2101 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2101 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements induction variable simplification. It does
 | 
						|
// not define any actual pass or policy, but provides a single function to
 | 
						|
// simplify a loop's induction variables based on ScalarEvolution.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "indvars"
 | 
						|
 | 
						|
STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
 | 
						|
STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
 | 
						|
STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
 | 
						|
STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
 | 
						|
STATISTIC(
 | 
						|
    NumSimplifiedSDiv,
 | 
						|
    "Number of IV signed division operations converted to unsigned division");
 | 
						|
STATISTIC(
 | 
						|
    NumSimplifiedSRem,
 | 
						|
    "Number of IV signed remainder operations converted to unsigned remainder");
 | 
						|
STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// This is a utility for simplifying induction variables
 | 
						|
  /// based on ScalarEvolution. It is the primary instrument of the
 | 
						|
  /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
 | 
						|
  /// other loop passes that preserve SCEV.
 | 
						|
  class SimplifyIndvar {
 | 
						|
    Loop             *L;
 | 
						|
    LoopInfo         *LI;
 | 
						|
    ScalarEvolution  *SE;
 | 
						|
    DominatorTree    *DT;
 | 
						|
    const TargetTransformInfo *TTI;
 | 
						|
    SCEVExpander     &Rewriter;
 | 
						|
    SmallVectorImpl<WeakTrackingVH> &DeadInsts;
 | 
						|
 | 
						|
    bool Changed = false;
 | 
						|
 | 
						|
  public:
 | 
						|
    SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
 | 
						|
                   LoopInfo *LI, const TargetTransformInfo *TTI,
 | 
						|
                   SCEVExpander &Rewriter,
 | 
						|
                   SmallVectorImpl<WeakTrackingVH> &Dead)
 | 
						|
        : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
 | 
						|
          DeadInsts(Dead) {
 | 
						|
      assert(LI && "IV simplification requires LoopInfo");
 | 
						|
    }
 | 
						|
 | 
						|
    bool hasChanged() const { return Changed; }
 | 
						|
 | 
						|
    /// Iteratively perform simplification on a worklist of users of the
 | 
						|
    /// specified induction variable. This is the top-level driver that applies
 | 
						|
    /// all simplifications to users of an IV.
 | 
						|
    void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
 | 
						|
 | 
						|
    Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
 | 
						|
 | 
						|
    bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
 | 
						|
    bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
 | 
						|
    bool replaceFloatIVWithIntegerIV(Instruction *UseInst);
 | 
						|
 | 
						|
    bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
 | 
						|
    bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
 | 
						|
    bool eliminateTrunc(TruncInst *TI);
 | 
						|
    bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
 | 
						|
    bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand);
 | 
						|
    void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand);
 | 
						|
    void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand,
 | 
						|
                             bool IsSigned);
 | 
						|
    void replaceRemWithNumerator(BinaryOperator *Rem);
 | 
						|
    void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
 | 
						|
    void replaceSRemWithURem(BinaryOperator *Rem);
 | 
						|
    bool eliminateSDiv(BinaryOperator *SDiv);
 | 
						|
    bool strengthenOverflowingOperation(BinaryOperator *OBO,
 | 
						|
                                        Instruction *IVOperand);
 | 
						|
    bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// Find a point in code which dominates all given instructions. We can safely
 | 
						|
/// assume that, whatever fact we can prove at the found point, this fact is
 | 
						|
/// also true for each of the given instructions.
 | 
						|
static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
 | 
						|
                                        DominatorTree &DT) {
 | 
						|
  Instruction *CommonDom = nullptr;
 | 
						|
  for (auto *Insn : Instructions)
 | 
						|
    if (!CommonDom || DT.dominates(Insn, CommonDom))
 | 
						|
      CommonDom = Insn;
 | 
						|
    else if (!DT.dominates(CommonDom, Insn))
 | 
						|
      // If there is no dominance relation, use common dominator.
 | 
						|
      CommonDom =
 | 
						|
          DT.findNearestCommonDominator(CommonDom->getParent(),
 | 
						|
                                        Insn->getParent())->getTerminator();
 | 
						|
  assert(CommonDom && "Common dominator not found?");
 | 
						|
  return CommonDom;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold an IV operand into its use.  This removes increments of an
 | 
						|
/// aligned IV when used by a instruction that ignores the low bits.
 | 
						|
///
 | 
						|
/// IVOperand is guaranteed SCEVable, but UseInst may not be.
 | 
						|
///
 | 
						|
/// Return the operand of IVOperand for this induction variable if IVOperand can
 | 
						|
/// be folded (in case more folding opportunities have been exposed).
 | 
						|
/// Otherwise return null.
 | 
						|
Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
 | 
						|
  Value *IVSrc = nullptr;
 | 
						|
  const unsigned OperIdx = 0;
 | 
						|
  const SCEV *FoldedExpr = nullptr;
 | 
						|
  bool MustDropExactFlag = false;
 | 
						|
  switch (UseInst->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return nullptr;
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::LShr:
 | 
						|
    // We're only interested in the case where we know something about
 | 
						|
    // the numerator and have a constant denominator.
 | 
						|
    if (IVOperand != UseInst->getOperand(OperIdx) ||
 | 
						|
        !isa<ConstantInt>(UseInst->getOperand(1)))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Attempt to fold a binary operator with constant operand.
 | 
						|
    // e.g. ((I + 1) >> 2) => I >> 2
 | 
						|
    if (!isa<BinaryOperator>(IVOperand)
 | 
						|
        || !isa<ConstantInt>(IVOperand->getOperand(1)))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    IVSrc = IVOperand->getOperand(0);
 | 
						|
    // IVSrc must be the (SCEVable) IV, since the other operand is const.
 | 
						|
    assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
 | 
						|
 | 
						|
    ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
 | 
						|
    if (UseInst->getOpcode() == Instruction::LShr) {
 | 
						|
      // Get a constant for the divisor. See createSCEV.
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
 | 
						|
      if (D->getValue().uge(BitWidth))
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      D = ConstantInt::get(UseInst->getContext(),
 | 
						|
                           APInt::getOneBitSet(BitWidth, D->getZExtValue()));
 | 
						|
    }
 | 
						|
    const auto *LHS = SE->getSCEV(IVSrc);
 | 
						|
    const auto *RHS = SE->getSCEV(D);
 | 
						|
    FoldedExpr = SE->getUDivExpr(LHS, RHS);
 | 
						|
    // We might have 'exact' flag set at this point which will no longer be
 | 
						|
    // correct after we make the replacement.
 | 
						|
    if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS))
 | 
						|
      MustDropExactFlag = true;
 | 
						|
  }
 | 
						|
  // We have something that might fold it's operand. Compare SCEVs.
 | 
						|
  if (!SE->isSCEVable(UseInst->getType()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Bypass the operand if SCEV can prove it has no effect.
 | 
						|
  if (SE->getSCEV(UseInst) != FoldedExpr)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
 | 
						|
                    << " -> " << *UseInst << '\n');
 | 
						|
 | 
						|
  UseInst->setOperand(OperIdx, IVSrc);
 | 
						|
  assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
 | 
						|
 | 
						|
  if (MustDropExactFlag)
 | 
						|
    UseInst->dropPoisonGeneratingFlags();
 | 
						|
 | 
						|
  ++NumElimOperand;
 | 
						|
  Changed = true;
 | 
						|
  if (IVOperand->use_empty())
 | 
						|
    DeadInsts.emplace_back(IVOperand);
 | 
						|
  return IVSrc;
 | 
						|
}
 | 
						|
 | 
						|
bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
 | 
						|
                                               Instruction *IVOperand) {
 | 
						|
  unsigned IVOperIdx = 0;
 | 
						|
  ICmpInst::Predicate Pred = ICmp->getPredicate();
 | 
						|
  if (IVOperand != ICmp->getOperand(0)) {
 | 
						|
    // Swapped
 | 
						|
    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
 | 
						|
    IVOperIdx = 1;
 | 
						|
    Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the SCEVs for the ICmp operands (in the specific context of the
 | 
						|
  // current loop)
 | 
						|
  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
 | 
						|
  const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
 | 
						|
  const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
 | 
						|
 | 
						|
  auto *PN = dyn_cast<PHINode>(IVOperand);
 | 
						|
  if (!PN)
 | 
						|
    return false;
 | 
						|
  auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
 | 
						|
  if (!LIP)
 | 
						|
    return false;
 | 
						|
  ICmpInst::Predicate InvariantPredicate = LIP->Pred;
 | 
						|
  const SCEV *InvariantLHS = LIP->LHS;
 | 
						|
  const SCEV *InvariantRHS = LIP->RHS;
 | 
						|
 | 
						|
  // Rewrite the comparison to a loop invariant comparison if it can be done
 | 
						|
  // cheaply, where cheaply means "we don't need to emit any new
 | 
						|
  // instructions".
 | 
						|
 | 
						|
  SmallDenseMap<const SCEV*, Value*> CheapExpansions;
 | 
						|
  CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
 | 
						|
  CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
 | 
						|
 | 
						|
  // TODO: Support multiple entry loops?  (We currently bail out of these in
 | 
						|
  // the IndVarSimplify pass)
 | 
						|
  if (auto *BB = L->getLoopPredecessor()) {
 | 
						|
    const int Idx = PN->getBasicBlockIndex(BB);
 | 
						|
    if (Idx >= 0) {
 | 
						|
      Value *Incoming = PN->getIncomingValue(Idx);
 | 
						|
      const SCEV *IncomingS = SE->getSCEV(Incoming);
 | 
						|
      CheapExpansions[IncomingS] = Incoming;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Value *NewLHS = CheapExpansions[InvariantLHS];
 | 
						|
  Value *NewRHS = CheapExpansions[InvariantRHS];
 | 
						|
 | 
						|
  if (!NewLHS)
 | 
						|
    if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
 | 
						|
      NewLHS = ConstLHS->getValue();
 | 
						|
  if (!NewRHS)
 | 
						|
    if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
 | 
						|
      NewRHS = ConstRHS->getValue();
 | 
						|
 | 
						|
  if (!NewLHS || !NewRHS)
 | 
						|
    // We could not find an existing value to replace either LHS or RHS.
 | 
						|
    // Generating new instructions has subtler tradeoffs, so avoid doing that
 | 
						|
    // for now.
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
 | 
						|
  ICmp->setPredicate(InvariantPredicate);
 | 
						|
  ICmp->setOperand(0, NewLHS);
 | 
						|
  ICmp->setOperand(1, NewRHS);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyIVUsers helper for eliminating useless
 | 
						|
/// comparisons against an induction variable.
 | 
						|
void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp,
 | 
						|
                                           Instruction *IVOperand) {
 | 
						|
  unsigned IVOperIdx = 0;
 | 
						|
  ICmpInst::Predicate Pred = ICmp->getPredicate();
 | 
						|
  ICmpInst::Predicate OriginalPred = Pred;
 | 
						|
  if (IVOperand != ICmp->getOperand(0)) {
 | 
						|
    // Swapped
 | 
						|
    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
 | 
						|
    IVOperIdx = 1;
 | 
						|
    Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the SCEVs for the ICmp operands (in the specific context of the
 | 
						|
  // current loop)
 | 
						|
  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
 | 
						|
  const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
 | 
						|
  const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
 | 
						|
 | 
						|
  // If the condition is always true or always false in the given context,
 | 
						|
  // replace it with a constant value.
 | 
						|
  SmallVector<Instruction *, 4> Users;
 | 
						|
  for (auto *U : ICmp->users())
 | 
						|
    Users.push_back(cast<Instruction>(U));
 | 
						|
  const Instruction *CtxI = findCommonDominator(Users, *DT);
 | 
						|
  if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
 | 
						|
    ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
 | 
						|
    DeadInsts.emplace_back(ICmp);
 | 
						|
    LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
 | 
						|
  } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
 | 
						|
    // fallthrough to end of function
 | 
						|
  } else if (ICmpInst::isSigned(OriginalPred) &&
 | 
						|
             SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
 | 
						|
    // If we were unable to make anything above, all we can is to canonicalize
 | 
						|
    // the comparison hoping that it will open the doors for other
 | 
						|
    // optimizations. If we find out that we compare two non-negative values,
 | 
						|
    // we turn the instruction's predicate to its unsigned version. Note that
 | 
						|
    // we cannot rely on Pred here unless we check if we have swapped it.
 | 
						|
    assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
 | 
						|
    LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
 | 
						|
                      << '\n');
 | 
						|
    ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
 | 
						|
  } else
 | 
						|
    return;
 | 
						|
 | 
						|
  ++NumElimCmp;
 | 
						|
  Changed = true;
 | 
						|
}
 | 
						|
 | 
						|
bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
 | 
						|
  // Get the SCEVs for the ICmp operands.
 | 
						|
  auto *N = SE->getSCEV(SDiv->getOperand(0));
 | 
						|
  auto *D = SE->getSCEV(SDiv->getOperand(1));
 | 
						|
 | 
						|
  // Simplify unnecessary loops away.
 | 
						|
  const Loop *L = LI->getLoopFor(SDiv->getParent());
 | 
						|
  N = SE->getSCEVAtScope(N, L);
 | 
						|
  D = SE->getSCEVAtScope(D, L);
 | 
						|
 | 
						|
  // Replace sdiv by udiv if both of the operands are non-negative
 | 
						|
  if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
 | 
						|
    auto *UDiv = BinaryOperator::Create(
 | 
						|
        BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
 | 
						|
        SDiv->getName() + ".udiv", SDiv);
 | 
						|
    UDiv->setIsExact(SDiv->isExact());
 | 
						|
    SDiv->replaceAllUsesWith(UDiv);
 | 
						|
    LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
 | 
						|
    ++NumSimplifiedSDiv;
 | 
						|
    Changed = true;
 | 
						|
    DeadInsts.push_back(SDiv);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// i %s n -> i %u n if i >= 0 and n >= 0
 | 
						|
void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
 | 
						|
  auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
 | 
						|
  auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
 | 
						|
                                      Rem->getName() + ".urem", Rem);
 | 
						|
  Rem->replaceAllUsesWith(URem);
 | 
						|
  LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
 | 
						|
  ++NumSimplifiedSRem;
 | 
						|
  Changed = true;
 | 
						|
  DeadInsts.emplace_back(Rem);
 | 
						|
}
 | 
						|
 | 
						|
// i % n  -->  i  if i is in [0,n).
 | 
						|
void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
 | 
						|
  Rem->replaceAllUsesWith(Rem->getOperand(0));
 | 
						|
  LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
 | 
						|
  ++NumElimRem;
 | 
						|
  Changed = true;
 | 
						|
  DeadInsts.emplace_back(Rem);
 | 
						|
}
 | 
						|
 | 
						|
// (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
 | 
						|
void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
 | 
						|
  auto *T = Rem->getType();
 | 
						|
  auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
 | 
						|
  ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
 | 
						|
  SelectInst *Sel =
 | 
						|
      SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
 | 
						|
  Rem->replaceAllUsesWith(Sel);
 | 
						|
  LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
 | 
						|
  ++NumElimRem;
 | 
						|
  Changed = true;
 | 
						|
  DeadInsts.emplace_back(Rem);
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyIVUsers helper for eliminating useless remainder operations
 | 
						|
/// operating on an induction variable or replacing srem by urem.
 | 
						|
void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem,
 | 
						|
                                         Instruction *IVOperand,
 | 
						|
                                         bool IsSigned) {
 | 
						|
  auto *NValue = Rem->getOperand(0);
 | 
						|
  auto *DValue = Rem->getOperand(1);
 | 
						|
  // We're only interested in the case where we know something about
 | 
						|
  // the numerator, unless it is a srem, because we want to replace srem by urem
 | 
						|
  // in general.
 | 
						|
  bool UsedAsNumerator = IVOperand == NValue;
 | 
						|
  if (!UsedAsNumerator && !IsSigned)
 | 
						|
    return;
 | 
						|
 | 
						|
  const SCEV *N = SE->getSCEV(NValue);
 | 
						|
 | 
						|
  // Simplify unnecessary loops away.
 | 
						|
  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
 | 
						|
  N = SE->getSCEVAtScope(N, ICmpLoop);
 | 
						|
 | 
						|
  bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
 | 
						|
 | 
						|
  // Do not proceed if the Numerator may be negative
 | 
						|
  if (!IsNumeratorNonNegative)
 | 
						|
    return;
 | 
						|
 | 
						|
  const SCEV *D = SE->getSCEV(DValue);
 | 
						|
  D = SE->getSCEVAtScope(D, ICmpLoop);
 | 
						|
 | 
						|
  if (UsedAsNumerator) {
 | 
						|
    auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
 | 
						|
    if (SE->isKnownPredicate(LT, N, D)) {
 | 
						|
      replaceRemWithNumerator(Rem);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    auto *T = Rem->getType();
 | 
						|
    const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
 | 
						|
    if (SE->isKnownPredicate(LT, NLessOne, D)) {
 | 
						|
      replaceRemWithNumeratorOrZero(Rem);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to replace SRem with URem, if both N and D are known non-negative.
 | 
						|
  // Since we had already check N, we only need to check D now
 | 
						|
  if (!IsSigned || !SE->isKnownNonNegative(D))
 | 
						|
    return;
 | 
						|
 | 
						|
  replaceSRemWithURem(Rem);
 | 
						|
}
 | 
						|
 | 
						|
bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
 | 
						|
  const SCEV *LHS = SE->getSCEV(WO->getLHS());
 | 
						|
  const SCEV *RHS = SE->getSCEV(WO->getRHS());
 | 
						|
  if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Proved no overflow, nuke the overflow check and, if possible, the overflow
 | 
						|
  // intrinsic as well.
 | 
						|
 | 
						|
  BinaryOperator *NewResult = BinaryOperator::Create(
 | 
						|
      WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
 | 
						|
 | 
						|
  if (WO->isSigned())
 | 
						|
    NewResult->setHasNoSignedWrap(true);
 | 
						|
  else
 | 
						|
    NewResult->setHasNoUnsignedWrap(true);
 | 
						|
 | 
						|
  SmallVector<ExtractValueInst *, 4> ToDelete;
 | 
						|
 | 
						|
  for (auto *U : WO->users()) {
 | 
						|
    if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
 | 
						|
      if (EVI->getIndices()[0] == 1)
 | 
						|
        EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
 | 
						|
      else {
 | 
						|
        assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
 | 
						|
        EVI->replaceAllUsesWith(NewResult);
 | 
						|
      }
 | 
						|
      ToDelete.push_back(EVI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto *EVI : ToDelete)
 | 
						|
    EVI->eraseFromParent();
 | 
						|
 | 
						|
  if (WO->use_empty())
 | 
						|
    WO->eraseFromParent();
 | 
						|
 | 
						|
  Changed = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
 | 
						|
  const SCEV *LHS = SE->getSCEV(SI->getLHS());
 | 
						|
  const SCEV *RHS = SE->getSCEV(SI->getRHS());
 | 
						|
  if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
 | 
						|
    return false;
 | 
						|
 | 
						|
  BinaryOperator *BO = BinaryOperator::Create(
 | 
						|
      SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
 | 
						|
  if (SI->isSigned())
 | 
						|
    BO->setHasNoSignedWrap();
 | 
						|
  else
 | 
						|
    BO->setHasNoUnsignedWrap();
 | 
						|
 | 
						|
  SI->replaceAllUsesWith(BO);
 | 
						|
  DeadInsts.emplace_back(SI);
 | 
						|
  Changed = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
 | 
						|
  // It is always legal to replace
 | 
						|
  //   icmp <pred> i32 trunc(iv), n
 | 
						|
  // with
 | 
						|
  //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
 | 
						|
  // Or with
 | 
						|
  //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
 | 
						|
  // Or with either of these if pred is an equality predicate.
 | 
						|
  //
 | 
						|
  // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
 | 
						|
  // every comparison which uses trunc, it means that we can replace each of
 | 
						|
  // them with comparison of iv against sext/zext(n). We no longer need trunc
 | 
						|
  // after that.
 | 
						|
  //
 | 
						|
  // TODO: Should we do this if we can widen *some* comparisons, but not all
 | 
						|
  // of them? Sometimes it is enough to enable other optimizations, but the
 | 
						|
  // trunc instruction will stay in the loop.
 | 
						|
  Value *IV = TI->getOperand(0);
 | 
						|
  Type *IVTy = IV->getType();
 | 
						|
  const SCEV *IVSCEV = SE->getSCEV(IV);
 | 
						|
  const SCEV *TISCEV = SE->getSCEV(TI);
 | 
						|
 | 
						|
  // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
 | 
						|
  // get rid of trunc
 | 
						|
  bool DoesSExtCollapse = false;
 | 
						|
  bool DoesZExtCollapse = false;
 | 
						|
  if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
 | 
						|
    DoesSExtCollapse = true;
 | 
						|
  if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
 | 
						|
    DoesZExtCollapse = true;
 | 
						|
 | 
						|
  // If neither sext nor zext does collapse, it is not profitable to do any
 | 
						|
  // transform. Bail.
 | 
						|
  if (!DoesSExtCollapse && !DoesZExtCollapse)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Collect users of the trunc that look like comparisons against invariants.
 | 
						|
  // Bail if we find something different.
 | 
						|
  SmallVector<ICmpInst *, 4> ICmpUsers;
 | 
						|
  for (auto *U : TI->users()) {
 | 
						|
    // We don't care about users in unreachable blocks.
 | 
						|
    if (isa<Instruction>(U) &&
 | 
						|
        !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
 | 
						|
      continue;
 | 
						|
    ICmpInst *ICI = dyn_cast<ICmpInst>(U);
 | 
						|
    if (!ICI) return false;
 | 
						|
    assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
 | 
						|
    if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
 | 
						|
        !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
 | 
						|
      return false;
 | 
						|
    // If we cannot get rid of trunc, bail.
 | 
						|
    if (ICI->isSigned() && !DoesSExtCollapse)
 | 
						|
      return false;
 | 
						|
    if (ICI->isUnsigned() && !DoesZExtCollapse)
 | 
						|
      return false;
 | 
						|
    // For equality, either signed or unsigned works.
 | 
						|
    ICmpUsers.push_back(ICI);
 | 
						|
  }
 | 
						|
 | 
						|
  auto CanUseZExt = [&](ICmpInst *ICI) {
 | 
						|
    // Unsigned comparison can be widened as unsigned.
 | 
						|
    if (ICI->isUnsigned())
 | 
						|
      return true;
 | 
						|
    // Is it profitable to do zext?
 | 
						|
    if (!DoesZExtCollapse)
 | 
						|
      return false;
 | 
						|
    // For equality, we can safely zext both parts.
 | 
						|
    if (ICI->isEquality())
 | 
						|
      return true;
 | 
						|
    // Otherwise we can only use zext when comparing two non-negative or two
 | 
						|
    // negative values. But in practice, we will never pass DoesZExtCollapse
 | 
						|
    // check for a negative value, because zext(trunc(x)) is non-negative. So
 | 
						|
    // it only make sense to check for non-negativity here.
 | 
						|
    const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
 | 
						|
    const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
 | 
						|
    return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
 | 
						|
  };
 | 
						|
  // Replace all comparisons against trunc with comparisons against IV.
 | 
						|
  for (auto *ICI : ICmpUsers) {
 | 
						|
    bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
 | 
						|
    auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
 | 
						|
    Instruction *Ext = nullptr;
 | 
						|
    // For signed/unsigned predicate, replace the old comparison with comparison
 | 
						|
    // of immediate IV against sext/zext of the invariant argument. If we can
 | 
						|
    // use either sext or zext (i.e. we are dealing with equality predicate),
 | 
						|
    // then prefer zext as a more canonical form.
 | 
						|
    // TODO: If we see a signed comparison which can be turned into unsigned,
 | 
						|
    // we can do it here for canonicalization purposes.
 | 
						|
    ICmpInst::Predicate Pred = ICI->getPredicate();
 | 
						|
    if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
    if (CanUseZExt(ICI)) {
 | 
						|
      assert(DoesZExtCollapse && "Unprofitable zext?");
 | 
						|
      Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
 | 
						|
      Pred = ICmpInst::getUnsignedPredicate(Pred);
 | 
						|
    } else {
 | 
						|
      assert(DoesSExtCollapse && "Unprofitable sext?");
 | 
						|
      Ext = new SExtInst(Op1, IVTy, "sext", ICI);
 | 
						|
      assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
 | 
						|
    }
 | 
						|
    bool Changed;
 | 
						|
    L->makeLoopInvariant(Ext, Changed);
 | 
						|
    (void)Changed;
 | 
						|
    ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
 | 
						|
    ICI->replaceAllUsesWith(NewICI);
 | 
						|
    DeadInsts.emplace_back(ICI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Trunc no longer needed.
 | 
						|
  TI->replaceAllUsesWith(PoisonValue::get(TI->getType()));
 | 
						|
  DeadInsts.emplace_back(TI);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Eliminate an operation that consumes a simple IV and has no observable
 | 
						|
/// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
 | 
						|
/// but UseInst may not be.
 | 
						|
bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
 | 
						|
                                     Instruction *IVOperand) {
 | 
						|
  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
 | 
						|
    eliminateIVComparison(ICmp, IVOperand);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
 | 
						|
    bool IsSRem = Bin->getOpcode() == Instruction::SRem;
 | 
						|
    if (IsSRem || Bin->getOpcode() == Instruction::URem) {
 | 
						|
      simplifyIVRemainder(Bin, IVOperand, IsSRem);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Bin->getOpcode() == Instruction::SDiv)
 | 
						|
      return eliminateSDiv(Bin);
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
 | 
						|
    if (eliminateOverflowIntrinsic(WO))
 | 
						|
      return true;
 | 
						|
 | 
						|
  if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
 | 
						|
    if (eliminateSaturatingIntrinsic(SI))
 | 
						|
      return true;
 | 
						|
 | 
						|
  if (auto *TI = dyn_cast<TruncInst>(UseInst))
 | 
						|
    if (eliminateTrunc(TI))
 | 
						|
      return true;
 | 
						|
 | 
						|
  if (eliminateIdentitySCEV(UseInst, IVOperand))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
 | 
						|
  if (auto *BB = L->getLoopPreheader())
 | 
						|
    return BB->getTerminator();
 | 
						|
 | 
						|
  return Hint;
 | 
						|
}
 | 
						|
 | 
						|
/// Replace the UseInst with a loop invariant expression if it is safe.
 | 
						|
bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
 | 
						|
  if (!SE->isSCEVable(I->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the symbolic expression for this instruction.
 | 
						|
  const SCEV *S = SE->getSCEV(I);
 | 
						|
 | 
						|
  if (!SE->isLoopInvariant(S, L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not generate something ridiculous even if S is loop invariant.
 | 
						|
  if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *IP = GetLoopInvariantInsertPosition(L, I);
 | 
						|
 | 
						|
  if (!Rewriter.isSafeToExpandAt(S, IP)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
 | 
						|
                      << " with non-speculable loop invariant: " << *S << '\n');
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
 | 
						|
 | 
						|
  I->replaceAllUsesWith(Invariant);
 | 
						|
  LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
 | 
						|
                    << " with loop invariant: " << *S << '\n');
 | 
						|
  ++NumFoldedUser;
 | 
						|
  Changed = true;
 | 
						|
  DeadInsts.emplace_back(I);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Eliminate redundant type cast between integer and float.
 | 
						|
bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) {
 | 
						|
  if (UseInst->getOpcode() != CastInst::SIToFP &&
 | 
						|
      UseInst->getOpcode() != CastInst::UIToFP)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *IVOperand = UseInst->getOperand(0);
 | 
						|
  // Get the symbolic expression for this instruction.
 | 
						|
  const SCEV *IV = SE->getSCEV(IVOperand);
 | 
						|
  unsigned MaskBits;
 | 
						|
  if (UseInst->getOpcode() == CastInst::SIToFP)
 | 
						|
    MaskBits = SE->getSignedRange(IV).getMinSignedBits();
 | 
						|
  else
 | 
						|
    MaskBits = SE->getUnsignedRange(IV).getActiveBits();
 | 
						|
  unsigned DestNumSigBits = UseInst->getType()->getFPMantissaWidth();
 | 
						|
  if (MaskBits <= DestNumSigBits) {
 | 
						|
    for (User *U : UseInst->users()) {
 | 
						|
      // Match for fptosi/fptoui of sitofp and with same type.
 | 
						|
      auto *CI = dyn_cast<CastInst>(U);
 | 
						|
      if (!CI || IVOperand->getType() != CI->getType())
 | 
						|
        continue;
 | 
						|
 | 
						|
      CastInst::CastOps Opcode = CI->getOpcode();
 | 
						|
      if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI)
 | 
						|
        continue;
 | 
						|
 | 
						|
      CI->replaceAllUsesWith(IVOperand);
 | 
						|
      DeadInsts.push_back(CI);
 | 
						|
      LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI
 | 
						|
                        << " with: " << *IVOperand << '\n');
 | 
						|
 | 
						|
      ++NumFoldedUser;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Eliminate any operation that SCEV can prove is an identity function.
 | 
						|
bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
 | 
						|
                                           Instruction *IVOperand) {
 | 
						|
  if (!SE->isSCEVable(UseInst->getType()) ||
 | 
						|
      (UseInst->getType() != IVOperand->getType()) ||
 | 
						|
      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
 | 
						|
  // dominator tree, even if X is an operand to Y.  For instance, in
 | 
						|
  //
 | 
						|
  //     %iv = phi i32 {0,+,1}
 | 
						|
  //     br %cond, label %left, label %merge
 | 
						|
  //
 | 
						|
  //   left:
 | 
						|
  //     %X = add i32 %iv, 0
 | 
						|
  //     br label %merge
 | 
						|
  //
 | 
						|
  //   merge:
 | 
						|
  //     %M = phi (%X, %iv)
 | 
						|
  //
 | 
						|
  // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
 | 
						|
  // %M.replaceAllUsesWith(%X) would be incorrect.
 | 
						|
 | 
						|
  if (isa<PHINode>(UseInst))
 | 
						|
    // If UseInst is not a PHI node then we know that IVOperand dominates
 | 
						|
    // UseInst directly from the legality of SSA.
 | 
						|
    if (!DT || !DT->dominates(IVOperand, UseInst))
 | 
						|
      return false;
 | 
						|
 | 
						|
  if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
 | 
						|
 | 
						|
  UseInst->replaceAllUsesWith(IVOperand);
 | 
						|
  ++NumElimIdentity;
 | 
						|
  Changed = true;
 | 
						|
  DeadInsts.emplace_back(UseInst);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Annotate BO with nsw / nuw if it provably does not signed-overflow /
 | 
						|
/// unsigned-overflow.  Returns true if anything changed, false otherwise.
 | 
						|
bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
 | 
						|
                                                    Instruction *IVOperand) {
 | 
						|
  auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp(
 | 
						|
      cast<OverflowingBinaryOperator>(BO));
 | 
						|
 | 
						|
  if (!Flags)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) ==
 | 
						|
                           SCEV::FlagNUW);
 | 
						|
  BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) ==
 | 
						|
                         SCEV::FlagNSW);
 | 
						|
 | 
						|
  // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
 | 
						|
  // flags on addrecs while performing zero/sign extensions. We could call
 | 
						|
  // forgetValue() here to make sure those flags also propagate to any other
 | 
						|
  // SCEV expressions based on the addrec. However, this can have pathological
 | 
						|
  // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Annotate the Shr in (X << IVOperand) >> C as exact using the
 | 
						|
/// information from the IV's range. Returns true if anything changed, false
 | 
						|
/// otherwise.
 | 
						|
bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
 | 
						|
                                          Instruction *IVOperand) {
 | 
						|
  using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
  if (BO->getOpcode() == Instruction::Shl) {
 | 
						|
    bool Changed = false;
 | 
						|
    ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
 | 
						|
    for (auto *U : BO->users()) {
 | 
						|
      const APInt *C;
 | 
						|
      if (match(U,
 | 
						|
                m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
 | 
						|
          match(U,
 | 
						|
                m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
 | 
						|
        BinaryOperator *Shr = cast<BinaryOperator>(U);
 | 
						|
        if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
 | 
						|
          Shr->setIsExact(true);
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Add all uses of Def to the current IV's worklist.
 | 
						|
static void pushIVUsers(
 | 
						|
  Instruction *Def, Loop *L,
 | 
						|
  SmallPtrSet<Instruction*,16> &Simplified,
 | 
						|
  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
 | 
						|
 | 
						|
  for (User *U : Def->users()) {
 | 
						|
    Instruction *UI = cast<Instruction>(U);
 | 
						|
 | 
						|
    // Avoid infinite or exponential worklist processing.
 | 
						|
    // Also ensure unique worklist users.
 | 
						|
    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
 | 
						|
    // self edges first.
 | 
						|
    if (UI == Def)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Only change the current Loop, do not change the other parts (e.g. other
 | 
						|
    // Loops).
 | 
						|
    if (!L->contains(UI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Do not push the same instruction more than once.
 | 
						|
    if (!Simplified.insert(UI).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SimpleIVUsers.push_back(std::make_pair(UI, Def));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if this instruction generates a simple SCEV
 | 
						|
/// expression in terms of that IV.
 | 
						|
///
 | 
						|
/// This is similar to IVUsers' isInteresting() but processes each instruction
 | 
						|
/// non-recursively when the operand is already known to be a simpleIVUser.
 | 
						|
///
 | 
						|
static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
 | 
						|
  if (!SE->isSCEVable(I->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the symbolic expression for this instruction.
 | 
						|
  const SCEV *S = SE->getSCEV(I);
 | 
						|
 | 
						|
  // Only consider affine recurrences.
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
 | 
						|
  if (AR && AR->getLoop() == L)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Iteratively perform simplification on a worklist of users
 | 
						|
/// of the specified induction variable. Each successive simplification may push
 | 
						|
/// more users which may themselves be candidates for simplification.
 | 
						|
///
 | 
						|
/// This algorithm does not require IVUsers analysis. Instead, it simplifies
 | 
						|
/// instructions in-place during analysis. Rather than rewriting induction
 | 
						|
/// variables bottom-up from their users, it transforms a chain of IVUsers
 | 
						|
/// top-down, updating the IR only when it encounters a clear optimization
 | 
						|
/// opportunity.
 | 
						|
///
 | 
						|
/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
 | 
						|
///
 | 
						|
void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
 | 
						|
  if (!SE->isSCEVable(CurrIV->getType()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Instructions processed by SimplifyIndvar for CurrIV.
 | 
						|
  SmallPtrSet<Instruction*,16> Simplified;
 | 
						|
 | 
						|
  // Use-def pairs if IV users waiting to be processed for CurrIV.
 | 
						|
  SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
 | 
						|
 | 
						|
  // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
 | 
						|
  // called multiple times for the same LoopPhi. This is the proper thing to
 | 
						|
  // do for loop header phis that use each other.
 | 
						|
  pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
 | 
						|
 | 
						|
  while (!SimpleIVUsers.empty()) {
 | 
						|
    std::pair<Instruction*, Instruction*> UseOper =
 | 
						|
      SimpleIVUsers.pop_back_val();
 | 
						|
    Instruction *UseInst = UseOper.first;
 | 
						|
 | 
						|
    // If a user of the IndVar is trivially dead, we prefer just to mark it dead
 | 
						|
    // rather than try to do some complex analysis or transformation (such as
 | 
						|
    // widening) basing on it.
 | 
						|
    // TODO: Propagate TLI and pass it here to handle more cases.
 | 
						|
    if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
 | 
						|
      DeadInsts.emplace_back(UseInst);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Bypass back edges to avoid extra work.
 | 
						|
    if (UseInst == CurrIV) continue;
 | 
						|
 | 
						|
    // Try to replace UseInst with a loop invariant before any other
 | 
						|
    // simplifications.
 | 
						|
    if (replaceIVUserWithLoopInvariant(UseInst))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Instruction *IVOperand = UseOper.second;
 | 
						|
    for (unsigned N = 0; IVOperand; ++N) {
 | 
						|
      assert(N <= Simplified.size() && "runaway iteration");
 | 
						|
      (void) N;
 | 
						|
 | 
						|
      Value *NewOper = foldIVUser(UseInst, IVOperand);
 | 
						|
      if (!NewOper)
 | 
						|
        break; // done folding
 | 
						|
      IVOperand = dyn_cast<Instruction>(NewOper);
 | 
						|
    }
 | 
						|
    if (!IVOperand)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (eliminateIVUser(UseInst, IVOperand)) {
 | 
						|
      pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
 | 
						|
      if ((isa<OverflowingBinaryOperator>(BO) &&
 | 
						|
           strengthenOverflowingOperation(BO, IVOperand)) ||
 | 
						|
          (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
 | 
						|
        // re-queue uses of the now modified binary operator and fall
 | 
						|
        // through to the checks that remain.
 | 
						|
        pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to use integer induction for FPToSI of float induction directly.
 | 
						|
    if (replaceFloatIVWithIntegerIV(UseInst)) {
 | 
						|
      // Re-queue the potentially new direct uses of IVOperand.
 | 
						|
      pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    CastInst *Cast = dyn_cast<CastInst>(UseInst);
 | 
						|
    if (V && Cast) {
 | 
						|
      V->visitCast(Cast);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isSimpleIVUser(UseInst, L, SE)) {
 | 
						|
      pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
void IVVisitor::anchor() { }
 | 
						|
 | 
						|
/// Simplify instructions that use this induction variable
 | 
						|
/// by using ScalarEvolution to analyze the IV's recurrence.
 | 
						|
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
 | 
						|
                       LoopInfo *LI, const TargetTransformInfo *TTI,
 | 
						|
                       SmallVectorImpl<WeakTrackingVH> &Dead,
 | 
						|
                       SCEVExpander &Rewriter, IVVisitor *V) {
 | 
						|
  SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
 | 
						|
                     Rewriter, Dead);
 | 
						|
  SIV.simplifyUsers(CurrIV, V);
 | 
						|
  return SIV.hasChanged();
 | 
						|
}
 | 
						|
 | 
						|
/// Simplify users of induction variables within this
 | 
						|
/// loop. This does not actually change or add IVs.
 | 
						|
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
 | 
						|
                     LoopInfo *LI, const TargetTransformInfo *TTI,
 | 
						|
                     SmallVectorImpl<WeakTrackingVH> &Dead) {
 | 
						|
  SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
 | 
						|
#ifndef NDEBUG
 | 
						|
  Rewriter.setDebugType(DEBUG_TYPE);
 | 
						|
#endif
 | 
						|
  bool Changed = false;
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    Changed |=
 | 
						|
        simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace llvm
 | 
						|
 | 
						|
namespace {
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Widen Induction Variables - Extend the width of an IV to cover its
 | 
						|
// widest uses.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
class WidenIV {
 | 
						|
  // Parameters
 | 
						|
  PHINode *OrigPhi;
 | 
						|
  Type *WideType;
 | 
						|
 | 
						|
  // Context
 | 
						|
  LoopInfo        *LI;
 | 
						|
  Loop            *L;
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  DominatorTree   *DT;
 | 
						|
 | 
						|
  // Does the module have any calls to the llvm.experimental.guard intrinsic
 | 
						|
  // at all? If not we can avoid scanning instructions looking for guards.
 | 
						|
  bool HasGuards;
 | 
						|
 | 
						|
  bool UsePostIncrementRanges;
 | 
						|
 | 
						|
  // Statistics
 | 
						|
  unsigned NumElimExt = 0;
 | 
						|
  unsigned NumWidened = 0;
 | 
						|
 | 
						|
  // Result
 | 
						|
  PHINode *WidePhi = nullptr;
 | 
						|
  Instruction *WideInc = nullptr;
 | 
						|
  const SCEV *WideIncExpr = nullptr;
 | 
						|
  SmallVectorImpl<WeakTrackingVH> &DeadInsts;
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *,16> Widened;
 | 
						|
 | 
						|
  enum class ExtendKind { Zero, Sign, Unknown };
 | 
						|
 | 
						|
  // A map tracking the kind of extension used to widen each narrow IV
 | 
						|
  // and narrow IV user.
 | 
						|
  // Key: pointer to a narrow IV or IV user.
 | 
						|
  // Value: the kind of extension used to widen this Instruction.
 | 
						|
  DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
 | 
						|
 | 
						|
  using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
 | 
						|
 | 
						|
  // A map with control-dependent ranges for post increment IV uses. The key is
 | 
						|
  // a pair of IV def and a use of this def denoting the context. The value is
 | 
						|
  // a ConstantRange representing possible values of the def at the given
 | 
						|
  // context.
 | 
						|
  DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
 | 
						|
 | 
						|
  Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
 | 
						|
                                              Instruction *UseI) {
 | 
						|
    DefUserPair Key(Def, UseI);
 | 
						|
    auto It = PostIncRangeInfos.find(Key);
 | 
						|
    return It == PostIncRangeInfos.end()
 | 
						|
               ? Optional<ConstantRange>(None)
 | 
						|
               : Optional<ConstantRange>(It->second);
 | 
						|
  }
 | 
						|
 | 
						|
  void calculatePostIncRanges(PHINode *OrigPhi);
 | 
						|
  void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
 | 
						|
 | 
						|
  void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
 | 
						|
    DefUserPair Key(Def, UseI);
 | 
						|
    auto It = PostIncRangeInfos.find(Key);
 | 
						|
    if (It == PostIncRangeInfos.end())
 | 
						|
      PostIncRangeInfos.insert({Key, R});
 | 
						|
    else
 | 
						|
      It->second = R.intersectWith(It->second);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  /// Record a link in the Narrow IV def-use chain along with the WideIV that
 | 
						|
  /// computes the same value as the Narrow IV def.  This avoids caching Use*
 | 
						|
  /// pointers.
 | 
						|
  struct NarrowIVDefUse {
 | 
						|
    Instruction *NarrowDef = nullptr;
 | 
						|
    Instruction *NarrowUse = nullptr;
 | 
						|
    Instruction *WideDef = nullptr;
 | 
						|
 | 
						|
    // True if the narrow def is never negative.  Tracking this information lets
 | 
						|
    // us use a sign extension instead of a zero extension or vice versa, when
 | 
						|
    // profitable and legal.
 | 
						|
    bool NeverNegative = false;
 | 
						|
 | 
						|
    NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
 | 
						|
                   bool NeverNegative)
 | 
						|
        : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
 | 
						|
          NeverNegative(NeverNegative) {}
 | 
						|
  };
 | 
						|
 | 
						|
  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
 | 
						|
          DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
 | 
						|
          bool HasGuards, bool UsePostIncrementRanges = true);
 | 
						|
 | 
						|
  PHINode *createWideIV(SCEVExpander &Rewriter);
 | 
						|
 | 
						|
  unsigned getNumElimExt() { return NumElimExt; };
 | 
						|
  unsigned getNumWidened() { return NumWidened; };
 | 
						|
 | 
						|
protected:
 | 
						|
  Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
 | 
						|
                          Instruction *Use);
 | 
						|
 | 
						|
  Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
 | 
						|
  Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
 | 
						|
                                     const SCEVAddRecExpr *WideAR);
 | 
						|
  Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
 | 
						|
 | 
						|
  ExtendKind getExtendKind(Instruction *I);
 | 
						|
 | 
						|
  using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
 | 
						|
 | 
						|
  WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
 | 
						|
 | 
						|
  WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
 | 
						|
 | 
						|
  const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
 | 
						|
                              unsigned OpCode) const;
 | 
						|
 | 
						|
  Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
 | 
						|
 | 
						|
  bool widenLoopCompare(NarrowIVDefUse DU);
 | 
						|
  bool widenWithVariantUse(NarrowIVDefUse DU);
 | 
						|
 | 
						|
  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
 | 
						|
 | 
						|
private:
 | 
						|
  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
/// Determine the insertion point for this user. By default, insert immediately
 | 
						|
/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
 | 
						|
/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
 | 
						|
/// common dominator for the incoming blocks. A nullptr can be returned if no
 | 
						|
/// viable location is found: it may happen if User is a PHI and Def only comes
 | 
						|
/// to this PHI from unreachable blocks.
 | 
						|
static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
 | 
						|
                                          DominatorTree *DT, LoopInfo *LI) {
 | 
						|
  PHINode *PHI = dyn_cast<PHINode>(User);
 | 
						|
  if (!PHI)
 | 
						|
    return User;
 | 
						|
 | 
						|
  Instruction *InsertPt = nullptr;
 | 
						|
  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    if (PHI->getIncomingValue(i) != Def)
 | 
						|
      continue;
 | 
						|
 | 
						|
    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
 | 
						|
 | 
						|
    if (!DT->isReachableFromEntry(InsertBB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!InsertPt) {
 | 
						|
      InsertPt = InsertBB->getTerminator();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
 | 
						|
    InsertPt = InsertBB->getTerminator();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have skipped all inputs, it means that Def only comes to Phi from
 | 
						|
  // unreachable blocks.
 | 
						|
  if (!InsertPt)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *DefI = dyn_cast<Instruction>(Def);
 | 
						|
  if (!DefI)
 | 
						|
    return InsertPt;
 | 
						|
 | 
						|
  assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
 | 
						|
 | 
						|
  auto *L = LI->getLoopFor(DefI->getParent());
 | 
						|
  assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
 | 
						|
 | 
						|
  for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
 | 
						|
    if (LI->getLoopFor(DTN->getBlock()) == L)
 | 
						|
      return DTN->getBlock()->getTerminator();
 | 
						|
 | 
						|
  llvm_unreachable("DefI dominates InsertPt!");
 | 
						|
}
 | 
						|
 | 
						|
WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
 | 
						|
          DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
 | 
						|
          bool HasGuards, bool UsePostIncrementRanges)
 | 
						|
      : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
 | 
						|
        L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
 | 
						|
        HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
 | 
						|
        DeadInsts(DI) {
 | 
						|
    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
 | 
						|
    ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero;
 | 
						|
}
 | 
						|
 | 
						|
Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
 | 
						|
                                 bool IsSigned, Instruction *Use) {
 | 
						|
  // Set the debug location and conservative insertion point.
 | 
						|
  IRBuilder<> Builder(Use);
 | 
						|
  // Hoist the insertion point into loop preheaders as far as possible.
 | 
						|
  for (const Loop *L = LI->getLoopFor(Use->getParent());
 | 
						|
       L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
 | 
						|
       L = L->getParentLoop())
 | 
						|
    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
 | 
						|
 | 
						|
  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
 | 
						|
                    Builder.CreateZExt(NarrowOper, WideType);
 | 
						|
}
 | 
						|
 | 
						|
/// Instantiate a wide operation to replace a narrow operation. This only needs
 | 
						|
/// to handle operations that can evaluation to SCEVAddRec. It can safely return
 | 
						|
/// 0 for any operation we decide not to clone.
 | 
						|
Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
 | 
						|
                                  const SCEVAddRecExpr *WideAR) {
 | 
						|
  unsigned Opcode = DU.NarrowUse->getOpcode();
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    return nullptr;
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::Sub:
 | 
						|
    return cloneArithmeticIVUser(DU, WideAR);
 | 
						|
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    return cloneBitwiseIVUser(DU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
 | 
						|
  Instruction *NarrowUse = DU.NarrowUse;
 | 
						|
  Instruction *NarrowDef = DU.NarrowDef;
 | 
						|
  Instruction *WideDef = DU.WideDef;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
 | 
						|
 | 
						|
  // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
 | 
						|
  // about the narrow operand yet so must insert a [sz]ext. It is probably loop
 | 
						|
  // invariant and will be folded or hoisted. If it actually comes from a
 | 
						|
  // widened IV, it should be removed during a future call to widenIVUse.
 | 
						|
  bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign;
 | 
						|
  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
 | 
						|
                   ? WideDef
 | 
						|
                   : createExtendInst(NarrowUse->getOperand(0), WideType,
 | 
						|
                                      IsSigned, NarrowUse);
 | 
						|
  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
 | 
						|
                   ? WideDef
 | 
						|
                   : createExtendInst(NarrowUse->getOperand(1), WideType,
 | 
						|
                                      IsSigned, NarrowUse);
 | 
						|
 | 
						|
  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
 | 
						|
  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
 | 
						|
                                        NarrowBO->getName());
 | 
						|
  IRBuilder<> Builder(NarrowUse);
 | 
						|
  Builder.Insert(WideBO);
 | 
						|
  WideBO->copyIRFlags(NarrowBO);
 | 
						|
  return WideBO;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
 | 
						|
                                            const SCEVAddRecExpr *WideAR) {
 | 
						|
  Instruction *NarrowUse = DU.NarrowUse;
 | 
						|
  Instruction *NarrowDef = DU.NarrowDef;
 | 
						|
  Instruction *WideDef = DU.WideDef;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
 | 
						|
 | 
						|
  unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
 | 
						|
 | 
						|
  // We're trying to find X such that
 | 
						|
  //
 | 
						|
  //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
 | 
						|
  //
 | 
						|
  // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
 | 
						|
  // and check using SCEV if any of them are correct.
 | 
						|
 | 
						|
  // Returns true if extending NonIVNarrowDef according to `SignExt` is a
 | 
						|
  // correct solution to X.
 | 
						|
  auto GuessNonIVOperand = [&](bool SignExt) {
 | 
						|
    const SCEV *WideLHS;
 | 
						|
    const SCEV *WideRHS;
 | 
						|
 | 
						|
    auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
 | 
						|
      if (SignExt)
 | 
						|
        return SE->getSignExtendExpr(S, Ty);
 | 
						|
      return SE->getZeroExtendExpr(S, Ty);
 | 
						|
    };
 | 
						|
 | 
						|
    if (IVOpIdx == 0) {
 | 
						|
      WideLHS = SE->getSCEV(WideDef);
 | 
						|
      const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
 | 
						|
      WideRHS = GetExtend(NarrowRHS, WideType);
 | 
						|
    } else {
 | 
						|
      const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
 | 
						|
      WideLHS = GetExtend(NarrowLHS, WideType);
 | 
						|
      WideRHS = SE->getSCEV(WideDef);
 | 
						|
    }
 | 
						|
 | 
						|
    // WideUse is "WideDef `op.wide` X" as described in the comment.
 | 
						|
    const SCEV *WideUse =
 | 
						|
      getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
 | 
						|
 | 
						|
    return WideUse == WideAR;
 | 
						|
  };
 | 
						|
 | 
						|
  bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign;
 | 
						|
  if (!GuessNonIVOperand(SignExtend)) {
 | 
						|
    SignExtend = !SignExtend;
 | 
						|
    if (!GuessNonIVOperand(SignExtend))
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
 | 
						|
                   ? WideDef
 | 
						|
                   : createExtendInst(NarrowUse->getOperand(0), WideType,
 | 
						|
                                      SignExtend, NarrowUse);
 | 
						|
  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
 | 
						|
                   ? WideDef
 | 
						|
                   : createExtendInst(NarrowUse->getOperand(1), WideType,
 | 
						|
                                      SignExtend, NarrowUse);
 | 
						|
 | 
						|
  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
 | 
						|
  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
 | 
						|
                                        NarrowBO->getName());
 | 
						|
 | 
						|
  IRBuilder<> Builder(NarrowUse);
 | 
						|
  Builder.Insert(WideBO);
 | 
						|
  WideBO->copyIRFlags(NarrowBO);
 | 
						|
  return WideBO;
 | 
						|
}
 | 
						|
 | 
						|
WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
 | 
						|
  auto It = ExtendKindMap.find(I);
 | 
						|
  assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
 | 
						|
  return It->second;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
 | 
						|
                                     unsigned OpCode) const {
 | 
						|
  switch (OpCode) {
 | 
						|
  case Instruction::Add:
 | 
						|
    return SE->getAddExpr(LHS, RHS);
 | 
						|
  case Instruction::Sub:
 | 
						|
    return SE->getMinusSCEV(LHS, RHS);
 | 
						|
  case Instruction::Mul:
 | 
						|
    return SE->getMulExpr(LHS, RHS);
 | 
						|
  case Instruction::UDiv:
 | 
						|
    return SE->getUDivExpr(LHS, RHS);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unsupported opcode.");
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// No-wrap operations can transfer sign extension of their result to their
 | 
						|
/// operands. Generate the SCEV value for the widened operation without
 | 
						|
/// actually modifying the IR yet. If the expression after extending the
 | 
						|
/// operands is an AddRec for this loop, return the AddRec and the kind of
 | 
						|
/// extension used.
 | 
						|
WidenIV::WidenedRecTy
 | 
						|
WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
 | 
						|
  // Handle the common case of add<nsw/nuw>
 | 
						|
  const unsigned OpCode = DU.NarrowUse->getOpcode();
 | 
						|
  // Only Add/Sub/Mul instructions supported yet.
 | 
						|
  if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
 | 
						|
      OpCode != Instruction::Mul)
 | 
						|
    return {nullptr, ExtendKind::Unknown};
 | 
						|
 | 
						|
  // One operand (NarrowDef) has already been extended to WideDef. Now determine
 | 
						|
  // if extending the other will lead to a recurrence.
 | 
						|
  const unsigned ExtendOperIdx =
 | 
						|
      DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
 | 
						|
  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
 | 
						|
 | 
						|
  const SCEV *ExtendOperExpr = nullptr;
 | 
						|
  const OverflowingBinaryOperator *OBO =
 | 
						|
    cast<OverflowingBinaryOperator>(DU.NarrowUse);
 | 
						|
  ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
 | 
						|
  if (ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap())
 | 
						|
    ExtendOperExpr = SE->getSignExtendExpr(
 | 
						|
      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
 | 
						|
  else if (ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap())
 | 
						|
    ExtendOperExpr = SE->getZeroExtendExpr(
 | 
						|
      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
 | 
						|
  else
 | 
						|
    return {nullptr, ExtendKind::Unknown};
 | 
						|
 | 
						|
  // When creating this SCEV expr, don't apply the current operations NSW or NUW
 | 
						|
  // flags. This instruction may be guarded by control flow that the no-wrap
 | 
						|
  // behavior depends on. Non-control-equivalent instructions can be mapped to
 | 
						|
  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
 | 
						|
  // semantics to those operations.
 | 
						|
  const SCEV *lhs = SE->getSCEV(DU.WideDef);
 | 
						|
  const SCEV *rhs = ExtendOperExpr;
 | 
						|
 | 
						|
  // Let's swap operands to the initial order for the case of non-commutative
 | 
						|
  // operations, like SUB. See PR21014.
 | 
						|
  if (ExtendOperIdx == 0)
 | 
						|
    std::swap(lhs, rhs);
 | 
						|
  const SCEVAddRecExpr *AddRec =
 | 
						|
      dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
 | 
						|
 | 
						|
  if (!AddRec || AddRec->getLoop() != L)
 | 
						|
    return {nullptr, ExtendKind::Unknown};
 | 
						|
 | 
						|
  return {AddRec, ExtKind};
 | 
						|
}
 | 
						|
 | 
						|
/// Is this instruction potentially interesting for further simplification after
 | 
						|
/// widening it's type? In other words, can the extend be safely hoisted out of
 | 
						|
/// the loop with SCEV reducing the value to a recurrence on the same loop. If
 | 
						|
/// so, return the extended recurrence and the kind of extension used. Otherwise
 | 
						|
/// return {nullptr, ExtendKind::Unknown}.
 | 
						|
WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
 | 
						|
  if (!DU.NarrowUse->getType()->isIntegerTy())
 | 
						|
    return {nullptr, ExtendKind::Unknown};
 | 
						|
 | 
						|
  const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
 | 
						|
  if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
 | 
						|
      SE->getTypeSizeInBits(WideType)) {
 | 
						|
    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
 | 
						|
    // index. So don't follow this use.
 | 
						|
    return {nullptr, ExtendKind::Unknown};
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *WideExpr;
 | 
						|
  ExtendKind ExtKind;
 | 
						|
  if (DU.NeverNegative) {
 | 
						|
    WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
 | 
						|
    if (isa<SCEVAddRecExpr>(WideExpr))
 | 
						|
      ExtKind = ExtendKind::Sign;
 | 
						|
    else {
 | 
						|
      WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
 | 
						|
      ExtKind = ExtendKind::Zero;
 | 
						|
    }
 | 
						|
  } else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) {
 | 
						|
    WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
 | 
						|
    ExtKind = ExtendKind::Sign;
 | 
						|
  } else {
 | 
						|
    WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
 | 
						|
    ExtKind = ExtendKind::Zero;
 | 
						|
  }
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
 | 
						|
  if (!AddRec || AddRec->getLoop() != L)
 | 
						|
    return {nullptr, ExtendKind::Unknown};
 | 
						|
  return {AddRec, ExtKind};
 | 
						|
}
 | 
						|
 | 
						|
/// This IV user cannot be widened. Replace this use of the original narrow IV
 | 
						|
/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
 | 
						|
static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
 | 
						|
                          LoopInfo *LI) {
 | 
						|
  auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
 | 
						|
  if (!InsertPt)
 | 
						|
    return;
 | 
						|
  LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
 | 
						|
                    << *DU.NarrowUse << "\n");
 | 
						|
  IRBuilder<> Builder(InsertPt);
 | 
						|
  Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
 | 
						|
  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
 | 
						|
}
 | 
						|
 | 
						|
/// If the narrow use is a compare instruction, then widen the compare
 | 
						|
//  (and possibly the other operand).  The extend operation is hoisted into the
 | 
						|
// loop preheader as far as possible.
 | 
						|
bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
 | 
						|
  ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
 | 
						|
  if (!Cmp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can legally widen the comparison in the following two cases:
 | 
						|
  //
 | 
						|
  //  - The signedness of the IV extension and comparison match
 | 
						|
  //
 | 
						|
  //  - The narrow IV is always positive (and thus its sign extension is equal
 | 
						|
  //    to its zero extension).  For instance, let's say we're zero extending
 | 
						|
  //    %narrow for the following use
 | 
						|
  //
 | 
						|
  //      icmp slt i32 %narrow, %val   ... (A)
 | 
						|
  //
 | 
						|
  //    and %narrow is always positive.  Then
 | 
						|
  //
 | 
						|
  //      (A) == icmp slt i32 sext(%narrow), sext(%val)
 | 
						|
  //          == icmp slt i32 zext(%narrow), sext(%val)
 | 
						|
  bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
 | 
						|
  if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
 | 
						|
  unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
 | 
						|
  unsigned IVWidth = SE->getTypeSizeInBits(WideType);
 | 
						|
  assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
 | 
						|
 | 
						|
  // Widen the compare instruction.
 | 
						|
  auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
 | 
						|
  if (!InsertPt)
 | 
						|
    return false;
 | 
						|
  IRBuilder<> Builder(InsertPt);
 | 
						|
  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
 | 
						|
 | 
						|
  // Widen the other operand of the compare, if necessary.
 | 
						|
  if (CastWidth < IVWidth) {
 | 
						|
    Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
 | 
						|
    DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
 | 
						|
// will not work when:
 | 
						|
//    1) SCEV traces back to an instruction inside the loop that SCEV can not
 | 
						|
// expand, eg. add %indvar, (load %addr)
 | 
						|
//    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
 | 
						|
// While SCEV fails to avoid trunc, we can still try to use instruction
 | 
						|
// combining approach to prove trunc is not required. This can be further
 | 
						|
// extended with other instruction combining checks, but for now we handle the
 | 
						|
// following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
 | 
						|
//
 | 
						|
// Src:
 | 
						|
//   %c = sub nsw %b, %indvar
 | 
						|
//   %d = sext %c to i64
 | 
						|
// Dst:
 | 
						|
//   %indvar.ext1 = sext %indvar to i64
 | 
						|
//   %m = sext %b to i64
 | 
						|
//   %d = sub nsw i64 %m, %indvar.ext1
 | 
						|
// Therefore, as long as the result of add/sub/mul is extended to wide type, no
 | 
						|
// trunc is required regardless of how %b is generated. This pattern is common
 | 
						|
// when calculating address in 64 bit architecture
 | 
						|
bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
 | 
						|
  Instruction *NarrowUse = DU.NarrowUse;
 | 
						|
  Instruction *NarrowDef = DU.NarrowDef;
 | 
						|
  Instruction *WideDef = DU.WideDef;
 | 
						|
 | 
						|
  // Handle the common case of add<nsw/nuw>
 | 
						|
  const unsigned OpCode = NarrowUse->getOpcode();
 | 
						|
  // Only Add/Sub/Mul instructions are supported.
 | 
						|
  if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
 | 
						|
      OpCode != Instruction::Mul)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The operand that is not defined by NarrowDef of DU. Let's call it the
 | 
						|
  // other operand.
 | 
						|
  assert((NarrowUse->getOperand(0) == NarrowDef ||
 | 
						|
          NarrowUse->getOperand(1) == NarrowDef) &&
 | 
						|
         "bad DU");
 | 
						|
 | 
						|
  const OverflowingBinaryOperator *OBO =
 | 
						|
    cast<OverflowingBinaryOperator>(NarrowUse);
 | 
						|
  ExtendKind ExtKind = getExtendKind(NarrowDef);
 | 
						|
  bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap();
 | 
						|
  bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap();
 | 
						|
  auto AnotherOpExtKind = ExtKind;
 | 
						|
 | 
						|
  // Check that all uses are either:
 | 
						|
  // - narrow def (in case of we are widening the IV increment);
 | 
						|
  // - single-input LCSSA Phis;
 | 
						|
  // - comparison of the chosen type;
 | 
						|
  // - extend of the chosen type (raison d'etre).
 | 
						|
  SmallVector<Instruction *, 4> ExtUsers;
 | 
						|
  SmallVector<PHINode *, 4> LCSSAPhiUsers;
 | 
						|
  SmallVector<ICmpInst *, 4> ICmpUsers;
 | 
						|
  for (Use &U : NarrowUse->uses()) {
 | 
						|
    Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
    if (User == NarrowDef)
 | 
						|
      continue;
 | 
						|
    if (!L->contains(User)) {
 | 
						|
      auto *LCSSAPhi = cast<PHINode>(User);
 | 
						|
      // Make sure there is only 1 input, so that we don't have to split
 | 
						|
      // critical edges.
 | 
						|
      if (LCSSAPhi->getNumOperands() != 1)
 | 
						|
        return false;
 | 
						|
      LCSSAPhiUsers.push_back(LCSSAPhi);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
 | 
						|
      auto Pred = ICmp->getPredicate();
 | 
						|
      // We have 3 types of predicates: signed, unsigned and equality
 | 
						|
      // predicates. For equality, it's legal to widen icmp for either sign and
 | 
						|
      // zero extend. For sign extend, we can also do so for signed predicates,
 | 
						|
      // likeweise for zero extend we can widen icmp for unsigned predicates.
 | 
						|
      if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred))
 | 
						|
        return false;
 | 
						|
      if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred))
 | 
						|
        return false;
 | 
						|
      ICmpUsers.push_back(ICmp);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (ExtKind == ExtendKind::Sign)
 | 
						|
      User = dyn_cast<SExtInst>(User);
 | 
						|
    else
 | 
						|
      User = dyn_cast<ZExtInst>(User);
 | 
						|
    if (!User || User->getType() != WideType)
 | 
						|
      return false;
 | 
						|
    ExtUsers.push_back(User);
 | 
						|
  }
 | 
						|
  if (ExtUsers.empty()) {
 | 
						|
    DeadInsts.emplace_back(NarrowUse);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We'll prove some facts that should be true in the context of ext users. If
 | 
						|
  // there is no users, we are done now. If there are some, pick their common
 | 
						|
  // dominator as context.
 | 
						|
  const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
 | 
						|
 | 
						|
  if (!CanSignExtend && !CanZeroExtend) {
 | 
						|
    // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
 | 
						|
    // will most likely not see it. Let's try to prove it.
 | 
						|
    if (OpCode != Instruction::Add)
 | 
						|
      return false;
 | 
						|
    if (ExtKind != ExtendKind::Zero)
 | 
						|
      return false;
 | 
						|
    const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
 | 
						|
    const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
 | 
						|
    // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
 | 
						|
    if (NarrowUse->getOperand(0) != NarrowDef)
 | 
						|
      return false;
 | 
						|
    if (!SE->isKnownNegative(RHS))
 | 
						|
      return false;
 | 
						|
    bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
 | 
						|
                                               SE->getNegativeSCEV(RHS), CtxI);
 | 
						|
    if (!ProvedSubNUW)
 | 
						|
      return false;
 | 
						|
    // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
 | 
						|
    // neg(zext(neg(op))), which is basically sext(op).
 | 
						|
    AnotherOpExtKind = ExtendKind::Sign;
 | 
						|
  }
 | 
						|
 | 
						|
  // Verifying that Defining operand is an AddRec
 | 
						|
  const SCEV *Op1 = SE->getSCEV(WideDef);
 | 
						|
  const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
 | 
						|
  if (!AddRecOp1 || AddRecOp1->getLoop() != L)
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
 | 
						|
 | 
						|
  // Generating a widening use instruction.
 | 
						|
  Value *LHS =
 | 
						|
      (NarrowUse->getOperand(0) == NarrowDef)
 | 
						|
          ? WideDef
 | 
						|
          : createExtendInst(NarrowUse->getOperand(0), WideType,
 | 
						|
                             AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
 | 
						|
  Value *RHS =
 | 
						|
      (NarrowUse->getOperand(1) == NarrowDef)
 | 
						|
          ? WideDef
 | 
						|
          : createExtendInst(NarrowUse->getOperand(1), WideType,
 | 
						|
                             AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
 | 
						|
 | 
						|
  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
 | 
						|
  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
 | 
						|
                                        NarrowBO->getName());
 | 
						|
  IRBuilder<> Builder(NarrowUse);
 | 
						|
  Builder.Insert(WideBO);
 | 
						|
  WideBO->copyIRFlags(NarrowBO);
 | 
						|
  ExtendKindMap[NarrowUse] = ExtKind;
 | 
						|
 | 
						|
  for (Instruction *User : ExtUsers) {
 | 
						|
    assert(User->getType() == WideType && "Checked before!");
 | 
						|
    LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
 | 
						|
                      << *WideBO << "\n");
 | 
						|
    ++NumElimExt;
 | 
						|
    User->replaceAllUsesWith(WideBO);
 | 
						|
    DeadInsts.emplace_back(User);
 | 
						|
  }
 | 
						|
 | 
						|
  for (PHINode *User : LCSSAPhiUsers) {
 | 
						|
    assert(User->getNumOperands() == 1 && "Checked before!");
 | 
						|
    Builder.SetInsertPoint(User);
 | 
						|
    auto *WidePN =
 | 
						|
        Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
 | 
						|
    BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
 | 
						|
    assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
 | 
						|
           "Not a LCSSA Phi?");
 | 
						|
    WidePN->addIncoming(WideBO, LoopExitingBlock);
 | 
						|
    Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
 | 
						|
    auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
 | 
						|
    User->replaceAllUsesWith(TruncPN);
 | 
						|
    DeadInsts.emplace_back(User);
 | 
						|
  }
 | 
						|
 | 
						|
  for (ICmpInst *User : ICmpUsers) {
 | 
						|
    Builder.SetInsertPoint(User);
 | 
						|
    auto ExtendedOp = [&](Value * V)->Value * {
 | 
						|
      if (V == NarrowUse)
 | 
						|
        return WideBO;
 | 
						|
      if (ExtKind == ExtendKind::Zero)
 | 
						|
        return Builder.CreateZExt(V, WideBO->getType());
 | 
						|
      else
 | 
						|
        return Builder.CreateSExt(V, WideBO->getType());
 | 
						|
    };
 | 
						|
    auto Pred = User->getPredicate();
 | 
						|
    auto *LHS = ExtendedOp(User->getOperand(0));
 | 
						|
    auto *RHS = ExtendedOp(User->getOperand(1));
 | 
						|
    auto *WideCmp =
 | 
						|
        Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
 | 
						|
    User->replaceAllUsesWith(WideCmp);
 | 
						|
    DeadInsts.emplace_back(User);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether an individual user of the narrow IV can be widened. If so,
 | 
						|
/// return the wide clone of the user.
 | 
						|
Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
 | 
						|
  assert(ExtendKindMap.count(DU.NarrowDef) &&
 | 
						|
         "Should already know the kind of extension used to widen NarrowDef");
 | 
						|
 | 
						|
  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
 | 
						|
  if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
 | 
						|
    if (LI->getLoopFor(UsePhi->getParent()) != L) {
 | 
						|
      // For LCSSA phis, sink the truncate outside the loop.
 | 
						|
      // After SimplifyCFG most loop exit targets have a single predecessor.
 | 
						|
      // Otherwise fall back to a truncate within the loop.
 | 
						|
      if (UsePhi->getNumOperands() != 1)
 | 
						|
        truncateIVUse(DU, DT, LI);
 | 
						|
      else {
 | 
						|
        // Widening the PHI requires us to insert a trunc.  The logical place
 | 
						|
        // for this trunc is in the same BB as the PHI.  This is not possible if
 | 
						|
        // the BB is terminated by a catchswitch.
 | 
						|
        if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        PHINode *WidePhi =
 | 
						|
          PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
 | 
						|
                          UsePhi);
 | 
						|
        WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
 | 
						|
        IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
 | 
						|
        Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
 | 
						|
        UsePhi->replaceAllUsesWith(Trunc);
 | 
						|
        DeadInsts.emplace_back(UsePhi);
 | 
						|
        LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
 | 
						|
                          << *WidePhi << "\n");
 | 
						|
      }
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This narrow use can be widened by a sext if it's non-negative or its narrow
 | 
						|
  // def was widended by a sext. Same for zext.
 | 
						|
  auto canWidenBySExt = [&]() {
 | 
						|
    return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
 | 
						|
  };
 | 
						|
  auto canWidenByZExt = [&]() {
 | 
						|
    return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero;
 | 
						|
  };
 | 
						|
 | 
						|
  // Our raison d'etre! Eliminate sign and zero extension.
 | 
						|
  if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
 | 
						|
      (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
 | 
						|
    Value *NewDef = DU.WideDef;
 | 
						|
    if (DU.NarrowUse->getType() != WideType) {
 | 
						|
      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
 | 
						|
      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
 | 
						|
      if (CastWidth < IVWidth) {
 | 
						|
        // The cast isn't as wide as the IV, so insert a Trunc.
 | 
						|
        IRBuilder<> Builder(DU.NarrowUse);
 | 
						|
        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        // A wider extend was hidden behind a narrower one. This may induce
 | 
						|
        // another round of IV widening in which the intermediate IV becomes
 | 
						|
        // dead. It should be very rare.
 | 
						|
        LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
 | 
						|
                          << " not wide enough to subsume " << *DU.NarrowUse
 | 
						|
                          << "\n");
 | 
						|
        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
 | 
						|
        NewDef = DU.NarrowUse;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (NewDef != DU.NarrowUse) {
 | 
						|
      LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
 | 
						|
                        << " replaced by " << *DU.WideDef << "\n");
 | 
						|
      ++NumElimExt;
 | 
						|
      DU.NarrowUse->replaceAllUsesWith(NewDef);
 | 
						|
      DeadInsts.emplace_back(DU.NarrowUse);
 | 
						|
    }
 | 
						|
    // Now that the extend is gone, we want to expose it's uses for potential
 | 
						|
    // further simplification. We don't need to directly inform SimplifyIVUsers
 | 
						|
    // of the new users, because their parent IV will be processed later as a
 | 
						|
    // new loop phi. If we preserved IVUsers analysis, we would also want to
 | 
						|
    // push the uses of WideDef here.
 | 
						|
 | 
						|
    // No further widening is needed. The deceased [sz]ext had done it for us.
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Does this user itself evaluate to a recurrence after widening?
 | 
						|
  WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
 | 
						|
  if (!WideAddRec.first)
 | 
						|
    WideAddRec = getWideRecurrence(DU);
 | 
						|
 | 
						|
  assert((WideAddRec.first == nullptr) ==
 | 
						|
         (WideAddRec.second == ExtendKind::Unknown));
 | 
						|
  if (!WideAddRec.first) {
 | 
						|
    // If use is a loop condition, try to promote the condition instead of
 | 
						|
    // truncating the IV first.
 | 
						|
    if (widenLoopCompare(DU))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // We are here about to generate a truncate instruction that may hurt
 | 
						|
    // performance because the scalar evolution expression computed earlier
 | 
						|
    // in WideAddRec.first does not indicate a polynomial induction expression.
 | 
						|
    // In that case, look at the operands of the use instruction to determine
 | 
						|
    // if we can still widen the use instead of truncating its operand.
 | 
						|
    if (widenWithVariantUse(DU))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // This user does not evaluate to a recurrence after widening, so don't
 | 
						|
    // follow it. Instead insert a Trunc to kill off the original use,
 | 
						|
    // eventually isolating the original narrow IV so it can be removed.
 | 
						|
    truncateIVUse(DU, DT, LI);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reuse the IV increment that SCEVExpander created as long as it dominates
 | 
						|
  // NarrowUse.
 | 
						|
  Instruction *WideUse = nullptr;
 | 
						|
  if (WideAddRec.first == WideIncExpr &&
 | 
						|
      Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
 | 
						|
    WideUse = WideInc;
 | 
						|
  else {
 | 
						|
    WideUse = cloneIVUser(DU, WideAddRec.first);
 | 
						|
    if (!WideUse)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
  // Evaluation of WideAddRec ensured that the narrow expression could be
 | 
						|
  // extended outside the loop without overflow. This suggests that the wide use
 | 
						|
  // evaluates to the same expression as the extended narrow use, but doesn't
 | 
						|
  // absolutely guarantee it. Hence the following failsafe check. In rare cases
 | 
						|
  // where it fails, we simply throw away the newly created wide use.
 | 
						|
  if (WideAddRec.first != SE->getSCEV(WideUse)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
 | 
						|
                      << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
 | 
						|
                      << "\n");
 | 
						|
    DeadInsts.emplace_back(WideUse);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // if we reached this point then we are going to replace
 | 
						|
  // DU.NarrowUse with WideUse. Reattach DbgValue then.
 | 
						|
  replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
 | 
						|
 | 
						|
  ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
 | 
						|
  // Returning WideUse pushes it on the worklist.
 | 
						|
  return WideUse;
 | 
						|
}
 | 
						|
 | 
						|
/// Add eligible users of NarrowDef to NarrowIVUsers.
 | 
						|
void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
 | 
						|
  const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
 | 
						|
  bool NonNegativeDef =
 | 
						|
      SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
 | 
						|
                           SE->getZero(NarrowSCEV->getType()));
 | 
						|
  for (User *U : NarrowDef->users()) {
 | 
						|
    Instruction *NarrowUser = cast<Instruction>(U);
 | 
						|
 | 
						|
    // Handle data flow merges and bizarre phi cycles.
 | 
						|
    if (!Widened.insert(NarrowUser).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool NonNegativeUse = false;
 | 
						|
    if (!NonNegativeDef) {
 | 
						|
      // We might have a control-dependent range information for this context.
 | 
						|
      if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
 | 
						|
        NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
 | 
						|
    }
 | 
						|
 | 
						|
    NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
 | 
						|
                               NonNegativeDef || NonNegativeUse);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Process a single induction variable. First use the SCEVExpander to create a
 | 
						|
/// wide induction variable that evaluates to the same recurrence as the
 | 
						|
/// original narrow IV. Then use a worklist to forward traverse the narrow IV's
 | 
						|
/// def-use chain. After widenIVUse has processed all interesting IV users, the
 | 
						|
/// narrow IV will be isolated for removal by DeleteDeadPHIs.
 | 
						|
///
 | 
						|
/// It would be simpler to delete uses as they are processed, but we must avoid
 | 
						|
/// invalidating SCEV expressions.
 | 
						|
PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
 | 
						|
  // Is this phi an induction variable?
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
 | 
						|
  if (!AddRec)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Widen the induction variable expression.
 | 
						|
  const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign
 | 
						|
                               ? SE->getSignExtendExpr(AddRec, WideType)
 | 
						|
                               : SE->getZeroExtendExpr(AddRec, WideType);
 | 
						|
 | 
						|
  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
 | 
						|
         "Expect the new IV expression to preserve its type");
 | 
						|
 | 
						|
  // Can the IV be extended outside the loop without overflow?
 | 
						|
  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
 | 
						|
  if (!AddRec || AddRec->getLoop() != L)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // An AddRec must have loop-invariant operands. Since this AddRec is
 | 
						|
  // materialized by a loop header phi, the expression cannot have any post-loop
 | 
						|
  // operands, so they must dominate the loop header.
 | 
						|
  assert(
 | 
						|
      SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
 | 
						|
      SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
 | 
						|
      "Loop header phi recurrence inputs do not dominate the loop");
 | 
						|
 | 
						|
  // Iterate over IV uses (including transitive ones) looking for IV increments
 | 
						|
  // of the form 'add nsw %iv, <const>'. For each increment and each use of
 | 
						|
  // the increment calculate control-dependent range information basing on
 | 
						|
  // dominating conditions inside of the loop (e.g. a range check inside of the
 | 
						|
  // loop). Calculated ranges are stored in PostIncRangeInfos map.
 | 
						|
  //
 | 
						|
  // Control-dependent range information is later used to prove that a narrow
 | 
						|
  // definition is not negative (see pushNarrowIVUsers). It's difficult to do
 | 
						|
  // this on demand because when pushNarrowIVUsers needs this information some
 | 
						|
  // of the dominating conditions might be already widened.
 | 
						|
  if (UsePostIncrementRanges)
 | 
						|
    calculatePostIncRanges(OrigPhi);
 | 
						|
 | 
						|
  // The rewriter provides a value for the desired IV expression. This may
 | 
						|
  // either find an existing phi or materialize a new one. Either way, we
 | 
						|
  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
 | 
						|
  // of the phi-SCC dominates the loop entry.
 | 
						|
  Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
 | 
						|
  Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
 | 
						|
  // If the wide phi is not a phi node, for example a cast node, like bitcast,
 | 
						|
  // inttoptr, ptrtoint, just skip for now.
 | 
						|
  if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
 | 
						|
    // if the cast node is an inserted instruction without any user, we should
 | 
						|
    // remove it to make sure the pass don't touch the function as we can not
 | 
						|
    // wide the phi.
 | 
						|
    if (ExpandInst->hasNUses(0) &&
 | 
						|
        Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
 | 
						|
      DeadInsts.emplace_back(ExpandInst);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Remembering the WideIV increment generated by SCEVExpander allows
 | 
						|
  // widenIVUse to reuse it when widening the narrow IV's increment. We don't
 | 
						|
  // employ a general reuse mechanism because the call above is the only call to
 | 
						|
  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
 | 
						|
  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
 | 
						|
    WideInc =
 | 
						|
      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
 | 
						|
    WideIncExpr = SE->getSCEV(WideInc);
 | 
						|
    // Propagate the debug location associated with the original loop increment
 | 
						|
    // to the new (widened) increment.
 | 
						|
    auto *OrigInc =
 | 
						|
      cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
 | 
						|
    WideInc->setDebugLoc(OrigInc->getDebugLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
 | 
						|
  ++NumWidened;
 | 
						|
 | 
						|
  // Traverse the def-use chain using a worklist starting at the original IV.
 | 
						|
  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
 | 
						|
 | 
						|
  Widened.insert(OrigPhi);
 | 
						|
  pushNarrowIVUsers(OrigPhi, WidePhi);
 | 
						|
 | 
						|
  while (!NarrowIVUsers.empty()) {
 | 
						|
    WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
 | 
						|
 | 
						|
    // Process a def-use edge. This may replace the use, so don't hold a
 | 
						|
    // use_iterator across it.
 | 
						|
    Instruction *WideUse = widenIVUse(DU, Rewriter);
 | 
						|
 | 
						|
    // Follow all def-use edges from the previous narrow use.
 | 
						|
    if (WideUse)
 | 
						|
      pushNarrowIVUsers(DU.NarrowUse, WideUse);
 | 
						|
 | 
						|
    // widenIVUse may have removed the def-use edge.
 | 
						|
    if (DU.NarrowDef->use_empty())
 | 
						|
      DeadInsts.emplace_back(DU.NarrowDef);
 | 
						|
  }
 | 
						|
 | 
						|
  // Attach any debug information to the new PHI.
 | 
						|
  replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
 | 
						|
 | 
						|
  return WidePhi;
 | 
						|
}
 | 
						|
 | 
						|
/// Calculates control-dependent range for the given def at the given context
 | 
						|
/// by looking at dominating conditions inside of the loop
 | 
						|
void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
 | 
						|
                                    Instruction *NarrowUser) {
 | 
						|
  using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
  Value *NarrowDefLHS;
 | 
						|
  const APInt *NarrowDefRHS;
 | 
						|
  if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
 | 
						|
                                 m_APInt(NarrowDefRHS))) ||
 | 
						|
      !NarrowDefRHS->isNonNegative())
 | 
						|
    return;
 | 
						|
 | 
						|
  auto UpdateRangeFromCondition = [&] (Value *Condition,
 | 
						|
                                       bool TrueDest) {
 | 
						|
    CmpInst::Predicate Pred;
 | 
						|
    Value *CmpRHS;
 | 
						|
    if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
 | 
						|
                                 m_Value(CmpRHS))))
 | 
						|
      return;
 | 
						|
 | 
						|
    CmpInst::Predicate P =
 | 
						|
            TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
 | 
						|
 | 
						|
    auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
 | 
						|
    auto CmpConstrainedLHSRange =
 | 
						|
            ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
 | 
						|
    auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
 | 
						|
        *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
 | 
						|
 | 
						|
    updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
 | 
						|
  };
 | 
						|
 | 
						|
  auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
 | 
						|
    if (!HasGuards)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
 | 
						|
                                     Ctx->getParent()->rend())) {
 | 
						|
      Value *C = nullptr;
 | 
						|
      if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
 | 
						|
        UpdateRangeFromCondition(C, /*TrueDest=*/true);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  UpdateRangeFromGuards(NarrowUser);
 | 
						|
 | 
						|
  BasicBlock *NarrowUserBB = NarrowUser->getParent();
 | 
						|
  // If NarrowUserBB is statically unreachable asking dominator queries may
 | 
						|
  // yield surprising results. (e.g. the block may not have a dom tree node)
 | 
						|
  if (!DT->isReachableFromEntry(NarrowUserBB))
 | 
						|
    return;
 | 
						|
 | 
						|
  for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
 | 
						|
       L->contains(DTB->getBlock());
 | 
						|
       DTB = DTB->getIDom()) {
 | 
						|
    auto *BB = DTB->getBlock();
 | 
						|
    auto *TI = BB->getTerminator();
 | 
						|
    UpdateRangeFromGuards(TI);
 | 
						|
 | 
						|
    auto *BI = dyn_cast<BranchInst>(TI);
 | 
						|
    if (!BI || !BI->isConditional())
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto *TrueSuccessor = BI->getSuccessor(0);
 | 
						|
    auto *FalseSuccessor = BI->getSuccessor(1);
 | 
						|
 | 
						|
    auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
 | 
						|
      return BBE.isSingleEdge() &&
 | 
						|
             DT->dominates(BBE, NarrowUser->getParent());
 | 
						|
    };
 | 
						|
 | 
						|
    if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
 | 
						|
      UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
 | 
						|
 | 
						|
    if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
 | 
						|
      UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Calculates PostIncRangeInfos map for the given IV
 | 
						|
void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
 | 
						|
  SmallPtrSet<Instruction *, 16> Visited;
 | 
						|
  SmallVector<Instruction *, 6> Worklist;
 | 
						|
  Worklist.push_back(OrigPhi);
 | 
						|
  Visited.insert(OrigPhi);
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *NarrowDef = Worklist.pop_back_val();
 | 
						|
 | 
						|
    for (Use &U : NarrowDef->uses()) {
 | 
						|
      auto *NarrowUser = cast<Instruction>(U.getUser());
 | 
						|
 | 
						|
      // Don't go looking outside the current loop.
 | 
						|
      auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
 | 
						|
      if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!Visited.insert(NarrowUser).second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      Worklist.push_back(NarrowUser);
 | 
						|
 | 
						|
      calculatePostIncRange(NarrowDef, NarrowUser);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
PHINode *llvm::createWideIV(const WideIVInfo &WI,
 | 
						|
    LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
 | 
						|
    DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
 | 
						|
    unsigned &NumElimExt, unsigned &NumWidened,
 | 
						|
    bool HasGuards, bool UsePostIncrementRanges) {
 | 
						|
  WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
 | 
						|
  PHINode *WidePHI = Widener.createWideIV(Rewriter);
 | 
						|
  NumElimExt = Widener.getNumElimExt();
 | 
						|
  NumWidened = Widener.getNumWidened();
 | 
						|
  return WidePHI;
 | 
						|
}
 |