getContainedAutoType();
 | 
						|
        // Don't reissue diagnostics when instantiating a template.
 | 
						|
        if (AT && D->isInvalidDecl())
 | 
						|
          break;
 | 
						|
        if (AT && AT->isDeduced()) {
 | 
						|
          QualType U = AT->getDeducedType();
 | 
						|
          CanQualType UCanon = Context.getCanonicalType(U);
 | 
						|
          if (Deduced.isNull()) {
 | 
						|
            Deduced = U;
 | 
						|
            DeducedCanon = UCanon;
 | 
						|
            DeducedDecl = D;
 | 
						|
          } else if (DeducedCanon != UCanon) {
 | 
						|
            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
 | 
						|
                 diag::err_auto_different_deductions)
 | 
						|
              << Deduced << DeducedDecl->getDeclName()
 | 
						|
              << U << D->getDeclName()
 | 
						|
              << DeducedDecl->getInit()->getSourceRange()
 | 
						|
              << D->getInit()->getSourceRange();
 | 
						|
            D->setInvalidDecl();
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
 | 
						|
/// to introduce parameters into function prototype scope.
 | 
						|
Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
 | 
						|
  const DeclSpec &DS = D.getDeclSpec();
 | 
						|
 | 
						|
  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
 | 
						|
  // C++03 [dcl.stc]p2 also permits 'auto'.
 | 
						|
  VarDecl::StorageClass StorageClass = SC_None;
 | 
						|
  VarDecl::StorageClass StorageClassAsWritten = SC_None;
 | 
						|
  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
 | 
						|
    StorageClass = SC_Register;
 | 
						|
    StorageClassAsWritten = SC_Register;
 | 
						|
  } else if (getLangOptions().CPlusPlus &&
 | 
						|
             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
 | 
						|
    StorageClass = SC_Auto;
 | 
						|
    StorageClassAsWritten = SC_Auto;
 | 
						|
  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
 | 
						|
    Diag(DS.getStorageClassSpecLoc(),
 | 
						|
         diag::err_invalid_storage_class_in_func_decl);
 | 
						|
    D.getMutableDeclSpec().ClearStorageClassSpecs();
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.getDeclSpec().isThreadSpecified())
 | 
						|
    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
 | 
						|
  if (D.getDeclSpec().isConstexprSpecified())
 | 
						|
    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
 | 
						|
      << 0;
 | 
						|
 | 
						|
  DiagnoseFunctionSpecifiers(D);
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
  QualType parmDeclType = TInfo->getType();
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // Check that there are no default arguments inside the type of this
 | 
						|
    // parameter.
 | 
						|
    CheckExtraCXXDefaultArguments(D);
 | 
						|
    
 | 
						|
    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
 | 
						|
    if (D.getCXXScopeSpec().isSet()) {
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
 | 
						|
        << D.getCXXScopeSpec().getRange();
 | 
						|
      D.getCXXScopeSpec().clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure we have a valid name
 | 
						|
  IdentifierInfo *II = 0;
 | 
						|
  if (D.hasName()) {
 | 
						|
    II = D.getIdentifier();
 | 
						|
    if (!II) {
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
 | 
						|
        << GetNameForDeclarator(D).getName().getAsString();
 | 
						|
      D.setInvalidType(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
 | 
						|
  if (II) {
 | 
						|
    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
 | 
						|
                   ForRedeclaration);
 | 
						|
    LookupName(R, S);
 | 
						|
    if (R.isSingleResult()) {
 | 
						|
      NamedDecl *PrevDecl = R.getFoundDecl();
 | 
						|
      if (PrevDecl->isTemplateParameter()) {
 | 
						|
        // Maybe we will complain about the shadowed template parameter.
 | 
						|
        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | 
						|
        // Just pretend that we didn't see the previous declaration.
 | 
						|
        PrevDecl = 0;
 | 
						|
      } else if (S->isDeclScope(PrevDecl)) {
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
 | 
						|
        // Recover by removing the name
 | 
						|
        II = 0;
 | 
						|
        D.SetIdentifier(0, D.getIdentifierLoc());
 | 
						|
        D.setInvalidType(true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Temporarily put parameter variables in the translation unit, not
 | 
						|
  // the enclosing context.  This prevents them from accidentally
 | 
						|
  // looking like class members in C++.
 | 
						|
  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
 | 
						|
                                    D.getSourceRange().getBegin(),
 | 
						|
                                    D.getIdentifierLoc(), II,
 | 
						|
                                    parmDeclType, TInfo,
 | 
						|
                                    StorageClass, StorageClassAsWritten);
 | 
						|
 | 
						|
  if (D.isInvalidType())
 | 
						|
    New->setInvalidDecl();
 | 
						|
 | 
						|
  assert(S->isFunctionPrototypeScope());
 | 
						|
  assert(S->getFunctionPrototypeDepth() >= 1);
 | 
						|
  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
 | 
						|
                    S->getNextFunctionPrototypeIndex());
 | 
						|
  
 | 
						|
  // Add the parameter declaration into this scope.
 | 
						|
  S->AddDecl(New);
 | 
						|
  if (II)
 | 
						|
    IdResolver.AddDecl(New);
 | 
						|
 | 
						|
  ProcessDeclAttributes(S, New, D);
 | 
						|
 | 
						|
  if (D.getDeclSpec().isModulePrivateSpecified())
 | 
						|
    Diag(New->getLocation(), diag::err_module_private_local)
 | 
						|
      << 1 << New->getDeclName()
 | 
						|
      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
 | 
						|
      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | 
						|
 | 
						|
  if (New->hasAttr<BlocksAttr>()) {
 | 
						|
    Diag(New->getLocation(), diag::err_block_on_nonlocal);
 | 
						|
  }
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Synthesizes a variable for a parameter arising from a
 | 
						|
/// typedef.
 | 
						|
ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
 | 
						|
                                              SourceLocation Loc,
 | 
						|
                                              QualType T) {
 | 
						|
  /* FIXME: setting StartLoc == Loc.
 | 
						|
     Would it be worth to modify callers so as to provide proper source
 | 
						|
     location for the unnamed parameters, embedding the parameter's type? */
 | 
						|
  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
 | 
						|
                                T, Context.getTrivialTypeSourceInfo(T, Loc),
 | 
						|
                                           SC_None, SC_None, 0);
 | 
						|
  Param->setImplicit();
 | 
						|
  return Param;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
 | 
						|
                                    ParmVarDecl * const *ParamEnd) {
 | 
						|
  // Don't diagnose unused-parameter errors in template instantiations; we
 | 
						|
  // will already have done so in the template itself.
 | 
						|
  if (!ActiveTemplateInstantiations.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (; Param != ParamEnd; ++Param) {
 | 
						|
    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
 | 
						|
        !(*Param)->hasAttr<UnusedAttr>()) {
 | 
						|
      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
 | 
						|
        << (*Param)->getDeclName();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
 | 
						|
                                                  ParmVarDecl * const *ParamEnd,
 | 
						|
                                                  QualType ReturnTy,
 | 
						|
                                                  NamedDecl *D) {
 | 
						|
  if (LangOpts.NumLargeByValueCopy == 0) // No check.
 | 
						|
    return;
 | 
						|
 | 
						|
  // Warn if the return value is pass-by-value and larger than the specified
 | 
						|
  // threshold.
 | 
						|
  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
 | 
						|
    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
 | 
						|
    if (Size > LangOpts.NumLargeByValueCopy)
 | 
						|
      Diag(D->getLocation(), diag::warn_return_value_size)
 | 
						|
          << D->getDeclName() << Size;
 | 
						|
  }
 | 
						|
 | 
						|
  // Warn if any parameter is pass-by-value and larger than the specified
 | 
						|
  // threshold.
 | 
						|
  for (; Param != ParamEnd; ++Param) {
 | 
						|
    QualType T = (*Param)->getType();
 | 
						|
    if (T->isDependentType() || !T.isPODType(Context))
 | 
						|
      continue;
 | 
						|
    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
 | 
						|
    if (Size > LangOpts.NumLargeByValueCopy)
 | 
						|
      Diag((*Param)->getLocation(), diag::warn_parameter_size)
 | 
						|
          << (*Param)->getDeclName() << Size;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
 | 
						|
                                  SourceLocation NameLoc, IdentifierInfo *Name,
 | 
						|
                                  QualType T, TypeSourceInfo *TSInfo,
 | 
						|
                                  VarDecl::StorageClass StorageClass,
 | 
						|
                                  VarDecl::StorageClass StorageClassAsWritten) {
 | 
						|
  // In ARC, infer a lifetime qualifier for appropriate parameter types.
 | 
						|
  if (getLangOptions().ObjCAutoRefCount &&
 | 
						|
      T.getObjCLifetime() == Qualifiers::OCL_None &&
 | 
						|
      T->isObjCLifetimeType()) {
 | 
						|
 | 
						|
    Qualifiers::ObjCLifetime lifetime;
 | 
						|
 | 
						|
    // Special cases for arrays:
 | 
						|
    //   - if it's const, use __unsafe_unretained
 | 
						|
    //   - otherwise, it's an error
 | 
						|
    if (T->isArrayType()) {
 | 
						|
      if (!T.isConstQualified()) {
 | 
						|
        DelayedDiagnostics.add(
 | 
						|
            sema::DelayedDiagnostic::makeForbiddenType(
 | 
						|
            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
 | 
						|
      }
 | 
						|
      lifetime = Qualifiers::OCL_ExplicitNone;
 | 
						|
    } else {
 | 
						|
      lifetime = T->getObjCARCImplicitLifetime();
 | 
						|
    }
 | 
						|
    T = Context.getLifetimeQualifiedType(T, lifetime);
 | 
						|
  }
 | 
						|
 | 
						|
  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
 | 
						|
                                         Context.getAdjustedParameterType(T), 
 | 
						|
                                         TSInfo,
 | 
						|
                                         StorageClass, StorageClassAsWritten,
 | 
						|
                                         0);
 | 
						|
 | 
						|
  // Parameters can not be abstract class types.
 | 
						|
  // For record types, this is done by the AbstractClassUsageDiagnoser once
 | 
						|
  // the class has been completely parsed.
 | 
						|
  if (!CurContext->isRecord() &&
 | 
						|
      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
 | 
						|
                             AbstractParamType))
 | 
						|
    New->setInvalidDecl();
 | 
						|
 | 
						|
  // Parameter declarators cannot be interface types. All ObjC objects are
 | 
						|
  // passed by reference.
 | 
						|
  if (T->isObjCObjectType()) {
 | 
						|
    Diag(NameLoc,
 | 
						|
         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
 | 
						|
      << FixItHint::CreateInsertion(NameLoc, "*");
 | 
						|
    T = Context.getObjCObjectPointerType(T);
 | 
						|
    New->setType(T);
 | 
						|
  }
 | 
						|
 | 
						|
  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 
 | 
						|
  // duration shall not be qualified by an address-space qualifier."
 | 
						|
  // Since all parameters have automatic store duration, they can not have
 | 
						|
  // an address space.
 | 
						|
  if (T.getAddressSpace() != 0) {
 | 
						|
    Diag(NameLoc, diag::err_arg_with_address_space);
 | 
						|
    New->setInvalidDecl();
 | 
						|
  }   
 | 
						|
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
 | 
						|
                                           SourceLocation LocAfterDecls) {
 | 
						|
  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | 
						|
 | 
						|
  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
 | 
						|
  // for a K&R function.
 | 
						|
  if (!FTI.hasPrototype) {
 | 
						|
    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
 | 
						|
      --i;
 | 
						|
      if (FTI.ArgInfo[i].Param == 0) {
 | 
						|
        SmallString<256> Code;
 | 
						|
        llvm::raw_svector_ostream(Code) << "  int "
 | 
						|
                                        << FTI.ArgInfo[i].Ident->getName()
 | 
						|
                                        << ";\n";
 | 
						|
        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
 | 
						|
          << FTI.ArgInfo[i].Ident
 | 
						|
          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
 | 
						|
 | 
						|
        // Implicitly declare the argument as type 'int' for lack of a better
 | 
						|
        // type.
 | 
						|
        AttributeFactory attrs;
 | 
						|
        DeclSpec DS(attrs);
 | 
						|
        const char* PrevSpec; // unused
 | 
						|
        unsigned DiagID; // unused
 | 
						|
        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
 | 
						|
                           PrevSpec, DiagID);
 | 
						|
        Declarator ParamD(DS, Declarator::KNRTypeListContext);
 | 
						|
        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
 | 
						|
        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
 | 
						|
                                         Declarator &D) {
 | 
						|
  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
 | 
						|
  assert(D.isFunctionDeclarator() && "Not a function declarator!");
 | 
						|
  Scope *ParentScope = FnBodyScope->getParent();
 | 
						|
 | 
						|
  D.setFunctionDefinitionKind(FDK_Definition);
 | 
						|
  Decl *DP = HandleDeclarator(ParentScope, D,
 | 
						|
                              MultiTemplateParamsArg(*this));
 | 
						|
  return ActOnStartOfFunctionDef(FnBodyScope, DP);
 | 
						|
}
 | 
						|
 | 
						|
static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
 | 
						|
  // Don't warn about invalid declarations.
 | 
						|
  if (FD->isInvalidDecl())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Or declarations that aren't global.
 | 
						|
  if (!FD->isGlobal())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn about C++ member functions.
 | 
						|
  if (isa<CXXMethodDecl>(FD))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn about 'main'.
 | 
						|
  if (FD->isMain())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn about inline functions.
 | 
						|
  if (FD->isInlined())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn about function templates.
 | 
						|
  if (FD->getDescribedFunctionTemplate())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn about function template specializations.
 | 
						|
  if (FD->isFunctionTemplateSpecialization())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool MissingPrototype = true;
 | 
						|
  for (const FunctionDecl *Prev = FD->getPreviousDecl();
 | 
						|
       Prev; Prev = Prev->getPreviousDecl()) {
 | 
						|
    // Ignore any declarations that occur in function or method
 | 
						|
    // scope, because they aren't visible from the header.
 | 
						|
    if (Prev->getDeclContext()->isFunctionOrMethod())
 | 
						|
      continue;
 | 
						|
      
 | 
						|
    MissingPrototype = !Prev->getType()->isFunctionProtoType();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
    
 | 
						|
  return MissingPrototype;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
 | 
						|
  // Don't complain if we're in GNU89 mode and the previous definition
 | 
						|
  // was an extern inline function.
 | 
						|
  const FunctionDecl *Definition;
 | 
						|
  if (FD->isDefined(Definition) &&
 | 
						|
      !canRedefineFunction(Definition, getLangOptions())) {
 | 
						|
    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
 | 
						|
        Definition->getStorageClass() == SC_Extern)
 | 
						|
      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
 | 
						|
        << FD->getDeclName() << getLangOptions().CPlusPlus;
 | 
						|
    else
 | 
						|
      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
 | 
						|
    Diag(Definition->getLocation(), diag::note_previous_definition);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
 | 
						|
  // Clear the last template instantiation error context.
 | 
						|
  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
 | 
						|
  
 | 
						|
  if (!D)
 | 
						|
    return D;
 | 
						|
  FunctionDecl *FD = 0;
 | 
						|
 | 
						|
  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
 | 
						|
    FD = FunTmpl->getTemplatedDecl();
 | 
						|
  else
 | 
						|
    FD = cast<FunctionDecl>(D);
 | 
						|
 | 
						|
  // Enter a new function scope
 | 
						|
  PushFunctionScope();
 | 
						|
 | 
						|
  // See if this is a redefinition.
 | 
						|
  if (!FD->isLateTemplateParsed())
 | 
						|
    CheckForFunctionRedefinition(FD);
 | 
						|
 | 
						|
  // Builtin functions cannot be defined.
 | 
						|
  if (unsigned BuiltinID = FD->getBuiltinID()) {
 | 
						|
    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
 | 
						|
      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
 | 
						|
      FD->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The return type of a function definition must be complete
 | 
						|
  // (C99 6.9.1p3, C++ [dcl.fct]p6).
 | 
						|
  QualType ResultType = FD->getResultType();
 | 
						|
  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
 | 
						|
      !FD->isInvalidDecl() &&
 | 
						|
      RequireCompleteType(FD->getLocation(), ResultType,
 | 
						|
                          diag::err_func_def_incomplete_result))
 | 
						|
    FD->setInvalidDecl();
 | 
						|
 | 
						|
  // GNU warning -Wmissing-prototypes:
 | 
						|
  //   Warn if a global function is defined without a previous
 | 
						|
  //   prototype declaration. This warning is issued even if the
 | 
						|
  //   definition itself provides a prototype. The aim is to detect
 | 
						|
  //   global functions that fail to be declared in header files.
 | 
						|
  if (ShouldWarnAboutMissingPrototype(FD))
 | 
						|
    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
 | 
						|
 | 
						|
  if (FnBodyScope)
 | 
						|
    PushDeclContext(FnBodyScope, FD);
 | 
						|
 | 
						|
  // Check the validity of our function parameters
 | 
						|
  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
 | 
						|
                           /*CheckParameterNames=*/true);
 | 
						|
 | 
						|
  // Introduce our parameters into the function scope
 | 
						|
  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
 | 
						|
    ParmVarDecl *Param = FD->getParamDecl(p);
 | 
						|
    Param->setOwningFunction(FD);
 | 
						|
 | 
						|
    // If this has an identifier, add it to the scope stack.
 | 
						|
    if (Param->getIdentifier() && FnBodyScope) {
 | 
						|
      CheckShadow(FnBodyScope, Param);
 | 
						|
 | 
						|
      PushOnScopeChains(Param, FnBodyScope);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Checking attributes of current function definition
 | 
						|
  // dllimport attribute.
 | 
						|
  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
 | 
						|
  if (DA && (!FD->getAttr<DLLExportAttr>())) {
 | 
						|
    // dllimport attribute cannot be directly applied to definition.
 | 
						|
    // Microsoft accepts dllimport for functions defined within class scope. 
 | 
						|
    if (!DA->isInherited() &&
 | 
						|
        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
 | 
						|
      Diag(FD->getLocation(),
 | 
						|
           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
 | 
						|
        << "dllimport";
 | 
						|
      FD->setInvalidDecl();
 | 
						|
      return FD;
 | 
						|
    }
 | 
						|
 | 
						|
    // Visual C++ appears to not think this is an issue, so only issue
 | 
						|
    // a warning when Microsoft extensions are disabled.
 | 
						|
    if (!LangOpts.MicrosoftExt) {
 | 
						|
      // If a symbol previously declared dllimport is later defined, the
 | 
						|
      // attribute is ignored in subsequent references, and a warning is
 | 
						|
      // emitted.
 | 
						|
      Diag(FD->getLocation(),
 | 
						|
           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
 | 
						|
        << FD->getName() << "dllimport";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return FD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Given the set of return statements within a function body,
 | 
						|
/// compute the variables that are subject to the named return value 
 | 
						|
/// optimization.
 | 
						|
///
 | 
						|
/// Each of the variables that is subject to the named return value 
 | 
						|
/// optimization will be marked as NRVO variables in the AST, and any
 | 
						|
/// return statement that has a marked NRVO variable as its NRVO candidate can
 | 
						|
/// use the named return value optimization.
 | 
						|
///
 | 
						|
/// This function applies a very simplistic algorithm for NRVO: if every return
 | 
						|
/// statement in the function has the same NRVO candidate, that candidate is
 | 
						|
/// the NRVO variable.
 | 
						|
///
 | 
						|
/// FIXME: Employ a smarter algorithm that accounts for multiple return 
 | 
						|
/// statements and the lifetimes of the NRVO candidates. We should be able to
 | 
						|
/// find a maximal set of NRVO variables.
 | 
						|
void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
 | 
						|
  ReturnStmt **Returns = Scope->Returns.data();
 | 
						|
 | 
						|
  const VarDecl *NRVOCandidate = 0;
 | 
						|
  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
 | 
						|
    if (!Returns[I]->getNRVOCandidate())
 | 
						|
      return;
 | 
						|
    
 | 
						|
    if (!NRVOCandidate)
 | 
						|
      NRVOCandidate = Returns[I]->getNRVOCandidate();
 | 
						|
    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (NRVOCandidate)
 | 
						|
    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
 | 
						|
  return ActOnFinishFunctionBody(D, move(BodyArg), false);
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
 | 
						|
                                    bool IsInstantiation) {
 | 
						|
  FunctionDecl *FD = 0;
 | 
						|
  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
 | 
						|
  if (FunTmpl)
 | 
						|
    FD = FunTmpl->getTemplatedDecl();
 | 
						|
  else
 | 
						|
    FD = dyn_cast_or_null<FunctionDecl>(dcl);
 | 
						|
 | 
						|
  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
 | 
						|
  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
 | 
						|
 | 
						|
  if (FD) {
 | 
						|
    FD->setBody(Body);
 | 
						|
    if (FD->isMain()) {
 | 
						|
      // C and C++ allow for main to automagically return 0.
 | 
						|
      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
 | 
						|
      FD->setHasImplicitReturnZero(true);
 | 
						|
      WP.disableCheckFallThrough();
 | 
						|
    } else if (FD->hasAttr<NakedAttr>()) {
 | 
						|
      // If the function is marked 'naked', don't complain about missing return
 | 
						|
      // statements.
 | 
						|
      WP.disableCheckFallThrough();
 | 
						|
    }
 | 
						|
 | 
						|
    // MSVC permits the use of pure specifier (=0) on function definition,
 | 
						|
    // defined at class scope, warn about this non standard construct.
 | 
						|
    if (getLangOptions().MicrosoftExt && FD->isPure())
 | 
						|
      Diag(FD->getLocation(), diag::warn_pure_function_definition);
 | 
						|
 | 
						|
    if (!FD->isInvalidDecl()) {
 | 
						|
      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
 | 
						|
      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
 | 
						|
                                             FD->getResultType(), FD);
 | 
						|
      
 | 
						|
      // If this is a constructor, we need a vtable.
 | 
						|
      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
 | 
						|
        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
 | 
						|
      
 | 
						|
      computeNRVO(Body, getCurFunction());
 | 
						|
    }
 | 
						|
    
 | 
						|
    assert(FD == getCurFunctionDecl() && "Function parsing confused");
 | 
						|
  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
 | 
						|
    assert(MD == getCurMethodDecl() && "Method parsing confused");
 | 
						|
    MD->setBody(Body);
 | 
						|
    if (Body)
 | 
						|
      MD->setEndLoc(Body->getLocEnd());
 | 
						|
    if (!MD->isInvalidDecl()) {
 | 
						|
      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
 | 
						|
      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
 | 
						|
                                             MD->getResultType(), MD);
 | 
						|
      
 | 
						|
      if (Body)
 | 
						|
        computeNRVO(Body, getCurFunction());
 | 
						|
    }
 | 
						|
    if (ObjCShouldCallSuperDealloc) {
 | 
						|
      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
 | 
						|
      ObjCShouldCallSuperDealloc = false;
 | 
						|
    }
 | 
						|
    if (ObjCShouldCallSuperFinalize) {
 | 
						|
      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
 | 
						|
      ObjCShouldCallSuperFinalize = false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
 | 
						|
         "ObjC methods, which should have been handled in the block above.");
 | 
						|
  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
 | 
						|
         "ObjC methods, which should have been handled in the block above.");
 | 
						|
 | 
						|
  // Verify and clean out per-function state.
 | 
						|
  if (Body) {
 | 
						|
    // C++ constructors that have function-try-blocks can't have return
 | 
						|
    // statements in the handlers of that block. (C++ [except.handle]p14)
 | 
						|
    // Verify this.
 | 
						|
    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
 | 
						|
      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
 | 
						|
    
 | 
						|
    // Verify that gotos and switch cases don't jump into scopes illegally.
 | 
						|
    if (getCurFunction()->NeedsScopeChecking() &&
 | 
						|
        !dcl->isInvalidDecl() &&
 | 
						|
        !hasAnyUnrecoverableErrorsInThisFunction())
 | 
						|
      DiagnoseInvalidJumps(Body);
 | 
						|
 | 
						|
    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
 | 
						|
      if (!Destructor->getParent()->isDependentType())
 | 
						|
        CheckDestructor(Destructor);
 | 
						|
 | 
						|
      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
 | 
						|
                                             Destructor->getParent());
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If any errors have occurred, clear out any temporaries that may have
 | 
						|
    // been leftover. This ensures that these temporaries won't be picked up for
 | 
						|
    // deletion in some later function.
 | 
						|
    if (PP.getDiagnostics().hasErrorOccurred() ||
 | 
						|
        PP.getDiagnostics().getSuppressAllDiagnostics()) {
 | 
						|
      DiscardCleanupsInEvaluationContext();
 | 
						|
    } else if (!isa<FunctionTemplateDecl>(dcl)) {
 | 
						|
      // Since the body is valid, issue any analysis-based warnings that are
 | 
						|
      // enabled.
 | 
						|
      ActivePolicy = &WP;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
 | 
						|
        !CheckConstexprFunctionBody(FD, Body, IsInstantiation))
 | 
						|
      FD->setInvalidDecl();
 | 
						|
 | 
						|
    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
 | 
						|
    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
 | 
						|
    assert(MaybeODRUseExprs.empty() &&
 | 
						|
           "Leftover expressions for odr-use checking");
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!IsInstantiation)
 | 
						|
    PopDeclContext();
 | 
						|
 | 
						|
  PopFunctionScopeInfo(ActivePolicy, dcl);
 | 
						|
  
 | 
						|
  // If any errors have occurred, clear out any temporaries that may have
 | 
						|
  // been leftover. This ensures that these temporaries won't be picked up for
 | 
						|
  // deletion in some later function.
 | 
						|
  if (getDiagnostics().hasErrorOccurred()) {
 | 
						|
    DiscardCleanupsInEvaluationContext();
 | 
						|
  }
 | 
						|
 | 
						|
  return dcl;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// When we finish delayed parsing of an attribute, we must attach it to the
 | 
						|
/// relevant Decl.
 | 
						|
void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
 | 
						|
                                       ParsedAttributes &Attrs) {
 | 
						|
  // Always attach attributes to the underlying decl.
 | 
						|
  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
 | 
						|
    D = TD->getTemplatedDecl();
 | 
						|
  ProcessDeclAttributeList(S, D, Attrs.getList());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
 | 
						|
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
 | 
						|
NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
 | 
						|
                                          IdentifierInfo &II, Scope *S) {
 | 
						|
  // Before we produce a declaration for an implicitly defined
 | 
						|
  // function, see whether there was a locally-scoped declaration of
 | 
						|
  // this name as a function or variable. If so, use that
 | 
						|
  // (non-visible) declaration, and complain about it.
 | 
						|
  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
 | 
						|
    = findLocallyScopedExternalDecl(&II);
 | 
						|
  if (Pos != LocallyScopedExternalDecls.end()) {
 | 
						|
    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
 | 
						|
    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
 | 
						|
    return Pos->second;
 | 
						|
  }
 | 
						|
 | 
						|
  // Extension in C99.  Legal in C90, but warn about it.
 | 
						|
  unsigned diag_id;
 | 
						|
  if (II.getName().startswith("__builtin_"))
 | 
						|
    diag_id = diag::warn_builtin_unknown;
 | 
						|
  else if (getLangOptions().C99)
 | 
						|
    diag_id = diag::ext_implicit_function_decl;
 | 
						|
  else
 | 
						|
    diag_id = diag::warn_implicit_function_decl;
 | 
						|
  Diag(Loc, diag_id) << &II;
 | 
						|
 | 
						|
  // Because typo correction is expensive, only do it if the implicit
 | 
						|
  // function declaration is going to be treated as an error.
 | 
						|
  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
 | 
						|
    TypoCorrection Corrected;
 | 
						|
    DeclFilterCCC<FunctionDecl> Validator;
 | 
						|
    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
 | 
						|
                                      LookupOrdinaryName, S, 0, Validator))) {
 | 
						|
      std::string CorrectedStr = Corrected.getAsString(getLangOptions());
 | 
						|
      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
 | 
						|
      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
 | 
						|
 | 
						|
      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
 | 
						|
          << FixItHint::CreateReplacement(Loc, CorrectedStr);
 | 
						|
 | 
						|
      if (Func->getLocation().isValid()
 | 
						|
          && !II.getName().startswith("__builtin_"))
 | 
						|
        Diag(Func->getLocation(), diag::note_previous_decl)
 | 
						|
            << CorrectedQuotedStr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Set a Declarator for the implicit definition: int foo();
 | 
						|
  const char *Dummy;
 | 
						|
  AttributeFactory attrFactory;
 | 
						|
  DeclSpec DS(attrFactory);
 | 
						|
  unsigned DiagID;
 | 
						|
  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
 | 
						|
  (void)Error; // Silence warning.
 | 
						|
  assert(!Error && "Error setting up implicit decl!");
 | 
						|
  Declarator D(DS, Declarator::BlockContext);
 | 
						|
  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
 | 
						|
                                             0, 0, true, SourceLocation(),
 | 
						|
                                             SourceLocation(), SourceLocation(),
 | 
						|
                                             SourceLocation(),
 | 
						|
                                             EST_None, SourceLocation(),
 | 
						|
                                             0, 0, 0, 0, Loc, Loc, D),
 | 
						|
                DS.getAttributes(),
 | 
						|
                SourceLocation());
 | 
						|
  D.SetIdentifier(&II, Loc);
 | 
						|
 | 
						|
  // Insert this function into translation-unit scope.
 | 
						|
 | 
						|
  DeclContext *PrevDC = CurContext;
 | 
						|
  CurContext = Context.getTranslationUnitDecl();
 | 
						|
 | 
						|
  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
 | 
						|
  FD->setImplicit();
 | 
						|
 | 
						|
  CurContext = PrevDC;
 | 
						|
 | 
						|
  AddKnownFunctionAttributes(FD);
 | 
						|
 | 
						|
  return FD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Adds any function attributes that we know a priori based on
 | 
						|
/// the declaration of this function.
 | 
						|
///
 | 
						|
/// These attributes can apply both to implicitly-declared builtins
 | 
						|
/// (like __builtin___printf_chk) or to library-declared functions
 | 
						|
/// like NSLog or printf.
 | 
						|
///
 | 
						|
/// We need to check for duplicate attributes both here and where user-written
 | 
						|
/// attributes are applied to declarations.
 | 
						|
void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
 | 
						|
  if (FD->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this is a built-in function, map its builtin attributes to
 | 
						|
  // actual attributes.
 | 
						|
  if (unsigned BuiltinID = FD->getBuiltinID()) {
 | 
						|
    // Handle printf-formatting attributes.
 | 
						|
    unsigned FormatIdx;
 | 
						|
    bool HasVAListArg;
 | 
						|
    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
 | 
						|
      if (!FD->getAttr<FormatAttr>()) {
 | 
						|
        const char *fmt = "printf";
 | 
						|
        unsigned int NumParams = FD->getNumParams();
 | 
						|
        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
 | 
						|
            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
 | 
						|
          fmt = "NSString";
 | 
						|
        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
 | 
						|
                                               fmt, FormatIdx+1,
 | 
						|
                                               HasVAListArg ? 0 : FormatIdx+2));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
 | 
						|
                                             HasVAListArg)) {
 | 
						|
     if (!FD->getAttr<FormatAttr>())
 | 
						|
       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
 | 
						|
                                              "scanf", FormatIdx+1,
 | 
						|
                                              HasVAListArg ? 0 : FormatIdx+2));
 | 
						|
    }
 | 
						|
 | 
						|
    // Mark const if we don't care about errno and that is the only
 | 
						|
    // thing preventing the function from being const. This allows
 | 
						|
    // IRgen to use LLVM intrinsics for such functions.
 | 
						|
    if (!getLangOptions().MathErrno &&
 | 
						|
        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
 | 
						|
      if (!FD->getAttr<ConstAttr>())
 | 
						|
        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
 | 
						|
    }
 | 
						|
 | 
						|
    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
 | 
						|
        !FD->getAttr<ReturnsTwiceAttr>())
 | 
						|
      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
 | 
						|
    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
 | 
						|
      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
 | 
						|
    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
 | 
						|
      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
 | 
						|
  }
 | 
						|
 | 
						|
  IdentifierInfo *Name = FD->getIdentifier();
 | 
						|
  if (!Name)
 | 
						|
    return;
 | 
						|
  if ((!getLangOptions().CPlusPlus &&
 | 
						|
       FD->getDeclContext()->isTranslationUnit()) ||
 | 
						|
      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
 | 
						|
       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
 | 
						|
       LinkageSpecDecl::lang_c)) {
 | 
						|
    // Okay: this could be a libc/libm/Objective-C function we know
 | 
						|
    // about.
 | 
						|
  } else
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
 | 
						|
    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
 | 
						|
    // target-specific builtins, perhaps?
 | 
						|
    if (!FD->getAttr<FormatAttr>())
 | 
						|
      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
 | 
						|
                                             "printf", 2,
 | 
						|
                                             Name->isStr("vasprintf") ? 0 : 3));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
 | 
						|
                                    TypeSourceInfo *TInfo) {
 | 
						|
  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
 | 
						|
  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
 | 
						|
 | 
						|
  if (!TInfo) {
 | 
						|
    assert(D.isInvalidType() && "no declarator info for valid type");
 | 
						|
    TInfo = Context.getTrivialTypeSourceInfo(T);
 | 
						|
  }
 | 
						|
 | 
						|
  // Scope manipulation handled by caller.
 | 
						|
  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
 | 
						|
                                           D.getSourceRange().getBegin(),
 | 
						|
                                           D.getIdentifierLoc(),
 | 
						|
                                           D.getIdentifier(),
 | 
						|
                                           TInfo);
 | 
						|
 | 
						|
  // Bail out immediately if we have an invalid declaration.
 | 
						|
  if (D.isInvalidType()) {
 | 
						|
    NewTD->setInvalidDecl();
 | 
						|
    return NewTD;
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.getDeclSpec().isModulePrivateSpecified()) {
 | 
						|
    if (CurContext->isFunctionOrMethod())
 | 
						|
      Diag(NewTD->getLocation(), diag::err_module_private_local)
 | 
						|
        << 2 << NewTD->getDeclName()
 | 
						|
        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
 | 
						|
        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | 
						|
    else
 | 
						|
      NewTD->setModulePrivate();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // C++ [dcl.typedef]p8:
 | 
						|
  //   If the typedef declaration defines an unnamed class (or
 | 
						|
  //   enum), the first typedef-name declared by the declaration
 | 
						|
  //   to be that class type (or enum type) is used to denote the
 | 
						|
  //   class type (or enum type) for linkage purposes only.
 | 
						|
  // We need to check whether the type was declared in the declaration.
 | 
						|
  switch (D.getDeclSpec().getTypeSpecType()) {
 | 
						|
  case TST_enum:
 | 
						|
  case TST_struct:
 | 
						|
  case TST_union:
 | 
						|
  case TST_class: {
 | 
						|
    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
 | 
						|
 | 
						|
    // Do nothing if the tag is not anonymous or already has an
 | 
						|
    // associated typedef (from an earlier typedef in this decl group).
 | 
						|
    if (tagFromDeclSpec->getIdentifier()) break;
 | 
						|
    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
 | 
						|
 | 
						|
    // A well-formed anonymous tag must always be a TUK_Definition.
 | 
						|
    assert(tagFromDeclSpec->isThisDeclarationADefinition());
 | 
						|
 | 
						|
    // The type must match the tag exactly;  no qualifiers allowed.
 | 
						|
    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
 | 
						|
      break;
 | 
						|
 | 
						|
    // Otherwise, set this is the anon-decl typedef for the tag.
 | 
						|
    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
    
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return NewTD;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Determine whether a tag with a given kind is acceptable
 | 
						|
/// as a redeclaration of the given tag declaration.
 | 
						|
///
 | 
						|
/// \returns true if the new tag kind is acceptable, false otherwise.
 | 
						|
bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
 | 
						|
                                        TagTypeKind NewTag, bool isDefinition,
 | 
						|
                                        SourceLocation NewTagLoc,
 | 
						|
                                        const IdentifierInfo &Name) {
 | 
						|
  // C++ [dcl.type.elab]p3:
 | 
						|
  //   The class-key or enum keyword present in the
 | 
						|
  //   elaborated-type-specifier shall agree in kind with the
 | 
						|
  //   declaration to which the name in the elaborated-type-specifier
 | 
						|
  //   refers. This rule also applies to the form of
 | 
						|
  //   elaborated-type-specifier that declares a class-name or
 | 
						|
  //   friend class since it can be construed as referring to the
 | 
						|
  //   definition of the class. Thus, in any
 | 
						|
  //   elaborated-type-specifier, the enum keyword shall be used to
 | 
						|
  //   refer to an enumeration (7.2), the union class-key shall be
 | 
						|
  //   used to refer to a union (clause 9), and either the class or
 | 
						|
  //   struct class-key shall be used to refer to a class (clause 9)
 | 
						|
  //   declared using the class or struct class-key.
 | 
						|
  TagTypeKind OldTag = Previous->getTagKind();
 | 
						|
  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
 | 
						|
    if (OldTag == NewTag)
 | 
						|
      return true;
 | 
						|
 | 
						|
  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
 | 
						|
      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
 | 
						|
    // Warn about the struct/class tag mismatch.
 | 
						|
    bool isTemplate = false;
 | 
						|
    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
 | 
						|
      isTemplate = Record->getDescribedClassTemplate();
 | 
						|
 | 
						|
    if (!ActiveTemplateInstantiations.empty()) {
 | 
						|
      // In a template instantiation, do not offer fix-its for tag mismatches
 | 
						|
      // since they usually mess up the template instead of fixing the problem.
 | 
						|
      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
 | 
						|
        << (NewTag == TTK_Class) << isTemplate << &Name;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isDefinition) {
 | 
						|
      // On definitions, check previous tags and issue a fix-it for each
 | 
						|
      // one that doesn't match the current tag.
 | 
						|
      if (Previous->getDefinition()) {
 | 
						|
        // Don't suggest fix-its for redefinitions.
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      bool previousMismatch = false;
 | 
						|
      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
 | 
						|
           E(Previous->redecls_end()); I != E; ++I) {
 | 
						|
        if (I->getTagKind() != NewTag) {
 | 
						|
          if (!previousMismatch) {
 | 
						|
            previousMismatch = true;
 | 
						|
            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
 | 
						|
              << (NewTag == TTK_Class) << isTemplate << &Name;
 | 
						|
          }
 | 
						|
          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
 | 
						|
            << (NewTag == TTK_Class)
 | 
						|
            << FixItHint::CreateReplacement(I->getInnerLocStart(),
 | 
						|
                                            NewTag == TTK_Class?
 | 
						|
                                            "class" : "struct");
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for a previous definition.  If current tag and definition
 | 
						|
    // are same type, do nothing.  If no definition, but disagree with
 | 
						|
    // with previous tag type, give a warning, but no fix-it.
 | 
						|
    const TagDecl *Redecl = Previous->getDefinition() ?
 | 
						|
                            Previous->getDefinition() : Previous;
 | 
						|
    if (Redecl->getTagKind() == NewTag) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
 | 
						|
      << (NewTag == TTK_Class)
 | 
						|
      << isTemplate << &Name;
 | 
						|
    Diag(Redecl->getLocation(), diag::note_previous_use);
 | 
						|
 | 
						|
    // If there is a previous defintion, suggest a fix-it.
 | 
						|
    if (Previous->getDefinition()) {
 | 
						|
        Diag(NewTagLoc, diag::note_struct_class_suggestion)
 | 
						|
          << (Redecl->getTagKind() == TTK_Class)
 | 
						|
          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
 | 
						|
                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
 | 
						|
/// former case, Name will be non-null.  In the later case, Name will be null.
 | 
						|
/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
 | 
						|
/// reference/declaration/definition of a tag.
 | 
						|
Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | 
						|
                     SourceLocation KWLoc, CXXScopeSpec &SS,
 | 
						|
                     IdentifierInfo *Name, SourceLocation NameLoc,
 | 
						|
                     AttributeList *Attr, AccessSpecifier AS,
 | 
						|
                     SourceLocation ModulePrivateLoc,
 | 
						|
                     MultiTemplateParamsArg TemplateParameterLists,
 | 
						|
                     bool &OwnedDecl, bool &IsDependent,
 | 
						|
                     SourceLocation ScopedEnumKWLoc,
 | 
						|
                     bool ScopedEnumUsesClassTag,
 | 
						|
                     TypeResult UnderlyingType) {
 | 
						|
  // If this is not a definition, it must have a name.
 | 
						|
  assert((Name != 0 || TUK == TUK_Definition) &&
 | 
						|
         "Nameless record must be a definition!");
 | 
						|
  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
 | 
						|
 | 
						|
  OwnedDecl = false;
 | 
						|
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
  bool ScopedEnum = ScopedEnumKWLoc.isValid();
 | 
						|
 | 
						|
  // FIXME: Check explicit specializations more carefully.
 | 
						|
  bool isExplicitSpecialization = false;
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // We only need to do this matching if we have template parameters
 | 
						|
  // or a scope specifier, which also conveniently avoids this work
 | 
						|
  // for non-C++ cases.
 | 
						|
  if (TemplateParameterLists.size() > 0 ||
 | 
						|
      (SS.isNotEmpty() && TUK != TUK_Reference)) {
 | 
						|
    if (TemplateParameterList *TemplateParams
 | 
						|
          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
 | 
						|
                                                TemplateParameterLists.get(),
 | 
						|
                                                TemplateParameterLists.size(),
 | 
						|
                                                    TUK == TUK_Friend,
 | 
						|
                                                    isExplicitSpecialization,
 | 
						|
                                                    Invalid)) {
 | 
						|
      if (TemplateParams->size() > 0) {
 | 
						|
        // This is a declaration or definition of a class template (which may
 | 
						|
        // be a member of another template).
 | 
						|
 | 
						|
        if (Invalid)
 | 
						|
          return 0;
 | 
						|
 | 
						|
        OwnedDecl = false;
 | 
						|
        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
 | 
						|
                                               SS, Name, NameLoc, Attr,
 | 
						|
                                               TemplateParams, AS,
 | 
						|
                                               ModulePrivateLoc,
 | 
						|
                                           TemplateParameterLists.size() - 1,
 | 
						|
                 (TemplateParameterList**) TemplateParameterLists.release());
 | 
						|
        return Result.get();
 | 
						|
      } else {
 | 
						|
        // The "template<>" header is extraneous.
 | 
						|
        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
 | 
						|
          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
 | 
						|
        isExplicitSpecialization = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out the underlying type if this a enum declaration. We need to do
 | 
						|
  // this early, because it's needed to detect if this is an incompatible
 | 
						|
  // redeclaration.
 | 
						|
  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
 | 
						|
 | 
						|
  if (Kind == TTK_Enum) {
 | 
						|
    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
 | 
						|
      // No underlying type explicitly specified, or we failed to parse the
 | 
						|
      // type, default to int.
 | 
						|
      EnumUnderlying = Context.IntTy.getTypePtr();
 | 
						|
    else if (UnderlyingType.get()) {
 | 
						|
      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
 | 
						|
      // integral type; any cv-qualification is ignored.
 | 
						|
      TypeSourceInfo *TI = 0;
 | 
						|
      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
 | 
						|
      EnumUnderlying = TI;
 | 
						|
 | 
						|
      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
 | 
						|
 | 
						|
      if (!T->isDependentType() && !T->isIntegralType(Context)) {
 | 
						|
        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
 | 
						|
          << T;
 | 
						|
        // Recover by falling back to int.
 | 
						|
        EnumUnderlying = Context.IntTy.getTypePtr();
 | 
						|
      }
 | 
						|
 | 
						|
      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI, 
 | 
						|
                                          UPPC_FixedUnderlyingType))
 | 
						|
        EnumUnderlying = Context.IntTy.getTypePtr();
 | 
						|
 | 
						|
    } else if (getLangOptions().MicrosoftExt)
 | 
						|
      // Microsoft enums are always of int type.
 | 
						|
      EnumUnderlying = Context.IntTy.getTypePtr();
 | 
						|
  }
 | 
						|
 | 
						|
  DeclContext *SearchDC = CurContext;
 | 
						|
  DeclContext *DC = CurContext;
 | 
						|
  bool isStdBadAlloc = false;
 | 
						|
 | 
						|
  RedeclarationKind Redecl = ForRedeclaration;
 | 
						|
  if (TUK == TUK_Friend || TUK == TUK_Reference)
 | 
						|
    Redecl = NotForRedeclaration;
 | 
						|
 | 
						|
  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
 | 
						|
 | 
						|
  if (Name && SS.isNotEmpty()) {
 | 
						|
    // We have a nested-name tag ('struct foo::bar').
 | 
						|
 | 
						|
    // Check for invalid 'foo::'.
 | 
						|
    if (SS.isInvalid()) {
 | 
						|
      Name = 0;
 | 
						|
      goto CreateNewDecl;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a friend or a reference to a class in a dependent
 | 
						|
    // context, don't try to make a decl for it.
 | 
						|
    if (TUK == TUK_Friend || TUK == TUK_Reference) {
 | 
						|
      DC = computeDeclContext(SS, false);
 | 
						|
      if (!DC) {
 | 
						|
        IsDependent = true;
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      DC = computeDeclContext(SS, true);
 | 
						|
      if (!DC) {
 | 
						|
        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
 | 
						|
          << SS.getRange();
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (RequireCompleteDeclContext(SS, DC))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    SearchDC = DC;
 | 
						|
    // Look-up name inside 'foo::'.
 | 
						|
    LookupQualifiedName(Previous, DC);
 | 
						|
 | 
						|
    if (Previous.isAmbiguous())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    if (Previous.empty()) {
 | 
						|
      // Name lookup did not find anything. However, if the
 | 
						|
      // nested-name-specifier refers to the current instantiation,
 | 
						|
      // and that current instantiation has any dependent base
 | 
						|
      // classes, we might find something at instantiation time: treat
 | 
						|
      // this as a dependent elaborated-type-specifier.
 | 
						|
      // But this only makes any sense for reference-like lookups.
 | 
						|
      if (Previous.wasNotFoundInCurrentInstantiation() &&
 | 
						|
          (TUK == TUK_Reference || TUK == TUK_Friend)) {
 | 
						|
        IsDependent = true;
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
 | 
						|
      // A tag 'foo::bar' must already exist.
 | 
						|
      Diag(NameLoc, diag::err_not_tag_in_scope) 
 | 
						|
        << Kind << Name << DC << SS.getRange();
 | 
						|
      Name = 0;
 | 
						|
      Invalid = true;
 | 
						|
      goto CreateNewDecl;
 | 
						|
    }
 | 
						|
  } else if (Name) {
 | 
						|
    // If this is a named struct, check to see if there was a previous forward
 | 
						|
    // declaration or definition.
 | 
						|
    // FIXME: We're looking into outer scopes here, even when we
 | 
						|
    // shouldn't be. Doing so can result in ambiguities that we
 | 
						|
    // shouldn't be diagnosing.
 | 
						|
    LookupName(Previous, S);
 | 
						|
 | 
						|
    if (Previous.isAmbiguous() && 
 | 
						|
        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
 | 
						|
      LookupResult::Filter F = Previous.makeFilter();
 | 
						|
      while (F.hasNext()) {
 | 
						|
        NamedDecl *ND = F.next();
 | 
						|
        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
 | 
						|
          F.erase();
 | 
						|
      }
 | 
						|
      F.done();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Note:  there used to be some attempt at recovery here.
 | 
						|
    if (Previous.isAmbiguous())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
 | 
						|
      // FIXME: This makes sure that we ignore the contexts associated
 | 
						|
      // with C structs, unions, and enums when looking for a matching
 | 
						|
      // tag declaration or definition. See the similar lookup tweak
 | 
						|
      // in Sema::LookupName; is there a better way to deal with this?
 | 
						|
      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
 | 
						|
        SearchDC = SearchDC->getParent();
 | 
						|
    }
 | 
						|
  } else if (S->isFunctionPrototypeScope()) {
 | 
						|
    // If this is an enum declaration in function prototype scope, set its
 | 
						|
    // initial context to the translation unit.
 | 
						|
    SearchDC = Context.getTranslationUnitDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Previous.isSingleResult() &&
 | 
						|
      Previous.getFoundDecl()->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    Previous.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
 | 
						|
      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
 | 
						|
    // This is a declaration of or a reference to "std::bad_alloc".
 | 
						|
    isStdBadAlloc = true;
 | 
						|
    
 | 
						|
    if (Previous.empty() && StdBadAlloc) {
 | 
						|
      // std::bad_alloc has been implicitly declared (but made invisible to
 | 
						|
      // name lookup). Fill in this implicit declaration as the previous 
 | 
						|
      // declaration, so that the declarations get chained appropriately.
 | 
						|
      Previous.addDecl(getStdBadAlloc());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't find a previous declaration, and this is a reference
 | 
						|
  // (or friend reference), move to the correct scope.  In C++, we
 | 
						|
  // also need to do a redeclaration lookup there, just in case
 | 
						|
  // there's a shadow friend decl.
 | 
						|
  if (Name && Previous.empty() &&
 | 
						|
      (TUK == TUK_Reference || TUK == TUK_Friend)) {
 | 
						|
    if (Invalid) goto CreateNewDecl;
 | 
						|
    assert(SS.isEmpty());
 | 
						|
 | 
						|
    if (TUK == TUK_Reference) {
 | 
						|
      // C++ [basic.scope.pdecl]p5:
 | 
						|
      //   -- for an elaborated-type-specifier of the form
 | 
						|
      //
 | 
						|
      //          class-key identifier
 | 
						|
      //
 | 
						|
      //      if the elaborated-type-specifier is used in the
 | 
						|
      //      decl-specifier-seq or parameter-declaration-clause of a
 | 
						|
      //      function defined in namespace scope, the identifier is
 | 
						|
      //      declared as a class-name in the namespace that contains
 | 
						|
      //      the declaration; otherwise, except as a friend
 | 
						|
      //      declaration, the identifier is declared in the smallest
 | 
						|
      //      non-class, non-function-prototype scope that contains the
 | 
						|
      //      declaration.
 | 
						|
      //
 | 
						|
      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
 | 
						|
      // C structs and unions.
 | 
						|
      //
 | 
						|
      // It is an error in C++ to declare (rather than define) an enum
 | 
						|
      // type, including via an elaborated type specifier.  We'll
 | 
						|
      // diagnose that later; for now, declare the enum in the same
 | 
						|
      // scope as we would have picked for any other tag type.
 | 
						|
      //
 | 
						|
      // GNU C also supports this behavior as part of its incomplete
 | 
						|
      // enum types extension, while GNU C++ does not.
 | 
						|
      //
 | 
						|
      // Find the context where we'll be declaring the tag.
 | 
						|
      // FIXME: We would like to maintain the current DeclContext as the
 | 
						|
      // lexical context,
 | 
						|
      while (SearchDC->isRecord() || SearchDC->isTransparentContext() ||
 | 
						|
             SearchDC->isObjCContainer())
 | 
						|
        SearchDC = SearchDC->getParent();
 | 
						|
 | 
						|
      // Find the scope where we'll be declaring the tag.
 | 
						|
      while (S->isClassScope() ||
 | 
						|
             (getLangOptions().CPlusPlus &&
 | 
						|
              S->isFunctionPrototypeScope()) ||
 | 
						|
             ((S->getFlags() & Scope::DeclScope) == 0) ||
 | 
						|
             (S->getEntity() &&
 | 
						|
              ((DeclContext *)S->getEntity())->isTransparentContext()))
 | 
						|
        S = S->getParent();
 | 
						|
    } else {
 | 
						|
      assert(TUK == TUK_Friend);
 | 
						|
      // C++ [namespace.memdef]p3:
 | 
						|
      //   If a friend declaration in a non-local class first declares a
 | 
						|
      //   class or function, the friend class or function is a member of
 | 
						|
      //   the innermost enclosing namespace.
 | 
						|
      SearchDC = SearchDC->getEnclosingNamespaceContext();
 | 
						|
    }
 | 
						|
 | 
						|
    // In C++, we need to do a redeclaration lookup to properly
 | 
						|
    // diagnose some problems.
 | 
						|
    if (getLangOptions().CPlusPlus) {
 | 
						|
      Previous.setRedeclarationKind(ForRedeclaration);
 | 
						|
      LookupQualifiedName(Previous, SearchDC);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Previous.empty()) {
 | 
						|
    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
 | 
						|
 | 
						|
    // It's okay to have a tag decl in the same scope as a typedef
 | 
						|
    // which hides a tag decl in the same scope.  Finding this
 | 
						|
    // insanity with a redeclaration lookup can only actually happen
 | 
						|
    // in C++.
 | 
						|
    //
 | 
						|
    // This is also okay for elaborated-type-specifiers, which is
 | 
						|
    // technically forbidden by the current standard but which is
 | 
						|
    // okay according to the likely resolution of an open issue;
 | 
						|
    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
 | 
						|
    if (getLangOptions().CPlusPlus) {
 | 
						|
      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
 | 
						|
        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
 | 
						|
          TagDecl *Tag = TT->getDecl();
 | 
						|
          if (Tag->getDeclName() == Name &&
 | 
						|
              Tag->getDeclContext()->getRedeclContext()
 | 
						|
                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
 | 
						|
            PrevDecl = Tag;
 | 
						|
            Previous.clear();
 | 
						|
            Previous.addDecl(Tag);
 | 
						|
            Previous.resolveKind();
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
 | 
						|
      // If this is a use of a previous tag, or if the tag is already declared
 | 
						|
      // in the same scope (so that the definition/declaration completes or
 | 
						|
      // rementions the tag), reuse the decl.
 | 
						|
      if (TUK == TUK_Reference || TUK == TUK_Friend ||
 | 
						|
          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
 | 
						|
        // Make sure that this wasn't declared as an enum and now used as a
 | 
						|
        // struct or something similar.
 | 
						|
        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
 | 
						|
                                          TUK == TUK_Definition, KWLoc,
 | 
						|
                                          *Name)) {
 | 
						|
          bool SafeToContinue
 | 
						|
            = (PrevTagDecl->getTagKind() != TTK_Enum &&
 | 
						|
               Kind != TTK_Enum);
 | 
						|
          if (SafeToContinue)
 | 
						|
            Diag(KWLoc, diag::err_use_with_wrong_tag)
 | 
						|
              << Name
 | 
						|
              << FixItHint::CreateReplacement(SourceRange(KWLoc),
 | 
						|
                                              PrevTagDecl->getKindName());
 | 
						|
          else
 | 
						|
            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
 | 
						|
          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
 | 
						|
 | 
						|
          if (SafeToContinue)
 | 
						|
            Kind = PrevTagDecl->getTagKind();
 | 
						|
          else {
 | 
						|
            // Recover by making this an anonymous redefinition.
 | 
						|
            Name = 0;
 | 
						|
            Previous.clear();
 | 
						|
            Invalid = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
 | 
						|
          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
 | 
						|
 | 
						|
          // If this is an elaborated-type-specifier for a scoped enumeration,
 | 
						|
          // the 'class' keyword is not necessary and not permitted.
 | 
						|
          if (TUK == TUK_Reference || TUK == TUK_Friend) {
 | 
						|
            if (ScopedEnum)
 | 
						|
              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
 | 
						|
                << PrevEnum->isScoped()
 | 
						|
                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
 | 
						|
            return PrevTagDecl;
 | 
						|
          }
 | 
						|
 | 
						|
          // All conflicts with previous declarations are recovered by
 | 
						|
          // returning the previous declaration.
 | 
						|
          if (ScopedEnum != PrevEnum->isScoped()) {
 | 
						|
            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
 | 
						|
              << PrevEnum->isScoped();
 | 
						|
            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
 | 
						|
            return PrevTagDecl;
 | 
						|
          }
 | 
						|
          else if (EnumUnderlying && PrevEnum->isFixed()) {
 | 
						|
            QualType T;
 | 
						|
            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
 | 
						|
                T = TI->getType();
 | 
						|
            else
 | 
						|
                T = QualType(EnumUnderlying.get<const Type*>(), 0);
 | 
						|
 | 
						|
            if (!Context.hasSameUnqualifiedType(T, 
 | 
						|
                                                PrevEnum->getIntegerType())) {
 | 
						|
              Diag(NameLoc.isValid() ? NameLoc : KWLoc, 
 | 
						|
                   diag::err_enum_redeclare_type_mismatch)
 | 
						|
                << T
 | 
						|
                << PrevEnum->getIntegerType();
 | 
						|
              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
 | 
						|
              return PrevTagDecl;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
 | 
						|
            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
 | 
						|
              << PrevEnum->isFixed();
 | 
						|
            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
 | 
						|
            return PrevTagDecl;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (!Invalid) {
 | 
						|
          // If this is a use, just return the declaration we found.
 | 
						|
 | 
						|
          // FIXME: In the future, return a variant or some other clue
 | 
						|
          // for the consumer of this Decl to know it doesn't own it.
 | 
						|
          // For our current ASTs this shouldn't be a problem, but will
 | 
						|
          // need to be changed with DeclGroups.
 | 
						|
          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
 | 
						|
               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
 | 
						|
            return PrevTagDecl;
 | 
						|
 | 
						|
          // Diagnose attempts to redefine a tag.
 | 
						|
          if (TUK == TUK_Definition) {
 | 
						|
            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
 | 
						|
              // If we're defining a specialization and the previous definition
 | 
						|
              // is from an implicit instantiation, don't emit an error
 | 
						|
              // here; we'll catch this in the general case below.
 | 
						|
              if (!isExplicitSpecialization ||
 | 
						|
                  !isa<CXXRecordDecl>(Def) ||
 | 
						|
                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind() 
 | 
						|
                                               == TSK_ExplicitSpecialization) {
 | 
						|
                Diag(NameLoc, diag::err_redefinition) << Name;
 | 
						|
                Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
                // If this is a redefinition, recover by making this
 | 
						|
                // struct be anonymous, which will make any later
 | 
						|
                // references get the previous definition.
 | 
						|
                Name = 0;
 | 
						|
                Previous.clear();
 | 
						|
                Invalid = true;
 | 
						|
              }
 | 
						|
            } else {
 | 
						|
              // If the type is currently being defined, complain
 | 
						|
              // about a nested redefinition.
 | 
						|
              const TagType *Tag
 | 
						|
                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
 | 
						|
              if (Tag->isBeingDefined()) {
 | 
						|
                Diag(NameLoc, diag::err_nested_redefinition) << Name;
 | 
						|
                Diag(PrevTagDecl->getLocation(),
 | 
						|
                     diag::note_previous_definition);
 | 
						|
                Name = 0;
 | 
						|
                Previous.clear();
 | 
						|
                Invalid = true;
 | 
						|
              }
 | 
						|
            }
 | 
						|
 | 
						|
            // Okay, this is definition of a previously declared or referenced
 | 
						|
            // tag PrevDecl. We're going to create a new Decl for it.
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // If we get here we have (another) forward declaration or we
 | 
						|
        // have a definition.  Just create a new decl.
 | 
						|
 | 
						|
      } else {
 | 
						|
        // If we get here, this is a definition of a new tag type in a nested
 | 
						|
        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
 | 
						|
        // new decl/type.  We set PrevDecl to NULL so that the entities
 | 
						|
        // have distinct types.
 | 
						|
        Previous.clear();
 | 
						|
      }
 | 
						|
      // If we get here, we're going to create a new Decl. If PrevDecl
 | 
						|
      // is non-NULL, it's a definition of the tag declared by
 | 
						|
      // PrevDecl. If it's NULL, we have a new definition.
 | 
						|
 | 
						|
 | 
						|
    // Otherwise, PrevDecl is not a tag, but was found with tag
 | 
						|
    // lookup.  This is only actually possible in C++, where a few
 | 
						|
    // things like templates still live in the tag namespace.
 | 
						|
    } else {
 | 
						|
      // Use a better diagnostic if an elaborated-type-specifier
 | 
						|
      // found the wrong kind of type on the first
 | 
						|
      // (non-redeclaration) lookup.
 | 
						|
      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
 | 
						|
          !Previous.isForRedeclaration()) {
 | 
						|
        unsigned Kind = 0;
 | 
						|
        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
 | 
						|
        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
 | 
						|
        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
 | 
						|
        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_declared_at);
 | 
						|
        Invalid = true;
 | 
						|
 | 
						|
      // Otherwise, only diagnose if the declaration is in scope.
 | 
						|
      } else if (!isDeclInScope(PrevDecl, SearchDC, S, 
 | 
						|
                                isExplicitSpecialization)) {
 | 
						|
        // do nothing
 | 
						|
 | 
						|
      // Diagnose implicit declarations introduced by elaborated types.
 | 
						|
      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
 | 
						|
        unsigned Kind = 0;
 | 
						|
        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
 | 
						|
        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
 | 
						|
        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
 | 
						|
        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
 | 
						|
        Invalid = true;
 | 
						|
 | 
						|
      // Otherwise it's a declaration.  Call out a particularly common
 | 
						|
      // case here.
 | 
						|
      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
 | 
						|
        unsigned Kind = 0;
 | 
						|
        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
 | 
						|
        Diag(NameLoc, diag::err_tag_definition_of_typedef)
 | 
						|
          << Name << Kind << TND->getUnderlyingType();
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
 | 
						|
        Invalid = true;
 | 
						|
 | 
						|
      // Otherwise, diagnose.
 | 
						|
      } else {
 | 
						|
        // The tag name clashes with something else in the target scope,
 | 
						|
        // issue an error and recover by making this tag be anonymous.
 | 
						|
        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
        Name = 0;
 | 
						|
        Invalid = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // The existing declaration isn't relevant to us; we're in a
 | 
						|
      // new scope, so clear out the previous declaration.
 | 
						|
      Previous.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
CreateNewDecl:
 | 
						|
 | 
						|
  TagDecl *PrevDecl = 0;
 | 
						|
  if (Previous.isSingleResult())
 | 
						|
    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
 | 
						|
 | 
						|
  // If there is an identifier, use the location of the identifier as the
 | 
						|
  // location of the decl, otherwise use the location of the struct/union
 | 
						|
  // keyword.
 | 
						|
  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
 | 
						|
 | 
						|
  // Otherwise, create a new declaration. If there is a previous
 | 
						|
  // declaration of the same entity, the two will be linked via
 | 
						|
  // PrevDecl.
 | 
						|
  TagDecl *New;
 | 
						|
 | 
						|
  bool IsForwardReference = false;
 | 
						|
  if (Kind == TTK_Enum) {
 | 
						|
    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
 | 
						|
    // enum X { A, B, C } D;    D should chain to X.
 | 
						|
    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
 | 
						|
                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
 | 
						|
                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
 | 
						|
    // If this is an undefined enum, warn.
 | 
						|
    if (TUK != TUK_Definition && !Invalid) {
 | 
						|
      TagDecl *Def;
 | 
						|
      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
 | 
						|
        // C++0x: 7.2p2: opaque-enum-declaration.
 | 
						|
        // Conflicts are diagnosed above. Do nothing.
 | 
						|
      }
 | 
						|
      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
 | 
						|
        Diag(Loc, diag::ext_forward_ref_enum_def)
 | 
						|
          << New;
 | 
						|
        Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
      } else {
 | 
						|
        unsigned DiagID = diag::ext_forward_ref_enum;
 | 
						|
        if (getLangOptions().MicrosoftExt)
 | 
						|
          DiagID = diag::ext_ms_forward_ref_enum;
 | 
						|
        else if (getLangOptions().CPlusPlus)
 | 
						|
          DiagID = diag::err_forward_ref_enum;
 | 
						|
        Diag(Loc, DiagID);
 | 
						|
        
 | 
						|
        // If this is a forward-declared reference to an enumeration, make a 
 | 
						|
        // note of it; we won't actually be introducing the declaration into
 | 
						|
        // the declaration context.
 | 
						|
        if (TUK == TUK_Reference)
 | 
						|
          IsForwardReference = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (EnumUnderlying) {
 | 
						|
      EnumDecl *ED = cast<EnumDecl>(New);
 | 
						|
      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
 | 
						|
        ED->setIntegerTypeSourceInfo(TI);
 | 
						|
      else
 | 
						|
        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
 | 
						|
      ED->setPromotionType(ED->getIntegerType());
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    // struct/union/class
 | 
						|
 | 
						|
    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
 | 
						|
    // struct X { int A; } D;    D should chain to X.
 | 
						|
    if (getLangOptions().CPlusPlus) {
 | 
						|
      // FIXME: Look for a way to use RecordDecl for simple structs.
 | 
						|
      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
 | 
						|
                                  cast_or_null<CXXRecordDecl>(PrevDecl));
 | 
						|
 | 
						|
      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
 | 
						|
        StdBadAlloc = cast<CXXRecordDecl>(New);
 | 
						|
    } else
 | 
						|
      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
 | 
						|
                               cast_or_null<RecordDecl>(PrevDecl));
 | 
						|
  }
 | 
						|
 | 
						|
  // Maybe add qualifier info.
 | 
						|
  if (SS.isNotEmpty()) {
 | 
						|
    if (SS.isSet()) {
 | 
						|
      New->setQualifierInfo(SS.getWithLocInContext(Context));
 | 
						|
      if (TemplateParameterLists.size() > 0) {
 | 
						|
        New->setTemplateParameterListsInfo(Context,
 | 
						|
                                           TemplateParameterLists.size(),
 | 
						|
                    (TemplateParameterList**) TemplateParameterLists.release());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
      Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
 | 
						|
    // Add alignment attributes if necessary; these attributes are checked when
 | 
						|
    // the ASTContext lays out the structure.
 | 
						|
    //
 | 
						|
    // It is important for implementing the correct semantics that this
 | 
						|
    // happen here (in act on tag decl). The #pragma pack stack is
 | 
						|
    // maintained as a result of parser callbacks which can occur at
 | 
						|
    // many points during the parsing of a struct declaration (because
 | 
						|
    // the #pragma tokens are effectively skipped over during the
 | 
						|
    // parsing of the struct).
 | 
						|
    AddAlignmentAttributesForRecord(RD);
 | 
						|
    
 | 
						|
    AddMsStructLayoutForRecord(RD);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ModulePrivateLoc.isValid()) {
 | 
						|
    if (isExplicitSpecialization)
 | 
						|
      Diag(New->getLocation(), diag::err_module_private_specialization)
 | 
						|
        << 2
 | 
						|
        << FixItHint::CreateRemoval(ModulePrivateLoc);
 | 
						|
    // __module_private__ does not apply to local classes. However, we only
 | 
						|
    // diagnose this as an error when the declaration specifiers are
 | 
						|
    // freestanding. Here, we just ignore the __module_private__.
 | 
						|
    else if (!SearchDC->isFunctionOrMethod())
 | 
						|
      New->setModulePrivate();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this is a specialization of a member class (of a class template),
 | 
						|
  // check the specialization.
 | 
						|
  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
 | 
						|
    Invalid = true;
 | 
						|
 | 
						|
  if (Invalid)
 | 
						|
    New->setInvalidDecl();
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, New, Attr);
 | 
						|
 | 
						|
  // If we're declaring or defining a tag in function prototype scope
 | 
						|
  // in C, note that this type can only be used within the function.
 | 
						|
  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
 | 
						|
    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
 | 
						|
 | 
						|
  // Set the lexical context. If the tag has a C++ scope specifier, the
 | 
						|
  // lexical context will be different from the semantic context.
 | 
						|
  New->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  // Mark this as a friend decl if applicable.
 | 
						|
  // In Microsoft mode, a friend declaration also acts as a forward
 | 
						|
  // declaration so we always pass true to setObjectOfFriendDecl to make
 | 
						|
  // the tag name visible.
 | 
						|
  if (TUK == TUK_Friend)
 | 
						|
    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
 | 
						|
                               getLangOptions().MicrosoftExt);
 | 
						|
 | 
						|
  // Set the access specifier.
 | 
						|
  if (!Invalid && SearchDC->isRecord())
 | 
						|
    SetMemberAccessSpecifier(New, PrevDecl, AS);
 | 
						|
 | 
						|
  if (TUK == TUK_Definition)
 | 
						|
    New->startDefinition();
 | 
						|
 | 
						|
  // If this has an identifier, add it to the scope stack.
 | 
						|
  if (TUK == TUK_Friend) {
 | 
						|
    // We might be replacing an existing declaration in the lookup tables;
 | 
						|
    // if so, borrow its access specifier.
 | 
						|
    if (PrevDecl)
 | 
						|
      New->setAccess(PrevDecl->getAccess());
 | 
						|
 | 
						|
    DeclContext *DC = New->getDeclContext()->getRedeclContext();
 | 
						|
    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
 | 
						|
    if (Name) // can be null along some error paths
 | 
						|
      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
 | 
						|
        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
 | 
						|
  } else if (Name) {
 | 
						|
    S = getNonFieldDeclScope(S);
 | 
						|
    PushOnScopeChains(New, S, !IsForwardReference);
 | 
						|
    if (IsForwardReference)
 | 
						|
      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
 | 
						|
 | 
						|
  } else {
 | 
						|
    CurContext->addDecl(New);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is the C FILE type, notify the AST context.
 | 
						|
  if (IdentifierInfo *II = New->getIdentifier())
 | 
						|
    if (!New->isInvalidDecl() &&
 | 
						|
        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
 | 
						|
        II->isStr("FILE"))
 | 
						|
      Context.setFILEDecl(New);
 | 
						|
 | 
						|
  OwnedDecl = true;
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
 | 
						|
  AdjustDeclIfTemplate(TagD);
 | 
						|
  TagDecl *Tag = cast<TagDecl>(TagD);
 | 
						|
  
 | 
						|
  // Enter the tag context.
 | 
						|
  PushDeclContext(S, Tag);
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
 | 
						|
  assert(isa<ObjCContainerDecl>(IDecl) && 
 | 
						|
         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
 | 
						|
  DeclContext *OCD = cast<DeclContext>(IDecl);
 | 
						|
  assert(getContainingDC(OCD) == CurContext &&
 | 
						|
      "The next DeclContext should be lexically contained in the current one.");
 | 
						|
  CurContext = OCD;
 | 
						|
  return IDecl;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
 | 
						|
                                           SourceLocation FinalLoc,
 | 
						|
                                           SourceLocation LBraceLoc) {
 | 
						|
  AdjustDeclIfTemplate(TagD);
 | 
						|
  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
 | 
						|
 | 
						|
  FieldCollector->StartClass();
 | 
						|
 | 
						|
  if (!Record->getIdentifier())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (FinalLoc.isValid())
 | 
						|
    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
 | 
						|
    
 | 
						|
  // C++ [class]p2:
 | 
						|
  //   [...] The class-name is also inserted into the scope of the
 | 
						|
  //   class itself; this is known as the injected-class-name. For
 | 
						|
  //   purposes of access checking, the injected-class-name is treated
 | 
						|
  //   as if it were a public member name.
 | 
						|
  CXXRecordDecl *InjectedClassName
 | 
						|
    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
 | 
						|
                            Record->getLocStart(), Record->getLocation(),
 | 
						|
                            Record->getIdentifier(),
 | 
						|
                            /*PrevDecl=*/0,
 | 
						|
                            /*DelayTypeCreation=*/true);
 | 
						|
  Context.getTypeDeclType(InjectedClassName, Record);
 | 
						|
  InjectedClassName->setImplicit();
 | 
						|
  InjectedClassName->setAccess(AS_public);
 | 
						|
  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
 | 
						|
      InjectedClassName->setDescribedClassTemplate(Template);
 | 
						|
  PushOnScopeChains(InjectedClassName, S);
 | 
						|
  assert(InjectedClassName->isInjectedClassName() &&
 | 
						|
         "Broken injected-class-name");
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
 | 
						|
                                    SourceLocation RBraceLoc) {
 | 
						|
  AdjustDeclIfTemplate(TagD);
 | 
						|
  TagDecl *Tag = cast<TagDecl>(TagD);
 | 
						|
  Tag->setRBraceLoc(RBraceLoc);
 | 
						|
 | 
						|
  if (isa<CXXRecordDecl>(Tag))
 | 
						|
    FieldCollector->FinishClass();
 | 
						|
 | 
						|
  // Exit this scope of this tag's definition.
 | 
						|
  PopDeclContext();
 | 
						|
                                          
 | 
						|
  // Notify the consumer that we've defined a tag.
 | 
						|
  Consumer.HandleTagDeclDefinition(Tag);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnObjCContainerFinishDefinition() {
 | 
						|
  // Exit this scope of this interface definition.
 | 
						|
  PopDeclContext();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
 | 
						|
  assert(DC == CurContext && "Mismatch of container contexts");
 | 
						|
  OriginalLexicalContext = DC;
 | 
						|
  ActOnObjCContainerFinishDefinition();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
 | 
						|
  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
 | 
						|
  OriginalLexicalContext = 0;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
 | 
						|
  AdjustDeclIfTemplate(TagD);
 | 
						|
  TagDecl *Tag = cast<TagDecl>(TagD);
 | 
						|
  Tag->setInvalidDecl();
 | 
						|
 | 
						|
  // We're undoing ActOnTagStartDefinition here, not
 | 
						|
  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
 | 
						|
  // the FieldCollector.
 | 
						|
 | 
						|
  PopDeclContext();  
 | 
						|
}
 | 
						|
 | 
						|
// Note that FieldName may be null for anonymous bitfields.
 | 
						|
ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
 | 
						|
                                IdentifierInfo *FieldName,
 | 
						|
                                QualType FieldTy, Expr *BitWidth,
 | 
						|
                                bool *ZeroWidth) {
 | 
						|
  // Default to true; that shouldn't confuse checks for emptiness
 | 
						|
  if (ZeroWidth)
 | 
						|
    *ZeroWidth = true;
 | 
						|
 | 
						|
  // C99 6.7.2.1p4 - verify the field type.
 | 
						|
  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
 | 
						|
  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
 | 
						|
    // Handle incomplete types with specific error.
 | 
						|
    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
 | 
						|
      return ExprError();
 | 
						|
    if (FieldName)
 | 
						|
      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
 | 
						|
        << FieldName << FieldTy << BitWidth->getSourceRange();
 | 
						|
    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
 | 
						|
      << FieldTy << BitWidth->getSourceRange();
 | 
						|
  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
 | 
						|
                                             UPPC_BitFieldWidth))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // If the bit-width is type- or value-dependent, don't try to check
 | 
						|
  // it now.
 | 
						|
  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
 | 
						|
    return Owned(BitWidth);
 | 
						|
 | 
						|
  llvm::APSInt Value;
 | 
						|
  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
 | 
						|
  if (ICE.isInvalid())
 | 
						|
    return ICE;
 | 
						|
  BitWidth = ICE.take();
 | 
						|
 | 
						|
  if (Value != 0 && ZeroWidth)
 | 
						|
    *ZeroWidth = false;
 | 
						|
 | 
						|
  // Zero-width bitfield is ok for anonymous field.
 | 
						|
  if (Value == 0 && FieldName)
 | 
						|
    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
 | 
						|
 | 
						|
  if (Value.isSigned() && Value.isNegative()) {
 | 
						|
    if (FieldName)
 | 
						|
      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
 | 
						|
               << FieldName << Value.toString(10);
 | 
						|
    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
 | 
						|
      << Value.toString(10);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FieldTy->isDependentType()) {
 | 
						|
    uint64_t TypeSize = Context.getTypeSize(FieldTy);
 | 
						|
    if (Value.getZExtValue() > TypeSize) {
 | 
						|
      if (!getLangOptions().CPlusPlus) {
 | 
						|
        if (FieldName) 
 | 
						|
          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
 | 
						|
            << FieldName << (unsigned)Value.getZExtValue() 
 | 
						|
            << (unsigned)TypeSize;
 | 
						|
        
 | 
						|
        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
 | 
						|
          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (FieldName)
 | 
						|
        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
 | 
						|
          << FieldName << (unsigned)Value.getZExtValue() 
 | 
						|
          << (unsigned)TypeSize;
 | 
						|
      else
 | 
						|
        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
 | 
						|
          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;        
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(BitWidth);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnField - Each field of a C struct/union is passed into this in order
 | 
						|
/// to create a FieldDecl object for it.
 | 
						|
Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
 | 
						|
                       Declarator &D, Expr *BitfieldWidth) {
 | 
						|
  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
 | 
						|
                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
 | 
						|
                               /*HasInit=*/false, AS_public);
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// HandleField - Analyze a field of a C struct or a C++ data member.
 | 
						|
///
 | 
						|
FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
 | 
						|
                             SourceLocation DeclStart,
 | 
						|
                             Declarator &D, Expr *BitWidth, bool HasInit,
 | 
						|
                             AccessSpecifier AS) {
 | 
						|
  IdentifierInfo *II = D.getIdentifier();
 | 
						|
  SourceLocation Loc = DeclStart;
 | 
						|
  if (II) Loc = D.getIdentifierLoc();
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
  QualType T = TInfo->getType();
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    CheckExtraCXXDefaultArguments(D);
 | 
						|
 | 
						|
    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
 | 
						|
                                        UPPC_DataMemberType)) {
 | 
						|
      D.setInvalidType();
 | 
						|
      T = Context.IntTy;
 | 
						|
      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnoseFunctionSpecifiers(D);
 | 
						|
 | 
						|
  if (D.getDeclSpec().isThreadSpecified())
 | 
						|
    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
 | 
						|
  if (D.getDeclSpec().isConstexprSpecified())
 | 
						|
    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
 | 
						|
      << 2;
 | 
						|
  
 | 
						|
  // Check to see if this name was declared as a member previously
 | 
						|
  NamedDecl *PrevDecl = 0;
 | 
						|
  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
 | 
						|
  LookupName(Previous, S);
 | 
						|
  switch (Previous.getResultKind()) {
 | 
						|
    case LookupResult::Found:
 | 
						|
    case LookupResult::FoundUnresolvedValue:
 | 
						|
      PrevDecl = Previous.getAsSingle<NamedDecl>();
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case LookupResult::FoundOverloaded:
 | 
						|
      PrevDecl = Previous.getRepresentativeDecl();
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case LookupResult::NotFound:
 | 
						|
    case LookupResult::NotFoundInCurrentInstantiation:
 | 
						|
    case LookupResult::Ambiguous:
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  Previous.suppressDiagnostics();
 | 
						|
 | 
						|
  if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    PrevDecl = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
 | 
						|
    PrevDecl = 0;
 | 
						|
 | 
						|
  bool Mutable
 | 
						|
    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
 | 
						|
  SourceLocation TSSL = D.getSourceRange().getBegin();
 | 
						|
  FieldDecl *NewFD
 | 
						|
    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
 | 
						|
                     TSSL, AS, PrevDecl, &D);
 | 
						|
 | 
						|
  if (NewFD->isInvalidDecl())
 | 
						|
    Record->setInvalidDecl();
 | 
						|
 | 
						|
  if (D.getDeclSpec().isModulePrivateSpecified())
 | 
						|
    NewFD->setModulePrivate();
 | 
						|
  
 | 
						|
  if (NewFD->isInvalidDecl() && PrevDecl) {
 | 
						|
    // Don't introduce NewFD into scope; there's already something
 | 
						|
    // with the same name in the same scope.
 | 
						|
  } else if (II) {
 | 
						|
    PushOnScopeChains(NewFD, S);
 | 
						|
  } else
 | 
						|
    Record->addDecl(NewFD);
 | 
						|
 | 
						|
  return NewFD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a new FieldDecl and check its well-formedness.
 | 
						|
///
 | 
						|
/// This routine builds a new FieldDecl given the fields name, type,
 | 
						|
/// record, etc. \p PrevDecl should refer to any previous declaration
 | 
						|
/// with the same name and in the same scope as the field to be
 | 
						|
/// created.
 | 
						|
///
 | 
						|
/// \returns a new FieldDecl.
 | 
						|
///
 | 
						|
/// \todo The Declarator argument is a hack. It will be removed once
 | 
						|
FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
 | 
						|
                                TypeSourceInfo *TInfo,
 | 
						|
                                RecordDecl *Record, SourceLocation Loc,
 | 
						|
                                bool Mutable, Expr *BitWidth, bool HasInit,
 | 
						|
                                SourceLocation TSSL,
 | 
						|
                                AccessSpecifier AS, NamedDecl *PrevDecl,
 | 
						|
                                Declarator *D) {
 | 
						|
  IdentifierInfo *II = Name.getAsIdentifierInfo();
 | 
						|
  bool InvalidDecl = false;
 | 
						|
  if (D) InvalidDecl = D->isInvalidType();
 | 
						|
 | 
						|
  // If we receive a broken type, recover by assuming 'int' and
 | 
						|
  // marking this declaration as invalid.
 | 
						|
  if (T.isNull()) {
 | 
						|
    InvalidDecl = true;
 | 
						|
    T = Context.IntTy;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType EltTy = Context.getBaseElementType(T);
 | 
						|
  if (!EltTy->isDependentType() &&
 | 
						|
      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
 | 
						|
    // Fields of incomplete type force their record to be invalid.
 | 
						|
    Record->setInvalidDecl();
 | 
						|
    InvalidDecl = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C99 6.7.2.1p8: A member of a structure or union may have any type other
 | 
						|
  // than a variably modified type.
 | 
						|
  if (!InvalidDecl && T->isVariablyModifiedType()) {
 | 
						|
    bool SizeIsNegative;
 | 
						|
    llvm::APSInt Oversized;
 | 
						|
    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
 | 
						|
                                                           SizeIsNegative,
 | 
						|
                                                           Oversized);
 | 
						|
    if (!FixedTy.isNull()) {
 | 
						|
      Diag(Loc, diag::warn_illegal_constant_array_size);
 | 
						|
      T = FixedTy;
 | 
						|
    } else {
 | 
						|
      if (SizeIsNegative)
 | 
						|
        Diag(Loc, diag::err_typecheck_negative_array_size);
 | 
						|
      else if (Oversized.getBoolValue())
 | 
						|
        Diag(Loc, diag::err_array_too_large)
 | 
						|
          << Oversized.toString(10);
 | 
						|
      else
 | 
						|
        Diag(Loc, diag::err_typecheck_field_variable_size);
 | 
						|
      InvalidDecl = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fields can not have abstract class types
 | 
						|
  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
 | 
						|
                                             diag::err_abstract_type_in_decl,
 | 
						|
                                             AbstractFieldType))
 | 
						|
    InvalidDecl = true;
 | 
						|
 | 
						|
  bool ZeroWidth = false;
 | 
						|
  // If this is declared as a bit-field, check the bit-field.
 | 
						|
  if (!InvalidDecl && BitWidth) {
 | 
						|
    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
 | 
						|
    if (!BitWidth) {
 | 
						|
      InvalidDecl = true;
 | 
						|
      BitWidth = 0;
 | 
						|
      ZeroWidth = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that 'mutable' is consistent with the type of the declaration.
 | 
						|
  if (!InvalidDecl && Mutable) {
 | 
						|
    unsigned DiagID = 0;
 | 
						|
    if (T->isReferenceType())
 | 
						|
      DiagID = diag::err_mutable_reference;
 | 
						|
    else if (T.isConstQualified())
 | 
						|
      DiagID = diag::err_mutable_const;
 | 
						|
 | 
						|
    if (DiagID) {
 | 
						|
      SourceLocation ErrLoc = Loc;
 | 
						|
      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
 | 
						|
        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
 | 
						|
      Diag(ErrLoc, DiagID);
 | 
						|
      Mutable = false;
 | 
						|
      InvalidDecl = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
 | 
						|
                                       BitWidth, Mutable, HasInit);
 | 
						|
  if (InvalidDecl)
 | 
						|
    NewFD->setInvalidDecl();
 | 
						|
 | 
						|
  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
 | 
						|
    Diag(Loc, diag::err_duplicate_member) << II;
 | 
						|
    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
    NewFD->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!InvalidDecl && getLangOptions().CPlusPlus) {
 | 
						|
    if (Record->isUnion()) {
 | 
						|
      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
 | 
						|
        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
        if (RDecl->getDefinition()) {
 | 
						|
          // C++ [class.union]p1: An object of a class with a non-trivial
 | 
						|
          // constructor, a non-trivial copy constructor, a non-trivial
 | 
						|
          // destructor, or a non-trivial copy assignment operator
 | 
						|
          // cannot be a member of a union, nor can an array of such
 | 
						|
          // objects.
 | 
						|
          if (CheckNontrivialField(NewFD))
 | 
						|
            NewFD->setInvalidDecl();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // C++ [class.union]p1: If a union contains a member of reference type,
 | 
						|
      // the program is ill-formed.
 | 
						|
      if (EltTy->isReferenceType()) {
 | 
						|
        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
 | 
						|
          << NewFD->getDeclName() << EltTy;
 | 
						|
        NewFD->setInvalidDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We need to pass in the attributes given an AST
 | 
						|
  // representation, not a parser representation.
 | 
						|
  if (D)
 | 
						|
    // FIXME: What to pass instead of TUScope?
 | 
						|
    ProcessDeclAttributes(TUScope, NewFD, *D);
 | 
						|
 | 
						|
  // In auto-retain/release, infer strong retension for fields of
 | 
						|
  // retainable type.
 | 
						|
  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
 | 
						|
    NewFD->setInvalidDecl();
 | 
						|
 | 
						|
  if (T.isObjCGCWeak())
 | 
						|
    Diag(Loc, diag::warn_attribute_weak_on_field);
 | 
						|
 | 
						|
  NewFD->setAccess(AS);
 | 
						|
  return NewFD;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckNontrivialField(FieldDecl *FD) {
 | 
						|
  assert(FD);
 | 
						|
  assert(getLangOptions().CPlusPlus && "valid check only for C++");
 | 
						|
 | 
						|
  if (FD->isInvalidDecl())
 | 
						|
    return true;
 | 
						|
 | 
						|
  QualType EltTy = Context.getBaseElementType(FD->getType());
 | 
						|
  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
 | 
						|
    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
    if (RDecl->getDefinition()) {
 | 
						|
      // We check for copy constructors before constructors
 | 
						|
      // because otherwise we'll never get complaints about
 | 
						|
      // copy constructors.
 | 
						|
 | 
						|
      CXXSpecialMember member = CXXInvalid;
 | 
						|
      if (!RDecl->hasTrivialCopyConstructor())
 | 
						|
        member = CXXCopyConstructor;
 | 
						|
      else if (!RDecl->hasTrivialDefaultConstructor())
 | 
						|
        member = CXXDefaultConstructor;
 | 
						|
      else if (!RDecl->hasTrivialCopyAssignment())
 | 
						|
        member = CXXCopyAssignment;
 | 
						|
      else if (!RDecl->hasTrivialDestructor())
 | 
						|
        member = CXXDestructor;
 | 
						|
 | 
						|
      if (member != CXXInvalid) {
 | 
						|
        if (!getLangOptions().CPlusPlus0x &&
 | 
						|
            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
 | 
						|
          // Objective-C++ ARC: it is an error to have a non-trivial field of
 | 
						|
          // a union. However, system headers in Objective-C programs 
 | 
						|
          // occasionally have Objective-C lifetime objects within unions,
 | 
						|
          // and rather than cause the program to fail, we make those 
 | 
						|
          // members unavailable.
 | 
						|
          SourceLocation Loc = FD->getLocation();
 | 
						|
          if (getSourceManager().isInSystemHeader(Loc)) {
 | 
						|
            if (!FD->hasAttr<UnavailableAttr>())
 | 
						|
              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
 | 
						|
                                  "this system field has retaining ownership"));
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
 | 
						|
               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
 | 
						|
               diag::err_illegal_union_or_anon_struct_member)
 | 
						|
          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
 | 
						|
        DiagnoseNontrivial(RT, member);
 | 
						|
        return !getLangOptions().CPlusPlus0x;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseNontrivial - Given that a class has a non-trivial
 | 
						|
/// special member, figure out why.
 | 
						|
void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
 | 
						|
  QualType QT(T, 0U);
 | 
						|
  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
 | 
						|
 | 
						|
  // Check whether the member was user-declared.
 | 
						|
  switch (member) {
 | 
						|
  case CXXInvalid:
 | 
						|
    break;
 | 
						|
 | 
						|
  case CXXDefaultConstructor:
 | 
						|
    if (RD->hasUserDeclaredConstructor()) {
 | 
						|
      typedef CXXRecordDecl::ctor_iterator ctor_iter;
 | 
						|
      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
 | 
						|
        const FunctionDecl *body = 0;
 | 
						|
        ci->hasBody(body);
 | 
						|
        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
 | 
						|
          SourceLocation CtorLoc = ci->getLocation();
 | 
						|
          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      llvm_unreachable("found no user-declared constructors");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case CXXCopyConstructor:
 | 
						|
    if (RD->hasUserDeclaredCopyConstructor()) {
 | 
						|
      SourceLocation CtorLoc =
 | 
						|
        RD->getCopyConstructor(0)->getLocation();
 | 
						|
      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case CXXMoveConstructor:
 | 
						|
    if (RD->hasUserDeclaredMoveConstructor()) {
 | 
						|
      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
 | 
						|
      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case CXXCopyAssignment:
 | 
						|
    if (RD->hasUserDeclaredCopyAssignment()) {
 | 
						|
      // FIXME: this should use the location of the copy
 | 
						|
      // assignment, not the type.
 | 
						|
      SourceLocation TyLoc = RD->getSourceRange().getBegin();
 | 
						|
      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case CXXMoveAssignment:
 | 
						|
    if (RD->hasUserDeclaredMoveAssignment()) {
 | 
						|
      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
 | 
						|
      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case CXXDestructor:
 | 
						|
    if (RD->hasUserDeclaredDestructor()) {
 | 
						|
      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
 | 
						|
      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  typedef CXXRecordDecl::base_class_iterator base_iter;
 | 
						|
 | 
						|
  // Virtual bases and members inhibit trivial copying/construction,
 | 
						|
  // but not trivial destruction.
 | 
						|
  if (member != CXXDestructor) {
 | 
						|
    // Check for virtual bases.  vbases includes indirect virtual bases,
 | 
						|
    // so we just iterate through the direct bases.
 | 
						|
    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
 | 
						|
      if (bi->isVirtual()) {
 | 
						|
        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
 | 
						|
        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
    // Check for virtual methods.
 | 
						|
    typedef CXXRecordDecl::method_iterator meth_iter;
 | 
						|
    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
 | 
						|
         ++mi) {
 | 
						|
      if (mi->isVirtual()) {
 | 
						|
        SourceLocation MLoc = mi->getSourceRange().getBegin();
 | 
						|
        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool (CXXRecordDecl::*hasTrivial)() const;
 | 
						|
  switch (member) {
 | 
						|
  case CXXDefaultConstructor:
 | 
						|
    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
 | 
						|
  case CXXCopyConstructor:
 | 
						|
    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
 | 
						|
  case CXXCopyAssignment:
 | 
						|
    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
 | 
						|
  case CXXDestructor:
 | 
						|
    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unexpected special member");
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for nontrivial bases (and recurse).
 | 
						|
  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
 | 
						|
    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
 | 
						|
    assert(BaseRT && "Don't know how to handle dependent bases");
 | 
						|
    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
 | 
						|
    if (!(BaseRecTy->*hasTrivial)()) {
 | 
						|
      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
 | 
						|
      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
 | 
						|
      DiagnoseNontrivial(BaseRT, member);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for nontrivial members (and recurse).
 | 
						|
  typedef RecordDecl::field_iterator field_iter;
 | 
						|
  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
 | 
						|
       ++fi) {
 | 
						|
    QualType EltTy = Context.getBaseElementType((*fi)->getType());
 | 
						|
    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
 | 
						|
 | 
						|
      if (!(EltRD->*hasTrivial)()) {
 | 
						|
        SourceLocation FLoc = (*fi)->getLocation();
 | 
						|
        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
 | 
						|
        DiagnoseNontrivial(EltRT, member);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (EltTy->isObjCLifetimeType()) {
 | 
						|
      switch (EltTy.getObjCLifetime()) {
 | 
						|
      case Qualifiers::OCL_None:
 | 
						|
      case Qualifiers::OCL_ExplicitNone:
 | 
						|
        break;
 | 
						|
          
 | 
						|
      case Qualifiers::OCL_Autoreleasing:
 | 
						|
      case Qualifiers::OCL_Weak:
 | 
						|
      case Qualifiers::OCL_Strong:
 | 
						|
        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
 | 
						|
          << QT << EltTy.getObjCLifetime();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("found no explanation for non-trivial member");
 | 
						|
}
 | 
						|
 | 
						|
/// TranslateIvarVisibility - Translate visibility from a token ID to an
 | 
						|
///  AST enum value.
 | 
						|
static ObjCIvarDecl::AccessControl
 | 
						|
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
 | 
						|
  switch (ivarVisibility) {
 | 
						|
  default: llvm_unreachable("Unknown visitibility kind");
 | 
						|
  case tok::objc_private: return ObjCIvarDecl::Private;
 | 
						|
  case tok::objc_public: return ObjCIvarDecl::Public;
 | 
						|
  case tok::objc_protected: return ObjCIvarDecl::Protected;
 | 
						|
  case tok::objc_package: return ObjCIvarDecl::Package;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnIvar - Each ivar field of an objective-c class is passed into this
 | 
						|
/// in order to create an IvarDecl object for it.
 | 
						|
Decl *Sema::ActOnIvar(Scope *S,
 | 
						|
                                SourceLocation DeclStart,
 | 
						|
                                Declarator &D, Expr *BitfieldWidth,
 | 
						|
                                tok::ObjCKeywordKind Visibility) {
 | 
						|
 | 
						|
  IdentifierInfo *II = D.getIdentifier();
 | 
						|
  Expr *BitWidth = (Expr*)BitfieldWidth;
 | 
						|
  SourceLocation Loc = DeclStart;
 | 
						|
  if (II) Loc = D.getIdentifierLoc();
 | 
						|
 | 
						|
  // FIXME: Unnamed fields can be handled in various different ways, for
 | 
						|
  // example, unnamed unions inject all members into the struct namespace!
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
  QualType T = TInfo->getType();
 | 
						|
 | 
						|
  if (BitWidth) {
 | 
						|
    // 6.7.2.1p3, 6.7.2.1p4
 | 
						|
    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
 | 
						|
    if (!BitWidth)
 | 
						|
      D.setInvalidType();
 | 
						|
  } else {
 | 
						|
    // Not a bitfield.
 | 
						|
 | 
						|
    // validate II.
 | 
						|
 | 
						|
  }
 | 
						|
  if (T->isReferenceType()) {
 | 
						|
    Diag(Loc, diag::err_ivar_reference_type);
 | 
						|
    D.setInvalidType();
 | 
						|
  }
 | 
						|
  // C99 6.7.2.1p8: A member of a structure or union may have any type other
 | 
						|
  // than a variably modified type.
 | 
						|
  else if (T->isVariablyModifiedType()) {
 | 
						|
    Diag(Loc, diag::err_typecheck_ivar_variable_size);
 | 
						|
    D.setInvalidType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the visibility (access control) for this ivar.
 | 
						|
  ObjCIvarDecl::AccessControl ac =
 | 
						|
    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
 | 
						|
                                        : ObjCIvarDecl::None;
 | 
						|
  // Must set ivar's DeclContext to its enclosing interface.
 | 
						|
  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
 | 
						|
  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
 | 
						|
    return 0;
 | 
						|
  ObjCContainerDecl *EnclosingContext;
 | 
						|
  if (ObjCImplementationDecl *IMPDecl =
 | 
						|
      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
 | 
						|
    if (!LangOpts.ObjCNonFragileABI2) {
 | 
						|
    // Case of ivar declared in an implementation. Context is that of its class.
 | 
						|
      EnclosingContext = IMPDecl->getClassInterface();
 | 
						|
      assert(EnclosingContext && "Implementation has no class interface!");
 | 
						|
    }
 | 
						|
    else
 | 
						|
      EnclosingContext = EnclosingDecl;
 | 
						|
  } else {
 | 
						|
    if (ObjCCategoryDecl *CDecl = 
 | 
						|
        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
 | 
						|
      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
 | 
						|
        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    EnclosingContext = EnclosingDecl;
 | 
						|
  }
 | 
						|
 | 
						|
  // Construct the decl.
 | 
						|
  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
 | 
						|
                                             DeclStart, Loc, II, T,
 | 
						|
                                             TInfo, ac, (Expr *)BitfieldWidth);
 | 
						|
 | 
						|
  if (II) {
 | 
						|
    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
 | 
						|
                                           ForRedeclaration);
 | 
						|
    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
 | 
						|
        && !isa<TagDecl>(PrevDecl)) {
 | 
						|
      Diag(Loc, diag::err_duplicate_member) << II;
 | 
						|
      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
      NewID->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Process attributes attached to the ivar.
 | 
						|
  ProcessDeclAttributes(S, NewID, D);
 | 
						|
 | 
						|
  if (D.isInvalidType())
 | 
						|
    NewID->setInvalidDecl();
 | 
						|
 | 
						|
  // In ARC, infer 'retaining' for ivars of retainable type.
 | 
						|
  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
 | 
						|
    NewID->setInvalidDecl();
 | 
						|
 | 
						|
  if (D.getDeclSpec().isModulePrivateSpecified())
 | 
						|
    NewID->setModulePrivate();
 | 
						|
  
 | 
						|
  if (II) {
 | 
						|
    // FIXME: When interfaces are DeclContexts, we'll need to add
 | 
						|
    // these to the interface.
 | 
						|
    S->AddDecl(NewID);
 | 
						|
    IdResolver.AddDecl(NewID);
 | 
						|
  }
 | 
						|
 | 
						|
  return NewID;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnLastBitfield - This routine handles synthesized bitfields rules for 
 | 
						|
/// class and class extensions. For every class @interface and class 
 | 
						|
/// extension @interface, if the last ivar is a bitfield of any type, 
 | 
						|
/// then add an implicit `char :0` ivar to the end of that interface.
 | 
						|
void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
 | 
						|
                             SmallVectorImpl<Decl *> &AllIvarDecls) {
 | 
						|
  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
 | 
						|
    return;
 | 
						|
  
 | 
						|
  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
 | 
						|
  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
 | 
						|
  
 | 
						|
  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
 | 
						|
    return;
 | 
						|
  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
 | 
						|
  if (!ID) {
 | 
						|
    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
 | 
						|
      if (!CD->IsClassExtension())
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    // No need to add this to end of @implementation.
 | 
						|
    else
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  // All conditions are met. Add a new bitfield to the tail end of ivars.
 | 
						|
  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
 | 
						|
  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
 | 
						|
 | 
						|
  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
 | 
						|
                              DeclLoc, DeclLoc, 0,
 | 
						|
                              Context.CharTy, 
 | 
						|
                              Context.getTrivialTypeSourceInfo(Context.CharTy,
 | 
						|
                                                               DeclLoc),
 | 
						|
                              ObjCIvarDecl::Private, BW,
 | 
						|
                              true);
 | 
						|
  AllIvarDecls.push_back(Ivar);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnFields(Scope* S,
 | 
						|
                       SourceLocation RecLoc, Decl *EnclosingDecl,
 | 
						|
                       llvm::ArrayRef<Decl *> Fields,
 | 
						|
                       SourceLocation LBrac, SourceLocation RBrac,
 | 
						|
                       AttributeList *Attr) {
 | 
						|
  assert(EnclosingDecl && "missing record or interface decl");
 | 
						|
 | 
						|
  // If the decl this is being inserted into is invalid, then it may be a
 | 
						|
  // redeclaration or some other bogus case.  Don't try to add fields to it.
 | 
						|
  if (EnclosingDecl->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Verify that all the fields are okay.
 | 
						|
  unsigned NumNamedMembers = 0;
 | 
						|
  SmallVector<FieldDecl*, 32> RecFields;
 | 
						|
 | 
						|
  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
 | 
						|
  bool ARCErrReported = false;
 | 
						|
  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
 | 
						|
       i != end; ++i) {
 | 
						|
    FieldDecl *FD = cast<FieldDecl>(*i);
 | 
						|
 | 
						|
    // Get the type for the field.
 | 
						|
    const Type *FDTy = FD->getType().getTypePtr();
 | 
						|
 | 
						|
    if (!FD->isAnonymousStructOrUnion()) {
 | 
						|
      // Remember all fields written by the user.
 | 
						|
      RecFields.push_back(FD);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the field is already invalid for some reason, don't emit more
 | 
						|
    // diagnostics about it.
 | 
						|
    if (FD->isInvalidDecl()) {
 | 
						|
      EnclosingDecl->setInvalidDecl();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // C99 6.7.2.1p2:
 | 
						|
    //   A structure or union shall not contain a member with
 | 
						|
    //   incomplete or function type (hence, a structure shall not
 | 
						|
    //   contain an instance of itself, but may contain a pointer to
 | 
						|
    //   an instance of itself), except that the last member of a
 | 
						|
    //   structure with more than one named member may have incomplete
 | 
						|
    //   array type; such a structure (and any union containing,
 | 
						|
    //   possibly recursively, a member that is such a structure)
 | 
						|
    //   shall not be a member of a structure or an element of an
 | 
						|
    //   array.
 | 
						|
    if (FDTy->isFunctionType()) {
 | 
						|
      // Field declared as a function.
 | 
						|
      Diag(FD->getLocation(), diag::err_field_declared_as_function)
 | 
						|
        << FD->getDeclName();
 | 
						|
      FD->setInvalidDecl();
 | 
						|
      EnclosingDecl->setInvalidDecl();
 | 
						|
      continue;
 | 
						|
    } else if (FDTy->isIncompleteArrayType() && Record && 
 | 
						|
               ((i + 1 == Fields.end() && !Record->isUnion()) ||
 | 
						|
                ((getLangOptions().MicrosoftExt ||
 | 
						|
                  getLangOptions().CPlusPlus) &&
 | 
						|
                 (i + 1 == Fields.end() || Record->isUnion())))) {
 | 
						|
      // Flexible array member.
 | 
						|
      // Microsoft and g++ is more permissive regarding flexible array.
 | 
						|
      // It will accept flexible array in union and also
 | 
						|
      // as the sole element of a struct/class.
 | 
						|
      if (getLangOptions().MicrosoftExt) {
 | 
						|
        if (Record->isUnion()) 
 | 
						|
          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
 | 
						|
            << FD->getDeclName();
 | 
						|
        else if (Fields.size() == 1) 
 | 
						|
          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
 | 
						|
            << FD->getDeclName() << Record->getTagKind();
 | 
						|
      } else if (getLangOptions().CPlusPlus) {
 | 
						|
        if (Record->isUnion()) 
 | 
						|
          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
 | 
						|
            << FD->getDeclName();
 | 
						|
        else if (Fields.size() == 1) 
 | 
						|
          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
 | 
						|
            << FD->getDeclName() << Record->getTagKind();
 | 
						|
      } else if (NumNamedMembers < 1) {
 | 
						|
        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
 | 
						|
          << FD->getDeclName();
 | 
						|
        FD->setInvalidDecl();
 | 
						|
        EnclosingDecl->setInvalidDecl();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!FD->getType()->isDependentType() &&
 | 
						|
          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
 | 
						|
        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
 | 
						|
          << FD->getDeclName() << FD->getType();
 | 
						|
        FD->setInvalidDecl();
 | 
						|
        EnclosingDecl->setInvalidDecl();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Okay, we have a legal flexible array member at the end of the struct.
 | 
						|
      if (Record)
 | 
						|
        Record->setHasFlexibleArrayMember(true);
 | 
						|
    } else if (!FDTy->isDependentType() &&
 | 
						|
               RequireCompleteType(FD->getLocation(), FD->getType(),
 | 
						|
                                   diag::err_field_incomplete)) {
 | 
						|
      // Incomplete type
 | 
						|
      FD->setInvalidDecl();
 | 
						|
      EnclosingDecl->setInvalidDecl();
 | 
						|
      continue;
 | 
						|
    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
 | 
						|
      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
 | 
						|
        // If this is a member of a union, then entire union becomes "flexible".
 | 
						|
        if (Record && Record->isUnion()) {
 | 
						|
          Record->setHasFlexibleArrayMember(true);
 | 
						|
        } else {
 | 
						|
          // If this is a struct/class and this is not the last element, reject
 | 
						|
          // it.  Note that GCC supports variable sized arrays in the middle of
 | 
						|
          // structures.
 | 
						|
          if (i + 1 != Fields.end())
 | 
						|
            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
 | 
						|
              << FD->getDeclName() << FD->getType();
 | 
						|
          else {
 | 
						|
            // We support flexible arrays at the end of structs in
 | 
						|
            // other structs as an extension.
 | 
						|
            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
 | 
						|
              << FD->getDeclName();
 | 
						|
            if (Record)
 | 
						|
              Record->setHasFlexibleArrayMember(true);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Record && FDTTy->getDecl()->hasObjectMember())
 | 
						|
        Record->setHasObjectMember(true);
 | 
						|
    } else if (FDTy->isObjCObjectType()) {
 | 
						|
      /// A field cannot be an Objective-c object
 | 
						|
      Diag(FD->getLocation(), diag::err_statically_allocated_object)
 | 
						|
        << FixItHint::CreateInsertion(FD->getLocation(), "*");
 | 
						|
      QualType T = Context.getObjCObjectPointerType(FD->getType());
 | 
						|
      FD->setType(T);
 | 
						|
    } 
 | 
						|
    else if (!getLangOptions().CPlusPlus) {
 | 
						|
      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
 | 
						|
        // It's an error in ARC if a field has lifetime.
 | 
						|
        // We don't want to report this in a system header, though,
 | 
						|
        // so we just make the field unavailable.
 | 
						|
        // FIXME: that's really not sufficient; we need to make the type
 | 
						|
        // itself invalid to, say, initialize or copy.
 | 
						|
        QualType T = FD->getType();
 | 
						|
        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
 | 
						|
        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
 | 
						|
          SourceLocation loc = FD->getLocation();
 | 
						|
          if (getSourceManager().isInSystemHeader(loc)) {
 | 
						|
            if (!FD->hasAttr<UnavailableAttr>()) {
 | 
						|
              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
 | 
						|
                                "this system field has retaining ownership"));
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct) 
 | 
						|
              << T->isBlockPointerType();
 | 
						|
          }
 | 
						|
          ARCErrReported = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else if (getLangOptions().ObjC1 &&
 | 
						|
               getLangOptions().getGC() != LangOptions::NonGC &&
 | 
						|
               Record && !Record->hasObjectMember()) {
 | 
						|
        if (FD->getType()->isObjCObjectPointerType() ||
 | 
						|
            FD->getType().isObjCGCStrong())
 | 
						|
          Record->setHasObjectMember(true);
 | 
						|
        else if (Context.getAsArrayType(FD->getType())) {
 | 
						|
          QualType BaseType = Context.getBaseElementType(FD->getType());
 | 
						|
          if (BaseType->isRecordType() && 
 | 
						|
              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
 | 
						|
            Record->setHasObjectMember(true);
 | 
						|
          else if (BaseType->isObjCObjectPointerType() ||
 | 
						|
                   BaseType.isObjCGCStrong())
 | 
						|
                 Record->setHasObjectMember(true);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Keep track of the number of named members.
 | 
						|
    if (FD->getIdentifier())
 | 
						|
      ++NumNamedMembers;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we successfully defined 'Record'.
 | 
						|
  if (Record) {
 | 
						|
    bool Completed = false;
 | 
						|
    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
 | 
						|
      if (!CXXRecord->isInvalidDecl()) {
 | 
						|
        // Set access bits correctly on the directly-declared conversions.
 | 
						|
        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
 | 
						|
        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); 
 | 
						|
             I != E; ++I)
 | 
						|
          Convs->setAccess(I, (*I)->getAccess());
 | 
						|
        
 | 
						|
        if (!CXXRecord->isDependentType()) {
 | 
						|
          // Objective-C Automatic Reference Counting:
 | 
						|
          //   If a class has a non-static data member of Objective-C pointer
 | 
						|
          //   type (or array thereof), it is a non-POD type and its
 | 
						|
          //   default constructor (if any), copy constructor, copy assignment
 | 
						|
          //   operator, and destructor are non-trivial.
 | 
						|
          //
 | 
						|
          // This rule is also handled by CXXRecordDecl::completeDefinition(). 
 | 
						|
          // However, here we check whether this particular class is only 
 | 
						|
          // non-POD because of the presence of an Objective-C pointer member. 
 | 
						|
          // If so, objects of this type cannot be shared between code compiled 
 | 
						|
          // with instant objects and code compiled with manual retain/release.
 | 
						|
          if (getLangOptions().ObjCAutoRefCount &&
 | 
						|
              CXXRecord->hasObjectMember() && 
 | 
						|
              CXXRecord->getLinkage() == ExternalLinkage) {
 | 
						|
            if (CXXRecord->isPOD()) {
 | 
						|
              Diag(CXXRecord->getLocation(), 
 | 
						|
                   diag::warn_arc_non_pod_class_with_object_member)
 | 
						|
               << CXXRecord;
 | 
						|
            } else {
 | 
						|
              // FIXME: Fix-Its would be nice here, but finding a good location
 | 
						|
              // for them is going to be tricky.
 | 
						|
              if (CXXRecord->hasTrivialCopyConstructor())
 | 
						|
                Diag(CXXRecord->getLocation(), 
 | 
						|
                     diag::warn_arc_trivial_member_function_with_object_member)
 | 
						|
                  << CXXRecord << 0;
 | 
						|
              if (CXXRecord->hasTrivialCopyAssignment())
 | 
						|
                Diag(CXXRecord->getLocation(), 
 | 
						|
                     diag::warn_arc_trivial_member_function_with_object_member)
 | 
						|
                << CXXRecord << 1;
 | 
						|
              if (CXXRecord->hasTrivialDestructor())
 | 
						|
                Diag(CXXRecord->getLocation(), 
 | 
						|
                     diag::warn_arc_trivial_member_function_with_object_member)
 | 
						|
                << CXXRecord << 2;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          
 | 
						|
          // Adjust user-defined destructor exception spec.
 | 
						|
          if (getLangOptions().CPlusPlus0x &&
 | 
						|
              CXXRecord->hasUserDeclaredDestructor())
 | 
						|
            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
 | 
						|
 | 
						|
          // Add any implicitly-declared members to this class.
 | 
						|
          AddImplicitlyDeclaredMembersToClass(CXXRecord);
 | 
						|
 | 
						|
          // If we have virtual base classes, we may end up finding multiple 
 | 
						|
          // final overriders for a given virtual function. Check for this 
 | 
						|
          // problem now.
 | 
						|
          if (CXXRecord->getNumVBases()) {
 | 
						|
            CXXFinalOverriderMap FinalOverriders;
 | 
						|
            CXXRecord->getFinalOverriders(FinalOverriders);
 | 
						|
            
 | 
						|
            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 
 | 
						|
                                             MEnd = FinalOverriders.end();
 | 
						|
                 M != MEnd; ++M) {
 | 
						|
              for (OverridingMethods::iterator SO = M->second.begin(), 
 | 
						|
                                            SOEnd = M->second.end();
 | 
						|
                   SO != SOEnd; ++SO) {
 | 
						|
                assert(SO->second.size() > 0 && 
 | 
						|
                       "Virtual function without overridding functions?");
 | 
						|
                if (SO->second.size() == 1)
 | 
						|
                  continue;
 | 
						|
                
 | 
						|
                // C++ [class.virtual]p2:
 | 
						|
                //   In a derived class, if a virtual member function of a base
 | 
						|
                //   class subobject has more than one final overrider the
 | 
						|
                //   program is ill-formed.
 | 
						|
                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
 | 
						|
                  << (NamedDecl *)M->first << Record;
 | 
						|
                Diag(M->first->getLocation(), 
 | 
						|
                     diag::note_overridden_virtual_function);
 | 
						|
                for (OverridingMethods::overriding_iterator 
 | 
						|
                          OM = SO->second.begin(), 
 | 
						|
                       OMEnd = SO->second.end();
 | 
						|
                     OM != OMEnd; ++OM)
 | 
						|
                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
 | 
						|
                    << (NamedDecl *)M->first << OM->Method->getParent();
 | 
						|
                
 | 
						|
                Record->setInvalidDecl();
 | 
						|
              }
 | 
						|
            }
 | 
						|
            CXXRecord->completeDefinition(&FinalOverriders);
 | 
						|
            Completed = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!Completed)
 | 
						|
      Record->completeDefinition();
 | 
						|
 | 
						|
    // Now that the record is complete, do any delayed exception spec checks
 | 
						|
    // we were missing.
 | 
						|
    while (!DelayedDestructorExceptionSpecChecks.empty()) {
 | 
						|
      const CXXDestructorDecl *Dtor =
 | 
						|
              DelayedDestructorExceptionSpecChecks.back().first;
 | 
						|
      if (Dtor->getParent() != Record)
 | 
						|
        break;
 | 
						|
 | 
						|
      assert(!Dtor->getParent()->isDependentType() &&
 | 
						|
          "Should not ever add destructors of templates into the list.");
 | 
						|
      CheckOverridingFunctionExceptionSpec(Dtor,
 | 
						|
          DelayedDestructorExceptionSpecChecks.back().second);
 | 
						|
      DelayedDestructorExceptionSpecChecks.pop_back();
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    ObjCIvarDecl **ClsFields =
 | 
						|
      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
 | 
						|
    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
 | 
						|
      ID->setEndOfDefinitionLoc(RBrac);
 | 
						|
      // Add ivar's to class's DeclContext.
 | 
						|
      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
 | 
						|
        ClsFields[i]->setLexicalDeclContext(ID);
 | 
						|
        ID->addDecl(ClsFields[i]);
 | 
						|
      }
 | 
						|
      // Must enforce the rule that ivars in the base classes may not be
 | 
						|
      // duplicates.
 | 
						|
      if (ID->getSuperClass())
 | 
						|
        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
 | 
						|
    } else if (ObjCImplementationDecl *IMPDecl =
 | 
						|
                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
 | 
						|
      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
 | 
						|
      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
 | 
						|
        // Ivar declared in @implementation never belongs to the implementation.
 | 
						|
        // Only it is in implementation's lexical context.
 | 
						|
        ClsFields[I]->setLexicalDeclContext(IMPDecl);
 | 
						|
      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
 | 
						|
    } else if (ObjCCategoryDecl *CDecl = 
 | 
						|
                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
 | 
						|
      // case of ivars in class extension; all other cases have been
 | 
						|
      // reported as errors elsewhere.
 | 
						|
      // FIXME. Class extension does not have a LocEnd field.
 | 
						|
      // CDecl->setLocEnd(RBrac);
 | 
						|
      // Add ivar's to class extension's DeclContext.
 | 
						|
      // Diagnose redeclaration of private ivars.
 | 
						|
      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
 | 
						|
      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
 | 
						|
        if (IDecl) {
 | 
						|
          if (const ObjCIvarDecl *ClsIvar = 
 | 
						|
              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
 | 
						|
            Diag(ClsFields[i]->getLocation(), 
 | 
						|
                 diag::err_duplicate_ivar_declaration); 
 | 
						|
            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          for (const ObjCCategoryDecl *ClsExtDecl = 
 | 
						|
                IDecl->getFirstClassExtension();
 | 
						|
               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
 | 
						|
            if (const ObjCIvarDecl *ClsExtIvar = 
 | 
						|
                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
 | 
						|
              Diag(ClsFields[i]->getLocation(), 
 | 
						|
                   diag::err_duplicate_ivar_declaration); 
 | 
						|
              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        ClsFields[i]->setLexicalDeclContext(CDecl);
 | 
						|
        CDecl->addDecl(ClsFields[i]);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, Record, Attr);
 | 
						|
 | 
						|
  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
 | 
						|
  // set the visibility of this record.
 | 
						|
  if (Record && !Record->getDeclContext()->isRecord())
 | 
						|
    AddPushedVisibilityAttribute(Record);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given integral value is representable within
 | 
						|
/// the given type T.
 | 
						|
static bool isRepresentableIntegerValue(ASTContext &Context,
 | 
						|
                                        llvm::APSInt &Value,
 | 
						|
                                        QualType T) {
 | 
						|
  assert(T->isIntegralType(Context) && "Integral type required!");
 | 
						|
  unsigned BitWidth = Context.getIntWidth(T);
 | 
						|
  
 | 
						|
  if (Value.isUnsigned() || Value.isNonNegative()) {
 | 
						|
    if (T->isSignedIntegerOrEnumerationType()) 
 | 
						|
      --BitWidth;
 | 
						|
    return Value.getActiveBits() <= BitWidth;
 | 
						|
  }  
 | 
						|
  return Value.getMinSignedBits() <= BitWidth;
 | 
						|
}
 | 
						|
 | 
						|
// \brief Given an integral type, return the next larger integral type
 | 
						|
// (or a NULL type of no such type exists).
 | 
						|
static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
 | 
						|
  // FIXME: Int128/UInt128 support, which also needs to be introduced into 
 | 
						|
  // enum checking below.
 | 
						|
  assert(T->isIntegralType(Context) && "Integral type required!");
 | 
						|
  const unsigned NumTypes = 4;
 | 
						|
  QualType SignedIntegralTypes[NumTypes] = { 
 | 
						|
    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
 | 
						|
  };
 | 
						|
  QualType UnsignedIntegralTypes[NumTypes] = { 
 | 
						|
    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 
 | 
						|
    Context.UnsignedLongLongTy
 | 
						|
  };
 | 
						|
  
 | 
						|
  unsigned BitWidth = Context.getTypeSize(T);
 | 
						|
  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
 | 
						|
                                                        : UnsignedIntegralTypes;
 | 
						|
  for (unsigned I = 0; I != NumTypes; ++I)
 | 
						|
    if (Context.getTypeSize(Types[I]) > BitWidth)
 | 
						|
      return Types[I];
 | 
						|
  
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
 | 
						|
                                          EnumConstantDecl *LastEnumConst,
 | 
						|
                                          SourceLocation IdLoc,
 | 
						|
                                          IdentifierInfo *Id,
 | 
						|
                                          Expr *Val) {
 | 
						|
  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
 | 
						|
  llvm::APSInt EnumVal(IntWidth);
 | 
						|
  QualType EltTy;
 | 
						|
 | 
						|
  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
 | 
						|
    Val = 0;
 | 
						|
 | 
						|
  if (Val)
 | 
						|
    Val = DefaultLvalueConversion(Val).take();
 | 
						|
 | 
						|
  if (Val) {
 | 
						|
    if (Enum->isDependentType() || Val->isTypeDependent())
 | 
						|
      EltTy = Context.DependentTy;
 | 
						|
    else {
 | 
						|
      SourceLocation ExpLoc;
 | 
						|
      if (getLangOptions().CPlusPlus0x && Enum->isFixed() &&
 | 
						|
          !getLangOptions().MicrosoftMode) {
 | 
						|
        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
 | 
						|
        // constant-expression in the enumerator-definition shall be a converted
 | 
						|
        // constant expression of the underlying type.
 | 
						|
        EltTy = Enum->getIntegerType();
 | 
						|
        ExprResult Converted =
 | 
						|
          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
 | 
						|
                                           CCEK_Enumerator);
 | 
						|
        if (Converted.isInvalid())
 | 
						|
          Val = 0;
 | 
						|
        else
 | 
						|
          Val = Converted.take();
 | 
						|
      } else if (!Val->isValueDependent() &&
 | 
						|
                 !(Val = VerifyIntegerConstantExpression(Val,
 | 
						|
                                                         &EnumVal).take())) {
 | 
						|
        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
 | 
						|
      } else {
 | 
						|
        if (Enum->isFixed()) {
 | 
						|
          EltTy = Enum->getIntegerType();
 | 
						|
 | 
						|
          // In Obj-C and Microsoft mode, require the enumeration value to be
 | 
						|
          // representable in the underlying type of the enumeration. In C++11,
 | 
						|
          // we perform a non-narrowing conversion as part of converted constant
 | 
						|
          // expression checking.
 | 
						|
          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
 | 
						|
            if (getLangOptions().MicrosoftExt) {
 | 
						|
              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
 | 
						|
              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
 | 
						|
            } else
 | 
						|
              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
 | 
						|
          } else
 | 
						|
            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
 | 
						|
        } else if (getLangOptions().CPlusPlus) {
 | 
						|
          // C++11 [dcl.enum]p5:
 | 
						|
          //   If the underlying type is not fixed, the type of each enumerator
 | 
						|
          //   is the type of its initializing value:
 | 
						|
          //     - If an initializer is specified for an enumerator, the 
 | 
						|
          //       initializing value has the same type as the expression.
 | 
						|
          EltTy = Val->getType();
 | 
						|
        } else {
 | 
						|
          // C99 6.7.2.2p2:
 | 
						|
          //   The expression that defines the value of an enumeration constant
 | 
						|
          //   shall be an integer constant expression that has a value
 | 
						|
          //   representable as an int.
 | 
						|
 | 
						|
          // Complain if the value is not representable in an int.
 | 
						|
          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
 | 
						|
            Diag(IdLoc, diag::ext_enum_value_not_int)
 | 
						|
              << EnumVal.toString(10) << Val->getSourceRange()
 | 
						|
              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
 | 
						|
          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
 | 
						|
            // Force the type of the expression to 'int'.
 | 
						|
            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
 | 
						|
          }
 | 
						|
          EltTy = Val->getType();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Val) {
 | 
						|
    if (Enum->isDependentType())
 | 
						|
      EltTy = Context.DependentTy;
 | 
						|
    else if (!LastEnumConst) {
 | 
						|
      // C++0x [dcl.enum]p5:
 | 
						|
      //   If the underlying type is not fixed, the type of each enumerator
 | 
						|
      //   is the type of its initializing value:
 | 
						|
      //     - If no initializer is specified for the first enumerator, the 
 | 
						|
      //       initializing value has an unspecified integral type.
 | 
						|
      //
 | 
						|
      // GCC uses 'int' for its unspecified integral type, as does 
 | 
						|
      // C99 6.7.2.2p3.
 | 
						|
      if (Enum->isFixed()) {
 | 
						|
        EltTy = Enum->getIntegerType();
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        EltTy = Context.IntTy;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Assign the last value + 1.
 | 
						|
      EnumVal = LastEnumConst->getInitVal();
 | 
						|
      ++EnumVal;
 | 
						|
      EltTy = LastEnumConst->getType();
 | 
						|
 | 
						|
      // Check for overflow on increment.
 | 
						|
      if (EnumVal < LastEnumConst->getInitVal()) {
 | 
						|
        // C++0x [dcl.enum]p5:
 | 
						|
        //   If the underlying type is not fixed, the type of each enumerator
 | 
						|
        //   is the type of its initializing value:
 | 
						|
        //
 | 
						|
        //     - Otherwise the type of the initializing value is the same as
 | 
						|
        //       the type of the initializing value of the preceding enumerator
 | 
						|
        //       unless the incremented value is not representable in that type,
 | 
						|
        //       in which case the type is an unspecified integral type 
 | 
						|
        //       sufficient to contain the incremented value. If no such type
 | 
						|
        //       exists, the program is ill-formed.
 | 
						|
        QualType T = getNextLargerIntegralType(Context, EltTy);
 | 
						|
        if (T.isNull() || Enum->isFixed()) {
 | 
						|
          // There is no integral type larger enough to represent this 
 | 
						|
          // value. Complain, then allow the value to wrap around.
 | 
						|
          EnumVal = LastEnumConst->getInitVal();
 | 
						|
          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
 | 
						|
          ++EnumVal;
 | 
						|
          if (Enum->isFixed())
 | 
						|
            // When the underlying type is fixed, this is ill-formed.
 | 
						|
            Diag(IdLoc, diag::err_enumerator_wrapped)
 | 
						|
              << EnumVal.toString(10)
 | 
						|
              << EltTy;
 | 
						|
          else
 | 
						|
            Diag(IdLoc, diag::warn_enumerator_too_large)
 | 
						|
              << EnumVal.toString(10);
 | 
						|
        } else {
 | 
						|
          EltTy = T;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Retrieve the last enumerator's value, extent that type to the
 | 
						|
        // type that is supposed to be large enough to represent the incremented
 | 
						|
        // value, then increment.
 | 
						|
        EnumVal = LastEnumConst->getInitVal();
 | 
						|
        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
 | 
						|
        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
 | 
						|
        ++EnumVal;        
 | 
						|
        
 | 
						|
        // If we're not in C++, diagnose the overflow of enumerator values,
 | 
						|
        // which in C99 means that the enumerator value is not representable in
 | 
						|
        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
 | 
						|
        // permits enumerator values that are representable in some larger
 | 
						|
        // integral type.
 | 
						|
        if (!getLangOptions().CPlusPlus && !T.isNull())
 | 
						|
          Diag(IdLoc, diag::warn_enum_value_overflow);
 | 
						|
      } else if (!getLangOptions().CPlusPlus &&
 | 
						|
                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
 | 
						|
        // Enforce C99 6.7.2.2p2 even when we compute the next value.
 | 
						|
        Diag(IdLoc, diag::ext_enum_value_not_int)
 | 
						|
          << EnumVal.toString(10) << 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!EltTy->isDependentType()) {
 | 
						|
    // Make the enumerator value match the signedness and size of the 
 | 
						|
    // enumerator's type.
 | 
						|
    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
 | 
						|
    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
 | 
						|
  }
 | 
						|
  
 | 
						|
  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
 | 
						|
                                  Val, EnumVal);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
 | 
						|
                              SourceLocation IdLoc, IdentifierInfo *Id,
 | 
						|
                              AttributeList *Attr,
 | 
						|
                              SourceLocation EqualLoc, Expr *Val) {
 | 
						|
  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
 | 
						|
  EnumConstantDecl *LastEnumConst =
 | 
						|
    cast_or_null<EnumConstantDecl>(lastEnumConst);
 | 
						|
 | 
						|
  // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | 
						|
  // we find one that is.
 | 
						|
  S = getNonFieldDeclScope(S);
 | 
						|
 | 
						|
  // Verify that there isn't already something declared with this name in this
 | 
						|
  // scope.
 | 
						|
  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
 | 
						|
                                         ForRedeclaration);
 | 
						|
  if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    PrevDecl = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (PrevDecl) {
 | 
						|
    // When in C++, we may get a TagDecl with the same name; in this case the
 | 
						|
    // enum constant will 'hide' the tag.
 | 
						|
    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
 | 
						|
           "Received TagDecl when not in C++!");
 | 
						|
    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
 | 
						|
      if (isa<EnumConstantDecl>(PrevDecl))
 | 
						|
        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
 | 
						|
      else
 | 
						|
        Diag(IdLoc, diag::err_redefinition) << Id;
 | 
						|
      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [class.mem]p13:
 | 
						|
  //   If T is the name of a class, then each of the following shall have a 
 | 
						|
  //   name different from T:
 | 
						|
  //     - every enumerator of every member of class T that is an enumerated 
 | 
						|
  //       type
 | 
						|
  if (CXXRecordDecl *Record
 | 
						|
                      = dyn_cast<CXXRecordDecl>(
 | 
						|
                             TheEnumDecl->getDeclContext()->getRedeclContext()))
 | 
						|
    if (Record->getIdentifier() && Record->getIdentifier() == Id)
 | 
						|
      Diag(IdLoc, diag::err_member_name_of_class) << Id;
 | 
						|
  
 | 
						|
  EnumConstantDecl *New =
 | 
						|
    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
 | 
						|
 | 
						|
  if (New) {
 | 
						|
    // Process attributes.
 | 
						|
    if (Attr) ProcessDeclAttributeList(S, New, Attr);
 | 
						|
 | 
						|
    // Register this decl in the current scope stack.
 | 
						|
    New->setAccess(TheEnumDecl->getAccess());
 | 
						|
    PushOnScopeChains(New, S);
 | 
						|
  }
 | 
						|
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
 | 
						|
                         SourceLocation RBraceLoc, Decl *EnumDeclX,
 | 
						|
                         Decl **Elements, unsigned NumElements,
 | 
						|
                         Scope *S, AttributeList *Attr) {
 | 
						|
  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
 | 
						|
  QualType EnumType = Context.getTypeDeclType(Enum);
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, Enum, Attr);
 | 
						|
 | 
						|
  if (Enum->isDependentType()) {
 | 
						|
    for (unsigned i = 0; i != NumElements; ++i) {
 | 
						|
      EnumConstantDecl *ECD =
 | 
						|
        cast_or_null<EnumConstantDecl>(Elements[i]);
 | 
						|
      if (!ECD) continue;
 | 
						|
 | 
						|
      ECD->setType(EnumType);
 | 
						|
    }
 | 
						|
 | 
						|
    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: If the result value doesn't fit in an int, it must be a long or long
 | 
						|
  // long value.  ISO C does not support this, but GCC does as an extension,
 | 
						|
  // emit a warning.
 | 
						|
  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
 | 
						|
  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
 | 
						|
  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
 | 
						|
 | 
						|
  // Verify that all the values are okay, compute the size of the values, and
 | 
						|
  // reverse the list.
 | 
						|
  unsigned NumNegativeBits = 0;
 | 
						|
  unsigned NumPositiveBits = 0;
 | 
						|
 | 
						|
  // Keep track of whether all elements have type int.
 | 
						|
  bool AllElementsInt = true;
 | 
						|
 | 
						|
  for (unsigned i = 0; i != NumElements; ++i) {
 | 
						|
    EnumConstantDecl *ECD =
 | 
						|
      cast_or_null<EnumConstantDecl>(Elements[i]);
 | 
						|
    if (!ECD) continue;  // Already issued a diagnostic.
 | 
						|
 | 
						|
    const llvm::APSInt &InitVal = ECD->getInitVal();
 | 
						|
 | 
						|
    // Keep track of the size of positive and negative values.
 | 
						|
    if (InitVal.isUnsigned() || InitVal.isNonNegative())
 | 
						|
      NumPositiveBits = std::max(NumPositiveBits,
 | 
						|
                                 (unsigned)InitVal.getActiveBits());
 | 
						|
    else
 | 
						|
      NumNegativeBits = std::max(NumNegativeBits,
 | 
						|
                                 (unsigned)InitVal.getMinSignedBits());
 | 
						|
 | 
						|
    // Keep track of whether every enum element has type int (very commmon).
 | 
						|
    if (AllElementsInt)
 | 
						|
      AllElementsInt = ECD->getType() == Context.IntTy;
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out the type that should be used for this enum.
 | 
						|
  QualType BestType;
 | 
						|
  unsigned BestWidth;
 | 
						|
 | 
						|
  // C++0x N3000 [conv.prom]p3:
 | 
						|
  //   An rvalue of an unscoped enumeration type whose underlying
 | 
						|
  //   type is not fixed can be converted to an rvalue of the first
 | 
						|
  //   of the following types that can represent all the values of
 | 
						|
  //   the enumeration: int, unsigned int, long int, unsigned long
 | 
						|
  //   int, long long int, or unsigned long long int.
 | 
						|
  // C99 6.4.4.3p2:
 | 
						|
  //   An identifier declared as an enumeration constant has type int.
 | 
						|
  // The C99 rule is modified by a gcc extension 
 | 
						|
  QualType BestPromotionType;
 | 
						|
 | 
						|
  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
 | 
						|
  // -fshort-enums is the equivalent to specifying the packed attribute on all
 | 
						|
  // enum definitions.
 | 
						|
  if (LangOpts.ShortEnums)
 | 
						|
    Packed = true;
 | 
						|
 | 
						|
  if (Enum->isFixed()) {
 | 
						|
    BestType = Enum->getIntegerType();
 | 
						|
    if (BestType->isPromotableIntegerType())
 | 
						|
      BestPromotionType = Context.getPromotedIntegerType(BestType);
 | 
						|
    else
 | 
						|
      BestPromotionType = BestType;
 | 
						|
    // We don't need to set BestWidth, because BestType is going to be the type
 | 
						|
    // of the enumerators, but we do anyway because otherwise some compilers
 | 
						|
    // warn that it might be used uninitialized.
 | 
						|
    BestWidth = CharWidth;
 | 
						|
  }
 | 
						|
  else if (NumNegativeBits) {
 | 
						|
    // If there is a negative value, figure out the smallest integer type (of
 | 
						|
    // int/long/longlong) that fits.
 | 
						|
    // If it's packed, check also if it fits a char or a short.
 | 
						|
    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
 | 
						|
      BestType = Context.SignedCharTy;
 | 
						|
      BestWidth = CharWidth;
 | 
						|
    } else if (Packed && NumNegativeBits <= ShortWidth &&
 | 
						|
               NumPositiveBits < ShortWidth) {
 | 
						|
      BestType = Context.ShortTy;
 | 
						|
      BestWidth = ShortWidth;
 | 
						|
    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
 | 
						|
      BestType = Context.IntTy;
 | 
						|
      BestWidth = IntWidth;
 | 
						|
    } else {
 | 
						|
      BestWidth = Context.getTargetInfo().getLongWidth();
 | 
						|
 | 
						|
      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
 | 
						|
        BestType = Context.LongTy;
 | 
						|
      } else {
 | 
						|
        BestWidth = Context.getTargetInfo().getLongLongWidth();
 | 
						|
 | 
						|
        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
 | 
						|
          Diag(Enum->getLocation(), diag::warn_enum_too_large);
 | 
						|
        BestType = Context.LongLongTy;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
 | 
						|
  } else {
 | 
						|
    // If there is no negative value, figure out the smallest type that fits
 | 
						|
    // all of the enumerator values.
 | 
						|
    // If it's packed, check also if it fits a char or a short.
 | 
						|
    if (Packed && NumPositiveBits <= CharWidth) {
 | 
						|
      BestType = Context.UnsignedCharTy;
 | 
						|
      BestPromotionType = Context.IntTy;
 | 
						|
      BestWidth = CharWidth;
 | 
						|
    } else if (Packed && NumPositiveBits <= ShortWidth) {
 | 
						|
      BestType = Context.UnsignedShortTy;
 | 
						|
      BestPromotionType = Context.IntTy;
 | 
						|
      BestWidth = ShortWidth;
 | 
						|
    } else if (NumPositiveBits <= IntWidth) {
 | 
						|
      BestType = Context.UnsignedIntTy;
 | 
						|
      BestWidth = IntWidth;
 | 
						|
      BestPromotionType
 | 
						|
        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
 | 
						|
                           ? Context.UnsignedIntTy : Context.IntTy;
 | 
						|
    } else if (NumPositiveBits <=
 | 
						|
               (BestWidth = Context.getTargetInfo().getLongWidth())) {
 | 
						|
      BestType = Context.UnsignedLongTy;
 | 
						|
      BestPromotionType
 | 
						|
        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
 | 
						|
                           ? Context.UnsignedLongTy : Context.LongTy;
 | 
						|
    } else {
 | 
						|
      BestWidth = Context.getTargetInfo().getLongLongWidth();
 | 
						|
      assert(NumPositiveBits <= BestWidth &&
 | 
						|
             "How could an initializer get larger than ULL?");
 | 
						|
      BestType = Context.UnsignedLongLongTy;
 | 
						|
      BestPromotionType
 | 
						|
        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
 | 
						|
                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the enumerator constants, changing their types to match
 | 
						|
  // the type of the enum if needed.
 | 
						|
  for (unsigned i = 0; i != NumElements; ++i) {
 | 
						|
    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
 | 
						|
    if (!ECD) continue;  // Already issued a diagnostic.
 | 
						|
 | 
						|
    // Standard C says the enumerators have int type, but we allow, as an
 | 
						|
    // extension, the enumerators to be larger than int size.  If each
 | 
						|
    // enumerator value fits in an int, type it as an int, otherwise type it the
 | 
						|
    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
 | 
						|
    // that X has type 'int', not 'unsigned'.
 | 
						|
 | 
						|
    // Determine whether the value fits into an int.
 | 
						|
    llvm::APSInt InitVal = ECD->getInitVal();
 | 
						|
 | 
						|
    // If it fits into an integer type, force it.  Otherwise force it to match
 | 
						|
    // the enum decl type.
 | 
						|
    QualType NewTy;
 | 
						|
    unsigned NewWidth;
 | 
						|
    bool NewSign;
 | 
						|
    if (!getLangOptions().CPlusPlus &&
 | 
						|
        !Enum->isFixed() &&
 | 
						|
        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
 | 
						|
      NewTy = Context.IntTy;
 | 
						|
      NewWidth = IntWidth;
 | 
						|
      NewSign = true;
 | 
						|
    } else if (ECD->getType() == BestType) {
 | 
						|
      // Already the right type!
 | 
						|
      if (getLangOptions().CPlusPlus)
 | 
						|
        // C++ [dcl.enum]p4: Following the closing brace of an
 | 
						|
        // enum-specifier, each enumerator has the type of its
 | 
						|
        // enumeration.
 | 
						|
        ECD->setType(EnumType);
 | 
						|
      continue;
 | 
						|
    } else {
 | 
						|
      NewTy = BestType;
 | 
						|
      NewWidth = BestWidth;
 | 
						|
      NewSign = BestType->isSignedIntegerOrEnumerationType();
 | 
						|
    }
 | 
						|
 | 
						|
    // Adjust the APSInt value.
 | 
						|
    InitVal = InitVal.extOrTrunc(NewWidth);
 | 
						|
    InitVal.setIsSigned(NewSign);
 | 
						|
    ECD->setInitVal(InitVal);
 | 
						|
 | 
						|
    // Adjust the Expr initializer and type.
 | 
						|
    if (ECD->getInitExpr() &&
 | 
						|
        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
 | 
						|
      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
 | 
						|
                                                CK_IntegralCast,
 | 
						|
                                                ECD->getInitExpr(),
 | 
						|
                                                /*base paths*/ 0,
 | 
						|
                                                VK_RValue));
 | 
						|
    if (getLangOptions().CPlusPlus)
 | 
						|
      // C++ [dcl.enum]p4: Following the closing brace of an
 | 
						|
      // enum-specifier, each enumerator has the type of its
 | 
						|
      // enumeration.
 | 
						|
      ECD->setType(EnumType);
 | 
						|
    else
 | 
						|
      ECD->setType(NewTy);
 | 
						|
  }
 | 
						|
 | 
						|
  Enum->completeDefinition(BestType, BestPromotionType,
 | 
						|
                           NumPositiveBits, NumNegativeBits);
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
 | 
						|
                                  SourceLocation StartLoc,
 | 
						|
                                  SourceLocation EndLoc) {
 | 
						|
  StringLiteral *AsmString = cast<StringLiteral>(expr);
 | 
						|
 | 
						|
  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
 | 
						|
                                                   AsmString, StartLoc,
 | 
						|
                                                   EndLoc);
 | 
						|
  CurContext->addDecl(New);
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc, 
 | 
						|
                                   SourceLocation ImportLoc, 
 | 
						|
                                   ModuleIdPath Path) {
 | 
						|
  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path, 
 | 
						|
                                                Module::AllVisible,
 | 
						|
                                                /*IsIncludeDirective=*/false);
 | 
						|
  if (!Mod)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
 | 
						|
  Module *ModCheck = Mod;
 | 
						|
  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
 | 
						|
    // If we've run out of module parents, just drop the remaining identifiers.
 | 
						|
    // We need the length to be consistent.
 | 
						|
    if (!ModCheck)
 | 
						|
      break;
 | 
						|
    ModCheck = ModCheck->Parent;
 | 
						|
    
 | 
						|
    IdentifierLocs.push_back(Path[I].second);
 | 
						|
  }
 | 
						|
 | 
						|
  ImportDecl *Import = ImportDecl::Create(Context, 
 | 
						|
                                          Context.getTranslationUnitDecl(),
 | 
						|
                                          AtLoc.isValid()? AtLoc : ImportLoc, 
 | 
						|
                                          Mod, IdentifierLocs);
 | 
						|
  Context.getTranslationUnitDecl()->addDecl(Import);
 | 
						|
  return Import;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
 | 
						|
                             SourceLocation PragmaLoc,
 | 
						|
                             SourceLocation NameLoc) {
 | 
						|
  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
 | 
						|
 | 
						|
  if (PrevDecl) {
 | 
						|
    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
 | 
						|
  } else {
 | 
						|
    (void)WeakUndeclaredIdentifiers.insert(
 | 
						|
      std::pair<IdentifierInfo*,WeakInfo>
 | 
						|
        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
 | 
						|
                                IdentifierInfo* AliasName,
 | 
						|
                                SourceLocation PragmaLoc,
 | 
						|
                                SourceLocation NameLoc,
 | 
						|
                                SourceLocation AliasNameLoc) {
 | 
						|
  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
 | 
						|
                                    LookupOrdinaryName);
 | 
						|
  WeakInfo W = WeakInfo(Name, NameLoc);
 | 
						|
 | 
						|
  if (PrevDecl) {
 | 
						|
    if (!PrevDecl->hasAttr<AliasAttr>())
 | 
						|
      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
 | 
						|
        DeclApplyPragmaWeak(TUScope, ND, W);
 | 
						|
  } else {
 | 
						|
    (void)WeakUndeclaredIdentifiers.insert(
 | 
						|
      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::getObjCDeclContext() const {
 | 
						|
  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
 | 
						|
}
 | 
						|
 | 
						|
AvailabilityResult Sema::getCurContextAvailability() const {
 | 
						|
  const Decl *D = cast<Decl>(getCurLexicalContext());
 | 
						|
  // A category implicitly has the availability of the interface.
 | 
						|
  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
 | 
						|
    D = CatD->getClassInterface();
 | 
						|
  
 | 
						|
  return D->getAvailability();
 | 
						|
}
 |