867 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			867 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements some loop unrolling utilities. It does not define any
 | 
						|
// actual pass or policy, but provides a single function to perform loop
 | 
						|
// unrolling.
 | 
						|
//
 | 
						|
// The process of unrolling can produce extraneous basic blocks linked with
 | 
						|
// unconditional branches.  This will be corrected in the future.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/ADT/ilist_iterator.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/DomTreeUpdater.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/IR/ValueMap.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/GenericDomTree.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopSimplify.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | 
						|
#include "llvm/Transforms/Utils/UnrollLoop.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <assert.h>
 | 
						|
#include <type_traits>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
class DataLayout;
 | 
						|
class Value;
 | 
						|
} // namespace llvm
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-unroll"
 | 
						|
 | 
						|
// TODO: Should these be here or in LoopUnroll?
 | 
						|
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
 | 
						|
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
 | 
						|
STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
 | 
						|
                               "latch (completely or otherwise)");
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
 | 
						|
                    cl::desc("Allow runtime unrolled loops to be unrolled "
 | 
						|
                             "with epilog instead of prolog."));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
 | 
						|
                    cl::desc("Verify domtree after unrolling"),
 | 
						|
#ifdef EXPENSIVE_CHECKS
 | 
						|
    cl::init(true)
 | 
						|
#else
 | 
						|
    cl::init(false)
 | 
						|
#endif
 | 
						|
                    );
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
 | 
						|
                    cl::desc("Verify loopinfo after unrolling"),
 | 
						|
#ifdef EXPENSIVE_CHECKS
 | 
						|
    cl::init(true)
 | 
						|
#else
 | 
						|
    cl::init(false)
 | 
						|
#endif
 | 
						|
                    );
 | 
						|
 | 
						|
 | 
						|
/// Check if unrolling created a situation where we need to insert phi nodes to
 | 
						|
/// preserve LCSSA form.
 | 
						|
/// \param Blocks is a vector of basic blocks representing unrolled loop.
 | 
						|
/// \param L is the outer loop.
 | 
						|
/// It's possible that some of the blocks are in L, and some are not. In this
 | 
						|
/// case, if there is a use is outside L, and definition is inside L, we need to
 | 
						|
/// insert a phi-node, otherwise LCSSA will be broken.
 | 
						|
/// The function is just a helper function for llvm::UnrollLoop that returns
 | 
						|
/// true if this situation occurs, indicating that LCSSA needs to be fixed.
 | 
						|
static bool needToInsertPhisForLCSSA(Loop *L,
 | 
						|
                                     const std::vector<BasicBlock *> &Blocks,
 | 
						|
                                     LoopInfo *LI) {
 | 
						|
  for (BasicBlock *BB : Blocks) {
 | 
						|
    if (LI->getLoopFor(BB) == L)
 | 
						|
      continue;
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      for (Use &U : I.operands()) {
 | 
						|
        if (const auto *Def = dyn_cast<Instruction>(U)) {
 | 
						|
          Loop *DefLoop = LI->getLoopFor(Def->getParent());
 | 
						|
          if (!DefLoop)
 | 
						|
            continue;
 | 
						|
          if (DefLoop->contains(L))
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
 | 
						|
/// and adds a mapping from the original loop to the new loop to NewLoops.
 | 
						|
/// Returns nullptr if no new loop was created and a pointer to the
 | 
						|
/// original loop OriginalBB was part of otherwise.
 | 
						|
const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
 | 
						|
                                           BasicBlock *ClonedBB, LoopInfo *LI,
 | 
						|
                                           NewLoopsMap &NewLoops) {
 | 
						|
  // Figure out which loop New is in.
 | 
						|
  const Loop *OldLoop = LI->getLoopFor(OriginalBB);
 | 
						|
  assert(OldLoop && "Should (at least) be in the loop being unrolled!");
 | 
						|
 | 
						|
  Loop *&NewLoop = NewLoops[OldLoop];
 | 
						|
  if (!NewLoop) {
 | 
						|
    // Found a new sub-loop.
 | 
						|
    assert(OriginalBB == OldLoop->getHeader() &&
 | 
						|
           "Header should be first in RPO");
 | 
						|
 | 
						|
    NewLoop = LI->AllocateLoop();
 | 
						|
    Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
 | 
						|
 | 
						|
    if (NewLoopParent)
 | 
						|
      NewLoopParent->addChildLoop(NewLoop);
 | 
						|
    else
 | 
						|
      LI->addTopLevelLoop(NewLoop);
 | 
						|
 | 
						|
    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
 | 
						|
    return OldLoop;
 | 
						|
  } else {
 | 
						|
    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// The function chooses which type of unroll (epilog or prolog) is more
 | 
						|
/// profitabale.
 | 
						|
/// Epilog unroll is more profitable when there is PHI that starts from
 | 
						|
/// constant.  In this case epilog will leave PHI start from constant,
 | 
						|
/// but prolog will convert it to non-constant.
 | 
						|
///
 | 
						|
/// loop:
 | 
						|
///   PN = PHI [I, Latch], [CI, PreHeader]
 | 
						|
///   I = foo(PN)
 | 
						|
///   ...
 | 
						|
///
 | 
						|
/// Epilog unroll case.
 | 
						|
/// loop:
 | 
						|
///   PN = PHI [I2, Latch], [CI, PreHeader]
 | 
						|
///   I1 = foo(PN)
 | 
						|
///   I2 = foo(I1)
 | 
						|
///   ...
 | 
						|
/// Prolog unroll case.
 | 
						|
///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
 | 
						|
/// loop:
 | 
						|
///   PN = PHI [I2, Latch], [NewPN, PreHeader]
 | 
						|
///   I1 = foo(PN)
 | 
						|
///   I2 = foo(I1)
 | 
						|
///   ...
 | 
						|
///
 | 
						|
static bool isEpilogProfitable(Loop *L) {
 | 
						|
  BasicBlock *PreHeader = L->getLoopPreheader();
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  assert(PreHeader && Header);
 | 
						|
  for (const PHINode &PN : Header->phis()) {
 | 
						|
    if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Perform some cleanup and simplifications on loops after unrolling. It is
 | 
						|
/// useful to simplify the IV's in the new loop, as well as do a quick
 | 
						|
/// simplify/dce pass of the instructions.
 | 
						|
void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
 | 
						|
                                   ScalarEvolution *SE, DominatorTree *DT,
 | 
						|
                                   AssumptionCache *AC,
 | 
						|
                                   const TargetTransformInfo *TTI) {
 | 
						|
  // Simplify any new induction variables in the partially unrolled loop.
 | 
						|
  if (SE && SimplifyIVs) {
 | 
						|
    SmallVector<WeakTrackingVH, 16> DeadInsts;
 | 
						|
    simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
 | 
						|
 | 
						|
    // Aggressively clean up dead instructions that simplifyLoopIVs already
 | 
						|
    // identified. Any remaining should be cleaned up below.
 | 
						|
    while (!DeadInsts.empty()) {
 | 
						|
      Value *V = DeadInsts.pop_back_val();
 | 
						|
      if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // At this point, the code is well formed.  Perform constprop, instsimplify,
 | 
						|
  // and dce.
 | 
						|
  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
 | 
						|
  SmallVector<WeakTrackingVH, 16> DeadInsts;
 | 
						|
  for (BasicBlock *BB : L->getBlocks()) {
 | 
						|
    for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
 | 
						|
      if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
 | 
						|
        if (LI->replacementPreservesLCSSAForm(&Inst, V))
 | 
						|
          Inst.replaceAllUsesWith(V);
 | 
						|
      if (isInstructionTriviallyDead(&Inst))
 | 
						|
        DeadInsts.emplace_back(&Inst);
 | 
						|
    }
 | 
						|
    // We can't do recursive deletion until we're done iterating, as we might
 | 
						|
    // have a phi which (potentially indirectly) uses instructions later in
 | 
						|
    // the block we're iterating through.
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
 | 
						|
/// can only fail when the loop's latch block is not terminated by a conditional
 | 
						|
/// branch instruction. However, if the trip count (and multiple) are not known,
 | 
						|
/// loop unrolling will mostly produce more code that is no faster.
 | 
						|
///
 | 
						|
/// If Runtime is true then UnrollLoop will try to insert a prologue or
 | 
						|
/// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
 | 
						|
/// will not runtime-unroll the loop if computing the run-time trip count will
 | 
						|
/// be expensive and AllowExpensiveTripCount is false.
 | 
						|
///
 | 
						|
/// The LoopInfo Analysis that is passed will be kept consistent.
 | 
						|
///
 | 
						|
/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
 | 
						|
/// DominatorTree if they are non-null.
 | 
						|
///
 | 
						|
/// If RemainderLoop is non-null, it will receive the remainder loop (if
 | 
						|
/// required and not fully unrolled).
 | 
						|
LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
 | 
						|
                                  ScalarEvolution *SE, DominatorTree *DT,
 | 
						|
                                  AssumptionCache *AC,
 | 
						|
                                  const TargetTransformInfo *TTI,
 | 
						|
                                  OptimizationRemarkEmitter *ORE,
 | 
						|
                                  bool PreserveLCSSA, Loop **RemainderLoop) {
 | 
						|
  assert(DT && "DomTree is required");
 | 
						|
 | 
						|
  if (!L->getLoopPreheader()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
 | 
						|
    return LoopUnrollResult::Unmodified;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!L->getLoopLatch()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
 | 
						|
    return LoopUnrollResult::Unmodified;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loops with indirectbr cannot be cloned.
 | 
						|
  if (!L->isSafeToClone()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
 | 
						|
    return LoopUnrollResult::Unmodified;
 | 
						|
  }
 | 
						|
 | 
						|
  if (L->getHeader()->hasAddressTaken()) {
 | 
						|
    // The loop-rotate pass can be helpful to avoid this in many cases.
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "  Won't unroll loop: address of header block is taken.\n");
 | 
						|
    return LoopUnrollResult::Unmodified;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(ULO.Count > 0);
 | 
						|
 | 
						|
  // All these values should be taken only after peeling because they might have
 | 
						|
  // changed.
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  SmallVector<BasicBlock *, 4> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
  std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
 | 
						|
 | 
						|
  const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
 | 
						|
  const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
 | 
						|
 | 
						|
  // Effectively "DCE" unrolled iterations that are beyond the max tripcount
 | 
						|
  // and will never be executed.
 | 
						|
  if (MaxTripCount && ULO.Count > MaxTripCount)
 | 
						|
    ULO.Count = MaxTripCount;
 | 
						|
 | 
						|
  struct ExitInfo {
 | 
						|
    unsigned TripCount;
 | 
						|
    unsigned TripMultiple;
 | 
						|
    unsigned BreakoutTrip;
 | 
						|
    bool ExitOnTrue;
 | 
						|
    SmallVector<BasicBlock *> ExitingBlocks;
 | 
						|
  };
 | 
						|
  DenseMap<BasicBlock *, ExitInfo> ExitInfos;
 | 
						|
  SmallVector<BasicBlock *, 4> ExitingBlocks;
 | 
						|
  L->getExitingBlocks(ExitingBlocks);
 | 
						|
  for (auto *ExitingBlock : ExitingBlocks) {
 | 
						|
    // The folding code is not prepared to deal with non-branch instructions
 | 
						|
    // right now.
 | 
						|
    auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
 | 
						|
    if (!BI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
 | 
						|
    Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
 | 
						|
    Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
 | 
						|
    if (Info.TripCount != 0) {
 | 
						|
      Info.BreakoutTrip = Info.TripCount % ULO.Count;
 | 
						|
      Info.TripMultiple = 0;
 | 
						|
    } else {
 | 
						|
      Info.BreakoutTrip = Info.TripMultiple =
 | 
						|
          (unsigned)GreatestCommonDivisor64(ULO.Count, Info.TripMultiple);
 | 
						|
    }
 | 
						|
    Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
 | 
						|
    Info.ExitingBlocks.push_back(ExitingBlock);
 | 
						|
    LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName()
 | 
						|
                      << ": TripCount=" << Info.TripCount
 | 
						|
                      << ", TripMultiple=" << Info.TripMultiple
 | 
						|
                      << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // Are we eliminating the loop control altogether?  Note that we can know
 | 
						|
  // we're eliminating the backedge without knowing exactly which iteration
 | 
						|
  // of the unrolled body exits.
 | 
						|
  const bool CompletelyUnroll = ULO.Count == MaxTripCount;
 | 
						|
 | 
						|
  const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
 | 
						|
 | 
						|
  // There's no point in performing runtime unrolling if this unroll count
 | 
						|
  // results in a full unroll.
 | 
						|
  if (CompletelyUnroll)
 | 
						|
    ULO.Runtime = false;
 | 
						|
 | 
						|
  // Go through all exits of L and see if there are any phi-nodes there. We just
 | 
						|
  // conservatively assume that they're inserted to preserve LCSSA form, which
 | 
						|
  // means that complete unrolling might break this form. We need to either fix
 | 
						|
  // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
 | 
						|
  // now we just recompute LCSSA for the outer loop, but it should be possible
 | 
						|
  // to fix it in-place.
 | 
						|
  bool NeedToFixLCSSA =
 | 
						|
      PreserveLCSSA && CompletelyUnroll &&
 | 
						|
      any_of(ExitBlocks,
 | 
						|
             [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
 | 
						|
 | 
						|
  // The current loop unroll pass can unroll loops that have
 | 
						|
  // (1) single latch; and
 | 
						|
  // (2a) latch is unconditional; or
 | 
						|
  // (2b) latch is conditional and is an exiting block
 | 
						|
  // FIXME: The implementation can be extended to work with more complicated
 | 
						|
  // cases, e.g. loops with multiple latches.
 | 
						|
  BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
 | 
						|
 | 
						|
  // A conditional branch which exits the loop, which can be optimized to an
 | 
						|
  // unconditional branch in the unrolled loop in some cases.
 | 
						|
  bool LatchIsExiting = L->isLoopExiting(LatchBlock);
 | 
						|
  if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "Can't unroll; a conditional latch must exit the loop");
 | 
						|
    return LoopUnrollResult::Unmodified;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loops containing convergent instructions cannot use runtime unrolling,
 | 
						|
  // as the prologue/epilogue may add additional control-dependencies to
 | 
						|
  // convergent operations.
 | 
						|
  LLVM_DEBUG(
 | 
						|
      {
 | 
						|
        bool HasConvergent = false;
 | 
						|
        for (auto &BB : L->blocks())
 | 
						|
          for (auto &I : *BB)
 | 
						|
            if (auto *CB = dyn_cast<CallBase>(&I))
 | 
						|
              HasConvergent |= CB->isConvergent();
 | 
						|
        assert((!HasConvergent || !ULO.Runtime) &&
 | 
						|
               "Can't runtime unroll if loop contains a convergent operation.");
 | 
						|
      });
 | 
						|
 | 
						|
  bool EpilogProfitability =
 | 
						|
      UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
 | 
						|
                                              : isEpilogProfitable(L);
 | 
						|
 | 
						|
  if (ULO.Runtime &&
 | 
						|
      !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
 | 
						|
                                  EpilogProfitability, ULO.UnrollRemainder,
 | 
						|
                                  ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
 | 
						|
                                  PreserveLCSSA, RemainderLoop)) {
 | 
						|
    if (ULO.Force)
 | 
						|
      ULO.Runtime = false;
 | 
						|
    else {
 | 
						|
      LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
 | 
						|
                           "generated when assuming runtime trip count\n");
 | 
						|
      return LoopUnrollResult::Unmodified;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  using namespace ore;
 | 
						|
  // Report the unrolling decision.
 | 
						|
  if (CompletelyUnroll) {
 | 
						|
    LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
 | 
						|
                      << " with trip count " << ULO.Count << "!\n");
 | 
						|
    if (ORE)
 | 
						|
      ORE->emit([&]() {
 | 
						|
        return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
 | 
						|
                                  L->getHeader())
 | 
						|
               << "completely unrolled loop with "
 | 
						|
               << NV("UnrollCount", ULO.Count) << " iterations";
 | 
						|
      });
 | 
						|
  } else {
 | 
						|
    LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
 | 
						|
                      << ULO.Count);
 | 
						|
    if (ULO.Runtime)
 | 
						|
      LLVM_DEBUG(dbgs() << " with run-time trip count");
 | 
						|
    LLVM_DEBUG(dbgs() << "!\n");
 | 
						|
 | 
						|
    if (ORE)
 | 
						|
      ORE->emit([&]() {
 | 
						|
        OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
 | 
						|
                                L->getHeader());
 | 
						|
        Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
 | 
						|
        if (ULO.Runtime)
 | 
						|
          Diag << " with run-time trip count";
 | 
						|
        return Diag;
 | 
						|
      });
 | 
						|
  }
 | 
						|
 | 
						|
  // We are going to make changes to this loop. SCEV may be keeping cached info
 | 
						|
  // about it, in particular about backedge taken count. The changes we make
 | 
						|
  // are guaranteed to invalidate this information for our loop. It is tempting
 | 
						|
  // to only invalidate the loop being unrolled, but it is incorrect as long as
 | 
						|
  // all exiting branches from all inner loops have impact on the outer loops,
 | 
						|
  // and if something changes inside them then any of outer loops may also
 | 
						|
  // change. When we forget outermost loop, we also forget all contained loops
 | 
						|
  // and this is what we need here.
 | 
						|
  if (SE) {
 | 
						|
    if (ULO.ForgetAllSCEV)
 | 
						|
      SE->forgetAllLoops();
 | 
						|
    else
 | 
						|
      SE->forgetTopmostLoop(L);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!LatchIsExiting)
 | 
						|
    ++NumUnrolledNotLatch;
 | 
						|
 | 
						|
  // For the first iteration of the loop, we should use the precloned values for
 | 
						|
  // PHI nodes.  Insert associations now.
 | 
						|
  ValueToValueMapTy LastValueMap;
 | 
						|
  std::vector<PHINode*> OrigPHINode;
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    OrigPHINode.push_back(cast<PHINode>(I));
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<BasicBlock *> Headers;
 | 
						|
  std::vector<BasicBlock *> Latches;
 | 
						|
  Headers.push_back(Header);
 | 
						|
  Latches.push_back(LatchBlock);
 | 
						|
 | 
						|
  // The current on-the-fly SSA update requires blocks to be processed in
 | 
						|
  // reverse postorder so that LastValueMap contains the correct value at each
 | 
						|
  // exit.
 | 
						|
  LoopBlocksDFS DFS(L);
 | 
						|
  DFS.perform(LI);
 | 
						|
 | 
						|
  // Stash the DFS iterators before adding blocks to the loop.
 | 
						|
  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
 | 
						|
 | 
						|
  std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
 | 
						|
 | 
						|
  // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
 | 
						|
  // might break loop-simplified form for these loops (as they, e.g., would
 | 
						|
  // share the same exit blocks). We'll keep track of loops for which we can
 | 
						|
  // break this so that later we can re-simplify them.
 | 
						|
  SmallSetVector<Loop *, 4> LoopsToSimplify;
 | 
						|
  for (Loop *SubLoop : *L)
 | 
						|
    LoopsToSimplify.insert(SubLoop);
 | 
						|
 | 
						|
  // When a FSDiscriminator is enabled, we don't need to add the multiply
 | 
						|
  // factors to the discriminators.
 | 
						|
  if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator)
 | 
						|
    for (BasicBlock *BB : L->getBlocks())
 | 
						|
      for (Instruction &I : *BB)
 | 
						|
        if (!isa<DbgInfoIntrinsic>(&I))
 | 
						|
          if (const DILocation *DIL = I.getDebugLoc()) {
 | 
						|
            auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
 | 
						|
            if (NewDIL)
 | 
						|
              I.setDebugLoc(*NewDIL);
 | 
						|
            else
 | 
						|
              LLVM_DEBUG(dbgs()
 | 
						|
                         << "Failed to create new discriminator: "
 | 
						|
                         << DIL->getFilename() << " Line: " << DIL->getLine());
 | 
						|
          }
 | 
						|
 | 
						|
  // Identify what noalias metadata is inside the loop: if it is inside the
 | 
						|
  // loop, the associated metadata must be cloned for each iteration.
 | 
						|
  SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
 | 
						|
  identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
 | 
						|
 | 
						|
  // We place the unrolled iterations immediately after the original loop
 | 
						|
  // latch.  This is a reasonable default placement if we don't have block
 | 
						|
  // frequencies, and if we do, well the layout will be adjusted later.
 | 
						|
  auto BlockInsertPt = std::next(LatchBlock->getIterator());
 | 
						|
  for (unsigned It = 1; It != ULO.Count; ++It) {
 | 
						|
    SmallVector<BasicBlock *, 8> NewBlocks;
 | 
						|
    SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
 | 
						|
    NewLoops[L] = L;
 | 
						|
 | 
						|
    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | 
						|
      ValueToValueMapTy VMap;
 | 
						|
      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
 | 
						|
      Header->getParent()->getBasicBlockList().insert(BlockInsertPt, New);
 | 
						|
 | 
						|
      assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
 | 
						|
             "Header should not be in a sub-loop");
 | 
						|
      // Tell LI about New.
 | 
						|
      const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
 | 
						|
      if (OldLoop)
 | 
						|
        LoopsToSimplify.insert(NewLoops[OldLoop]);
 | 
						|
 | 
						|
      if (*BB == Header)
 | 
						|
        // Loop over all of the PHI nodes in the block, changing them to use
 | 
						|
        // the incoming values from the previous block.
 | 
						|
        for (PHINode *OrigPHI : OrigPHINode) {
 | 
						|
          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
 | 
						|
          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
 | 
						|
          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
 | 
						|
            if (It > 1 && L->contains(InValI))
 | 
						|
              InVal = LastValueMap[InValI];
 | 
						|
          VMap[OrigPHI] = InVal;
 | 
						|
          New->getInstList().erase(NewPHI);
 | 
						|
        }
 | 
						|
 | 
						|
      // Update our running map of newest clones
 | 
						|
      LastValueMap[*BB] = New;
 | 
						|
      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
 | 
						|
           VI != VE; ++VI)
 | 
						|
        LastValueMap[VI->first] = VI->second;
 | 
						|
 | 
						|
      // Add phi entries for newly created values to all exit blocks.
 | 
						|
      for (BasicBlock *Succ : successors(*BB)) {
 | 
						|
        if (L->contains(Succ))
 | 
						|
          continue;
 | 
						|
        for (PHINode &PHI : Succ->phis()) {
 | 
						|
          Value *Incoming = PHI.getIncomingValueForBlock(*BB);
 | 
						|
          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
 | 
						|
          if (It != LastValueMap.end())
 | 
						|
            Incoming = It->second;
 | 
						|
          PHI.addIncoming(Incoming, New);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Keep track of new headers and latches as we create them, so that
 | 
						|
      // we can insert the proper branches later.
 | 
						|
      if (*BB == Header)
 | 
						|
        Headers.push_back(New);
 | 
						|
      if (*BB == LatchBlock)
 | 
						|
        Latches.push_back(New);
 | 
						|
 | 
						|
      // Keep track of the exiting block and its successor block contained in
 | 
						|
      // the loop for the current iteration.
 | 
						|
      auto ExitInfoIt = ExitInfos.find(*BB);
 | 
						|
      if (ExitInfoIt != ExitInfos.end())
 | 
						|
        ExitInfoIt->second.ExitingBlocks.push_back(New);
 | 
						|
 | 
						|
      NewBlocks.push_back(New);
 | 
						|
      UnrolledLoopBlocks.push_back(New);
 | 
						|
 | 
						|
      // Update DomTree: since we just copy the loop body, and each copy has a
 | 
						|
      // dedicated entry block (copy of the header block), this header's copy
 | 
						|
      // dominates all copied blocks. That means, dominance relations in the
 | 
						|
      // copied body are the same as in the original body.
 | 
						|
      if (*BB == Header)
 | 
						|
        DT->addNewBlock(New, Latches[It - 1]);
 | 
						|
      else {
 | 
						|
        auto BBDomNode = DT->getNode(*BB);
 | 
						|
        auto BBIDom = BBDomNode->getIDom();
 | 
						|
        BasicBlock *OriginalBBIDom = BBIDom->getBlock();
 | 
						|
        DT->addNewBlock(
 | 
						|
            New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Remap all instructions in the most recent iteration
 | 
						|
    remapInstructionsInBlocks(NewBlocks, LastValueMap);
 | 
						|
    for (BasicBlock *NewBlock : NewBlocks)
 | 
						|
      for (Instruction &I : *NewBlock)
 | 
						|
        if (auto *II = dyn_cast<AssumeInst>(&I))
 | 
						|
          AC->registerAssumption(II);
 | 
						|
 | 
						|
    {
 | 
						|
      // Identify what other metadata depends on the cloned version. After
 | 
						|
      // cloning, replace the metadata with the corrected version for both
 | 
						|
      // memory instructions and noalias intrinsics.
 | 
						|
      std::string ext = (Twine("It") + Twine(It)).str();
 | 
						|
      cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
 | 
						|
                                 Header->getContext(), ext);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over the PHI nodes in the original block, setting incoming values.
 | 
						|
  for (PHINode *PN : OrigPHINode) {
 | 
						|
    if (CompletelyUnroll) {
 | 
						|
      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
 | 
						|
      Header->getInstList().erase(PN);
 | 
						|
    } else if (ULO.Count > 1) {
 | 
						|
      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
 | 
						|
      // If this value was defined in the loop, take the value defined by the
 | 
						|
      // last iteration of the loop.
 | 
						|
      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
 | 
						|
        if (L->contains(InValI))
 | 
						|
          InVal = LastValueMap[InVal];
 | 
						|
      }
 | 
						|
      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
 | 
						|
      PN->addIncoming(InVal, Latches.back());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Connect latches of the unrolled iterations to the headers of the next
 | 
						|
  // iteration. Currently they point to the header of the same iteration.
 | 
						|
  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
 | 
						|
    unsigned j = (i + 1) % e;
 | 
						|
    Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update dominators of blocks we might reach through exits.
 | 
						|
  // Immediate dominator of such block might change, because we add more
 | 
						|
  // routes which can lead to the exit: we can now reach it from the copied
 | 
						|
  // iterations too.
 | 
						|
  if (ULO.Count > 1) {
 | 
						|
    for (auto *BB : OriginalLoopBlocks) {
 | 
						|
      auto *BBDomNode = DT->getNode(BB);
 | 
						|
      SmallVector<BasicBlock *, 16> ChildrenToUpdate;
 | 
						|
      for (auto *ChildDomNode : BBDomNode->children()) {
 | 
						|
        auto *ChildBB = ChildDomNode->getBlock();
 | 
						|
        if (!L->contains(ChildBB))
 | 
						|
          ChildrenToUpdate.push_back(ChildBB);
 | 
						|
      }
 | 
						|
      // The new idom of the block will be the nearest common dominator
 | 
						|
      // of all copies of the previous idom. This is equivalent to the
 | 
						|
      // nearest common dominator of the previous idom and the first latch,
 | 
						|
      // which dominates all copies of the previous idom.
 | 
						|
      BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
 | 
						|
      for (auto *ChildBB : ChildrenToUpdate)
 | 
						|
        DT->changeImmediateDominator(ChildBB, NewIDom);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!UnrollVerifyDomtree ||
 | 
						|
         DT->verify(DominatorTree::VerificationLevel::Fast));
 | 
						|
 | 
						|
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
 | 
						|
 | 
						|
  auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
 | 
						|
    auto *Term = cast<BranchInst>(Src->getTerminator());
 | 
						|
    const unsigned Idx = ExitOnTrue ^ WillExit;
 | 
						|
    BasicBlock *Dest = Term->getSuccessor(Idx);
 | 
						|
    BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
 | 
						|
 | 
						|
    // Remove predecessors from all non-Dest successors.
 | 
						|
    DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
 | 
						|
 | 
						|
    // Replace the conditional branch with an unconditional one.
 | 
						|
    BranchInst::Create(Dest, Term);
 | 
						|
    Term->eraseFromParent();
 | 
						|
 | 
						|
    DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}});
 | 
						|
  };
 | 
						|
 | 
						|
  auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
 | 
						|
                      bool IsLatch) -> Optional<bool> {
 | 
						|
    if (CompletelyUnroll) {
 | 
						|
      if (PreserveOnlyFirst) {
 | 
						|
        if (i == 0)
 | 
						|
          return None;
 | 
						|
        return j == 0;
 | 
						|
      }
 | 
						|
      // Complete (but possibly inexact) unrolling
 | 
						|
      if (j == 0)
 | 
						|
        return true;
 | 
						|
      if (Info.TripCount && j != Info.TripCount)
 | 
						|
        return false;
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ULO.Runtime) {
 | 
						|
      // If runtime unrolling inserts a prologue, information about non-latch
 | 
						|
      // exits may be stale.
 | 
						|
      if (IsLatch && j != 0)
 | 
						|
        return false;
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
 | 
						|
    if (j != Info.BreakoutTrip &&
 | 
						|
        (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
 | 
						|
      // If we know the trip count or a multiple of it, we can safely use an
 | 
						|
      // unconditional branch for some iterations.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return None;
 | 
						|
  };
 | 
						|
 | 
						|
  // Fold branches for iterations where we know that they will exit or not
 | 
						|
  // exit.
 | 
						|
  for (const auto &Pair : ExitInfos) {
 | 
						|
    const ExitInfo &Info = Pair.second;
 | 
						|
    for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
 | 
						|
      // The branch destination.
 | 
						|
      unsigned j = (i + 1) % e;
 | 
						|
      bool IsLatch = Pair.first == LatchBlock;
 | 
						|
      Optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
 | 
						|
      if (!KnownWillExit)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We don't fold known-exiting branches for non-latch exits here,
 | 
						|
      // because this ensures that both all loop blocks and all exit blocks
 | 
						|
      // remain reachable in the CFG.
 | 
						|
      // TODO: We could fold these branches, but it would require much more
 | 
						|
      // sophisticated updates to LoopInfo.
 | 
						|
      if (*KnownWillExit && !IsLatch)
 | 
						|
        continue;
 | 
						|
 | 
						|
      SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // When completely unrolling, the last latch becomes unreachable.
 | 
						|
  if (!LatchIsExiting && CompletelyUnroll)
 | 
						|
    changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA, &DTU);
 | 
						|
 | 
						|
  // Merge adjacent basic blocks, if possible.
 | 
						|
  for (BasicBlock *Latch : Latches) {
 | 
						|
    BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
 | 
						|
    assert((Term ||
 | 
						|
            (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
 | 
						|
           "Need a branch as terminator, except when fully unrolling with "
 | 
						|
           "unconditional latch");
 | 
						|
    if (Term && Term->isUnconditional()) {
 | 
						|
      BasicBlock *Dest = Term->getSuccessor(0);
 | 
						|
      BasicBlock *Fold = Dest->getUniquePredecessor();
 | 
						|
      if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
 | 
						|
        // Dest has been folded into Fold. Update our worklists accordingly.
 | 
						|
        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
 | 
						|
        llvm::erase_value(UnrolledLoopBlocks, Dest);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Apply updates to the DomTree.
 | 
						|
  DT = &DTU.getDomTree();
 | 
						|
 | 
						|
  assert(!UnrollVerifyDomtree ||
 | 
						|
         DT->verify(DominatorTree::VerificationLevel::Fast));
 | 
						|
 | 
						|
  // At this point, the code is well formed.  We now simplify the unrolled loop,
 | 
						|
  // doing constant propagation and dead code elimination as we go.
 | 
						|
  simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
 | 
						|
                          TTI);
 | 
						|
 | 
						|
  NumCompletelyUnrolled += CompletelyUnroll;
 | 
						|
  ++NumUnrolled;
 | 
						|
 | 
						|
  Loop *OuterL = L->getParentLoop();
 | 
						|
  // Update LoopInfo if the loop is completely removed.
 | 
						|
  if (CompletelyUnroll)
 | 
						|
    LI->erase(L);
 | 
						|
 | 
						|
  // LoopInfo should not be valid, confirm that.
 | 
						|
  if (UnrollVerifyLoopInfo)
 | 
						|
    LI->verify(*DT);
 | 
						|
 | 
						|
  // After complete unrolling most of the blocks should be contained in OuterL.
 | 
						|
  // However, some of them might happen to be out of OuterL (e.g. if they
 | 
						|
  // precede a loop exit). In this case we might need to insert PHI nodes in
 | 
						|
  // order to preserve LCSSA form.
 | 
						|
  // We don't need to check this if we already know that we need to fix LCSSA
 | 
						|
  // form.
 | 
						|
  // TODO: For now we just recompute LCSSA for the outer loop in this case, but
 | 
						|
  // it should be possible to fix it in-place.
 | 
						|
  if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
 | 
						|
    NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
 | 
						|
 | 
						|
  // Make sure that loop-simplify form is preserved. We want to simplify
 | 
						|
  // at least one layer outside of the loop that was unrolled so that any
 | 
						|
  // changes to the parent loop exposed by the unrolling are considered.
 | 
						|
  if (OuterL) {
 | 
						|
    // OuterL includes all loops for which we can break loop-simplify, so
 | 
						|
    // it's sufficient to simplify only it (it'll recursively simplify inner
 | 
						|
    // loops too).
 | 
						|
    if (NeedToFixLCSSA) {
 | 
						|
      // LCSSA must be performed on the outermost affected loop. The unrolled
 | 
						|
      // loop's last loop latch is guaranteed to be in the outermost loop
 | 
						|
      // after LoopInfo's been updated by LoopInfo::erase.
 | 
						|
      Loop *LatchLoop = LI->getLoopFor(Latches.back());
 | 
						|
      Loop *FixLCSSALoop = OuterL;
 | 
						|
      if (!FixLCSSALoop->contains(LatchLoop))
 | 
						|
        while (FixLCSSALoop->getParentLoop() != LatchLoop)
 | 
						|
          FixLCSSALoop = FixLCSSALoop->getParentLoop();
 | 
						|
 | 
						|
      formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
 | 
						|
    } else if (PreserveLCSSA) {
 | 
						|
      assert(OuterL->isLCSSAForm(*DT) &&
 | 
						|
             "Loops should be in LCSSA form after loop-unroll.");
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: That potentially might be compile-time expensive. We should try
 | 
						|
    // to fix the loop-simplified form incrementally.
 | 
						|
    simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
 | 
						|
  } else {
 | 
						|
    // Simplify loops for which we might've broken loop-simplify form.
 | 
						|
    for (Loop *SubLoop : LoopsToSimplify)
 | 
						|
      simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
 | 
						|
  }
 | 
						|
 | 
						|
  return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
 | 
						|
                          : LoopUnrollResult::PartiallyUnrolled;
 | 
						|
}
 | 
						|
 | 
						|
/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
 | 
						|
/// node with the given name (for example, "llvm.loop.unroll.count"). If no
 | 
						|
/// such metadata node exists, then nullptr is returned.
 | 
						|
MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
 | 
						|
  // First operand should refer to the loop id itself.
 | 
						|
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
 | 
						|
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
 | 
						|
 | 
						|
  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
 | 
						|
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | 
						|
    if (!MD)
 | 
						|
      continue;
 | 
						|
 | 
						|
    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | 
						|
    if (!S)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Name.equals(S->getString()))
 | 
						|
      return MD;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 |