244 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			244 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines the template classes ExplodedNode and ExplodedGraph,
 | 
						|
//  which represent a path-sensitive, intra-procedural "exploded graph."
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Analysis/PathSensitive/ExplodedGraph.h"
 | 
						|
#include "clang/AST/Stmt.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include <vector>
 | 
						|
#include <list>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Node auditing.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// An out of line virtual method to provide a home for the class vtable.
 | 
						|
ExplodedNodeImpl::Auditor::~Auditor() {}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static ExplodedNodeImpl::Auditor* NodeAuditor = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
void ExplodedNodeImpl::SetAuditor(ExplodedNodeImpl::Auditor* A) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  NodeAuditor = A;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ExplodedNodeImpl.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static inline std::vector<ExplodedNodeImpl*>& getVector(void* P) {
 | 
						|
  return *reinterpret_cast<std::vector<ExplodedNodeImpl*>*>(P);
 | 
						|
}
 | 
						|
 | 
						|
void ExplodedNodeImpl::addPredecessor(ExplodedNodeImpl* V) {
 | 
						|
  assert (!V->isSink());
 | 
						|
  Preds.addNode(V);
 | 
						|
  V->Succs.addNode(this);
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (NodeAuditor) NodeAuditor->AddEdge(V, this);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void ExplodedNodeImpl::NodeGroup::addNode(ExplodedNodeImpl* N) {
 | 
						|
  
 | 
						|
  assert ((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
 | 
						|
  assert (!getFlag());
 | 
						|
  
 | 
						|
  if (getKind() == Size1) {
 | 
						|
    if (ExplodedNodeImpl* NOld = getNode()) {
 | 
						|
      std::vector<ExplodedNodeImpl*>* V = new std::vector<ExplodedNodeImpl*>();
 | 
						|
      assert ((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
 | 
						|
      V->push_back(NOld);
 | 
						|
      V->push_back(N);
 | 
						|
      P = reinterpret_cast<uintptr_t>(V) | SizeOther;
 | 
						|
      assert (getPtr() == (void*) V);
 | 
						|
      assert (getKind() == SizeOther);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      P = reinterpret_cast<uintptr_t>(N);
 | 
						|
      assert (getKind() == Size1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    assert (getKind() == SizeOther);
 | 
						|
    getVector(getPtr()).push_back(N);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
unsigned ExplodedNodeImpl::NodeGroup::size() const {
 | 
						|
  if (getFlag())
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  if (getKind() == Size1)
 | 
						|
    return getNode() ? 1 : 0;
 | 
						|
  else
 | 
						|
    return getVector(getPtr()).size();
 | 
						|
}
 | 
						|
 | 
						|
ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::begin() const {
 | 
						|
  if (getFlag())
 | 
						|
    return NULL;
 | 
						|
  
 | 
						|
  if (getKind() == Size1)
 | 
						|
    return (ExplodedNodeImpl**) (getPtr() ? &P : NULL);
 | 
						|
  else
 | 
						|
    return const_cast<ExplodedNodeImpl**>(&*(getVector(getPtr()).begin()));
 | 
						|
}
 | 
						|
 | 
						|
ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::end() const {
 | 
						|
  if (getFlag())
 | 
						|
    return NULL;
 | 
						|
  
 | 
						|
  if (getKind() == Size1)
 | 
						|
    return (ExplodedNodeImpl**) (getPtr() ? &P+1 : NULL);
 | 
						|
  else {
 | 
						|
    // Dereferencing end() is undefined behaviour. The vector is not empty, so
 | 
						|
    // we can dereference the last elem and then add 1 to the result.
 | 
						|
    return const_cast<ExplodedNodeImpl**>(&getVector(getPtr()).back()) + 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ExplodedNodeImpl::NodeGroup::~NodeGroup() {
 | 
						|
  if (getKind() == SizeOther) delete &getVector(getPtr());
 | 
						|
}
 | 
						|
 | 
						|
ExplodedGraphImpl*
 | 
						|
ExplodedGraphImpl::Trim(const ExplodedNodeImpl* const* BeginSources,
 | 
						|
                        const ExplodedNodeImpl* const* EndSources,
 | 
						|
                        InterExplodedGraphMapImpl* M,
 | 
						|
                        llvm::DenseMap<const void*, const void*> *InverseMap) 
 | 
						|
const {
 | 
						|
  
 | 
						|
  typedef llvm::DenseSet<const ExplodedNodeImpl*> Pass1Ty;
 | 
						|
  Pass1Ty Pass1;
 | 
						|
  
 | 
						|
  typedef llvm::DenseMap<const ExplodedNodeImpl*, ExplodedNodeImpl*> Pass2Ty;
 | 
						|
  Pass2Ty& Pass2 = M->M;
 | 
						|
  
 | 
						|
  std::list<const ExplodedNodeImpl*> WL1;
 | 
						|
  llvm::SmallVector<const ExplodedNodeImpl*, 10> WL2;
 | 
						|
 | 
						|
  // ===- Pass 1 (reverse BFS) -===
 | 
						|
  for (const ExplodedNodeImpl* const* I = BeginSources; I != EndSources; ++I) {
 | 
						|
    assert(*I);
 | 
						|
    WL1.push_back(*I);
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Process the first worklist until it is empty.  Because it is a std::list
 | 
						|
  // it acts like a FIFO queue.
 | 
						|
  while (!WL1.empty()) {
 | 
						|
    const ExplodedNodeImpl *N = WL1.back();
 | 
						|
    WL1.pop_back();
 | 
						|
    
 | 
						|
    // Have we already visited this node?  If so, continue to the next one.
 | 
						|
    if (Pass1.count(N))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Otherwise, mark this node as visited.
 | 
						|
    Pass1.insert(N);
 | 
						|
    
 | 
						|
    // If this is a root enqueue it to the second worklist.
 | 
						|
    if (N->Preds.empty()) {
 | 
						|
      WL2.push_back(N);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
      
 | 
						|
    // Visit our predecessors and enqueue them.
 | 
						|
    for (ExplodedNodeImpl** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
 | 
						|
      WL1.push_front(*I);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We didn't hit a root? Return with a null pointer for the new graph.
 | 
						|
  if (WL2.empty())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Create an empty graph.
 | 
						|
  ExplodedGraphImpl* G = MakeEmptyGraph();
 | 
						|
  
 | 
						|
  // ===- Pass 2 (forward DFS to construct the new graph) -===  
 | 
						|
  while (!WL2.empty()) {
 | 
						|
    const ExplodedNodeImpl* N = WL2.back();
 | 
						|
    WL2.pop_back();
 | 
						|
    
 | 
						|
    // Skip this node if we have already processed it.
 | 
						|
    if (Pass2.find(N) != Pass2.end())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Create the corresponding node in the new graph and record the mapping
 | 
						|
    // from the old node to the new node.
 | 
						|
    ExplodedNodeImpl* NewN = G->getNodeImpl(N->getLocation(), N->State, NULL);
 | 
						|
    Pass2[N] = NewN;
 | 
						|
    
 | 
						|
    // Also record the reverse mapping from the new node to the old node.
 | 
						|
    if (InverseMap) (*InverseMap)[NewN] = N;
 | 
						|
    
 | 
						|
    // If this node is a root, designate it as such in the graph.
 | 
						|
    if (N->Preds.empty())
 | 
						|
      G->addRoot(NewN);
 | 
						|
    
 | 
						|
    // In the case that some of the intended predecessors of NewN have already
 | 
						|
    // been created, we should hook them up as predecessors.
 | 
						|
 | 
						|
    // Walk through the predecessors of 'N' and hook up their corresponding
 | 
						|
    // nodes in the new graph (if any) to the freshly created node.
 | 
						|
    for (ExplodedNodeImpl **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
 | 
						|
      Pass2Ty::iterator PI = Pass2.find(*I);
 | 
						|
      if (PI == Pass2.end())
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      NewN->addPredecessor(PI->second);
 | 
						|
    }
 | 
						|
 | 
						|
    // In the case that some of the intended successors of NewN have already
 | 
						|
    // been created, we should hook them up as successors.  Otherwise, enqueue
 | 
						|
    // the new nodes from the original graph that should have nodes created
 | 
						|
    // in the new graph.
 | 
						|
    for (ExplodedNodeImpl **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
 | 
						|
      Pass2Ty::iterator PI = Pass2.find(*I);      
 | 
						|
      if (PI != Pass2.end()) {
 | 
						|
        PI->second->addPredecessor(NewN);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Enqueue nodes to the worklist that were marked during pass 1.
 | 
						|
      if (Pass1.count(*I))
 | 
						|
        WL2.push_back(*I);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Finally, explictly mark all nodes without any successors as sinks.
 | 
						|
    if (N->isSink())
 | 
						|
      NewN->markAsSink();
 | 
						|
  }
 | 
						|
    
 | 
						|
  return G;
 | 
						|
}
 | 
						|
 | 
						|
ExplodedNodeImpl*
 | 
						|
InterExplodedGraphMapImpl::getMappedImplNode(const ExplodedNodeImpl* N) const {
 | 
						|
  llvm::DenseMap<const ExplodedNodeImpl*, ExplodedNodeImpl*>::iterator I =
 | 
						|
    M.find(N);
 | 
						|
 | 
						|
  return I == M.end() ? 0 : I->second;
 | 
						|
}
 | 
						|
 | 
						|
InterExplodedGraphMapImpl::InterExplodedGraphMapImpl() {}
 | 
						|
 |